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A 3rd order sliding mode controller based on integral sliding mode for
an electropneumatic system

Alexis Girin, Franck Plestan, Xavier Brun, and Alain Glumineau

Abstract— This paper presents the synthesis of a robust 3rd

order sliding mode position controller of an electropneumatic
system. The controller is a higher order sliding mode one based
on integral sliding mode, and its main features are its easy
implementation, its finite time convergence and its robustness
with respect to uncertainties and parameters variations.

Keywords: Higher order sliding mode, electropneumatic
system, integral sliding mode.

NOMENCLATURE

y, v, a position, velocity and acceleration of
the actuator [m][m/s][m/s2]

yd, vd, ad, jd desired position, velocity, acceleration
and jerk [m][m/s][m/s2][m/s3]

pX pressure in the chamber X [Pa]
uP , uN servodistributors voltages [V ]
k polytropic constant
Kr springs rates [N/m]
VX chamber X volume [m3]
bv viscous friction coefficient [N/m/s]
Ff friction force [N ]
M total moving load mass [kg]
TX chamber X temperature [K]
r perfect gaz constant [J/kg/K]
S piston area [m2]
qm mass flow rate provided from the servo-

-distributor [kg/s]
X P or N
γ adiabatique constant
Tr temperature inside a upstream tank [K]
Q thermal exchange[J ]
λ thermal exchange coefficient

by conduction [J/K/m2/s]
ScX total area inside X chamber [m2]
TcX temperature of the X chamber wall [K]
qmXin/qmXout mass flow rate brought

inside/outside of a chamber [kg/s]
tF fixed time convergence [s]

I. INTRODUCTION

Control of pneumatic actuators is a challenging problem,
viewed their increasing popularity (law maintenance cost,
lightweight and good force/weight ratio), in spite of their
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traditional drawbacks (friction, variation of the actuators
dynamics due to large change of load and piston position
along the cylinder stroke, nonlinearities, ...). The develop-
ment of high-performance closed-loop linear/nonlinear con-
trollers [21], [12], [25], [9], [13], [5], [6], [7] has shown the
feasability of high-level positionning of pneumatic actuator.
Due to uncertainties on the model, robust controllers are
necessary to ensure position tracking with high precision. In
that way, sliding mode controllers have been used for elec-
tropneumatic actuators [4], [22], [33], [29]. Their advantages
are that they are simply implemented and more robust versus
parameters variations and exhibit good dynamic response.
However, since the sampling frequency of the controller
is limited, chattering will be produced (dangerous high-
frequency vibrations of the controlled system). In order to
reduce the chattering, the control can be modified to a so-
called boundary layer control [28]. However, this type of
control implies a deterioration in accuracy and robustness;
furthermore, this solution is not enough in pneumatic field
[3]: indeed, a good compromise between static position error
and chattering cannot be found. So, the spool of the valve
is exited which induced noise due to the air going from
source to exhaust and an undesirable deterioration of the
servodistributor.
Higher order sliding mode control [19], [1], [20], [14], [16],
[23] is a recent approach which allows to remove all the
standard sliding mode restrictions, while preserving the main
sliding-mode features and improving its accuracy. The both
first references only concern results on second order sliding
mode control, which consist in ensuring in finite time that
the sliding variable and its time derivative equal 0. In [20], a
general approach (which means for all sliding mode order)
has been proposed: the main drawbacks of this approach are
that the convergence time is only bounded, and not exactly
known in advance, and that the convergence condition is not
constructive. The controller proposed in [14], [23] combines
standard sliding mode control with linear quadratic one over
a finite time interval with a fixed final state. The algorithm
needs the relative degree of the system with respect to the
sliding variable s and the bounds of uncertainties and has
several advantages: the upper bound of the convergence time
is known and can be adjusted in advance, the condition on the
gain implies that its tuning is constructive, and the structure
of the controller is well-adapted to practical implementations,
in particular for pneumatic actuators control [15], [17]. How-
ever, two drawbacks appear in this approach. It ensures only
a practical sliding mode establishment (only convergence in
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finite time to an arbitrarily small vicinity of the origin is
ensured), and the reaching time is bounded but can not be
fixed exactly and in advance.
The aim of this paper is to apply, to the position control
of a pneumatic actuator, an arbitrary-order sliding mode
controller for uncertain SISO minimum-phase nonlinear sys-
tems developed in [16], [18]. These both references present
an alternative to [14], [23] without its drawbacks, and to
apply this class of controllers. The main objective of these
approaches is to propose a controller for which the imple-
mentation is easy, the convergence time is finite and well-
known in advance and the robustness is ensured during the
entire response of the system. The design uses the integral
sliding mode concept [31]. The control strategy presented
in the sequel, whose the basic idea has been introduced
in [16], contains two parts: the first part is discontinuous,
forces the establishment of a sliding mode on the integral
sliding manifold, and ensures the robustness with respect
to bounded uncertainties, throughout the entire response of
the system. The second part, which is obtained through an
optimal open-loop control law [16], and through an optimal
feedback control over finite time interval with fixed final
states [18], is used to stabilize to zero in finite time the rth

