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ABSTRACT  
The study deals with a rotor-stator contact inducing vibration in rotating machinery. A numerical 
rotor-stator system including a nonlinear bearing with Hertz contact and clearance is considered. To 
determine the non-linear responses of this system, nonlinear dynamic equations can be integrated 
numerically. But this procedure is both time consuming and costly to perform. The aim of this paper 
is to apply the Alternate Frequency/Time Method and the “path following continuation” in order to 
obtain the non-linear responses to this problem. Next, orbits of rotor and stator responses at various 
speeds are performed. 
 
Keywords:  dynamic systems, rotor dynamics, nonlinear analysis, bearing clearances, contact. 
 
RESUME 
Une étude portant sur la dynamique non-linéaire d’un système dans les machines tournantes est 
présentée. Nous considérons un système rotor-stator comportant un roulement non-linéaire avec jeu 
et contact de Hertz. Afin de déterminer la réponse non-linéaire de ce système, les  équations 
dynamiques non-linéaires peuvent être intégrées numériquement. Cependant, cette procédure est 
coûteuse en terme de temps de calcul et de ressources. Le but de ce papier est de proposer 
l’application d’une méthode de balance harmonique pour déterminer la réponse non-linéaire du 
système. Ainsi, les orbites du rotor et du stator sont obtenus pour différentes vitesses de rotation. 
Mots-clés:  dynamique des systèmes, dynamique des rotors, analyse non-linéaire, roulement avec 
jeux, contact. 
 

1. INTRODUCTION 
The motivation of this study comes from vibration problems induced by rotor-stator contact in 

turbo-machinery. In fact, various types of  non-linear phenomena  and effects appear such as rotor-
stator contact and clearance bearing [1-2]. During the recent years, the understanding of the 
dynamic behaviour of systems with non-linear phenomena have been developed in order to predict 
dangerous or favourable conditions and to exploit the whole capability of structures through system 
using in non-linear range. In general, time-history response solutions of the full set of non-linear 
equations can determine the vibration amplitudes but are both time consuming and costly when 
parametric design studies are needed. Due to the fact that such non-linear systems occur in many 
disciplines of engineering, considerable work has been devoted to development of methods for the 
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approximation of frequency responses. One of the most popular method is the Alternate 
Frequency/Time domain (AFT) method [3], based on the balance of harmonic components. In this 
study, a rotor/stator system with bearing, including Hertz contact and clearance is firstly presented. 
Secondly, the efficiency of both AFT method and path following continuation is demonstrated in 
order to obtain the non-linear behaviour of a rotor-stator system with bearing, including Hertz 
contact and clearance; this method allows to save time in comparison with a classical Runge-Kutta 
integration, by transforming non-linear differential equations into a set of non-linear algebraic 
equations in terms of  Fourier coefficients.  

2. ANALYTICAL MODEL 

2.1. Nonlinear contact 
    In this model, the Hertz theory is considered in order to evaluate contact between the balls and 
the races [4]. As illustrated in Figure 1, each ball can be located by its angular position kθ . Then, 
the radial non-linear contact force generated on the thk  ball can be defined as follows: 

( ) ( ) ( )
3

2    if    (contact);      0    otherwise  (no contact)radial r H r r radial rF K Fδ δ∆ = ∆ − ∆ ≥ ∆ =
 (1) 

where δ  and r∆  are the radial clearances value and the relative radial distance between the inner 
and the outer races of the thk  bearing . r∆  can be expressed by considering horizontal and vertical 
displacement of the inner and outer races of the thk  bearing. One has 

( )( ) ( )( )innerouterkinnerouterkr yyxx −+−=∆ θθ sincos . The effective stiffness HK  is the combined 
stiffness off a ball to inner race and outer race contacts and is defined by [4]: 

( )3/ 2 3/ 21 1 1H i oK K K= +      (2) 

