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A 3rd order sliding mode controller based on integral

sliding mode for an electropneumatic system

I. INTRODUCTION

Control of pneumatic actuators is a challenging problem, viewed their increasing popularity (law maintenance cost, lightweight and good force/weight ratio), in spite of their traditional drawbacks (friction, variation of the actuators dynamics due to large change of load and piston position along the cylinder stroke, nonlinearities, ...). The development of high-performance closed-loop linear/nonlinear controllers [START_REF] Ming-Chang | Identification and position control of a servo pneumatic cylinder[END_REF], [START_REF] Hamiti | Position control of a pneumatic actuator under the influence of stiction[END_REF], [START_REF] Richard | Comparison between linear and lonlinear control of an electropneumatic servodrive[END_REF], [START_REF] Edge | The control of fluid power systems -responding to the challenge[END_REF], [START_REF] Kimura | Feedback linearization for pneumatic actuator systems with static friction[END_REF], [START_REF] Brun | A comparative study between two control laws of an electopneumatic actuator[END_REF], [START_REF] Brun | Choice of control law in electropneumatics. Expertise using an industrial benchmark and some new trends[END_REF], [START_REF] Brun | Influence of the process design on the control strategy: application in electropneumatic Control Engineering Practice[END_REF] has shown the feasability of high-level positionning of pneumatic actuator.

Due to uncertainties on the model, robust controllers are necessary to ensure position tracking with high precision. In that way, sliding mode controllers have been used for electropneumatic actuators [START_REF] Bouri | Sliding control of an electropneumatic actuator using an integral switching surface[END_REF], [START_REF] Paul | Reduced order sliding mode control for pneumatic actuator[END_REF], [START_REF] Yang | Sliding mode tracking for pneumatic muscle actuators in bicep/tricep pair configuration[END_REF], [START_REF] Smaoui | A combined first and second order sliding mode approach for position and pressure control of an electropneumatic system[END_REF]. Their advantages are that they are simply implemented and more robust versus parameters variations and exhibit good dynamic response. However, since the sampling frequency of the controller is limited, chattering will be produced (dangerous highfrequency vibrations of the controlled system). In order to reduce the chattering, the control can be modified to a socalled boundary layer control [START_REF] Slotine | Sliding mode controller design for non-linear systems[END_REF]. However, this type of control implies a deterioration in accuracy and robustness; furthermore, this solution is not enough in pneumatic field [START_REF] Bouri | Integral sliding mode controller of a rotational servodrive[END_REF]: indeed, a good compromise between static position error and chattering cannot be found. So, the spool of the valve is exited which induced noise due to the air going from source to exhaust and an undesirable deterioration of the servodistributor.

