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The study deals with a rotor-stator contact inducing vibration in rotating machinery. A numerical rotor-stator system including a nonlinear bearing with Hertz contact and clearance is considered. To determine the non-linear responses of this system, nonlinear dynamic equations can be integrated numerically. But this procedure is both time consuming and costly to perform. The aim of this paper is to apply the Alternate Frequency/Time Method and the "path following continuation" in order to obtain the non-linear responses to this problem. Next, orbits of rotor and stator responses at various speeds are performed.

INTRODUCTION

The motivation of this study comes from vibration problems induced by rotor-stator contact in turbo-machinery. In fact, various types of non-linear phenomena and effects appear such as rotorstator contact and clearance bearing [1][2]. During the recent years, the understanding of the dynamic behaviour of systems with non-linear phenomena have been developed in order to predict dangerous or favourable conditions and to exploit the whole capability of structures through system using in non-linear range. In general, time-history response solutions of the full set of non-linear equations can determine the vibration amplitudes but are both time consuming and costly when parametric design studies are needed. Due to the fact that such non-linear systems occur in many disciplines of engineering, considerable work has been devoted to development of methods for the hal-00207665, version 1 -18 Jan 2008 approximation of frequency responses. One of the most popular method is the Alternate Frequency/Time domain (AFT) method [3], based on the balance of harmonic components. In this study, a rotor/stator system with bearing, including Hertz contact and clearance is firstly presented. Secondly, the efficiency of both AFT method and path following continuation is demonstrated in order to obtain the non-linear behaviour of a rotor-stator system with bearing, including Hertz contact and clearance; this method allows to save time in comparison with a classical Runge-Kutta integration, by transforming non-linear differential equations into a set of non-linear algebraic equations in terms of Fourier coefficients.

ANALYTICAL MODEL

Nonlinear contact

In this model, the Hertz theory is considered in order to evaluate contact between the balls and the races [4]. As illustrated in Figure 1, each ball can be located by its angular position k θ . Then, the radial non-linear contact force generated on the th k ball can be defined as follows: ( )

( ) ( ) ( ) 3 2 if (contact); 0 otherwise (no contact) radial r H r r radial r F K F δ δ ∆ = ∆ - ∆ ≥ ∆ = (1)
3/ 2 3/ 2 1 1 1 H i o K K K = + (2) 
The ball-bearing model under consideration in this study has equi-spaced balls rolling on the surfaces of the inner and outer races. When the outer ring is fixed and the shaft rotates, the angle k θ changes with time. Then, each ball is located by its angular position . 2 ( 1)

k c t k N θ ω π = + - .
Then the precessional angular velocity c ω of the balls is given by ( )

2 c r i R R R ω ω = + where c ω , r ω , R , i R
, N are the rotational speed of bearing, the rotational speed of rotor, the outer diameter of inner ring, the diameter of balls, and the number of balls, respectively. Next, the global bearing reaction can be obtained by summing all the individual contact expressions of each th k bearing. The total restoring force components in x and y directions are

( ) ( ) / / 1 1 cos sin N N contact x radial k contact y radial k k k F F F F θ θ = = = = ∑ ∑ (3)

Rotor-bearing-stator model

The rotor-bearing-stator system under study has the outer race of the ball bearing fixed to a rigid support and the inner race fixed rigidly to the shaft. A constant vertical radial force acts on the bearing due to gravity. The excitation is due to an of unbalance force which introduces a rotational frequency. The bearing is composed with 16 balls and is modeled as explained previously, by considering the non-linearity due to the Hertz contact with clearance. The complete rotor-bearingstator behaviour can be represented with the following equations: 

( ) ( ) 2 / / 2 /
+ + = + + = - + + = - + + = - - (4) 
This non-linear system can be also written as follows

+ + = + NL Mx Cx Kx f f (5)
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where

{ } T s s r r x y x y = x
. M , C and K are the mass, the damping and the stiffness matrices. NL f and f include non-linear terms, gravity and unbalance, respectively.

NON-LINEAR METHOD

Both the harmonic balance method and the continuation schemes are well-known numerical tools to study non-linear dynamics problems. However, the AFT method seems rarely used in engineering applications, and more particurlarly in system with clearance and hertz contact. The general idea is to represent each time history response by its frequency content in order to obtain a set of equations including balancing terms with the same frequency components, and to start an iterative approach to obtain roots of these equations [3]. In this study, the AFT method is used to find the response solutions of non-linear rotor-bearing-stator equations.

Alternate frequency/time domain method

The non-linear system (5) can be written in the following way

( ) ( ) ( ) , , , , , , 0 ω τ ω τ ω τ + + + - = = NL Mx Cx Kx f x f x g x (6)
where M , C and K are the mass, damping and stiffness matrices. NL f is the vector containing non-linear expressions due to the non-linear contact. Setting 

m i i i i t i t ω ω - = = + + ∑ x X X X , [ ] 0 21 2 1 cos( ) sin( ) m i i i i t i t ∆ ∆ ∆ ω ∆ ω - = = + + ∑ x X X X (7,8) in which 0 X , 2 1 i- X and 2i X , 0 ∆X , 2 1 i ∆ -

X and 2i

∆X are the Fourier coefficients of x and ∆x , respectively.

