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ABSTRACT 

In this paper, the influence of transverse cracks in a rotating shaft is analyzed. The paper addresses 
the two distinct issues of the changes in modal properties and the influence of crack breathing on 
dynamic response during operation. Moreover, the evolution of the orbit of a cracked rotor near half 
of the first resonance frequency is investigated. The results  provide a possible basis for an on-line 
monitoring system. 
In order to conduct this study, the dynamic response of a rotor with a breathing crack is evaluated by 
using the Alternate Frequency/Time Domain approach. It is shown that this method evaluates the 
non-linear behaviour of the rotor system rapidly and efficiently by modeling the breathing crack with 
a truncated Fourier series. The dynamic response obtained by applying this method is compared with 
that evaluated through numerical integration. The resulting orbit during transient operation is 
presented and some distinguishing features of a cracked rotor are examined. 
 

1. INTRODUCTION 

The influence of a transverse crack in the shaft of rotating machines on the associated dynamic 
behaviour, has been a focus of attention for many researchers [1-35].  The presence of a crack may 
lead to a dangerous and catastrophic effect on the dynamic behaviour of rotating structures and cause 
serious damage to rotating machinery. Therefore, the timely detection of a rotor crack would 
potentially avoid severe damage and expensive repairs due to the failure of rotating machinery as 
well as assuring the safety of personnel. 
Generally, two different approaches are attempted to identify the presence of a crack in rotating 
structures. The first approach is based on the fact that the presence of a crack in rotating shaft reduces 
the stiffness of the structure, hence reducing the natural frequencies of the original uncracked shaft. 
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Various theoretical and experimental works [3-10] performed over the last three decades have 
indicated that the change in modal properties (natural frequencies and modes shapes) may be useful 
for the detection of a crack, as well as for the identification of both crack depth and location. 
Moreover, the influence of opening and closing of crack due to the shaft self-weight for various 
orientations of the shaft has been investigated [3,11] and showed the effectiveness of the change in 
natural frequencies versus the orientation of the shaft to detect the orientation of the crack front. 
Another approach of crack identification is based on the modification of the dynamic responses of 
the crack rotor during its rotation. Indeed dynamic analysis of the cracked rotor based on theoretical 
and experimental studies has been a subject of great interest for the last decades [12-22]. Wauer [1] 
reviewed a literature survey on the state-of-art of the dynamics of cracked rotors. Mayes and Davies 
[11] analyzed the response of a multi-rotor-bearing system containing a transverse crack in a rotor 
both experimentally and theoretically. Gasch [12,13] studied the dynamic behaviour of a simple rotor 
with a cross-sectional crack and the associated stability behaviour due to the crack and imbalance. 
Henry and Okah-Avae [23] investigated the effects of the gravity and unbalance on the dynamic 
behavior of a crack shaft. Moreover, many studies [3, 20, 22, 24-28] indicated the change in dynamic 
responses and more particularly the tendency of the rotor to exhibit a harmonic component at twice 
shaft speed close to half any resonance frequency. Indeed, due to the shaft self-weight and the 
rotation of the rotor, the crack opens and closes during a complete revolution of the rotor; hence the 
stiffness of the shaft varies. This opening and closing mechanism, which is called the breathing 
effect, induces vibration of the second and higher harmonics of rotating speed in frequency domain. 
Although the presence of this twice per revolution component can indicate the possibility of the 
presence of a crack, it is also well known that the presence of such a component can be generated by 
shaft misalignment, asymmetric shaft, looseness of bolts and nuts, or a range of other non-linearities 
[26-27]. Therefore, this feature, in itself, is insufficient to indicate the presence of a transverse crack 
in rotors. In this way, the additional observation of the orbits can be useful for revealing the presence 
of a crack [24-29]. Effectively, near the speed range of half any resonant frequency, the orbit changes 
from a single loop to double loops with speed, and then an internal loop may appear. This 
observation is the signature of the presence of a crack that indicates the change in amplitude and 
phase at half any resonance speed, and is also a characteristic for signals containing two vibration 
components with the same direction of precession [24,27]. 
The aim of this paper is to investigate these effects by taking into account the non-linear dynamical 
behaviour due to the breathing transverse crack in order to obtain some indications that might be 
useful in detecting the presence of a crack in rotating system. Some parametric studies regarding the 
location and  depth of cracks are carried out in order to show their influence on the change in 
frequencies. Next the influence of a transverse breathing crack on the response of a rotor model, is 
investigated using the Alternate Frequency/Time Domain method [36-38] with a path following 
procedure in order to predict the non-linear dynamics and also the twice per revolution component 
close to half resonance response associated with the presence of a breathing crack. It is shown that 
the non-linear behavior of the rotor system with a breathing crack may be obtained by modeling the 
crack with a truncated Fourier series.  In order to validate this approach, the results are compared 
with those obtained through numerical integration. Moreover, it is demonstrated that a rotor with a 
breathing crack, which opens and closes during rotations, shows a non-linear dynamic behavior due 
to the variation of the rotor's stiffness during its rotation. Finally, the non-linear behavior of the crack 
rotor at half the first shaft resonance speed is calculated, and the influence of the crack depth is 
presented to provide information for an on-line identification of rotor cracks. 
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2. MATHEMATICAL MODEL 

