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ABSTRACT 

 
The influence of the presence of transverse cracks in a rotating shaft is analysed. The paper addresses the 
influence of crack opening and closing on dynamic response during operation. The evolution of the orbit 
of the cracked rotor near half and one-third of the first critical speed is investigated. The dynamic response 
of the rotor with a breathing crack is evaluated by expanding the changing stiffness of the crack as a 
truncated Fourier series and then using the Harmonic Balance Method. This method is applied to compute 
various parametric studies including the effects of the crack depth and location on the dynamic of a crack 
rotor. The evolution of the first critical speed, associated amplitudes at the critical speed and half of the 
critical speed, and the resulting orbits during transient operation are presented and some distinguishing 
features of a cracked rotor are examined. 
 
Keywords: rotor, breathing crack, non-linear dynamic, crack depth. 
 
 

1. INTRODUCTION 
 
One form of damage that can lead to catastrophic failure is an undetected crack in a shaft and in recent 
years significant effort has been devoted to the detection of transverse cracks in shafts [1-31]. This 
problem may be approached by observing the vibrational behaviour of rotor systems with a crack and one 
of the advantages of vibration measurement is that the detection of a crack can be carried out non 
invasively.  In this paper a theoretical model is used to identify the characteristics of a system in the 
presence of a transverse crack. At this point it is necessary to define some terminology: if a rotor has a 
crack, this crack may remain open or closed during the rotors motion, or it may open and close during 
different parts of the cycle. This latter case is referred to by some authors as a ‘breathing crack’, but it this 
paper, the rather more accurate term ‘active crack’ is used. 
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Generally, two different approaches are attempted to identify the presence of a crack in rotating structures. 
The first approach is based on the fact that the presence of a crack in rotating shaft reduces the stiffness of 
the structure, hence reducing the natural frequencies of the original uncracked shaft [30,31]. The second 
approach takes into account the influence of a transverse active crack on the response of a rotor model [9-
24, 28-29]. The dynamic behaviour of the cracked rotor and the evolution of the orbit over time at around 
one-half of the resonance appear to be the classical signature for detecting the presence of an active crack 
[17, 18, 31]. 
In this paper, a simple model is presented to describe the effect of an active crack. The Harmonic Balance 
Method is then applied to this model. This non-linear method is applied in order to save time and to be 
able to undertake parametric numerical studies. Finally, the dynamic behaviour due to the presence of the 
breathing crack is investigated, particularly the behaviour of the 2X and 3X harmonic component of the 
system and the evolution of the orbit near one-half and one-third of the first critical speed. Parametric 
studies considering the influences of the crack depth and location will be investigated in order to examine 
the possibility of detecting the presence of a crack even if the crack depth is small or the crack is situated 
in an unfavourable position. The effect of crack depth and location on first critical speed, the associated 
amplitudes at the critical speed and at  half of the critical speed, and the resulting orbits during transient 
operation are presented and discussed. 
 

2. MODELING OF THE CRACK ROTOR  
 
In this section, the model of the rotor is introduced. 
 

2.1. MODEL OF THE ROTOR 
 
The system under study is illustrated in Figure 1. The rotor is composed of a rotor shaft with one disc at 
the mid-span. The rotor shaft is modelled and discretized into 10 Timoshenko beam finite elements with 
four degrees of freedoms at each node [32, 33] and a constant circular cross-section. 
As illustrated in Figure 1, the nodal displacement of a beam element is defined by 

[ ]1 1 1 1 2 2 2 2
Tv w v wδ = θ ψ θ ψ     (1) 

The expression of the mass matrix 1 2
e e e= +M M M  (the summation of the translational and rotary mass 

matrices), the stiffness matrix eK , the skew-symmetric gyroscopic matrix eG and the damping matrix eC  
can be written by 
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and e e= αC K . E  and ρ  are the Young's modulus of elasticity and density of the rotor shaft.  I  is  the 
second moment of area about any axis perpendicular to the rotor axis. The shear coefficient  is given by  