order input-output dynamics without uncertainties.

II. INTEGRAL SLIDING MODE CONTROLLER[16], [18]

Consider the uncertain nonlinear system

ẋ = f(x) + g(x)u
y = s(x, t) (1)

where x ∈ IRn is the state variable, u ∈ IR is the input
control and s(x, t) ∈ IR is a smooth output function (sliding
variable). f(x) and g(x) are uncertain smooth functions.
Assume that :

H1. The relative degree r of (1) with respect to s is known
and constant, and the associated zero dynamics are stable.

The control objective is to fulfill the constraint s(x, t) = 0 in
finite time and to keep it exactly by some feedback. The r th

order sliding mode is defined through the following definition
Definition 1: [20] Consider the nonlinear system (1),

and let the system be closed by some possibly-dynamical
discontinuous feedback. Then, provided that 1 s, ṡ, · · · , s(r−1)

are continuous functions, and the set

Sr = {x | s(x, t) = ṡ(x, t) = · · · = s(r−1)(t, x) = 0},

called “rth order sliding set”, is non-empty and is locally an
integral set in the Filippov sense [10], the motion on S r is
called “rth order sliding mode” with respect to the sliding
variable s.
The rth order sliding mode control approach allows the finite
time stabilization to zero of the sliding variable s and its r−

1All over this paper, s(·)(k) (k ∈ IN ) denotes the kth time derivative of
the function s(·). This notation is also applied for every function.

1 first time derivatives by defining a suitable discontinuous
control function [16], [18]. The output s satisfies the equation

s(r) = χ(·) + Γ(·)u (2)

with Γ = LgL
r−1
f s and χ = Lrfs. Assume that

H2. Functions χ(·) and Γ(·) are bounded uncertain functions,
and, without loss of generality, let also the sign of the control
gain Γ be constant and strictly positive. Thus, there exist
Km ∈ IR+∗, KM ∈ IR+∗, C0 ∈ IR+ such that

0 < Km < Γ < KM |χ| ≤ C0. (3)

This assumption is supposed to be fulfilled at least locally.

Then, the rth order sliding mode control of (1) with respect
to the sliding variable s is equivalent to the finite time
stabilization of [16], [18]

żi = zi+1

żr = χ(·) + Γ(·)u (4)

with 1 ≤ i ≤ r − 1 and z = [z1 z2 · · · zr]T :=
[s ṡ · · · s(r−1)]T . In the sequel, the control law u is
composed by two parts. The first one, named ideal control
[31], is continuous and stabilizes in finite time (4) at the
origin when there is no uncertainty. In fact, this control part
is used in order to generate trajectories which the system is
forced to track. The second part, named integral sliding mode
control, provides the complete compensation of uncertainty
for t > 0 and ensures that control objectives are reached.

A. Continuous control part

Consider system (4) which can be trivially rewritten as

żi = zi+1

żr = χ(·) + [Γ(·) − 1]u︸ ︷︷ ︸
β

+u (5)

for 1 ≤ i ≤ r − 1. It yields

żi = zi+1

żr = β(·) + u.
(6)

Let define u = u0 + u1, with u0 the ideal control, and u1

the integral sliding mode control. Consider now the particular
case β(·) = 0. Then, as no control part u1 is necessary in
order to compensate the uncertainties, the control law u reads
as u = u0. One gets

ż = Az +Bu0 (7)

where A and B are defined by

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 . . . 0 . . .
...

. . .
. . .

. . .
. . .

0
. . .

. . . . . . 1

0
. . .