This section describes the derivation of the system model which is used in the subsequent analysis. 

2.1. ROTOR SYSTEM 
The shaft is discretized into a number of Timoshenko beam finite elements having with four degrees 
of freedoms at each node [39]: 
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T QxKxGCxMM =+Ω−++ ���    (1) 

where e
TM  and e

RM  are the rotary and translational mass matrix of the shaft element. e
RC , e

RG , and 
e
BK are the external damping, gyroscopic, and stiffness matrices respectively.  e

iQ  defines the 
gravity force vector for the shaft. Ω  is the rotational speed and the factor of damping for the shaft. 
The damping is taken as classical for the sake of simplicity and βe e

R B=C K  where the β  is a constant 
factor of proportionality and internal rotor damping has been neglected. 
The modeling of the rigid discs is given by 
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where d
TM , d

RM , and d
RG  are the translational mass, rotary mass and gyroscopic matrices 

respectively. d
iQ  consists of the weight of the disc. d

iW  defines the unbalance forces due to disc 
having mass m  with an eccentricity e . 
Finally, the discrete bearing stiffness coefficients are placed at the corresponding degrees of freedom 
and the equation of motion for the complete rotor system is defined as follows 

( ) WQKxxGCxM +=+Ω++ ���      (3) 
where M  and G  are the mass and gyroscopic matrices including mass and gyroscopic matrices of 
the shaft and rigid discs. C  and K  are the external damping and stiffness matrices of the shaft.Q  
and W  define the vector of gravity force and imbalance force for the complete rotor system. 

2.2. THE CRACKED ROTOR 
In this section, the modeling of the crack and the breathing mechanism are discussed briefly. Mayes 
and Davies [3] demonstrated that a transverse crack in a rotor shaft can be represented by the 
reduction of the second moment of area I∆  of the element at the location of the crack. By using 
Rayleigh's method, they obtained that the change in I∆  verified [3,5] 

( ) ( )20

0

1 ν µ
1

I I R F
I I l

∆
= −

−∆
     (4) 

where 0I , R , l , ν , µ , and ( )µF  are the second moment of area, the shaft radius, the length of the 
section, the Poisson's ratio, the non-dimensional crack depth, and the compliance functions varied 
with the non-dimensional crack depth µ , respectively. The non-dimensional crack depth µ  is given 
by µ a R=  where a  defines the crack depth of the shaft as illustrated in the Figure 1. Although 
( )µF  can be derived from the appropriate stress factor, Mayes and Davies indicated that a good 

approximation of this function can be achieved by considering the fractional change in the second 
moment of area measured at the crack face. Their observations were validated by experimental tests 
consisting of measuring the two functions ( )F µX  and ( )F µY  [3] for both the X  and Y  directions 
indicated the direction of the crack front and the orthogonal direction associated as illustrated in 
Figure 1. The values of the second moment of area with the new centroid associated are given in 



 

