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ABSTRACT 
 

Friction-induced vibrations due to coupling modes can cause severe damage and are recognized as one of 
the most serious problems in industry. In order to avoid these problems, engineers must find a design to 
reduce or to eliminate mode coupling instabilities in braking systems. Though many researchers have 
studied the problem of friction-induced vibrations with experimental, analytical and numerical 
approaches, the effects of  system parameters, and more particularly damping, on changes in stable-
unstable regions and limit cycle amplitudes are not yet fully understood.  
The goal of this study is to propose a simple non-linear two-degree-of-freedom system with friction in 
order to examine the effects of damping on mode coupling instability. By determining eigenvalues of the 
linearized system and by obtaining the analytical expressions of the Routh-Hurwitz criterion, we will 
study the stability of the mechanical system’s static solution and the evolution of the Hopf bifurcation 
point as functions of the structural damping and system parameters. It will be demonstrated that the 
effects of damping on mode coupling instability must be taken into account to avoid design errors. The 
results indicate that there exists, in some cases, an optimal structural damping ratio between the stable and 
unstable modes which decreases the unstable region. We also compare the evolution of the limit cycle 
amplitudes with structural damping and demonstrate that the stable or unstable dynamic behaviour of the 
coupled modes are completely dependent on structural damping. 
 

1. INTRODUCTION 
 
Though friction-induced vibration has received considerable attention from a number of researchers [1-
23], there are still no methods which completely eliminate or reduce instabilities. Solving potential 
friction-induced vibration problems requires a complete understanding and appropriate analysis to 
identify the effects of all physical parameters on system stability. 
For example, it is well known that the stability of the static solution can be affected by the friction 
coefficient and the associated friction mechanisms. In order to find the most suitable mechanism to 
describe friction-induced vibration in brake systems, these various mechanisms must be examined. They 
fall into four categories [1-2]: stick-slip, variable dynamic friction coefficient, sprag-slip [7] and 
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geometric coupling of degrees of freedom [8,10,12-16]. The first two approaches rely on changes in the 
friction coefficient with relative sliding speed affecting system stability. The last two approaches use 
kinematic constraints and modal coupling in order to develop the instability; in these cases, instability can 
occur with a constant brake friction coefficient. 
Stick-slip is a low sliding speed phenomenon caused when the static friction coefficient is higher than the 
dynamic coefficient. In 1938, a study by Jarvis and Mills [10] led to an initial understanding that brake 
squeal was associated with a decrease in friction coefficient with rubbing speed. Due to this negative 
slope, the steady state sliding becomes unstable and causes friction-induced vibrations. Although this 
mechanism is still recognised as explaining some low frequency brake vibration problems, it was soon 
realised that a decrease in friction coefficient was insufficient to explain some friction-induced vibrations. 
It was later realised that this tribological property was not the only cause of brake squeal, and that 
vibration could occur when the friction coefficient remained largely constant with speed. Spurr [7] 
proposed the sprag-slip action which does not depend on a friction coefficient varying with the relative 
rotation speed of the brake disc. Later researchers (Earles [8, 11-12], North [17], Miller [9], D’Souza and 
Dweib [18]) developed a more generalised theory describing the mechanism as a geometrically induced 
or kinematic constraint instability. For example, Jarvis and Mills [16] demonstrated that the variation of 
the friction coefficient with sliding speed was insufficient to cause friction-induced vibrations and so the 
instability was due to coupling even if the friction coefficient was constant. It is now accepted that there is 
no uniform theory for the characterisation of the problem and that stick-slip phenomena [19], negative 
friction velocity slope [20], sprag-slip phenomena and geometric coupling of the structure involving 
sliding parts [7,8,10,12-16] contribute to the description of mechanisms causing dynamic instability of 
brake systems. 
The analysis of friction-induced instability is still a vast problem in spite of numerous recent studies on 
the subject. The stability of the static solution of the mechanical system can be affected by the design and 
layout of brake components and the effects of all system parameters are not yet clearly understood. This is 
especially the case for structural damping: in a broad variety of engineering systems, incorporating 
additional damping into one part of the brake system is undertaken in order to reduce or eliminate 
significantly friction-induced vibrations. However, it has been observed that the addition of damping to 
one part of the mechanical system may have a worse effect. Moreover, many studies on mode coupling 
instability due to friction have relied on undamped model systems. Then, when structural damping is 
taken into account, its role and effects in the analysis of mode coupling instability is not fully 
investigated. For example, Earles and Chambers [8] discussed the concept of geometrically induced 
instability on damped systems and concluded that the effects of damping are too complex to make 
predictions intuitively and could not be readily anticipated. Recently, Shin et al. [21-22] investigated the 
effect of damping on a two-degree-of-freedom model and clearly indicated that the amount of damping is 
a key factor in order to avoid unstable vibrations and stick-slip phenomena. They showed that damped 
model systems connected through a sliding friction interface can become unstable if damping is added 
only on one side of the sliding interface. Finally, Hoffmann and Gaul [23] studied the effects of damping 
on mode-coupling instability in friction-induced oscillations. They also conclude that increasing damping 
may destabilize friction-induced vibrations w and that the role of structural damping is not a side effect 
which can be easily ignored. They show that the effects of damping on mode coupling instability in 
friction-induced vibrations is a surprising and complex phenomenon. 
Given that the influences of structural damping and the associated mode coupling phenomena are not yet 
fully understood, the goal of this study is to clarify the effects and roles of damping for friction-induced 
mode coupling instability. For the sake of simplicity a two-degree-of-freedom model will be developed 
and analysed. One of the biggest advantages of this model is that the stability analysis via the Routh-
Hurwitz criterion can be undertaken and the analytical expressions of the stable/unstable boundary 
regions can be calculated. The results not only illustrate the effects of damping on the determination of 
the stable and unstable regions, but also indicate that, in some cases, the most efficient damping ratio 
between the stable and unstable coupling modes needs to be taken into account to avoid design errors. 