Higher order sliding mode control [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF], [START_REF] Bartolini | Chattering avoidance by secondorder sliding mode control[END_REF], [START_REF] Levant | Universal SISO sliding-mode controllers with finite-time convergence[END_REF], [START_REF] Laghrouche | Higher order sliding mode control based on optimal linear quadratic control[END_REF], [START_REF] Laghrouche | Higher order sliding mode control based on optimal LQ control and integral sliding mode[END_REF], [START_REF] Plestan | Multivariable practical higher order sliding mode control[END_REF] is a recent approach which allows to remove all the standard sliding mode restrictions, while preserving the main sliding-mode features and improving its accuracy. The both first references only concern results on second order sliding mode control, which consist in ensuring in finite time that the sliding variable and its time derivative equal 0. In [START_REF] Levant | Universal SISO sliding-mode controllers with finite-time convergence[END_REF], a general approach (which means for all sliding mode order) has been proposed: the main drawbacks of this approach are that the convergence time is only bounded, and not exactly known in advance, and that the convergence condition is not constructive. The controller proposed in [START_REF] Laghrouche | Higher order sliding mode control based on optimal linear quadratic control[END_REF], [START_REF] Plestan | Multivariable practical higher order sliding mode control[END_REF] combines standard sliding mode control with linear quadratic one over a finite time interval with a fixed final state. The algorithm needs the relative degree of the system with respect to the sliding variable s and the bounds of uncertainties and has several advantages: the upper bound of the convergence time is known and can be adjusted in advance, the condition on the gain implies that its tuning is constructive, and the structure of the controller is well-adapted to practical implementations, in particular for pneumatic actuators control [START_REF] Laghrouche | Second order sliding mode controllers for pneumatic actuators[END_REF], [START_REF] Laghrouche | Third-order sliding mode controller for electropneumatic actuators[END_REF]. However, two drawbacks appear in this approach. It ensures only a practical sliding mode establishment (only convergence in finite time to an arbitrarily small vicinity of the origin is ensured), and the reaching time is bounded but can not be fixed exactly and in advance. The aim of this paper is to apply, to the position control of a pneumatic actuator, an arbitrary-order sliding mode controller for uncertain SISO minimum-phase nonlinear systems developed in [START_REF] Laghrouche | Higher order sliding mode control based on optimal LQ control and integral sliding mode[END_REF], [START_REF] Laghrouche | Higher order sliding mode control based on integral sliding mode[END_REF]. These both references present an alternative to [START_REF] Laghrouche | Higher order sliding mode control based on optimal linear quadratic control[END_REF], [START_REF] Plestan | Multivariable practical higher order sliding mode control[END_REF] without its drawbacks, and to apply this class of controllers. The main objective of these approaches is to propose a controller for which the implementation is easy, the convergence time is finite and wellknown in advance and the robustness is ensured during the entire response of the system. The design uses the integral sliding mode concept [START_REF] Utkin | Integral sliding mode in systems operating under uncertainty[END_REF]. The control strategy presented in the sequel, whose the basic idea has been introduced in [START_REF] Laghrouche | Higher order sliding mode control based on optimal LQ control and integral sliding mode[END_REF], contains two parts: the first part is discontinuous, forces the establishment of a sliding mode on the integral sliding manifold, and ensures the robustness with respect to bounded uncertainties, throughout the entire response of the system. The second part, which is obtained through an optimal open-loop control law [START_REF] Laghrouche | Higher order sliding mode control based on optimal LQ control and integral sliding mode[END_REF], and through an optimal feedback control over finite time interval with fixed final states [START_REF] Laghrouche | Higher order sliding mode control based on integral sliding mode[END_REF], is used to stabilize to zero in finite time the r th order input-output dynamics without uncertainties. [START_REF] Laghrouche | Higher order sliding mode control based on optimal LQ control and integral sliding mode[END_REF], [START_REF] Laghrouche | Higher order sliding mode control based on integral sliding mode[END_REF] Consider the uncertain nonlinear system

II. INTEGRAL SLIDING MODE CONTROLLER

ẋ = f (x) + g(x)u y = s(x, t) (1) 
where x ∈ IR n is the state variable, u ∈ IR is the input control and s(x, t) ∈ IR is a smooth output function (sliding variable). f (x) and g(x) are uncertain smooth functions.

Assume that :

H1. The relative degree r of (1) with respect to s is known and constant, and the associated zero dynamics are stable.

The control objective is to fulfill the constraint s(x, t) = 0 in finite time and to keep it exactly by some feedback. The r th order sliding mode is defined through the following definition Definition 1: [START_REF] Levant | Universal SISO sliding-mode controllers with finite-time convergence[END_REF] Consider the nonlinear system (1), and let the system be closed by some possibly-dynamical discontinuous feedback. Then, provided that1 s, ṡ, • • • , s (r-1) are continuous functions, and the set

S r = {x | s(x, t) = ṡ(x, t) = • • • = s (r-1) (t, x) = 0},
called "r th order sliding set", is non-empty and is locally an integral set in the Filippov sense [START_REF] Filippov | Differential Equations with Discontinuous Right-Hand Side[END_REF], the motion on S r is called "r th order sliding mode" with respect to the sliding variable s. The r th order sliding mode control approach allows the finite time stabilization to zero of the sliding variable s and its r -1 first time derivatives by defining a suitable discontinuous control function [START_REF] Laghrouche | Higher order sliding mode control based on optimal LQ control and integral sliding mode[END_REF], [START_REF] Laghrouche | Higher order sliding mode control based on integral sliding mode[END_REF]. The output s satisfies the equation

s (r) = χ(•) + Γ(•)u (2) 
with Γ = L g L r-1 f s and χ = L r f s. Assume that H2. Functions χ(•) and Γ(•) are bounded uncertain functions, and, without loss of generality, let also the sign of the control gain Γ be constant and strictly positive. Thus, there exist

K m ∈ IR + * , K M ∈ IR + * , C 0 ∈ IR + such that 0 < K m < Γ < K M |χ| ≤ C 0 . ( 3 
)
This assumption is supposed to be fulfilled at least locally.