. . .
. . . 0

⎤
⎥⎥⎥⎥⎥⎦
r×r

, B =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦
r×1

.

The control objective is to drive the state of (7) to z = 0
at the fixed final time t = tF . In [16], this second part is
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based on an open-loop control. Its advantage is the easy
implementation; however, the open-loop control law depends
only on the initial state, is precomputed and is applied for
t ∈ [0, tF ], and displays the classical drawbacks of open-loop
solution. In order to improve this point, the solution proposed
in [18] is based on an optimal closed-loop controller u 0

ensuring the minimization of the following criterion

J =
1
2

∫ tF

0

(zTQz + u2
0) dt, tF < +∞ (8)

with Q a symmetric positive definite matrix under the fixed
final state constraint z(tF ) = 0.

Theorem 1: [24] Consider the linear system (7) with
(A,B) reachable. A control law u0 minimizing the criteria
(8) and driving system (7) to z(t) = 0 at t = tF for an initial
condition z(0) is given by (with 0 ≤ t ≤ tF )

u0 = −BTMz(t) +BT δ(t) (9)

with M and δ(t) defined by

δ̇ = −(AT −MBBT ) δ,
0 = MA+ATM −MBBTM +Q.

(10)

Initial condition δ(0) of δ(t) is selected in order to satisfy
the terminal condition z(tF ) = 0.
The control law u0 is defined in order to drive in finite time
the system (7) to z(t) = 0 at t = tF . The control law u0

will maintain the required equilibrium state z = 0 even after
the terminal time, i.e. t > tF , provided that the forcing term
δ(t) is removed at the terminal time, i.e. u0 = −BTMz for
t > tF [24]. Then, in order to reach in a finite time tF the
origin z = 0, and to maintain the system (7) at this point for
t > tF , a solution is

u0 =
{ −BTMz(t) +BT δ(t) for 0 ≤ t ≤ tF

−BTMz(t) for t > tF
(11)

Let z0 denote the solution of system (7) controlled by u0

defined by (11): dynamics of z0 are described by

ż0 = Az0 +Bu0 (12)

As z0(tF ) = 0 and given (11), one gets, for t > tF , z0 = 0
and ż0 = 0: z0 = 0 is a stable equilibrium point.

B. Integral sliding manifold

The basic idea consists in determining a sliding surface
such that the state trajectories start on this surface at the
initial time t = 0, which induces a sliding mode without
reaching phase [31]. One has (for 1 ≤ i ≤ r − 1)

żi = zi+1

żr = β(·) + u0 + u1
(13)

u1 is a discontinuous function designed in order to exactly
reject the perturbation β(·) throughout the entire response
of the system. In order to reach this objective, the integral
sliding mode control [31] is used. Let σ ∈ IR define as

σ = zr + ζr + λr−1(zr−1 + ζr−1) + · · ·
+λ1(z1 + ζ1)

(14)

with ζr ∈ IR called integral sliding term (which is deter-
mined later in this paper as ζr−1, · · · , ζ1). Coefficients λr−1,
· · ·, λ1 are such that P (p) = pr−1 +λr−1p

r−2 + · · ·+λ1 is
Hurwitz. Suppose that a sliding mode is established on the
manifold S∫ = {x | σ = 0} from t = 0. The time derivative

of σ reads as

σ̇ = u0 + u1 + β(·) + ζ̇r + λr−1(żr−1 + ζ̇r−1)
+ · · · + λ1(ż1 + ζ̇1)

(15)

As the objective is to ensure that a sliding mode on S∫ is

established early from t = 0, one should have σ̇ = 0 for
t ≥ 0, and the discontinuous control u1 should be replaced
by the equivalent control u1eq: in [16], [18], it is established
that, in order to ensure z = z0 for t ≥ 0 (z0 describes the
ideal and optimal trajectory and its dynamics is defined by
(12)), u1eq has to satisfy

u1eq = −β(·), ∀t ≥ 0. (16)

From (15), condition (16) is satisfied if

ζ̇r = −u0, ζ̇r−1 = ζr, ζ̇r−2 = ζr−1, · · · , ζ̇1 = ζ2,

with ζr(0) = −zr(0), ζr−1(0) = −zr−1(0), · · ·, ζ1(0) =
−z1(0). Then, at t = 0, one has σ(0) = 0 and the sliding
mode is stated on the integral sliding manifold S∫ for t ≥ 0.