 3

Moreover, mode coupling instability and flutter phenomena will be studied in detail by showing the 
change in stable and unstable modes due to the variations of structural damping. We will thus 
demonstrate that stable or unstable dynamic behaviour of the coupled modes are completely dependant on 
structural damping and that the role of the damping ratio of the coupled modes  is essential to the unstable 
or stable motion of these coupled modes. Then, various parametric studies will be made in order to show 
the influence of system parameters such as the friction coefficient and the natural frequency ratio between 
the coupling modes. Finally, the changes in the limit cycle amplitudes for various system parameters will 
be shown in order to better understand the effects of structural damping on unstable amplitudes.  
 

2. DESCRIPTION OF THE MECHANICAL MODEL  
 
Because flutter instability is a mode-coupling phenomenon, a simple self-excited mechanism proposed by 
Hulten [24-25] will be investigated and developed. This is shown in Figure 1. This model was introduced 
by Hulten in order to study squeal vibration in drum brakes. For this study, Hulten’s model will be 
sufficient to investigate friction-induced vibration, and to develop analytical expressions in order to better 
understand the roles and effects of damping. This model is composed of a mass m  held against a moving 
band; the contact between the mass and the band is modelled by two plates supported by two different 
springs. For the sake of simplicity, we assume that the mass and band surfaces are always in contact. This 
assumption may be due to a preload applied to the system. The contact can be expressed by two cubic 
stiffnesses. Damping is integrated as shown in Figure 1. The friction coefficient at contact is assumed to 
be constant and the band moves at a constant velocity. Then it is assumed that the direction of friction 
force does not change because the relative velocity between the band speed and 1X�  or 2X�  is assumed to 
be positive. All these assumptions are taken into account in order to study a simple non-linear theoretical 
two-degree-of-freedom system with friction such that the effects of damping on mode coupling instability 
and the associated analytical developments may be easily investigated. 
The tangential force TF  due to friction contact is assumed to be proportional to the normal force NF  as 
given by Coulomb’s law: T NF F= µ . Assuming the normal force NF  is linearly related to the 
displacement of the mass normal to the contact surface, the resulting equations of motion can be 
expressed as 