 4

Appendix A. Then the stiffness matrix due to the transversal crack crackK  can be obtained at the crack 
location, by using standard finite elements [5]. 
When the rotor is cracked, the opening and closing behavior due to the rotor rotation and shaft self-
weight results in a time dependent stiffness.  To accurately predict the dynamic response of the rotor 
system with a breathing crack, an appropriate crack model is essential. Many researchers have 
studied this problem [11-13, 17] and various crack opening and closing models have been developed.  
Penny and Friswell [16] compared different crack models: the hinge model (13) where the breathing 
switches from it open to closed state abruptly during the rotation of the shaft; the crack model of 
Mayes and Davies [11] where the opening and closing of the crack was described by a cosine 
function; and finally the crack model of Jun et all [22] based on fracture mechanics where the 
coupling stiffness as well as the direct stiffness are calculated as the shaft rotates (and so the crack 
opens and closes). Penny and Friswell [16] demonstrated that for monitoring using low frequency 
vibration, simple models of crack are adequate and sufficient for the prediction of the dynamic 
behavior of a rotor with breathing crack, as well as the predicted whirl orbit at the steady-state 
2×harmonic of rotor speed. The extent of crack opening will be determined by the proportion of the 
crack face which is subject to tensile axial stresses. By assuming that the gravity force is much 
greater that the imbalance force, the function describing the breathing crack [1,3-4,11-13,16-17] may 
be chosen as  

( )( )ttf Ω−= cos1
2
1)(       (5) 

where Ω  is the rotational speed of the rotor. As illustrated in the Figure 1, for 0=)(tf , the crack is 
totally closed and the cracked rotor stiffness is equal to the uncracked rotor stiffness. For 1=)(tf , 
the crack is full open. 
Finally, the dynamics equation of the rotor with a breathing crack, in this linearised approximation, 
can be defined as  

( ) ( )crackf t( ).+ +Ω + − = +Mx C G x K K x Q W�� �    (6) 
where x�� , x� , and x  are the acceleration, velocity and displacement of the degree-of freedom of the 
cracked rotor system. M , C , G  and K  define the mass, damping, gyroscopic and stiffness 
matrices, respectively. Q  and W  are the vector of gravity force and imbalance force, 
respectively. crackK  is the stiffness matrix due to the crack and ( )tf  the function representing the 
breathing effect.  
In this study, a rotor shaft of 1m length and 10mm diameter; two discs of 40mm diameter and 15mm 
thickness are situated at 0.3m of each end of the shaft, as illustrated in Figure 2. A crack is added at 
one third of the left end and a mass m at the eccentricity e is placed on the first disc. All the values of 
the parameters are given in Table 1. 

3. NATURAL FEQUENCIES 

In this section, the changes in the natural frequencies of the rotor, which is the common first step in 
the diagnosis of a crack, have been examined. The crack position, depth and the orientation of the 
crack have been varied. 
Tables 2 gives the values of the natural frequency for the uncracked and cracked shaft with the 
variation of the non-dimensional crack depth µ . Table 3 gives the values of the natural frequency for 
the uncracked and cracked shaft with the variation of the crack location (with 1µ = ). 
The natural frequencies associated with the vertical (first, third and fifth modes) and horizontal 
(second, fourth, and sixth modes) frequencies are equal in the case of an uncracked shaft but are 
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different for the cracked rotor due to the presence of the crack. The highest changes in natural 
frequencies occur in the vertical mode due to the orientation of the crack and the shaft self-height. 
In order to compare the frequencies of the cracked and uncracked shaft, the percentage change in 
natural frequencies is defined as follow 

uncracked cracked

uncracked%C 100i i
i

i

f f
f

−
= ×      (7) 

where i  defines the thi -frequency of the system. 
Figure 3 shows the percentages changes in the first and second natural frequencies with the rotation 
of the shaft for various non-dimensional crack depths µ . In this case the area of the open crack due 
to the shaft's self-weight is calculated at each orientation of the shaft [5]. As observed previously by 
Lees and Friswell [5], this simple procedure is sufficient to reflect the change in natural frequencies 
due to the rotation of the shaft and the physics associated. If the non-dimensional crack depth µ  is 
equal 1(corresponding to the lost of half the shaft's area), it appears that the crack is fully open at a 
orientation of 0 degree, and fully closed at 180 degrees, as illustrated in Figure 3(a). Moreover, one 
observes that for a non-dimensional crack depth µ  is less than 1, the maximum change in frequencies 
is defined for ranges of shaft orientations that increases when the non-dimensional crack depth µ  
decreases. This reflects the fact that the crack and the equivalent area of the cracked shaft due to the 
shaft self-weight are completely open and closed for ranges of shaft orientations. Of course the 
change in the natural frequencies increase when the crack depth increases. 
The crack depth, the location of the crack, and the rotation of the shaft clearly effects the natural 
frequencies of the rotor and these changes in modal properties can be used as an identification of 
transverse crack in rotating machines. However this approach is time consuming and requires the 
knowledge of the original natural frequencies of the rotor in its uncracked condition. This last point 
may not be easy to obtain due to the fact that since the modal tests have been carried out, the natural 
frequencies may have been modified during time rotating machines operation. Therefore the use of 
the dynamic response in order to identify the presence of a transverse crack appears to be 
unavoidable and the most convenient. 