Then, the r th order sliding mode control of (1) with respect to the sliding variable s is equivalent to the finite time stabilization of [START_REF] Laghrouche | Higher order sliding mode control based on optimal LQ control and integral sliding mode[END_REF], [START_REF] Laghrouche | Higher order sliding mode control based on integral sliding mode[END_REF] 

żi = z i+1 żr = χ(•) + Γ(•)u (4) 
with

1 ≤ i ≤ r -1 and z = [z 1 z 2 • • • z r ] T := [s ṡ • • • s (r-1)
] T . In the sequel, the control law u is composed by two parts. The first one, named ideal control [START_REF] Utkin | Integral sliding mode in systems operating under uncertainty[END_REF], is continuous and stabilizes in finite time (4) at the origin when there is no uncertainty. In fact, this control part is used in order to generate trajectories which the system is forced to track. The second part, named integral sliding mode control, provides the complete compensation of uncertainty for t > 0 and ensures that control objectives are reached.

A. Continuous control part

Consider system (4) which can be trivially rewritten as

żi = z i+1 żr = χ(•) + [Γ(•) -1]u β +u (5) 
for

1 ≤ i ≤ r -1. It yields żi = z i+1 żr = β(•) + u. ( 6 
)
Let define u = u 0 + u 1 , with u 0 the ideal control, and u 1 the integral sliding mode control. Consider now the particular case β(•) = 0. Then, as no control part u 1 is necessary in order to compensate the uncertainties, the control law u reads as u = u 0 . One gets

ż = Az + Bu 0 (7) 
where A and B are defined by

A = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 1 . . . 0 . . . . . . . . . . . . . . . . . . 0 . . . . . . . . . 1 0 . . . . . . . . . 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ r×r , B = ⎡ ⎢ ⎢ ⎢ ⎣ 0 . . . 0 1 ⎤ ⎥ ⎥ ⎥ ⎦ r×1 .
The control objective is to drive the state of ( 7) to z = 0 at the fixed final time t = t F . In [START_REF] Laghrouche | Higher order sliding mode control based on optimal LQ control and integral sliding mode[END_REF], this second part is

based on an open-loop control. Its advantage is the easy implementation; however, the open-loop control law depends only on the initial state, is precomputed and is applied for t ∈ [0, t F ], and displays the classical drawbacks of open-loop solution. In order to improve this point, the solution proposed in [START_REF] Laghrouche | Higher order sliding mode control based on integral sliding mode[END_REF] is based on an optimal closed-loop controller u 0 ensuring the minimization of the following criterion

J = 1 2 tF 0 (z T Qz + u 2 0 ) dt, t F < +∞ (8) 
with Q a symmetric positive definite matrix under the fixed final state constraint z(t F ) = 0. Theorem 1: [START_REF] Rekasius | An alternate approach to the fixed terminal point regulator problem[END_REF] Consider the linear system ( 7) with (A, B) reachable. A control law u 0 minimizing the criteria (8) and driving system [START_REF] Brun | Influence of the process design on the control strategy: application in electropneumatic Control Engineering Practice[END_REF] to z(t) = 0 at t = t F for an initial condition z(0) is given by (with 0 ≤ t ≤ t F )

u 0 = -B T M z(t) + B T δ(t) (9)
with M and δ(t) defined by

δ = -(A T -M BB T ) δ, 0 = M A + A T M -M BB T M + Q. ( 10 
)
Initial condition δ(0) of δ(t) is selected in order to satisfy the terminal condition z(t F ) = 0. The control law u 0 is defined in order to drive in finite time the system [START_REF] Brun | Influence of the process design on the control strategy: application in electropneumatic Control Engineering Practice[END_REF] to z(t) = 0 at t = t F . The control law u 0 will maintain the required equilibrium state z = 0 even after the terminal time, i.e. t > t F , provided that the forcing term δ(t) is removed at the terminal time, i.e. u 0 = -B T M z for t > t F [START_REF] Rekasius | An alternate approach to the fixed terminal point regulator problem[END_REF]. Then, in order to reach in a finite time t F the origin z = 0, and to maintain the system (7) at this point for t > t F , a solution is