( )+ +MX + CX KX FNL X = 0�� �      (1) 

with ( )1 2
TX X=X . X�� , X�  and X  are, respectively, the acceleration, velocity, and displacement 

response 2-dimensional vectors of the degrees-of-freedom. The mass matrix M , the damping matrix C , 
the stiffness matrix K  and the non-linear vector ( )FNL X are given by 
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K is asymmetric as a result of the friction force. Therefore this system  may become unstable.  
By dividing these equations by m and considering the relative damping coefficients i i i ic m kη =   

(i=1,2) and natural pulsations 0,i i ik mω =  (i=1,2) , the following relations can be established 
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where   
2 2 3 3

1 0,1 10,1 0,2 1 1 2 21 1
2 2 3 3

2 0,2 20,1 0,2 1 1 2 22 2

01 0
00 1
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+ + =⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥ − −⎣ ⎦ ⎝ ⎠⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎣ ⎦
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and where 1 1
NL NLk mϕ = and 2 2

NL NLk mϕ = . 
The base parameters are given by 1

0,1 2 1000 .rad s−= ×ω π ; 1
0,2 2 800 .rad s−= ×ω π ; 1 2 0.02η η= = ; 

2
1 0,1
NLϕ ω=  and 2

2 0,2
NLϕ ω= . 

 
3. STABILITY ANALYSIS  

 
The stability of the static solution is investigated by calculating the eigenvalues λ  of the linearized 
system [14-15]. For the non-linear system being studied, the non-linear static solution corresponds to the 
origin of the system. So the eigenvalues of the linear system can be found by solving the characteristic 
equation [14-15] 

( )2det 0λ λ+ + =M C K      (7) 
As long as the real part of all the eigenvalues remains negative, the static solution of the system is stable. 
When at least one of the eigenvalues has a positive real part, the static solution is unstable. The imaginary 
part of this eigenvalue represents the frequency of the unstable mode. By considering the friction 
coefficient µ  as a control parameter, the Hopf bifurcation point is defined by the following conditions: 
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,
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d
d

µ µ
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µ µ

λ µ

λ µ

λ µ
µ

=

− =

=

=

≠

≠

X=0

X=0
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     (8) 

The first condition implies that the system has a pair of purely imaginary eigenvalues centerλ , while all of 
the other eigenvalues non centerλ −  have nonzero real parts at ( )0,µ µ=X = 0 . The second condition of 
equation (8), called a transversal condition, implies a transversal or nonzero speed crossing of the 
imaginary axis. 
First, the change in the real and imaginary parts of eigenvalues against the friction coefficient µ  is 
studied for various damping ratios. Figures 2-3 show the effects of these. As illustrated in Figure 3, the 
well known behaviour for friction-induced mode coupling is obtained: there are two stable modes at 
different pulsations when 0µµ < . As the control parameter µ  increases, these two modes move closer 
until they reach the bifurcation zone at the Hopf bifurcation point 0µ . For 0µµ = , there is one pair of 
purely imaginary eigenvalues and all other eigenvalues have negative real parts (as indicated in Figures 2 
and 4). After the Hopf bifurcation point ( 0µµ > ), the two stable and unstable modes couple. As indicated 
in Figure 2, the real part of the stable and unstable modes (indicated by the stable and unstable branches) 
are negative and positive, respectively. These effects of damping appear to be very complex. For 
example, it may be observed that the unstable mode varies due to the damping ratio (see Figure 3): for 
( )1 20.02, 0.02η η= = , the unstable mode corresponds to the smaller imaginary part of the two coupling 

modes; for ( )1 20.02, 0.005η η= = , the unstable mode corresponds to the larger imaginary part of the two 
coupling modes.  
To further our understanding of the effects of damping, Figure 6 shows the stable and unstable regions of 
the static solution for various damping ratios 1 2η η  (with 1 0.02η = ) and various friction coefficients µ . 
It clearly appears that increasing damping in only one part of the system may induce mode coupling 
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instability. If the damping ratio 1 2η η  is very small, the damped system is more unstable than the 
undamped system (given in Figures 2 and 3); this result shows that analysing the stability of undamped 
mechanical systems subject to flutter instability may lead to bad designs. So the effects of damping on 
flutter instability is an important factor to be taken into account to avoid erroneous diagnostics. 
As seen in Figure 6, there exists an optimal value of the damping ratio ( )1 2 opt