The number m of harmonic coefficients is selected in order to only take into account the significant harmonics expected in the solution. ( ) 2 1 4 m + × linear algebraic equations are obtained:

( )∆ ∆ω + -+ + + = NL AX F F A J X Q 0 (9)
in which A and J are the Jacobian matrices associated with the linear and non-linear parts of (6). They are given by ( )

1 j m diag = A KB B B with ( ) 2 2 j j j j ω ω ω ω ⎡ ⎤ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ -M C B -C - M+K
, and

( ) ( ) 1 Γ . .Γ - ⎡ ⎤ ⎢ ⎥ ⎡ ⎤ ∂ ⎢ ⎥ = ⊗ ⊗ ⎢ ⎥ ⎢ ⎥ ∂ ⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ NL f J I I x .
F and Q represent the Fourier coefficients of f , and the Fourier coefficients of the derivative of g with respect to ω , respectively. NL F represents the Fourier coefficients vector of the non-linear function NL f . X and ∆X contain the Fourier coefficients and Fourier increments of x and ∆x , respectively. NL F is difficult to directly determine from the Fourier coefficients for many non-linear elements. However NL F can be calculated by using an iterative process [3]:

( ) ( ) 1 DFT DFT t t - ⎯⎯⎯→ ⎯⎯ → ⎯⎯⎯ → NL NL X x f F
where DFT defines the Discrete Fourier Transform.

The DFT from time to frequency domain is given by hal-00207665, version 1 -18 Jan 2008

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 1 2 1 1 1 2 1 cos 1 2 1 2, 4,..., 2 1 2 1 sin 1 1 2 1 1,3,..., 2 1 ij m for i m j i m f o r i m m j i m f o r i m π π ⎧ + = ⎪ ⎪ Γ = + - + = ⎨ ⎪ + - - + = + ⎪ ⎩ for 1, 2,..., 2 1 j m = + (10)
The error vector R and the associated convergence are given by =

+ - NL R AX F F (11) ( ) 2 2 2 1 0 2 1 2 1 m j j j δ - = = + + ∑ R R R and 
( ) 2 2 2 2 0 2 1 2 1 m j j j δ - = = ∆ + ∆ + ∆ ∑ X X X (12,13)

Path continuation

Usually, the system behavior is of interest over a range of values for at least one parameter (in this study, the considered parameter is the speed of shaft rotation ω ). In order to save time and to obtain more easily the solution of the system by considering variations of parameter values, the path following technique [3] can be used. In this study, estimation of the neighboring point is obtained by using the Lagrangian polynomial extrapolation method with four points. So, four points on the solution branch are obtained a priori in order to begin the extrapolation scheme. Any point on the solution branch is represented at ( )

, i i ω X , i
X and i ω being the Fourier coefficients and the frequency parameter, respectively. The arc length between two consecutive points ( )

1 1 , i i ω + + X and ( ) , i i ω X is given by ( ) ( ) ( ) 2 1 1 1 1
for 0,1 and 2

T i i i i i i i s i δ ω ω + + + + = - - + - = X X X X (14) 
hen, the arc length parameters are given by 

δ δ δ ∆ = = = + = + = + (15) 
and by using the Lagrangian extrapolation scheme, the following estimated point at the distance s ∆ can be defined by

[ ] 3 3 3 4 4 0 1 .
for 0,1,...,3

T j i i i j j i i j S S i S S ω ω = = ≠ ⎛ ⎞ ⎜ ⎟ ⎛ ⎞ - ⎡ ⎤ = = ⎜ ⎟ ⎜ ⎟ ⎢ ⎥ ⎜ ⎟ - ⎣ ⎦ ⎜ ⎟ ⎝ ⎠ ⎜ ⎟ ⎝ ⎠
At frequencies between 30-80 Hz, rotor and stator are always in contact and orbits are circular and the first frequency components are sufficient ( 1 m = ), as illustrated in Figure 3 and in Figure 4(b). At frequencies between 1-11 Hz, the same behaviour can be observed, and rotor-stator are always in contact due to the gravity effect. So, Figure 5 shows the contact evolution for each ball of the bearing while increasing the rotation speed. At frequencies between 11-19Hz, the rotor-stator contact is a complex phenomenon with a succession of contact and no-contact periods. At frequencies between 50-80Hz, rotor and stator are always in contact. As explained previously, an interesting point is the contact's evolution during the transit phase around 11-19Hz. As illustrated in Figure 5(b-e), complex non-linear behaviours are obtained.

SUMMARY AND CONCLUSION

The Alternate Frequency /Time domain method and the following path continuation were briefly described. They seem interesting when time history response solutions of the full non-linear equations are both time consuming and costly. Moreover, extensive parametric design studies can be done in order to appreciate the effect of specific parameter variation on the response of nonlinear systems. This method was applied to a rotor-bearing-stator system with nonlinear ball bearing including hertzian contact and radial clearance. Complex orbits and evolutions of the local contact between the balls and the raceways were obtained. 
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	r ξ , s ξ	Item Damping ratio for the rotor and the stator	Units -	Value 0.01
	m e e δ	Unbalance magnitude Clearance	kg.m m	50.e-3 2.e-5
	K	H	Radial bearing stiffness	N/m	10.e+10
	0 s ω , 0 r ω	Natural frequency of the stator and the stator	rad/s	150; 500
	g	Gravity	m/s 2	9.8

and 240 CPU seconds, respectively. The calculation by using the 4 th -order Runge-Kutta process needs about 1800 CPU seconds.