u 0 = -B T M z(t) + B T δ(t) for 0 ≤ t ≤ t F -B T M z(t) for t > t F ( 11 
)
Let z 0 denote the solution of system [START_REF] Brun | Influence of the process design on the control strategy: application in electropneumatic Control Engineering Practice[END_REF] controlled by u 0 defined by [START_REF] Franklin | Feedback Control of Dynamic Systems[END_REF]: dynamics of z 0 are described by

ż0 = Az 0 + Bu 0 (12) 
As z 0 (t F ) = 0 and given [START_REF] Franklin | Feedback Control of Dynamic Systems[END_REF], one gets, for t > t F , z 0 = 0 and ż0 = 0: z 0 = 0 is a stable equilibrium point.

B. Integral sliding manifold

The basic idea consists in determining a sliding surface such that the state trajectories start on this surface at the initial time t = 0, which induces a sliding mode without reaching phase [START_REF] Utkin | Integral sliding mode in systems operating under uncertainty[END_REF]. One has (for

1 ≤ i ≤ r -1) żi = z i+1 żr = β(•) + u 0 + u 1 ( 13 
)
u 1 is a discontinuous function designed in order to exactly reject the perturbation β(•) throughout the entire response of the system. In order to reach this objective, the integral sliding mode control [START_REF] Utkin | Integral sliding mode in systems operating under uncertainty[END_REF] is used. Let σ ∈ IR define as

σ = z r + ζ r + λ r-1 (z r-1 + ζ r-1 ) + • • • +λ 1 (z 1 + ζ 1 ) (14) 
with ζ r ∈ IR called integral sliding term (which is determined later in this paper as

ζ r-1 , • • • , ζ 1 ). Coefficients λ r-1 , • • •, λ 1 are such that P (p) = p r-1 + λ r-1 p r-2 + • • • + λ 1 is
Hurwitz. Suppose that a sliding mode is established on the manifold S = {x | σ = 0} from t = 0. The time derivative of σ reads as

σ = u 0 + u 1 + β(•) + ζr + λ r-1 ( żr-1 + ζr-1 ) + • • • + λ 1 ( ż1 + ζ1 ) (15) 
As the objective is to ensure that a sliding mode on S is established early from t = 0, one should have σ = 0 for t ≥ 0, and the discontinuous control u 1 should be replaced by the equivalent control u 1eq : in [START_REF] Laghrouche | Higher order sliding mode control based on optimal LQ control and integral sliding mode[END_REF], [START_REF] Laghrouche | Higher order sliding mode control based on integral sliding mode[END_REF], it is established that, in order to ensure z = z 0 for t ≥ 0 (z 0 describes the ideal and optimal trajectory and its dynamics is defined by ( 12)), u 1eq has to satisfy

u 1eq = -β(•), ∀t ≥ 0. (16) 
From ( 15), condition ( 16) is satisfied if

ζr = -u 0 , ζr-1 = ζ r , ζr-2 = ζ r-1 , • • • , ζ1 = ζ 2 , with ζ r (0) = -z r (0), ζ r-1 (0) = -z r-1 (0), • • •, ζ 1 (0) = -z 1 (0)
. Then, at t = 0, one has σ(0) = 0 and the sliding mode is stated on the integral sliding manifold S for t ≥ 0.