η η (near 0.8) for which the 

Hopf bifurcation point 0µ  is higher. This result may prove very interesting for obtaining a more stable 
mechanical system in relation to the structural damping. 
Figures 7 and 8 show the change in the real and imaginary parts of eigenvalues versus the damping ratio 

1 2η η  (with 1 0.02η = ) and various friction coefficients µ . The white surface corresponds to the change 
in the modes for the static solution that becomes unstable after the Hopf bifurcation point. The black 
surface is the change in the associated stable static solution. In Figures 8 and 9, it may be observed that 
the optimal value of the damping ratio ( )1 2 0.8

opt
η η ≈  (which corresponds to the more stable system in 

relation to this damping ratio 1 2η η ) corresponds to the change in the unstable and stable behaviour for 
the two coupling modes. For  1 2 0.8η η < , the unstable mode comes from the high pulsation of the two 
coupling modes; and for 1 2 0.8η η > , the unstable mode comes from the low pulsation of the two 
coupling modes.. So, the optimal value of the damping ratio 1 2η η  not only defines the most stable 
mechanical system and the higher value of the Hopf bifurcation point 0µ , but also influences the mode 
coupling behaviour and the origin of the unstable mode 
 

4. ROUTH-HURWITZ CRITERION  
 
Throughout the previous computational simulations, it was found that there may exist an optimal value of 
the damping factor 1 2η η  giving a higher Hopf bifurcation point (in relation to the friction coefficient) 
and so a more stable mechanical system. Because damping appears to be a key factor,  we will study its 
effects on the stability of the static solution of the mechanical system by considering the Routh-Hurwitz 
criterion. The goal of this development is to obtain the analytical expressions of the Routh-Hurwitz 
coefficients (in relation to system parameters and more particularly the structural damping) that govern 
the stability of the static solution of the system.  
Considering equation (6)  

( )
2 2 2

1 0,1 0,1 0,22
2 2 2
0,1 2 0,2 0,2

det
λ η ω λ ω µω

λ λ
µω λ η ω λ ω

+ + −
+ + =

+ +
M C K ,   (9) 

we can obtain the 4th-order characteristic polynomial  
4 3 2

1 2 3 4 0a a a aλ λ λ λ+ + + + =     (10) 
where λ  are the eigenvalues of the linearized mechanical system. The expressions 1 2 3,  ,  a a a  and 4a are 
given  by 

1 1 0,1 2 0,2a η ω η ω= +       (11) 
2 2

2 1 2 0,1 0,2 0,1 0,2a = + +ηη ω ω ω ω      (12) 
2 2

3 1 0,1 0,2 2 0,2 0,1a η ω ω η ω ω= +      (13) 

( )2 2 2
4 0,1 0,2 1a ω ω µ= +       (14) 

 
As explained in the previous section, if  all roots of the characteristic equation have a negative real part, 
the static solution of the system is stable and if at least one root has a positive real part, the static solution 
is unstable.  



 6

Moreover, applying the Routh-Hurwitz criterion to this characteristic equation gives the four following 
coefficients  

1 1H a=       (15) 

2 1 2 3H a a a= −       (16) 
2 2

3 1 2 3 3 4 1H a a a a a a= − −     (17) 

4 1 2 3 4H a a a a=       (18) 
If all these coefficients are positive, the static solution of the mechanical system is stable. When at least 
one of the coefficients iH   (with 1, , 4i = … ) is negative, this static solution is unstable.  
Firstly, it may be observed that  

1 1 0,1 2 0,2 0H η ω η ω= + >      (19) 

( )3 3
2 1 0,1 2 0,2 1 2 0,1 0,2 1 0,1 2 0,2 0H = + + + >η ω η ω ηη ω ω ηω η ω    (20) 