4. NON-LINEAR DYNAMICAL BEHAVIOUR 

Due to the presence of a breathing crack and the mathematical model associated, the 
determination of the dynamic behaviour of the rotor requires considerable computational resources 
by using a classical numerical integration. In order to avoid these computational problems, one of the 
most efficient and systematic approaches is the use of the harmonic balance method [38] that permit 
the discretisation of the unknowns functions in time by using their Fourier components, which are 
assumed to be constant with respect to time. Such methods include the incremental harmonic balance 
method [41], the Fast Galerkin method [40,42], and the alternate frequency/time domain method [36-
38]. 
In this study, the Alternate Frequency/Time domain method (AFT method) is applied in order to 
obtain the non-linear response of the rotor with the breathing crack. 

4.1. ALTERNATE FREQUENCY/TIME DOMAIN METHOD 
The system defined in equation (6) can be written more generally as 

( ) ( )crackf t( , ).+ +Ω + − = +Mx C G x K x K x Q W�� �    (8) 
where there is no restriction to the unbalance magnitude. 
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In the linearised crack model, it is usual to represent the portion of the crack below the neutral axis as 
being open.  There are a number of approaches differing only in detail but one such approach is that 
of Mayes and Davies [3].  The area of the crack face below the neutral axis is calculated and this is 
then represented with a chordal equivalent crack having the same area.  The important approximation 
here is that the neutral axis is usually taken as the centroid of the shaft, but this not exact. 
With any non-zero deflection, the centre line of the shaft will be stretched and hence there will be a 
tensile stress and this being so, for a shaft deflected under gravity, the true neutral axis will be above 
the centre line.  For small vibration amplitudes, the error introduced by this approximation is 
relatively minor, simply reducing the effective crack by a constant factor.  However, for appreciable 
vibration amplitudes the error becomes significant and time dependent.  It is beyond the scope of the 
present paper to analyze the sensitivity of this effect but the correction (non-linear) terms are 
important when the vibration amplitude is appreciable relative to the catenary. 
In the present paper the position of the neutral axis at the crack location has been re-calculated at 
each time step in order to give an accurate model of the crack dynamics. 
This non-linear equation may be re-written  

( ) ( ) ( ) 0=Ω−Ω++Ω+ tt ,,xg,,xfKxxDxM ���     (9) 
where M , D  and K  are the mass, the damping and the stiffness matrices. f  and g  are the vectors 
containing the non-linear expressions due to the breathing crack and the vector for the imbalance and 
gravity force, respectively. In the absence of response to unbalance, the function f  becomes a linear 
function of x ; for non-negligible imbalance, the addition stresses interact with those arising from the 
(gravity induced) catenary, so changing the neutral axis, and hence the active cross section of the 
crack.  
Setting k=x x +∆x , k=x x +∆x� � �  and k=x x +∆x�� �� ��  (where k  defined the thk  iteration process), one 
considers the truncated Fourier series expansion  

( ) ( )0 2 1 2
1

cos i sin i
m

i i
i

t t−
=

= + Ω + Ω⎡ ⎤⎣ ⎦∑x X X X     (10) 

where 0X , 12 −iX  and i2X  are the Fourier coefficients of x , and the associated truncated Fourier 
series expansion for x∆  
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1
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m

i i
i

t t−
=

∆ = ∆ + ∆ Ω + ∆ Ω⎡ ⎤⎣ ⎦∑x X X X    (11) 

where 0X∆ , 12 −∆ iX  and i2X∆  are the Fourier coefficients of ∆x . The matrix of Fourier coefficients 
of x  and ∆x  are indicated and arranged as follows: 
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and 
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where jiX ,  and jiX ,∆  define the thj  component of the Fourier coefficients for the thi  degree-of-
freedom for the non-linear system. The number of harmonic coefficients m  is selected in order to 
consider only the significant harmonics expected in the solution. By replacing x  and ∆x  by their 
Fourier series, one obtains ( ) nm ×+12  linear algebraic equations  