C. Discontinuous control part

The control law u1 is designed in order to ensure that the
sliding motion on S∫ = {x | σ = 0} is guaranteed for t ≥ 0
in spite of uncertainties, and reads as

u1 = −α sign(σ), (17)

where the gain α is a positive constant tuned such that the
η-attractivity condition is satisfied

σσ̇ ≤ −η|σ|, η > 0. (18)

From (15) and given that β = χ+(Γ−1) u with u = u0+u1,
one has

σ̇ = [χ+ (Γ − 1)(u0 + u1)] + u0 + u1 − u0

+λr−1(żr−1 + ζ̇r−1) + · · · + λ1(ż1 + ζ̇1)︸ ︷︷ ︸
:= δ

= χ+ (Γ − 1)u0 + Γu1 + δ.

(19)

Define u0M as the bound of u0, and |δ| < ∆. The conver-
gence condition (18) is ensured if

α >
C0 + |KM − 1|u0M + ∆ + η

Km
. (20)

Under control law (17) with condition (20) fulfilled, system
(13) evolves on the sliding manifold S∫ , its dynamics reads

as (12). Its trajectories converge to zero in a finite time t =
tF and are maintained in this equilibrium stable point.

Theorem 2 ([16], [18]): Consider the nonlinear system
(1) with a relative degree r with respect to the sliding variable
s(x, t). Suppose the hypotheses H1-H2 fulfilled and s(0),
ṡ(0), · · ·, s(r−1)(0) bounded. Then, the control law u

u = u0 + u1
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with u0 defined by (11) and

u1 = −α · sign
[
s(r−1) + ζr + λr−1(s(r−2)+

ζr−1) + · · · + λ1(s+ ζ1)] ,
ζ̇r = −u0 with ζr(0) = −s(r−1)(0),
ζr−1(0) = −s(r−2)(0), · · · , ζ1(0) = −s(0),

α >
C0 + |KM − 1|u0M + ∆ + η

Km
,

(21)
allows the establishment of a rth order sliding mode with
respect to s with a finite time convergence t = tF <∞.

III. ELECTROPNEUMATIC SYSTEM

A. Description

The electropneumatic system under interest is a double
acting actuator controlled by two servodistributors (see Fig-
ure 1) and composed by two chambers denoted P and N .
Piston diameter is 63 mm and rod diameter 16 mm. With a
source pressure equal to 7 bar, the maximum force developed
by the actuator is 1750 N . The air mass flow rates qm en-
tering in the chambers are modulated by two three-way ser-
vodistributors Servotronic (Asco-Joucomatic) controlled by
a micro-controller. The pneumatic jack horizontally moves
a load carriage of mass M . This carriage is coupled to 4
springs (which restrain the displacement of the carriage and
restore the initial position in the middle of the total stroke
equal to 50 mm - see Figure 1) for a total of 75000N/m rate.
Additional dry friction is controlled by two skates, with a
maximum value equal to 40N . As the maximal displacement
of carriage is 16 mm, the maximal spring force is 1200 N .
The electropneumatic plant model is obtained from three

Fig. 1. Electropneumatic system

physical laws: the mass flow rate through a restriction,
the pressure behaviour in a chamber with variable volume
and the fundamental mechanical equation. The experimental
set-up is simulated with a fluid power systems dedicated
software AMESim, and the control law is developped under
Matlab/Simulink, which implies a cosimulation program. In
the sequel, two models are displayed

• the first one, which takes into account physical phenom-
ena as temperature variations, practical values of mass
flow rate, dynamics of servodistributors..., is developped
under Amesim.

• The second one, which is simpler than the previous, is
used in order to design the controller under Simulink.

B. Simulation model

Servodistributor model. The servodistributor model is com-
posed in two parts, a dynamic part and a static one :

• Dynamic part is modelized by a second order transfer
function

F (s) =
ω2
ns

s2 + 2 · ζs · ωnss+ ω2
ns

(22)

with ωns = 246 rad · s−1 and ζs = 0.707.
• Static part is modelized by an experimental table where

mass flow rate is given in function of ratio pressure
(upstream/downstream) and control voltage [26].

Pneumatic chamber variable volume model. Each cham-
ber of the pneumatic actuator is considered as a variable
volume, in which the air mass evolves with time. State the
following assumptions :

A1. Air is a perfect gas ands its kinetic is inconsequential.