( )( )( )( )4 4 2
4 0,1 0,2 1 0,1 2 0,2 1 2 0,1 0,2 0,2 0,1 1 0,2 2 0,1/ / 1 0H = + + + + + >ω ω η ω η ω ηη ω ω ω ω ηω η ω µ  (21) 

Then, the stability of the static solution is governed only by   

( )( )( ) ( ) ( )( )( )2 22 2 2
3 0,1 0,2 1 0,1 2 0,2 1 2 0,1 0,2 0,2 0,1 1 0,2 2 0,1 1 0,2 2 0,1 1 0,1 2 0,2/ / 1H = + + + + − + − + +ω ω η ω η ω ηη ω ω ω ω η ω η ω η ω η ω µ η ω η ω

(22) 
 So the boundary between the stable and unstable zones and the determination of the Hopf bifurcation 
point versus the control parameter 0µ  is defined by  

( )( ) ( )( ) ( )2 22 2 2 2 2 2 2
3 1 2 0,1 0,2 1 0,1 2 0,2 1 0,1 0,2 2 0,2 0,1 0,1 0,2 0,1 0,2 1 0,1 2 0,20H ηη ω ω ηω η ω ηω ω η ω ω ω ω ω ω µ η ω η ω= = + + + − − +  (23) 

By introducing the following relations 
0,1

0,2
ω

ω
α

ω
=       (24)  

1

2
η

ηα
η

=       (25) 

equation (22) can be rewritten as  

( )( ) ( ) ( )( )223 2 2 2
0,2 2 20 1 1 1ω ω η ω η η ω η ω ω ω ηω η α η α α α α α α α α µ α α α= + + + − − +  (26) 

Finally, the value of the Hopf bifurcation point 0µ is given by 

( )( ) ( )

( )

22
22

0 2

1 1

1

ω η ω η η ω η ω

ω ω η

η α α α α α α α α
µ

α α α

+ + + −
=

+
   (27) 

In light of this expression, it clearly appears that the value of the Hopf bifurcation point 0µ  depends on 

the structural damping, the damping ratio 1

2
η

ηα
η

= , and the natural pulsation ratio 0,1

0,2
ω

ω
α

ω
= . 

Now, various parametric studies will be undertaken to demonstrate the dependency of the stability of the 
mechanical system’s static solution in relation to the friction coefficient, the structural damping, the 

damping ratio 1

2
η

ηα
η

= , and the natural pulsation ratio  0,1

0,2
ω

ω
α

ω
= . 