( )2 1
EG =
+ ν

 with the shear modulus 2

12

r

EI
GS l

β = . ν  is Poisson’s ratio and rS  is the reduced area of the 

cross section. α  is a proportional factor to stiffness.The mass and gyroscopic matrices dM  and dG  for the 

disk corresponding to the degree-of-freedom [ ]Tv w θ ψ are given by 
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where. dm  is the mass of the disk. and ( pI , dI ) are the polar moment of inertia about the rotor axis and 
the diametral moment of inertia about any axis perpendicular to the rotor axis respectively. ω  defines the 
rotational speed of the rotor. Finally, eQ  and eW  defining the vector of gravity force and imbalance force 
are given by (for the degree-of-freedom [ ]Tv w θ ψ ) 
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where em  and ed  are the mass unbalance and the eccentricity. φ  defines the initial angular position with 
respect to the z-axis. m  is the mass for each element. 
Finally, the discrete bearing stiffness coefficients are placed at the corresponding degrees of freedom and 
the equation of motion for the complete rotor system is defined as follows 

( )+ +ω + = +Mx C G x Kx Q W     (10) 
where M  and G  are the mass and gyroscopic matrices including mass and gyroscopic matrices of the 
shaft and rigid discs. C  and K  are the external damping and stiffness matrices of the shaft.Q  and W  
define the vector of gravity force and imbalance force for the complete rotor system. 
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2.2. MODEL OF OPENING AND CLOSING CRACK 

 
The modelling of transverse crack as explained in [31] is briefly presented here. In a cracked rotor, at the 
crack location, the part of the cross section which is cracked is not capable of supporting tensile stress. 
Depending on the orientation of the rotor, the crack is in a compression zone or in a tension zone and the 
shaft is more or less stiff. To accurately predict the dynamic response of the rotor system with an active 
crack, an appropriate crack model is essential. Many researchers have studied this problem and proposed 
to obtain the localized additional flexibility due to the crack by considering the strain energy density 
function and the associated crack stress concentration factor [9, 14, 15]. 
Mayes and Davies [1-2] demonstrated that a transverse crack in a rotor shaft might be represented by the 
reduction of the second moment of area I∆  of the element at the location of the crack. By using Rayleigh's 
method, they established that the change in I∆  satisfied [2] 

( ) ( )20

0
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I I R F
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∆
= −

−∆
ν µ      (11) 

where 0I , R , l , ν , µ , and ( )µF  are the second moment of area, the shaft radius, the length of the 
section, the Poisson's ratio, the non-dimensional crack depth, and the compliance function (as a function of 
non-dimensional crack depth) respectively.  Note that Ra=µ  where a  defines the crack depth, as 
indicated in Figure 1. Mayes and Davies demonstrated that ( )µF  is the fractional change in the second 
moment of area measured at the crack face by considering a series of experimental tests for various 
transverse crack [2]. It may be noted that there are two values of ( )µF  for a given transverse crack, one for 
each of the orthogonal directions in the plane of the crack. 
Then, the cross section of the rotor shaft at the location of the crack has asymmetric area moments inertia 
about the neutral axis of bending, as illustrated in Figure 1. In the case of an uncracked shaft, the neutral 
axes of bending are defined by the X and Y axes. Using the expressions given in the appendix of reference 
[31], the stiffness matrix due to the transverse crack crackK  can be obtained at the crack location, by using 
standard finite elements 
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When the rotor is cracked, and the crack is active, the opening and closing behaviour due to the rotor 
rotation and shaft self-weight results in a time dependent stiffness with time and angle. Many researchers 
have proposed models for breathing crack . However, Penny and Friswell  [18]  demonstrated that for 
structural health monitoring using low frequency vibration, simple models of the crack are adequate and 
sufficient for the prediction of the dynamic behaviour of a rotor with an active crack, as well as the 
predicted whirl orbit at the steady-state 2× response.  
One of the usual models of a crack is that of Mayes and Davies [1-2] which has been used by many other 
researchers where the opening and closing of the crack was described by a cosine function by assuming 
that the gravity force is much greater that the imbalance force, the function describing the breathing crack 
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may given by ( )( )1( ) 1 cos
2

f t tω= −  where ω  is the rotational speed of the rotor. It may be observed that 

the crack is totally closed for 0=)(tf , and  full open for  1=)(tf . 
 