A2. The pressure and the temperature are homogeneous in
each chamber.

A3. The mass flow is pseudo-stationary.

The first dynamic principle applied to the air mass and the
thermodynamic evolution of air in each chamber read as
(with X = P or N ) [27]

dpX
dt

= −γ pX
VX

dVX
dt

+
γrTr
VX

qmXin − γrTX
VX

qmXout

+
(γ − 1)
VX

dQX
dt

dTX
dt

= −(γ − 1)
TX
VX

dVX
dt

+
rTX
pXVX

(γTr − TX)qmXin

− rT 2
X

pXVX
(γ − 1)qmXout + (γ − 1)

TX
pXVX

dQX
dt
(23)

with γ the adiabatic constant, Tr the temperature inside the
upstream tank, qmXin the mass flow rate brought inside
the X chamber, and qmXout the mass flow rate brought
outside the X chamber. QX , the thermal exchange with the
X chamber wall, is described by assumption A4.

A4. The thermal exchange is due only by conduction de-
scribed by

dQX
dt

= λScX (TcX − TX) (24)

with λ the thermal exchange coefficient by conduction,
ScX the total area inside a X chamber, and TcX the
temperature of the X chamber wall.
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Mechanical model. The second Newton law gives

dv
dt

=
1
M

[S (pP − pN ) − Ff − bvv −Kry]

dy
dt

= v

(25)

With friction force Ff included stiction, Coulomb and
Stribeck phenomena.
Samplers and saturation. Samplers are added in AMESim’s
model in order to take into account samplers of acquisition
card; sample time is 1 ms. Saturation signal control are
added, i.e. |usat| = 10 V .

C. Control model

This model is developed in order to design the control law
and a simplest version of the simulation one. The following
hypotheses are added

A5. The process is polytropic and characterized by coeffi-
cient k (with 1 < k < γ). In this case, Q dynamics are
[27]

dQX
dt

=
1

γ − 1
[−rqmXin(γTr − kTX)

+rTXqmXout(γ − k) + pX(γ − k)
dVX
dt

]
(26)

A6. Furthermore, the temperature variations in each cham-
ber are inconsequential with respect to the supply tem-
perature, i.e. TP = TN = T .

Then, pressures dynamics read as

dpX
dt

= −k pX
VX

dVX
dt

+
krT

VX
(qmXin − qmXout)

(27)

A7. The leakage between the two chamber and between
servodistribuor and jack are negligible.

By defining qm(uX , pX) := qmXin − qmXout , one gets

dpP
dt

= −k pP
VP (y)

dVP (y)
dt

+
krT

VP
qm(uP , pP )

dpN
dt

= −k pN
VN (y)

dVN (y)
dt

+
krT

VN
qm(uN , pN )

(28)

A8. All dry frictions forces are neglected.

A9. There is no control signal saturation.

A10. Dynamic part of servodistributor is neglected, and static
part reads as

qm(uX , pX) = ϕ (pX) + ψ (pX , sign (uX))uX

with ϕ and ψ defined as 5th-order polynomials with
respect to pX [2].

A11. Only the position of the actuator is controlled, which
means that the problem is a single input-single output
(SISO). It implies that uP = −uN = u.

Then, with VP (y) = V0 + S · y and VN (y) = V0 − S · y (V0

being equal to the half of the cylinder volume), the model
used for the design of controller is a nonlinear system reads
as

ṗP =
krT

VP (y)
[ϕ (pP ) + ψ (pP , sign (u))u− S

rT
pP v]

ṗN =
krT

VN (y)
[ϕ (pN ) − ψ (pN , sign (−u))u+

S

rT
pNv]

v̇ =
1
M

[SpP − SpN − bvv −Kry]

ẏ = v
(29)

D. Conclusion

The use of different models for the simulation and for the
control design implies that, if high accuracy is required, it
is necessary to design robust control law with respect to
uncertainties generated by the difference between these two
models. These uncertainties are taken into account, in the
controller design, through two models

• The so-called “nominal” model (29),
• The so-called “real” model which takes into account

the uncertainties on several parameters or functions
(Temperature T , functions ϕ and ψ, mass M )

ṗP =
kr(T + ∆T )

VP (y)
[ϕ+ ∆ϕ− S

r(T + ∆T )
pP v]

+
kr(T + ∆T )

VP (y)
(ψ + ∆ψ)u

ṗN =
kr(T + ∆T )

VN (y)
[ϕ+ ∆ϕ− S

r(T + ∆T )
pNv]

−kr(T + ∆T )
VN (y)

(ψ + ∆ψ)u

v̇ =
1

M + ∆M
[SpP − SpN − bvv −Kry]

ẏ = v
(30)

with |∆T | < TM , |∆ϕ| < ϕM , |∆ψ| < ψM and
|∆M | < MM all bounded values.