Figure 10 shows the evolution of the Routh-Hurwitz coefficient 3H  for various values of the friction 
coefficient µ  and various damping ratios 1 2η η  while keeping the structural damping 1η   at its base 
value ( 1 0.02η = ). Moreover, the boundary between the stable and unstable zones is given by using 
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equation (26). Results are in perfect correlation with those obtained by determining the eigenvalues of the 
linearized system (Figure 6). 
To  further our understanding of the effects of structural damping 1η  and 2η , Figure 11 shows the Hopf 
bifurcation point 0µ  for various damping values 1η  and 2η by considering equation (27). If the friction 
coefficient of the mechanical system is higher than the friction coefficient 0µ  at the Hopf bifurcation 
point, the static solution of the system is unstable. It clearly appears that increasing damping in both 
elements of the system has a beneficial effect and increases the Hopf bifurcation point and therefore the 
stable region. Moreover, this result suggests that adding damping in only one part of the system may 
induce mode coupling instability (due to the low Hopf bifurcation point 0µ ). 
Figure 12 then illustrates the effects of the structural damping  2η  and damping ratio 1 2η η  on the 
evolution of the Hopf bifurcation point . It may be observed that an optimal damping ratio 1 2=ηα η η  
may exist. This optimal ratio depends on the value 2η . 
To better assess the influence of the damping ratio 1 2η η , Figure 13 shows the effects of varying the 
damping ratio 1 2η η  and pulsation ratio 0,1 0,2ω ω . The general observations from these parametric studies 
are that for all the values of structural damping 2η  or of the pulsation ratio 0,1 0,2ω ω , the predictions of 
stable and unstable regions are complex in relation to 1 2η η ; increasing or decreasing 1 2η η  may 
increase or decrease the Hopf bifurcation point 0µ . Then the effects of the damping ratio 1 2η η  appear to 
be a key factor for eliminating mode coupling instability. Moreover, for some values of structural 
damping 2η  ( 2 0.9η ≤ ) or some values of the pulsation ratio 0,1 0,2ω ω  ( 0,1 0,2 0,1 0,20.9; 1.1ω ω ω ω< > ), we 
note the existence of an optimal value of the damping ratio 1 2η η below which the Hopf bifurcation point 
is larger and so the system becomes more stable for these parametric conditions.  
To further understand the existence of this optimal value of 1 2η η , Figure 14 shows its existence in 
relation to the damping 2η  and  the pulsation ratio 0,1 0,2ω ω . The two areas denoted by A define the 
zones where an optimal value of the damping ratio 1 2η η  exists.  The area denoted by B defines the zone 
where there is no optimal value of 1 2η η . In this last case, increasing the structural damping 2η  increases 
the value of the Hopf bifurcation point 0µ  and so increases the stability of the static solution of the 
mechanical system.  
Now, to better assess the values of the optimal structural damping ratio 1 2η η (when it exists), it could be 
interesting to obtain the analytical expression of this optimal ratio 1 2η η  by considering the previous 
expression (27). The optimal values of 1 2ηα η η=  give the maximal values of 2

0µ  and so corresponds to 
one of  the solutions of the following expression 

( ) ( )( ) ( )

( )

2 22 3 2 2 2 22 2 2 2 20
3

3 2 1 1
0

1

ω ω η ω η ω ω ω ω η ω ω

η ω ω η

η α α α η α α η α α α α α η α αµ
α α α α

+ + + − − + + −∂
= =

∂ +
 (28) 

( ) ( )( ) ( )2 22 3 2 2 2 2
2 2 2 23 2 1 1 0ω ω η ω η ω ω ω ω η ω ωη α α α η α α η α α α α α η α α+ + + − − + + − =   (29) 

By introducing the following relation 
1

η
ω

α α
α

= −        (30) 

we obtain 
3 0p qα α+ + =       (31) 

with 
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( )2

2
2

13 1 2p ω

ω ωω ω

α
α η αα α

−
= − + + −      (32) 

( )2

2 2
2

2 11 1 2 2q ω

ω ωω ω ω ω ω

α
α αα α α η α α

−
= − + − +     (33) 

If the discriminant 3 24 27p q∆ = −  is positive, then we have only one real solution given by 

( )1
1
3

u vα = +        (34) 

and two complex and conjugated solutions given by 

( )2
1
3

ju jvα = +       (35) 

( )3
1
3

ju jvα = +       (36) 

with  
1 3
2 2

j i= − +        (37) 

 3 27 33
2 2

u q= − + ∆      (38) 

3 27 33
2 2

v q= − − ∆      (39) 

If the discriminant 3 24 27p q∆ = −  is negative, we have the three real solutions 

( )1
1
3

u uα = +� �        (40) 

 ( )2
1
3

ju juα = +� �        (41) 

 ( )2 2
3

1
3

j u j uα = +� �       (42) 

with 

 3 27 33
2 2

u q i= − + −∆�      (43) 