2.3. MODEL OF THE COMPLETE ROTOR 
 
After assembling the different shaft elements, adding the modelling of the rigid discs and bearing, the 
complete rotor model with a  crack is given by 

( ) ( )( ) crackf tω+ + + − = +Mx C G x K K x Q W    (13) 
where x , x , and x  are the acceleration, velocity and displacement of the degree-of freedom of the 
cracked rotor system. M , C , G  and K  are the mass, damping, gyroscopic and stiffness matrices, 
respectively. Q  and W  define the vector of gravity force and imbalance force, respectively. crackK  is the 
stiffness matrix due to the crack and ( )tf  the function representing the opening/closing effect. All the 
values of the parameters are given in Table 1. 
Whilst it is not immediately obvious, the equation (12) given above is non-linear. To a first approximation, 
a cracked rotor may be treated as a linear system with time varying coefficients, a rotor with either a large 
crack or a large imbalance will require a full non-linear treatment. The non-linear term arises because 
substantial deflection will give rise to local axial stretching and this effect the position of the neutral axis 
of any specified cross section of the rotor. 
 
 

3. HARMONIC BALANCE METHOD 
 
One of the classical approach in order to obtain the response of rotor system is the numerical integration 
procedure. However, this approach may be rather expensive and requires considerable resources both in 
terms of computation time and data storage. So the Harmonic Balance Method that is one of the most well-
known approximation technique [31, 34] will be briefly explained and applied for this study. We do not 
claim to make an important contribution in this section. The only purpose is to give an overview of the 
harmonic balance method that underlies this paper. We refer the interested reader to [31] for an extensive 
overview of the harmonic balance method. 
Moreover, in the field of rotating machinery, the system behavior is calculated for various operational 
speed of interest while all other parameters are kept constant. In this case, predictor can be used in order to 
estimate the response of the rotor system when the rotational speed increases. The Lagrangian 
extrapolation method [31] is applied in order to obtain the estimated point on the solution branch. 
The rotor system defined in equation (12) can be written as 

( ) ( ), , tω ω+ + =Mx D x Kx F x  with  ( ) ( ) ( ), , . , ,crackt f t tω ω= +F x K x g x       (14 and 15) 
M and K  are the mass and the stiffness matrices, whilst D is a term involving both the damping and 
gyroscopic matrices. F and is the vector containing the non-linear expressions due to the breathing crack 
( ) .crackf t K x and the vector for the imbalance and gravity force ( ), , tωg x . If the rotor system is subjected 

to periodic excitation, the response of the right-hand side of the previous equation ( ), , tωF x and the 

required solution of the rotor system ( )tx  can be approximated by a finite Fourier series 
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=
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where ω  is the fundamental frequency given by 2 T=ω π . nS  and nT  (with 0 n m≤ ≤ ) is an implicit 
function of [ ]0 1 1          m m=V A A B A B  that is a ( )2 1m r+ × matrix of the unknown coefficients of the 
truncated Fourier series (where r  defines the number of degree-of-freedom of the rotor system). As 
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explained by Cameron and Griffin [35], the determination of the coefficients [ ]0 1 1          m m=U S S T S T  
can be easily calculated by considering the process of switching between the frequency and time domains 
by using a Discrete Fourier transform DFT [31] 

[ ] ( ) ( ) [ ]-1DFT DFT
0 1 1 0 1 1                    m m m mt t⎯⎯⎯→ → ⎯⎯⎯→A A B A B x F S S T S T  (18) 

Substituting the previous truncated Fourier expressions in the dynamic equation yields a set of  m r×  
linear equations. By equating coefficients for the cosine and sine terms, one obtains a set of ( )2 1m r+ ×  
simultaneous equations 
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The ( )2 1m r+ ×  unknown coefficients [ ]0 1 1          m m=V A A B A B  can be determined uniquely. We 
refer the interested reader to [31] for an extensive overview of the non-linear analysis and harmonic 
balance method. 
 