C. Discontinuous control part

The control law u 1 is designed in order to ensure that the sliding motion on S = {x | σ = 0} is guaranteed for t ≥ 0 in spite of uncertainties, and reads as

u 1 = -α sign(σ), (17) 
where the gain α is a positive constant tuned such that the η-attractivity condition is satisfied

σ σ ≤ -η|σ|, η > 0. (18) 
From [START_REF] Laghrouche | Second order sliding mode controllers for pneumatic actuators[END_REF] and given that β = χ+(Γ-1) u with u = u 0 +u 1 , one has

σ = [χ + (Γ -1)(u 0 + u 1 )] + u 0 + u 1 -u 0 +λ r-1 ( żr-1 + ζr-1 ) + • • • + λ 1 ( ż1 + ζ1 ) := δ = χ + (Γ -1)u 0 + Γu 1 + δ. ( 19 
)
Define u 0M as the bound of u 0 , and |δ| < ∆. The convergence condition ( 18) is ensured if

α > C 0 + |K M -1|u 0M + ∆ + η K m . ( 20 
)
Under control law [START_REF] Laghrouche | Third-order sliding mode controller for electropneumatic actuators[END_REF] with condition (20) fulfilled, system (13) evolves on the sliding manifold S , its dynamics reads as [START_REF] Hamiti | Position control of a pneumatic actuator under the influence of stiction[END_REF]. Its trajectories converge to zero in a finite time t = t F and are maintained in this equilibrium stable point. Theorem 2 ([16], [START_REF] Laghrouche | Higher order sliding mode control based on integral sliding mode[END_REF]): Consider the nonlinear system (1) with a relative degree r with respect to the sliding variable s(x, t). Suppose the hypotheses H1-H2 fulfilled and s(0), ṡ(0), • • •, s (r-1) (0) bounded. Then, the control law u u = u 0 + u 1 CONFIDENTIAL. Limited circulation. For review only.
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with u 0 defined by [START_REF] Franklin | Feedback Control of Dynamic Systems[END_REF] and

u 1 = -α • sign s (r-1) + ζ r + λ r-1 (s (r-2) + ζ r-1 ) + • • • + λ 1 (s + ζ 1 )] , ζr = -u 0 with ζ r (0) = -s (r-1) (0), ζ r-1 (0) = -s (r-2) (0), • • • , ζ 1 (0) = -s(0), α > C 0 + |K M -1|u 0M + ∆ + η K m , (21) 
allows the establishment of a r th order sliding mode with respect to s with a finite time convergence t = t F < ∞.

III. ELECTROPNEUMATIC SYSTEM

A. Description

The electropneumatic system under interest is a double acting actuator controlled by two servodistributors (see Figure 1) and composed by two chambers denoted P and N . Piston diameter is 63 mm and rod diameter 16 mm. With a source pressure equal to 7 bar, the maximum force developed by the actuator is 1750 N . The air mass flow rates q m entering in the chambers are modulated by two three-way servodistributors Servotronic (Asco-Joucomatic) controlled by a micro-controller. The pneumatic jack horizontally moves a load carriage of mass M . This carriage is coupled to 4 springs (which restrain the displacement of the carriage and restore the initial position in the middle of the total stroke equal to 50 mm -see Figure 1) for a total of 75000 N/m rate. Additional dry friction is controlled by two skates, with a maximum value equal to 40 N . As the maximal displacement of carriage is 16 mm, the maximal spring force is 1200 N . The electropneumatic plant model is obtained from three • the first one, which takes into account physical phenomena as temperature variations, practical values of mass flow rate, dynamics of servodistributors..., is developped under Amesim. • The second one, which is simpler than the previous, is used in order to design the controller under Simulink.

B. Simulation model

Servodistributor model. The servodistributor model is composed in two parts, a dynamic part and a static one :

• Dynamic part is modelized by a second order transfer function

F (s) = ω 2 ns s 2 + 2 • ζ s • ω ns s + ω 2 ns ( 22 
)
with ω ns = 246 rad • s -1 and ζ s = 0.707. • Static part is modelized by an experimental table where mass flow rate is given in function of ratio pressure (upstream/downstream) and control voltage [START_REF] Sesmat | Static characteristics of a three way servovalve[END_REF].

Pneumatic chamber variable volume model. Each chamber of the pneumatic actuator is considered as a variable volume, in which the air mass evolves with time. State the following assumptions : A1. Air is a perfect gas ands its kinetic is inconsequential.

A2. The pressure and the temperature are homogeneous in each chamber.

A3. The mass flow is pseudo-stationary.