Considering the relations (30-41), the optimal values of 1 2ηα η η=  (corresponding to the maximum of 
the values of the Hopf bifurcation point) are calculated by varying the structural damping 2η  and the 
pulsation ratio 0,1 0,2ω ω . Figures 15 and 16 show these optimal values of 1 2ηα η η=  and the associated 
Hopf bifurcation point 0µ , respectively. As explained previously and indicated in Figure 14, for some 
values of the damping 2η  and  the pulsation ratio 0,1 0,2ω ω , this optimal ratio 1 2ηα η η=  does not exist; 
this is why no optimal value of  1 2η η  is given for some parametric conditions in Figure 15. 
So, it clearly appears that the optimal value of 1 2η η depends on the structural damping 2η  and the 
pulsation ratio 0,1 0,2ω ω . Its variation is in the range of [0.8 ; 3] for the considered parametric conditions 
and so this optimal value is an important factor to be taken into account to avoid poor design. The 
evolution of associated Hopf bifurcation point appears complex. However, it may be observed that 
increasing the structural damping 2η  increases the value of the Hopf bifurcation point  and so the static 
solution of the mechanical system is more stable (if the optimal damping ratio 1 2η η  is used). Moreover, 
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the Hopf bifurcation point decreases when the pulsation ratio 0,1 0,2ω ω tends towards one, which is easily 
understood. 
By comparing  Figures 13 and 15 and considering Figure 12, the damping ratio 1 2η η  may be essential to 
obtain the optimal stable mechanical system. However, in some cases, this damping 1 2η η  is not essential 
(when an optimal value of 1 2η η  does not exist) but increasing the structural damping 2η  (or the 
structural damping 1η ) makes it possible to increase the stability of the static solution. Finally, if the 
optimal damping ratio 1 2η η exists, increasing the structural damping 2η  (or the structural damping 1η ) 
increases the stability of the static solution.  
 
 

5. NON-LINEAR ANALYSIS AND AMPLITUDES 
 
The determination of the stable and unstable zones is not sufficient for making a better design and the 
evolution of the limit cycle amplitudes is an important factor to be integrated: the limit cycle amplitudes 
resulting from various parametric studies may be very small and hence the mode coupling instability 
could be negligible in these cases.  
So, in order to better understand the effect of damping on the limit cycle amplitudes, the non-linear 
behaviour of the mechanical system and the limit cycles will be calculated by numerically integrating the 
complete expressions of the non-linear equations of the mechanical system 

2 2 3 3
1 0,1 10,1 0,2 1 1 2 21 1

2 2 3 3
2 0,2 20,1 0,2 1 1 2 22 2

01 0
00 1

NL NL

NL NL

X X XX X
X X XX X

η ω ω µω ϕ µϕ
η ω µω ω µϕ ϕ

⎡ ⎤−⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤ − +⎛ ⎞⎡ ⎤
+ + =⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥ − −⎣ ⎦ ⎝ ⎠⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎣ ⎦

�� �
�� �  (44) 

Figures 17 and 18 illustrate the evolution of the maximum amplitudes of the displacements 1X  and 2X  
for various damping ratios 1 2η η  and various friction coefficients µ  (with 1 0.02η = ). First, the stable 
zones which correspond to amplitudes equal to zero are in perfect correlation with the stability analysis 
previously conducted. 
Second, the well known evolution of the limit cycle amplitudes in relation to the friction coefficient is 
obtained: increasing the friction coefficient increases the limit cycle amplitudes. Then, it may be observed 
that increasing the damping ratio 1 2η η  may increase or decrease the maximum amplitudes of the 
displacements. We may then observe that the structural damping 2η  and the damping ratio 1 2η η between 
the two coupling modes not only influences the stable and unstable regions but also the amplitudes of the 
non-linear dynamical system. The general observations from Figures 17 and 18 are that the non-linear 
behaviour of the dynamical system in relation to the evolutions of the structural damping and the friction 
coefficient may be complex. 
Indeed, if the limit cycle amplitudes are estimated near the Hopf bifurcation point ( 0.23µ = ), the 
damping ratio 1 2η η  influences the non-linear behaviour of the dynamical system and the smaller 
unstable amplitudes are obtained for the optimal damping ratio which was defined in the previous section 
and can be shown in Figure 15. If the amplitudes of the displacements 1X  and 2X  are calculated for 

0.22µ ≤ , getting closer to the stable zones decreases the maximum amplitudes of the displacements 1X  
and 2X . For 0.24µ > , it appears that the key factor is not the damping ratio 1 2η η but the value of the 
structural damping 2η : increasing the damping ratio 1 2η η  (and thus increasing the structural damping 1η  
due to the fact that the structural damping 2η  is constant) decreases the maximum amplitudes of the 
displacements 1X  and 2X . From these results, it is clearly shown that if too much damping is added to 
only one of the coupling modes of the mechanical system, the instability magnitudes may increase.  
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6. CONCLUSION 
 