.+ − + ∆ =AX F G A X 0      (14) 
with 
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  (15) 
F  and G  represent the Fourier coefficients of the function f  and g , respectively. F  is difficult to 
determine from the Fourier coefficients directly due to the dependence in time for this function. 
Hence F  can be calculated by using the following path (Alternating Frequency/Time domain AFT) 
as follows 

F)(f)(xX ⎯→⎯⎯→⎯⎯⎯→⎯ ΓΓ− tt
1

    (16) 

 where Γ  and 1−Γ  define the Discrete Fourier Transform from time to frequency domain, and from 
frequency to time domain, respectively. The DFT from time to frequency domain is given by  

( )

( ) ( )
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2 1
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2 1 2 1
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2 1 2 1
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 for 1, 2,..., 2 1j m= +   (17) 

and from frequency time domain 
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Finally, the error vector R  is given by 
GFAXR −+=      (19) 

 and the associated convergence values are defined by 

( )2 2 2
1 0 2 1 2
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m
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j
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=

= + +∑R R R      (20) 

and 

( )2 2 2
2 0 2 1 2

1

m

j j
j

δ −
=

= ∆ + ∆ + ∆∑X X X     (21) 

The global procedure of the Alternate/Frequency Time domain method is illustrated in Figure 4. 

4.2. PATH CONTINUATION  
Usually, the dynamics of system and the solution associated have to be calculated at different 

parameter values consecutively (in this study, the considered parameter is the speed of shaft 
rotation). In order to reduce the time required for the calculation the path following technique can be 
used (Narayanan and Sekar [38]). One considers the estimation of the neighboring point on the 
solution branch by using the Lagrangian polynomial extrapolation method with four points. So, one 
assumes that four points on the solution branch are obtained a priori in order to begin the 
extrapolation scheme. The varied parameter is the speed rotation of the shaft Ω . Any point on the 
solution branch is represented at iX , where iX  is the Fourier coefficients of x . The arc length 

between two consecutive points 1+iX  and iX  is given by ( ) ( )ii
T

iiil XXXX −−=δ +++ 111  for 
0 2i ,…,= . Next, the arc length parameters are calculated as follows 
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Finally, by using the Lagrangian extrapolation scheme, the following estimated point at the distance 
l∆ might be defined by 
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4.3. RESULTS AND DISCUSSIONS 
The dynamic response of the rotor with the breathing crack is obtained by using the AFT method and 
the path following procedure. The Fourier series is truncated in order to consider only the significant 
harmonics. All the values of the parameters (damping, non-dimensional crack depth µ , mass 
unbalance, eccentricity of the mass unbalance, etc…) are given in Table 1. It may be noted that the 
crack depth, the level of damping, and the level of unbalance are important parameters because these 
three all influence the magnitude of the non-linear term 
In order to demonstrate the capability of the Alternate/Frequency Time domain method for 
determining a good approximation of the dynamic response of the rotor with a breathing crack, a 
comparison is performed with results obtained by using direct numerical integration such as the 
Runge-Kutta 4. Figure 5 shows the comparison between times histories of the vertical and horizontal 
displacements of the cracked rotor around the crack position ( 0.375mL = ), evaluated through 
numerical integration and the AFT method for various numbers of harmonics m . The associated 
orbits are plotted in Figure 6. These results highlight that the periodic solution ( 1=m ) does not 
provide a good approximation of the solution but that the second harmonic coefficients ( 2=m ) are 
sufficient to obtain an accurate evaluation of the dynamic response of the rotor with a breathing 
crack. Therefore, these results clearly demonstrate that the presence of a breathing crack results in a 
non-linear dynamical behavior. 
Figure 7 shows the horizontal and vertical steady-state responses of the cracked and uncracked 
shafts, at the position of the shaft 0.375mL = . Moreover Figure 8 shows the horizontal and vertical 
steady-state responses of the cracked shaft for each node of the shaft. Figure 7 indicates a decrease in 
the first and second vertical natural frequencies as indicated at the marks 3 and 5. This change is due 
to the reduction in system stiffness resulting from the presence of the transverse crack. Although the 
first and second horizontal natural frequencies decrease due to the presence of the crack, it may be 
observed that the differences between the cracked and uncracked frequencies are very small and very 
difficult to detect in practice, as indicated at the marks 7 and 8 in the Figure 7. 
In the case of the cracked shaft, 2X harmonics are observed in the horizontal and vertical directions 
at one-half of the first vertical and horizontal frequencies, as illustrated at the marks 2 and 6 in 
Figures 7 and 8. 3X  harmonics in the vertical direction for the first frequency are also present at one-
third of the first vertical natural frequency as shown in Figures 7 and 8 at the mark 1. Moreover, 2X 
harmonics in the vertical direction for the second vertical frequency at one-half of the second vertical 
frequency. It should be noted that there are no visible 3X harmonics of the first horizontal natural 
frequency and 2X harmonic of the second horizontal natural frequency. Considering the rotor without 
a crack, no harmonics are predicted for the dynamic behavior of the rotor. In this case, the dynamic 
response is purely synchronous. 
In order to compare the dynamic behavior of the cracked and uncracked shaft near one-half and one-
third of the natural frequencies, the differences between the cracked and uncracked horizontal and 
vertical amplitudes are calculated as follows 