The first dynamic principle applied to the air mass and the thermodynamic evolution of air in each chamber read as (with X = P or N ) [START_REF] Shearer | Study of pneumatic processes in the continuous control of motion with compressed air[END_REF] dp

X dt = -γ p X V X dV X dt + γrT r V X q mXin - γrT X V X q mXout + (γ -1) V X dQ X dt dT X dt = -(γ -1) T X V X dV X dt + rT X p X V X (γT r -T X )q mXin - rT 2 X p X V X (γ -1)q mXout + (γ -1) T X p X V X dQ X dt (23 
) with γ the adiabatic constant, T r the temperature inside the upstream tank, q mXin the mass flow rate brought inside the X chamber, and q mXout the mass flow rate brought outside the X chamber. Q X , the thermal exchange with the X chamber wall, is described by assumption A4. A4. The thermal exchange is due only by conduction described by

dQ X dt = λS cX (T cX -T X ) (24) 
with λ the thermal exchange coefficient by conduction, S cX the total area inside a X chamber, and T cX the temperature of the X chamber wall.

CONFIDENTIAL. Limited circulation. For review only. 

dv dt = 1 M [S (p P -p N ) -F f -b v v -K r y]

C. Control model

This model is developed in order to design the control law and a simplest version of the simulation one. The following hypotheses are added A5. The process is polytropic and characterized by coefficient k (with 1 < k < γ). In this case, Q dynamics are [START_REF] Shearer | Study of pneumatic processes in the continuous control of motion with compressed air[END_REF] dQ

X dt = 1 γ -1 [-rq mXin (γT r -kT X ) +rT X q mXout (γ -k) + p X (γ -k) dV X dt (26) 
A6. Furthermore, the temperature variations in each chamber are inconsequential with respect to the supply temperature, i.e. T P = T N = T .

Then, pressures dynamics read as

dp X dt = -k p X V X dV X dt + krT V X (q mXin -q mXout ) (27) 
A7. The leakage between the two chamber and between servodistribuor and jack are negligible.

By defining q m (u X , p X ) := q mXinq mXout , one gets

dp P dt = -k p P V P (y) dV P (y) dt + krT V P q m (u P , p P ) dp N dt = -k p N V N (y) dV N (y) dt + krT V N q m (u N , p N ) (28) 
A8. All dry frictions forces are neglected.

A9.

There is no control signal saturation.

A10. Dynamic part of servodistributor is neglected, and static part reads as

q m (u X , p X ) = ϕ (p X ) + ψ (p X , sign (u X )) u X
with ϕ and ψ defined as 5 th -order polynomials with respect to p X [START_REF] Belgharbi | Analytical model of the flow stage of a pneumatic servo-distributor for simulation and nonlinear control[END_REF].

A11. Only the position of the actuator is controlled, which means that the problem is a single input-single output (SISO). It implies that u P = -u N = u.

Then, with V P (y) = V 0 + S • y and V N (y) = V 0 -S • y (V 0 being equal to the half of the cylinder volume), the model used for the design of controller is a nonlinear system reads as

ṗP = krT V P (y) [ϕ (p P ) + ψ (p P , sign (u)) u - S rT p P v] ṗN = krT V N (y) [ϕ (p N ) -ψ (p N , sign (-u)) u + S rT p N v] v = 1 M [Sp P -Sp N -b v v -K r y] ẏ = v (29)

D. Conclusion

The use of different models for the simulation and for the control design implies that, if high accuracy is required, it is necessary to design robust control law with respect to uncertainties generated by the difference between these two models. These uncertainties are taken into account, in the controller design, through two models

• The so-called "nominal" model ( 29),

• The so-called "real" model which takes into account the uncertainties on several parameters or functions (Temperature T , functions ϕ and ψ, mass M ) ṗP = kr(T + ∆T ) V P (y) [ϕ + ∆ϕ-S r(T + ∆T )

p P v] + kr(T + ∆T ) V P (y) (ψ + ∆ψ)u ṗN = kr(T + ∆T ) V N (y) [ϕ + ∆ϕ- S r(T + ∆T ) p N v] - kr(T + ∆T ) V N (y) (ψ + ∆ψ)u v = 1 M + ∆M [Sp P -Sp N -b v v -K r y] ẏ = v (30) with |∆T | < T M , |∆ϕ| < ϕ M , |∆ψ| < ψ M and |∆M | < M M all bounded values.