The ball-bearing model under consideration in this study has equi-spaced balls rolling on the 
surfaces of the inner and outer races. When the outer ring is fixed and the shaft rotates, the angle kθ  
changes with time. Then,  each ball is located by its angular position . 2 ( 1)k c t k Nθ ω π= + − . Then 
the precessional angular velocity cω  of the balls is given by ( )2c r iR R Rω ω= +  where cω , rω , 
R , iR , N  are the rotational speed of bearing, the rotational speed of rotor, the outer diameter of 
inner ring, the diameter of  balls, and the number of balls, respectively. Next, the global bearing 
reaction can be obtained by summing all the individual contact expressions of each thk  bearing. The 
total restoring force components in x  and y  directions are 

( ) ( )/ /
1 1

cos sin
N N

contact x radial k contact y radial k
k k

F F F Fθ θ
= =

= =∑ ∑           (3) 

2.2. Rotor-bearing-stator model 
The rotor-bearing-stator system under study has the outer race of the ball bearing fixed to a rigid 

support and the inner race fixed rigidly to the shaft. A constant vertical radial force acts on the 
bearing due to gravity. The excitation is due to an of unbalance force which introduces a rotational 
frequency. The bearing is composed with 16 balls and is modeled as explained previously, by 
considering the non-linearity due to the Hertz contact with clearance. The complete rotor-bearing-
stator behaviour can be represented with the following equations: 

( )
( )

2
/ /

2
/ /

cos
sin

s s s s s s contact x r r r r r r e contact x

s s s s s s contact y s r r r r r r e contact y r

m x c x k x F m x c x k x m e t F
m y c y k y F m g m y c y k y m e t F m g

ω ω
ω ω

+ + = + + = −
+ + = − + + = − −

  (4) 

This non-linear system can be also written as follows 

+ + = +NLMx Cx Kx f f      (5) 
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where { }T
s s r rx y x y=x . M , C  and K  are the mass, the damping and the stiffness matrices. NLf  

and f  include  non-linear terms, gravity and  unbalance, respectively.  

3. NON-LINEAR METHOD 
Both the harmonic balance method and the continuation schemes are well-known numerical 

tools to study non-linear dynamics problems. However, the AFT method seems rarely used in 
engineering applications, and more particurlarly in system with clearance and hertz contact. The 
general idea is to represent each time history response by its frequency content in order to obtain a 
set of equations including balancing terms with the same frequency components, and to start an 
iterative approach to obtain roots of these equations  [3]. In this study, the AFT method is used to 
find the response solutions of non-linear rotor-bearing-stator equations. 

3.1. Alternate frequency/time domain method 
 The non-linear system (5) can be written in the following way 

( ) ( ) ( ), , , , , , 0ω τ ω τ ω τ+ + + − = =NLMx Cx Kx f x f x g x   (6) 

where M , C  and K  are the mass, damping and stiffness matrices. NLf   is the vector containing 
non-linear expressions due to the non-linear contact. Setting i=x x +∆x , i=x x +∆x  and 

i=x x +∆x , the displacements x  and ∆x  are represented with truncated Fourier series m  
harmonics:  

[ ]0 2 1 2
1

cos( ) sin( )
m

i i
i

i t i tω ω−
=

= + +∑x X X X ,   [ ]0 2 1 2
1

cos( ) sin( )
m

i i
i

i t i t∆ ∆ ∆ ω ∆ ω−
=

= + +∑x X X X (7,8) 

in which 0X , 2 1i−X  and 2iX , 0∆X , 2 1i∆ −X   and 2i∆X  are the Fourier coefficients of x  and ∆x , 
respectively. 
The number m  of harmonic coefficients is selected in order to only take into account the significant 
harmonics expected  in the solution. ( )2 1 4m + ×  linear algebraic equations  are obtained: 

( )∆ ∆ω+ − + + + =NLAX F F A J X Q 0                                        (9) 
in which A  and J  are the Jacobian matrices associated with the linear and non-linear parts of (6). 
They are given by 

( )1 j mdiag=A K B B B   with  
( )

2

2  
j

j

j j

ω ω

ω ω

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

- M C
B

- C - M + K
, and 

( ) ( )1Γ . . Γ−

⎡ ⎤
⎢ ⎥

⎡ ⎤∂⎢ ⎥= ⊗ ⊗⎢ ⎥⎢ ⎥∂⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

NLfJ I I
x

. 