This study not only illustrates the effects of system parameters including damping on the determination of 
stable and unstable zones and on the limit cycle amplitudes, but also indicates that the damping ratio of 
the coupling modes may be a key factor to be taken into account in order to avoid bad design. Moreover, 
neglecting damping in a stability analysis or adding damping on only one part of the system may result in 
worse design and lead to a misunderstanding of the mode coupling instability of mechanical systems. 
This work indicates that the structural damping 1η  and 2η , the damping ratio 1 2η η  and the pulsation 
ratio 0,1 0,2ω ω  have to be considered in detail in order to design systems with friction-induced 
oscillations. It has been demonstrated that the Hopf bifurcation point that defines the boundary between 
the stable and unstable areas depends on the structural damping of the coupling modes, the damping ratio 
and the pulsation ratio between these two modes. Finally, it was demonstrated that the maximum 
amplitudes in relation to structural damping is a complex problem and has to be examined in detail in 
order to avoid bad design. 
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7. Figure 1 : mechanical model 
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Figure 2 : Evolution of the real part of eigenvalues against the friction coefficientµ  for 

various proportional structural damping 
(            1 2 0η η= =            1 20.02, 0.05= =η η             1 2 0.05η η= = ) 

 
 

 
Figure 3 : Evolution of the stable and unstable branches against the friction coefficientµ  for 

various proportional structural damping 
(            1 2 0η η= =            1 20.02, 0.05= =η η             1 2 0.05η η= = ) 
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Figure 4 : Stable and unstable zones versus the damping ratio 1 2η η  and the friction 

coefficient µ  (with 1 0.02η = ) 
 

 
Figure 5 : Evolution of the real part of eigenvalues versus the damping ratio 1 2η η  and the 

friction coefficient µ  (with 1 0.02η = ) 
(black surface=stable branch, white surface=unstable branch) 
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Figure 6 : Evolution of the imaginary part of eigenvalues versus the damping ratio 1 2η η  and 

the friction coefficient µ  (with 1 0.02η = ) 
(black surface=stable branch, white surface=unstable branch) 

 
 

 
Figure 7 : Evolution of the real and imaginary part of eigenvalues versus the damping ratio 

1 2η η  (with 1 0.02η = ) 
(black surface=stable branch, white surface=unstable branch) 
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Figure 8 : Evolution of the routh hurwitz coefficient 3H  versus the friction coefficient µ  and 

the damping ratio  1 2η η  (with 1 0.02η = ) 
 
 

 
Figure 9 : Evolution of the Hopf bifurcation point 0µ  versus the structural damping  1η  and 

2η   
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Figure 10 : Evolution of the Hopf bifurcation point 0µ  versus the structural damping  2η  and 

damping ratio 1 2η η   
 

 
 

 
Figure 11 : Evolution of the Hopf bifurcation point 0µ  versus the damping ratio 1 2η η and the 

pulsation ratio 0,1 0,2ω ω (with 1 0.02η = ) 
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Figure 12 : Determination of the areas of existence of an optimal damping ratio 1 2η η  
(zones A: existence of  an optimal damping ratio;  zones B: no optimal damping ratio)  

 

 
Figure 13 : Evolution of optimal damping ratio 1 2η η  versus the damping 2η and the pulsation 

ratio 0,1 0,2ω ω   
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Figure 14 : Evolution of the Hopf bifurcation point 0µ  versus the damping 2η and the 

pulsation ratio 0,1 0,2ω ω for the optimal damping ratio 1 2η η  
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Figure 15 : maximal amplitudes 1X  for various friction coefficient and damping ratio 

1 2η η  (with 1 0.02η = ) 
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Figure 16 : maximal amplitudes 2X  for various friction coefficient and damping ratio 

1 2η η  (with 1 0.02η = ) 
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