4. NUMERICAL RESULTS 
 
In this section, the influence of a deep crack (with the non-dimensional crack depth equal to 1µ = ) situated 
at the middle of the shaft is investigated. The effects of the non-dimensional crack depth and crack position 
are considered as a possible tool for the detection of cracks in rotating systems. 
 

4.1. DYNAMIC BEHAVIOUR OF A ROTOR WITH A  DEEP CRACK AT THE MIDDLE 
 
Figure 2 shows the horizontal and vertical steady state responses of the uncracked rotor and the rotor with 
an active crack ( 1µ =  at the centre span of the shaft). The horizontal and vertical displacements are given 
for all the transversal nodes of the shaft. For the uncracked rotor, the vertical and horizontal displacements 
indicate the presence of the first critical speed around 310rad/s. For the cracked rotor, it clearly appears 
that the presence of the crack the 2X resonance is predicted for the horizontal and vertical displacements 
when the running speed is approximately one-half of the first critical speed (around 150-155 rad/s). 
Moreover, the 3X resonances of the system response is clearly identified at one-third of the first critical 
speed for the vertical displacement  (around 100-110 rad/s). 
These previous observations and comparison between the cracked and uncracked rotors are the first step 
for the detection of crack in rotating systems. However, the diagnosis of the presence of a crack in rotating 
machinery based only on the appearance of a harmonics response at half or/and one-third the first critical 
speed in the spectrum may be misleading: it is, in fact, merely a diagnosis of non-linearity. As explained 
by Sinou and Lees [31], one of the features to detect the presence of a transverse crack in a rotating shaft is 
the use of the evolution of the orbit over time at around one-half of the critical speeds. When the rotating 
speed of the cracked rotor is passing through half of the first critical speed, the orbit changes firstly from a 
simple loop to a double loop, as illustrated in Figure 3 (from ω=150 rad/s to ω=155 rad/s). Then, one 
distortion in the orbit appears (around  ω=156 rad/s) and the shape of the orbit changes finally to a simple 
loop containing a small inside loop as illustrated in Figure 3 (from ω=157rad/s to ω=160 rad/s). These 
observations form the signature of the presence of a crack indicating the change in amplitude and phase at 
half any resonance speed, and is also a characteristic for signals containing two vibration components with 
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the same direction of precession. Moreover, when the rotating speed passes through one-third of the first 
critical speed, the change of the shape of the orbit may be used in order to detect the presence of a crack. 
As indicated in Figure 4, the shape of the orbit changes from a simple loop to a triple loop. Finally, all 
these changes in the shape of orbits may be used in order to detect the presence of crack during the 
transient operation of machinery. However, these changes of the behaviour of the rotor system  due to the 
presence of a crack have been studied for a deep crack ( 1µ = ) situated at the mid-span of the shaft so that 
the system is sensitive to the crack. It is important at this stage to assess the sensitivity of the response to 
both crack depth and (axial) position. 
 