E. Desired trajectory

The desired position trajectory, named yd(t), is displayed in
Figure 2 and has been designed such that associated velocity
and acceleration are continuous functions. The maximum
velocity (resp. acceleration) is 0.8 m ·s−1 (resp. 33 m ·s−2).
This displacement corresponds to 64% of the total stroke
around the central position. The initial conditions are such
that [y(0) v(0) v̇(0)]T = [0 0 0]T .
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Fig. 2. Desired position (m) versus time (sec)

IV. APPLICATION OF INTEGRAL SLIDING MODE

CONTROLLER

A. Controller design

The objective consists in designing a robust (with respect to
uncertainties/disturbances) position controller. Define s the
sliding variable as s = y − yd(t): from (30), its relative
degree with respect to u equals 3, which implies that a 3rd

order sliding mode controller is designed. The validity of
the control law depends on the stability of the unobservable
subsystem of dimension one, which is supposed. One has

s(3) = χ(·) + Γ(·)u (31)

with T̄ = T + ∆T , ϕ̄ = ϕ + ∆ϕ, ψ̄ = ψ + ∆ψ, M̄ =
M + ∆M 2, and

χ(·) = krT̄S
M̄

(
ϕ̄(pP )
VP (y) − ϕ̄(pN )

VN (y)

)
− kS2v

M̄

(
pP

VP (y) − pN

VN (y)

)

− bv

M̄2 (S (pP − pN ) − bvv −Kry) − Krv
M̄

− y
(3)
d

Γ(·) = krT̄S
M̄

(
ψ̄(pP ,sign(u))

VP (y) + ψ̄(pN ,sign(−u))
VN (y)

)
(32)

The control law is defined as u = Γ−1
Nom · [−χNom + v] with

ΓNom (resp. χNom) the nominal value of Γ (resp. χ), i.e.
derived from (32) with no uncertainties. It is important to
note that Γnom is always strictly positive. So u has the same
sign as (−χnom + v). By definition, χnom and v are inde-
pendent of u. Consequently, the control law is not implicit.
This explains the choice of the function ϕ, independent of u,
in the mass flow rate expression of assumption A10. Then,
one gets

s(3) = χ̄(·) + Γ̄(·)v (33)

with χ̄ = χ − ΓΓ−1
NomχNom and Γ̄ = ΓΓ−1

Nom. Let z =
[s ṡ s̈]T . Then, as shown in Section II, the 3rd order sliding

2It is supposed that ˙∆M = 0.

mode control is equivalent to the finite time stabilization of

ż =

⎡
⎣ 0 1 0

0 0 1
0 0 0

⎤
⎦

︸ ︷︷ ︸
A

z +

⎡
⎣ 0

0
1

⎤
⎦

︸ ︷︷ ︸
B

v +

⎡
⎣ 0

0
β(·)

⎤
⎦

(34)

where β(·) is defined as β = χ̄+ (Γ̄− 1) v. As mentionned
in Section II, the integral sliding mode controller v reads as

v = v0 + v1.

The first part v0 is a continuous one which ensures that
s, ṡ, and s̈ converge to 0 at a fixed time tF ; the second
one v1 is a discontinuous one which ensures the previous
convergence in spite of uncertainties. As mentionned in
Section II, the design follows several steps.