E. Desired trajectory

The desired position trajectory, named y d (t), is displayed in Figure 2 and has been designed such that associated velocity and acceleration are continuous functions. The maximum velocity (resp. acceleration) is 0.8 m • s -1 (resp. 33 m • s -2 ). This displacement corresponds to 64% of the total stroke around the central position. The initial conditions are such that [y(0) v( 0 

A. Controller design

The objective consists in designing a robust (with respect to uncertainties/disturbances) position controller. Define s the sliding variable as s = yy d (t): from (30), its relative degree with respect to u equals 3, which implies that a 3 rd order sliding mode controller is designed. The validity of the control law depends on the stability of the unobservable subsystem of dimension one, which is supposed. One has

s (3) = χ(•) + Γ(•)u (31) 
with T = T + ∆T , φ = ϕ + ∆ϕ, ψ = ψ + ∆ψ, M = M + ∆M 2 , and [START_REF] Vanloan | Computing integrals involving the matrix exponential[END_REF] with no uncertainties. It is important to note that Γ nom is always strictly positive. So u has the same sign as (-χ nom + v). By definition, χ nom and v are independent of u. Consequently, the control law is not implicit. This explains the choice of the function ϕ, independent of u, in the mass flow rate expression of assumption A10. Then, one gets

χ(•) = kr T S M φ(pP ) VP (y) -φ(pN ) VN (y) -kS 2 v M pP VP (y) -pN VN (y) -bv M2 (S (p P -p N ) -b v v -K r y) -Kr v M -y (3) d Γ(•) = kr T S M ψ(pP ,sign(u)) VP (y) + ψ(pN ,sign(-u)) VN (y) (32) The control law is defined as u = Γ -1 Nom • [-χ Nom + v] with Γ Nom (resp. χ Nom ) the nominal value of Γ (resp. χ), i.e. derived from
s (3) = χ(•) + Γ(•)v (33) 
with χ = χ -ΓΓ -1 Nom χ Nom and Γ = ΓΓ -1 Nom . Let z = [s ṡ s] T . Then, as shown in Section II, the 3 rd order sliding 2 It is supposed that ∆ M = 0. mode control is equivalent to the finite time stabilization of

ż = ⎡ ⎣ 0 1 0 0 0 1 0 0 0 ⎤ ⎦ A z + ⎡ ⎣ 0 0 1 ⎤ ⎦ B v + ⎡ ⎣ 0 0 β(•) ⎤ ⎦ (34) 
where β(•) is defined as β = χ + ( Γ -1) v. As mentionned in Section II, the integral sliding mode controller v reads as

v = v 0 + v 1 .
The first part v 0 is a continuous one which ensures that s, ṡ, and s converge to 0 at a fixed time t F ; the second one v 1 is a discontinuous one which ensures the previous convergence in spite of uncertainties. As mentionned in Section II, the design follows several steps. 

Continuous part v 0 . Matrix Q is stated as Q = ⎡ ⎣ 1 0 0 0 1 0 0 0 1 ⎤ ⎦ Then, from (10) 
(t) = e Amt δ(0) with A m = -A T -M BB T .
Then, given δ(t), and from ( 7)-( 9), one gets ż = -A T m z + BB T e Amt δ(0). By multiplying both side of previous equation by e A T m t , and integrating from t = 0 to t = t F , with z(t F ) = 0, one gets

z(0) = - tF 0 e A T m t BB T e Amt dt H •δ(0)
Matrix H is the partial reachability gramian of linear system ẋ = A m x + Bv and is, viewed the form of A m , B and t F < ∞, invertible. Then, the initial condition δ(0) ensuring that z(t F ) = 0 can be derived from δ(0) = -H -1 z(0). The matrix H is evaluated using an algorithm from [START_REF] Vanloan | Computing integrals involving the matrix exponential[END_REF] which yields δ 1 (0) = -3.6034e4, δ 2 (0) = -3. convergence in 0.2s without overshoot (Figure 6). With CF controller, overshoot encreased at 19%. The maximum position error in steady state equals 0.3mm for ISM controller and 0.65mm for CF controller. This robustness evaluation with respect to mass modification confirms the best efficiency of ISM controller versus CF one.