4.2. INFLUENCE OF CRACK DEPTH AND CRACK POSITION 
 
The influences of the non-dimensional crack depth and crack position are investigated for µ=0 toµ=1 and 
a crack situated at the various nodes of the rotor shaft. The largest crack considered is the non-dimensional 
depth 1µ = , which corresponds to the case of half the area of the cross-section is missing due to the 
transverse crack. 
Figures 5 show the evolution of the vertical amplitudes around the first critical speed at the middle of the 
shaft versus the crack depth and crack position. It may be observed that increasing the crack depth 
decreases the value of the first critical speed for all the position cracks. Moreover, if the crack is situated at 
the middle of the shaft, the first critical speed decreases (for the same value of the crack depth). These 
results may be clearly interpreted as the contribution of the reduced stiffness which changes the system 
natural frequencies, resulting from the presence of the crack. 
The percentage changes in the first critical speed with the non-dimensional crack depth and the location of 
the crack are presented in Figures 6 for the vertical and horizontal displacements. The percentage change 
in the first critical speed is obtained by comparing the different values for a cracked rotor with the critical 
speed of the uncracked rotor. The highest changes in the value of the first critical speed occur in the 
vertical displacement due to the orientation of the crack and the shaft self-weight. As explained previously, 
these results may be considered as those obtained from the evolution of the natural frequencies of the rotor 
with the non-dimensional crack depth and crack position which are the common first step in the diagnosis 
of a crack [31]. 
Figures 7 illustrate the evolution of the maximum vertical and horizontal amplitudes at the first critical 
speed. The value of the critical speed varies with the crack depth and crack location. The maximum 
vertical and horizontal amplitudes are drastically affected by the variation of the crack depth and crack 
location. Moreover, the evolution of the vertical and horizontal maximum amplitudes versus the crack 
depth and crack position are very different. As illustrated in Figure 7, the horizontal maximum amplitude 
growths gradually with the non-dimensional crack depth. For the vertical maximum amplitude, the 
evolution is stronger when the non-dimensional crack depth reaches 1.These results may be very 
interesting for the detection of the presence of a crack and to evaluate the crack depth and crack location of 
the rotor system. 
Figures 8 illustrate the evolution of the vertical amplitudes for the middle of the rotor shaft around half of 
the first critical speed. In these cases, the changes of the value of the maximum amplitudes clearly appear: 
increasing the non-dimensional crack depth decrease the rotating speed where the maximum amplitude is 
observed, and considering a crack near the middle of the rotor shaft decrease also the rotating speed value 
of the maximum amplitude. These results are only due to the variation of the value of first critical speed 
with the crack depth and crack location (i.e. the reduced stiffness which changes the system natural 
frequencies, resulting from the presence of the crack). Moreover, it may be observed that the non-
dimensional crack depth and crack position affect the value of the maximum vertical and horizontal 
amplitude when the rotating speed passes through half the first critical speed, as illustrated in Figures 9. 
The amplitude of the vertical and horizontal responses is shown to increase in magnitude as the crack 
depth increases. This phenomenon is due to the increased asymmetry as crack depth increases. 
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The evolution of the orbits at the middle of the rotor shaft are represented versus the non-dimensional 
crack depth and crack position in Figure 10 and 11. For the results presented in Figure 10, the crack is 
situated at the mid-span of the rotor shaft and for those presented in Figure 11, the non-dimensional crack 
depth is equal to 1. As indicated in Figure 11, if the non-dimensional crack depth is greater than 0.5, the 
“outside-inside loop” phenomena and the distortion of the orbit shape is clearly observed. So, if the non-
dimensional crack depth is important, it will be possible to detect the presence of a crack by considering 
the orbit evolution passing through half the first critical speed. If not in the contrary case, the consideration 
of the evolution of the maximum vertical and horizontal amplitudes at half the critical speed and the 
evolution of the value of the critical speed and the associated amplitudes may be used to detect the 
presence of a crack. These considerations and observation could also provide crack diagnostic information. 
Moreover, the orbit evolutions due to the location of the crack indicate that the “outside-inside loop” 
phenomena may not be observed if the crack is situated at one end of the rotor shaft . 
Finally, the evolutions of the maximum amplitudes and the associated values of the rotating speed around 
one-third of the first critical speed could be investigated in order to detect the presence and signature of a 
crack as previously explained for a crack of non-dimensional depth 1µ = (Figure 4). However, it appears 
very difficult to observe clearly the effect of a crack if its depth is smaller than 0.9 and 1, and if the crack 
is not situated near the middle of the shaft, as illustrated in Figures 12 for the vertical amplitudes. 
Furthermore the horizontal amplitudes are less sensitive to the crack and hence detection is more difficult. 
 