( )uncrackedcracked XXMaxX −=∆     (24) 
and 

( )uncrackedcracked YYMaxY −=∆     (25) 
at each element of the shaft. crackedX , crackedY , uncrackedX , and uncrackedY  define the horizontal and 
vertical displacement for the cracked and uncracked shaft respectively. Therefore the Figure 9 shows 
clearly the differences X∆  and Y∆  between the cracked and uncracked rotor. As illustrated in 
Figure 9(A) and 9(B), the differences X∆  and Y∆  increase at the one-half  and one-third of the first 
horizontal and vertical frequencies. Moreover, the differences X∆  and Y∆  at each element of the 
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shaft indicate clearly the first mode shape with the maximum difference obtained at the middle of the 
shaft. Figure 9(C) shows the differences X∆  and Y∆  around one-half of the second horizontal and 
vertical frequencies. In this case the differences X∆  and Y∆  also increase one-half of the second 
horizontal and vertical frequencies and indicate the deformations of the second mode shape with a 
node in the middle of the shaft and the maximums of X∆  and Y∆  are obtained at one fourth on each 
end of the shaft. 
As explained previously, the diagnosis of the presence of a crack in rotating machinery based only on 
the appearance of a harmonics response at half the natural frequency in the spectrum may be 
misleading. So one of the features to detect the presence of a transversal crack in a rotating shaft is 
the use of the evolution of the orbits during time around one-half of the resonance frequencies. 
Now, the attention is focussed on the evolution of the orbits around one-half of the natural 
frequencies. Figure 10 shows the evolution of the rotor's orbits. It is shown that a distortion in the 
orbit appears and increases when the speed of the rotor increases. Next, the shape of the orbit 
changes from a form with only one loop to a double loop. And finally, when the speed of the cracked 
rotor is passing through nearly half of the critical speed, the orbit changes from a double loop to a 
inside loop (a loop containing another small loop inside) that indicates the change in both the phase 
and the amplitude of the harmonic components. This dynamic behavior of the rotor through the 
passage of half of the rotor speeds is the signature of a crack in the rotor. Moreover, Figure 11 shows 
the orbit obtained close to a third of the first critical speed, half of the first critical speed, and half of 
the second critical speed. It may be observed that the change in the dynamic behavior is also detected 
near half of the second critical speed with the formation of double loops at one end of the shaft and a 
distortion form on the other end (Figure 11(c)). Showing the dynamic behavior at third of the first 
critical speed (Figure 11(a)), the change of the orbit appears clearly with a triple loops that indicates 
the presence of the harmonics. All these changes of the dynamic behavior of the rotor near half and 
third of critical speeds may be considered as a feature for detection of crack in the rotor shafts. 
Finally a parametric study is presented with various crack depth are performed in order to show the 
influence of the crack depth by considering the variation and change of orbit around one-half of the 
first frequency. As illustrated in Figure 12, the orbits decrease when the non-dimensional crack depth 
µ  decreases. Moreover, the frequency at which 2X harmonic occurs increases as the crack depth 
decreases, due to the reduced stiffness resulting from the crack, which changes the natural 
frequencies. This is illustrated by plotting (in Figure 13) the differences X∆  and Y∆  at the middle 
position of the shaft for the various crack depth: as it can be seen the position of the maximum 
differences versus the frequency increase with the decreasing of the crack depth, as well as the 
differences X∆  and Y∆  decrease. Therefore, the behavior of the cracked rotor around one-half of 
the natural frequencies and the observation of the associated orbits could provide crack diagnostic 
information and could permit the estimation of the crack depth. 