V. CONCLUSIONS

This paper has proposed the application of a higher order sliding mode controller based on integral sliding mode [START_REF] Laghrouche | Higher order sliding mode control based on optimal LQ control and integral sliding mode[END_REF], [START_REF] Laghrouche | Higher order sliding mode control based on integral sliding mode[END_REF] to the position control of a pneumatic actuator. Design and simulations have shown the efficiency and applicability of the control approach to the pneumatic area. The further works concern the practical application of the control solution, and the design of 4 th order sliding mode controller in order to improve the trajectories tracking accuracy. 

Fig. 1 .

 1 Fig. 1. Electropneumatic system

  Ff included stiction, Coulomb and Stribeck phenomena. Samplers and saturation. Samplers are added in AMESim's model in order to take into account samplers of acquisition card; sample time is 1 ms. Saturation signal control are added, i.e. |u sat | = 10 V .

Fig. 2 .

 2 Fig. 2. Desired position (m) versus time (sec)

6034e3 and δ 3

 3 (0) = -1.2002e2 for z(0) = [0.016 0 0] T and a convergence time fixed to t F = 0.2 sec. Then, v 0 reads as (with|v 0 | < v 0M = 120) v 0 = -B T M z(t) + B T δ(t) for 0 ≤ t ≤ t F -B T M z(t) for t > t F δ = -(A T -M BB T ) δ (35) Discontinuous part v 1 . The switching variable σ reads as σ = s+ζ 3 +2ξω n ( ṡ + ζ 2 )+ω 2 n (s + ζ 1 ) with ζ 3 (0) = -s(0), ζ 2 (0) =ṡ(0) and ζ 1 (0) = -s(0), and ζ1 = ζ 2 , ζ2 = ζ 3 , ζ3 = v 0 .Then, one gets v 1 = -α • sign (σ) with ξ = 0.7, ω n = 190 rad•s -1 and α = 10 5 (in order to satisfy (18)-(20) by taking into account the uncertainties due to the difference of simulation and control models, and the variations of mass (+125%)).

Fig. 4 .

 4 Fig. 4. Top. pressure (p P and p N ) (bar) versus time (sec). Bottom. Force (N ) versus time (sec).

Fig. 5 .

 5 Fig. 5. Top. u P (V) versus time (sec). Bottom. u N (V) versus time (sec).

Fig. 6 .

 6 Fig. 6. Top. Desired and current positions (m) versus time (sec). Bottom. Positions errors (m) versus time (sec).

All over this paper, s(•)(k) (k ∈ IN ) denotes the k th time derivative of the function s(•). This notation is also applied for every function.
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In the sequel, "ISM" denotes Integral Sliding Mode controller, and "CF" denote Classical State Feedback controller
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B. Simulation results

Simulations have been made in cosimulation with Amesim-Simulink : the "complete" model of the experimental setup displayed in Section III-B is simulated by Amesim, and the previous controller based on the "simplified" model displayed in Section III-C is implemented with Simulink. Two kind of simulations have been made. The first simulations, named "Nominal case", consist in considering that the moving mass is 0.8kg (i.e. the control law has been designed with this hypothesis). The second simulations consist in increasing the moving mass to 1.8kg, without changing the structure of the controller and its gains values. In order to evaluate the performances of integral sliding mode controller, a classical state feedback control, defined as

has been designed by using a linear model around actuator position y = 0 [START_REF] Brun | A comparative study between two control laws of an electopneumatic actuator[END_REF], and by computing gains K y , K v and K a by Ackerman's approach such that poles placement authorized 4.6% overshoot [START_REF] Franklin | Feedback Control of Dynamic Systems[END_REF], which gives

Nominal case. The actuator position (Figure 3) converges to the desired trajectory in 0.2s (which is the stated convergence time t F ) for ISM 3 controller without overshoot. With CF controller, the convergence is ensured in 0.15s, with a 10% overshoot. The maximum error position in steady state is 0.18mm for ISM controller and 0.16mm for CF controller. During all trajectory tracking with ISM controller, there is no pressure saturation (Figure 4-Top) and control input is realistic (Figure 5). Note that, in steady state, the force developped by the actuator, F = S • (p Pp N ), allows to compensate springs force, as shown in Figure 4-Bottom. 

Robustness evaluation. The ISM controller still ensures