 

5. CONCLUSION 
 
This study has demonstrated that the introduction of a deep breathing crack induced the 2X and 3X 
harmonic component of the system response. The behaviour of the 2X harmonic component of the system 
response increases in magnitude when the crack depth increases. Moreover, the primary response 
characteristic resulting from the changes in the non-linear dynamical behaviour of the rotor system through 
half resonance speeds appears to be the characteristic signature for detecting the presence of a crack rotor. 
Indeed, the distortion of the orbit, and formation of a double loop and inside loop in the orbit could be 
considered as one of the most practical indicators of the presence of a transversal crack for health 
monitoring purposes. 
The non-dimensional crack depth and crack location should strongly influence the detection of a crack. If 
the signature for detecting the presence of a crack rotor my not be based of the “outside-inside loops” 
phenomena, the evolution of the maximum vertical and horizontal amplitudes at half the first critical 
speed, and the changes of the values of the first critical speed and the associated vertical and horizontal 
maximum amplitudes should be used to detect a breathing crack: an increase in the amplitude of the 
response, as well as a decrease in the rotor speed at which the response is maximum around half of the first 
critical speed, are characteristics of the presence of a transverse rotor crack. 
Finally, both the orbit evolution at half of the first critical speed, and the magnitude of the response  at at 
the first critical speed  and at half of the first critical speed  may be considered as the unique characteristics 
of the system responses with a breathing crack and also served as target observations for  monitoring 
rotating machinery. 
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Parameters Physical dimension 
Length of the shaft 

Diameter of the shaft 
Young's modulus of elasticity E 

Shear modulus G 
Poisson ratio ν  

Density ρ  

Outer diameter of disc 
Inner diameter of disc 

Thickness of disc 
Masse unbalance 
Phase unbalance 

Eccentricity of the mass unbalance 
Coefficient of damping β  

0.5 m 
0.01 m 

2.1×1011 N.m-2 

7.7×1010 N.m-2 
0.3 

7800 kg.m-3 
0.05 m 
0.01 m 

0.015 m 
0.01 g 

0 degree 
0.01 m 
2.10-5 

 
Table 1: Detail of the rotor parameters 
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Figure 1: Rotor system and crack model cross-section 
 
 
 

 
 

Figure 2: Comparisons between the uncracked and cracked responses 
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Figure 3 : evolution of the orbit over time at around one-half of the first critical speed 
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Figure 4: evolution of the orbit over time at around one-third of the first critical speed 
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Figure 5: evolution of the vertical amplitude around the first critical speed at the middle of the shaft 
versus the crack position (for various crack depths) 
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(a) (b) 
 

Figure 6: percentage changes in the first critical speed with the crack depth and the location of the 
crack  (a)vertical displacements (b) horizontal displacements 

 
 
 
 
 

(a) (b) 
 

Figure 7: evolution of the maximum amplitude at the first critical speed with the crack depth and the 
location of the crack (a) vertical amplitude (b) horizontal amplitude 
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Figure 8: evolution of the vertical amplitudes for the middle of the rotor shaft around half of the 
first critical speed versus the crack position (for various crack depths) 
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(a) (b) 
 

Figure 9: evolution of the maximum vertical amplitude at half of the first critical speed with the crack 
depth and the location of the crack (a) vertical amplitude (b) horizontal amplitude 
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Figure 10: evolution of the orbits at the middle of the rotor shaft versus the non-dimensional crack 

depth 
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Figure 11 : evolution of the orbits at the middle of the rotor shaft versus the crack position 
 

 
 

 



20 

Figure 12: evolution of the horizontal amplitudes for the middle of the rotor shaft around one-third 
of the first critical speed versus the crack position (for various crack depths) 
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