5. CONCLUSION 

In this study, the influence of transversal cracks has been investigated: the change of the shaft 
frequencies, as well as the harmonic component of the dynamical system response and the evolution 
of the orbits are the principal effects due to the presence of a crack in a rotating shaft. More 
particularly, the changes in the non-linear dynamical behavior of the rotor system through half 
resonance speeds appear to be the classical signature for detecting the presence of a breathing crack. 
Indeed, the distortion of the orbit, and formation of a double loop and inside loop in the orbit could 
be considered as one of the most practical indicators of the presence of a transversal crack for health 
monitoring purposes. Moreover the observation of the orbit amplitudes at half resonance speeds 
could also provide crack diagnostic information about the crack depth: when the crack depth 
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increases, an increase of the orbit amplitudes is observed, as well as a decrease of the shaft speed at 
which the 2X harmonic component of the dynamic response is maximum  
In this paper, the use of the Alternate Frequency/Time Domain method and a path following 
procedure allows obtaining rapidly and efficiently the non-linear dynamical behavior of a rotating 
shaft with a transverse breathing crack. This method has advantages in terms of computating time. It 
is easily implemented. 

APPENDIX A: MOMENTS ABOUT THE CENTROID FOR THE CRACKED ROTOR 

As illustrated in Figure 1, the cross section of the shaft at the location of the crack has asymmetric 
area moments inertia about the neutral axis of bending. The area moments of inertia XI~  and YI~  
about the X and Y-axes are defined as 

∫∫ ==
AAX dXdYYdAYI 22~      (26) 

∫∫ ==
AAY dXdYXdAXI 22~      (27) 

where A defines the uncracked area of the cross section. After integrating over the uncracked area, 
one obtains 

( )( ) ( )⎥⎦
⎤

⎢⎣
⎡ −++−−= − µ1cosµ-2µ2µµ41µ1

4
122

4RI X
~    (28) 

( )( ) ( )( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛++−−+−+

π
= − 21222324

4
µ-2µsinµ-2µ2µµ41µ1

4
1µ-2µµ1

3
2

4
RRIY

~  (29) 

where R  and µ  are the shaft radius and the nondimensional crack depth (µ a R= ). Then, the 
moment of inertia about the centroidal axes XI  and YI  are obtained 

XX II ~=       (30) 
2XAII YY −= ~      (31) 

where X  defines the centroid of the cross section. The uncracked area of the cross section A, and the 
distance from the axis X  to the centroid of the cross section X  are given by 

( ) ( )⎥⎦
⎤

⎢⎣
⎡ −+−= − µ1cosµ-2µµ1 122RA     (32) 

( ) 2323 µ-2µ
3
2 R
A

X = .     (33) 

APPENDIX B: NOMENCLATURE 

µ   non-dimensional crack depth 
Ω   rotational speed 
e   eccentricity of the unbalance mass 

crackL   position of the crack 
cracked

if   ith natural frequency for the cracked system 
uncracked

if  ith natural frequency for the uncracked system 
m   number of Fourier coefficients retained 
%Ci   percentage change between the ith cracked and uncracked natural frequencies 
x   displacement of the degree-of-freedom 
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x�   velocity of the degree-of-freedom 
x��   acceleration of the degree-of-freedom 
M   mass matrix of the rotor system 
K   stiffness matrix of the rotor system 

crackK   stiffness matrix for the cracked element 
C   damping matrix of the rotor system 
G   gyroscopic matrix of the rotor system 
D   global damping matrix of the rotor system 
Q   vector of gravity force for the rotor system 
W   vector of imbalance force for the rotor system 
X   matrix of the Fourier coefficients associated with the displacements of the rotor 
system 
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Parameters Physical dimension 
Length of the shaft 

Diameter of the shaft 
Young's modulus of elasticity E 

Shear modulus G 
Poisson ratio ν  

Density ρ  

Position of disc 1 
5.1. POSITION OF DISC 2 

Outer diameter of discs 1 and 2 
Inner diameter of discs 1 and 2 

Thickness of discs 1 and 2 
Location of the crack crackL  

Non-dimensional crack depth µ  
Mass unbalance 
Phase unbalance 

Eccentricity of the mass unbalance 
Coefficient of damping β  

1 m 
0.01 m 

2.1×1011 N.m-2 

7.7×1010 N.m-2 
0.3 

7800 kg.m-3 
0.3 m 
0.7 m 

0.04 m 
0.01 m 
0.015 m 
0.375 m 

1 
0.005 g 
0 degree 
0.02 m 

10-5 

 
Table 1: Details of the rotor model 
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 uncracked  0.25µ =  0.5µ =  0.75µ =  1µ =  