Continuous part v0. Matrix Q is stated as

Q =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

Then, from (10), one gets

M =

⎡
⎣ 2.4142 2.4142 1.0000

2.4142 4.8284 2.4142
1.0000 2.4142 2.4142

⎤
⎦

From (10), one gets δ(t) = eAmtδ(0) with Am =
− [

AT −MBBT
]
. Then, given δ(t), and from (7)-(9), one

gets ż = −ATmz+BBT eAmtδ(0). By multiplying both side
of previous equation by eA

T
mt, and integrating from t = 0 to

t = tF , with z(tF ) = 0, one gets

z(0) = −
[∫ tF

0

eA
T
mtBBT eAmtdt

]
︸ ︷︷ ︸

H

·δ(0)

Matrix H is the partial reachability gramian of linear system
ẋ = Amx + Bv and is, viewed the form of Am, B and
tF <∞, invertible. Then, the initial condition δ(0) ensuring
that z(tF ) = 0 can be derived from δ(0) = −H−1z(0). The
matrix H is evaluated using an algorithm from [32] which
yields δ1(0) = −3.6034e4, δ2(0) = −3.6034e3 and δ3(0) =
−1.2002e2 for z(0) = [0.016 0 0]T and a convergence time
fixed to tF = 0.2 sec. Then, v0 reads as (with |v0| < v0M =
120)

v0 =
{ −BTMz(t) +BT δ(t) for 0 ≤ t ≤ tF

−BTMz(t) for t > tF
δ̇ = −(AT −MBBT ) δ

(35)
Discontinuous part v1. The switching variable σ reads as
σ = s̈+ζ3+2ξωn (ṡ+ ζ2)+ω2

n (s+ ζ1) with ζ3(0) = −s̈(0),
ζ2(0) = −ṡ(0) and ζ1(0) = −s(0), and ζ̇1 = ζ2, ζ̇2 = ζ3,
ζ̇3 = v0. Then, one gets v1 = −α · sign (σ) with ξ = 0.7,
ωn = 190 rad·s−1 and α = 105 (in order to satisfy (18)-(20)
by taking into account the uncertainties due to the difference
of simulation and control models, and the variations of mass
(+125%)).
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B. Simulation results

Simulations have been made in cosimulation with Amesim-
Simulink : the “complete” model of the experimental set-
up displayed in Section III-B is simulated by Amesim, and
the previous controller based on the “simplified” model
displayed in Section III-C is implemented with Simulink.
Two kind of simulations have been made. The first simula-
tions, named “Nominal case”, consist in considering that the
moving mass is 0.8kg (i.e. the control law has been designed
with this hypothesis). The second simulations consist in
increasing the moving mass to 1.8kg, without changing the
structure of the controller and its gains values. In order to
evaluate the performances of integral sliding mode controller,
a classical state feedback control, defined as

u = Ky(y − yd) +Kvv +Kaa (36)

has been designed by using a linear model around
actuator position y = 0 [5], and by computing gains
Ky, Kv and Ka by Ackerman’s approach such that
poles placement authorized 4.6% overshoot [11], which
gives Ky = 3119 V/m, Kv = 2.618 V/m/s and
Ka = 0.03125 V/m/s2.

Nominal case. The actuator position (Figure 3) converges to
the desired trajectory in 0.2s (which is the stated convergence
time tF ) for ISM3 controller without overshoot. With CF
controller, the convergence is ensured in 0.15s, with a 10%
overshoot. The maximum error position in steady state is
0.18mm for ISM controller and 0.16mm for CF controller.
During all trajectory tracking with ISM controller, there
is no pressure saturation (Figure 4-Top) and control input
is realistic (Figure 5). Note that, in steady state, the force
developped by the actuator, F = S · (pP − pN), allows to
compensate springs force, as shown in Figure 4-Bottom.
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Fig. 3. Top. Desired and current positions (m) versus time (sec). Bottom.
Positions errors (m) versus time (sec).

Robustness evaluation. The ISM controller still ensures

3In the sequel, “ISM” denotes Integral Sliding Mode controller, and “CF”
denote Classical State Feedback controller
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(N ) versus time (sec).
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Fig. 5. Top. uP (V) versus time (sec). Bottom. uN (V) versus time (sec).

convergence in 0.2s without overshoot (Figure 6). With
CF controller, overshoot encreased at 19%. The maximum
position error in steady state equals 0.3mm for ISM
controller and 0.65mm for CF controller. This robustness
evaluation with respect to mass modification confirms the
best efficiency of ISM controller versus CF one.

V. CONCLUSIONS

This paper has proposed the application of a higher order
sliding mode controller based on integral sliding mode [16],
[18] to the position control of a pneumatic actuator. Design
and simulations have shown the efficiency and applicability
of the control approach to the pneumatic area. The further
works concern the practical application of the control solu-
tion, and the design of 4th order sliding mode controller in
order to improve the trajectories tracking accuracy.
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