1st frequency (Hz) 
2nd frequency (Hz) 
3rd frequency (Hz) 
4th frequency (Hz) 
5th frequency (Hz) 
6th frequency (Hz) 

16.597 
16.597 
65.367 
65.367 
176.038 
176.038 

16.581 
16.582 
65.290 
65.292 

176.032 
176.032 

16.549 
16.559 
65.131 
65.178 

176.015 
176.020 

16.479 
16.543 
64.787 
65.102 
175.980 
176.012 

16.257 
16.541 
63.755 
65.088 
175.866 
176.011 

 
Table 2: Evolution of the natural frequencies with the non-dimensional crack depth ( crack 0.375mL = ) 

 
 
 
 
 
 

 
 

Position of the crack crackL   uncracked 
0.025m 0.225m 0.475m 0.725m 0.975m 

1st frequency (Hz) 
2nd frequency (Hz) 
3rd frequency (Hz) 
4th frequency (Hz) 
5th frequency (Hz) 
6th frequency (Hz) 

16.597 
16.597 
65.367 
65.367 
176.038 
176.038 

16.593 
16.597 
65.316 
65.359 

175.756 
175.993 

16.399 
16.564 
63.673 
65.078 

173.312 
175.559 

16.169 
16.525 
65.321 
65.360 

171.737 
175.295 

16.332 
16.553 
63.779 
65.094 

174.523 
175.775 

16.593 
16.597 
65.323 
65.360 

175.612 
175.970 

 
Table 3: Evolution of the natural frequencies with the location of the crack crackL  ( non-dimensional 

crack depth 1µ = ) 
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Figure 1 : Model of stiffness variation for the breathing crack 
 
 
 
 

 
 

Figure 2 : Rotor model with two discs and a cracked element 
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Figure 3 : Changes in the first and second natural frequencies with the rotation of the shaft and the 

non-dimensional crack depth µ  
 (               0.25µ = ,               0.5µ = ,               0.75µ = ,               1µ = ) 

(a) first frequency     (b) second frequency 
 
 

 
 

Figure 4 : Alternate Frequency/Time domain method 
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Figure 5 : Evolution of the horizontal and vertical displacements at the position of the crack 
( crack 0.35mL = ) for 8.285Hzf =  

(               Runge-Kutta 4,               m=1,               m=2) 
 
 

 
 

Figure 6 : Evolution of the orbit at the position of the crack ( crack 0.35mL = ) for 8.285Hzf =  
(               Runge-Kutta 4,               m=1,               m=2) 
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Figure 7 : Comparison between the cracked and uncracked shafts - horizontal and vertical 

displacements at the position 0.35mL =  (                uncracked,                cracked) 
 

 
 

Figure 8 : Vertical and horizontal displacements for the cracked shaft 
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Figure 9 : Differences X∆  and Y∆  between the cracked and uncracked shaft for (A) the 3X 
resonance of the first frequency  (B) the 2X resonance of the first frequency and (C) the 2X 

resonance of the second frequency 
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Figure 10 : Evolution of the orbit at the position of the crack ( crack 0.35mL = ) for the 2X resonance of 

the first frequency 
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Figure 11 : Evolution of the orbits at various position on the shaft around the static deflection 

(a) 3X resonance  of the first frequency         (b) 2X resonance of the first frequency 
(c) 2X resonance of the third frequency 
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Figure 12 : Evolution of the orbit at the position of the crack ( crack 0.35mL = ) around the 2X 
resonance  of the first frequency, with the variation of the non-dimensional crack depth µ  

(               0.25µ = ,               0.5µ = ,               0.75µ = ,               1µ = ) 
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Figure 13 : Evolution of the differences X∆  and Y∆  between the cracked and uncracked shaft for 

the 2X resonance of the first frequency at the middle of the shaft with the variation of the non-
dimensional crack depth µ  

(               0.25µ = ,               0.5µ = ,               0.75µ = ,               1µ = ) 
 
 
 
 
 