F and Q  represent the Fourier coefficients of f , and the Fourier coefficients of the derivative of  g  
with respect to ω , respectively. NLF  represents the Fourier coefficients vector  of the non-linear 
function NLf . X  and ∆X  contain the Fourier coefficients and Fourier increments of x  and ∆x , 
respectively. NLF  is difficult to directly determine from the Fourier coefficients for many non-linear 
elements. However NLF   can be calculated by using an iterative process [3]: 

( ) ( )
1DFT DFTt t
−

⎯⎯⎯→ ⎯⎯→ ⎯⎯⎯→NL NLX x f F  where DFT  defines the Discrete Fourier Transform. 
The DFT from time to frequency domain is given by  
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( )
( ) ( ) ( )( )
( ) ( )( ) ( )( )

1 2 1 1
1 2 1 cos 1 2 1 2,4,..., 2

1 2 1 sin 1 1 2 1 1,3,..., 2 1
ij

m for i
m j i m for i m

m j i m for i m

π

π

⎧ + =
⎪⎪Γ = + − + =⎨
⎪ + − − + = +⎪⎩

          for 1, 2,..., 2 1j m= +       

(10) 

The error vector R  and the associated convergence are given by 

= + −NLR AX F F                                                      (11) 

( )2 2 2
1 0 2 1 2

1

m

j j
j

δ −
=

= + +∑R R R       and       ( )2 2 2
2 0 2 1 2

1

m

j j
j

δ −
=

= ∆ + ∆ + ∆∑X X X           (12,13)                   

3.2. Path continuation   
Usually, the system behavior is of interest over a range of values for at least one parameter (in 

this study, the considered parameter is the speed of shaft rotation ω ). In order to save time and to 
obtain more easily the solution of  the system by considering variations of  parameter values, the 
path following technique [3] can be used. In this study, estimation of the neighboring  point is 
obtained by using the Lagrangian polynomial extrapolation method with four points. So,  four 
points on the solution branch are obtained a priori in order to begin the extrapolation scheme. Any 
point on the solution branch is represented at ( ),i iωX , iX  and iω  being the Fourier coefficients and 

the frequency parameter, respectively. The arc length between two consecutive points ( )1 1,i iω+ +X  

and ( ),i iωX is given by 

( ) ( ) ( )2
1 1 1 1       for  0,1 and 2T

i i i i i i is iδ ω ω+ + + += − − + − =X X X X                 (14) 

hen, the arc length parameters are given by 

0 1 1 2 1 2 3 2 3 4 30;    ;    ;    ;    S S s S S s S S s S S sδ δ δ ∆= = = + = + = +         (15) 

and by using the Lagrangian extrapolation scheme, the following estimated point at the distance 
s∆ can be defined by 

[ ]
33

3
4 4

01

.        for   0,1,...,3T j i

ii jji
i j

S S
i

S S
ω

ω==
≠

⎛ ⎞
⎜ ⎟⎛ ⎞− ⎡ ⎤

= =⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟− ⎣ ⎦⎜ ⎟⎝ ⎠⎜ ⎟
⎝ ⎠

∑ ∏ X
X                  (16) 

4. APPLICATION 
The AFT method is applied to the rotor-bearing-stator system defined previously. The value 

parameters are given in Table 1. Figure 2 illustrates the frequency response of this system obtained 
by using the AFT method with the path following continuation. The resonance peak is observed 
near 50.5 Hz. We can see that at frequencies between 11-19 Hz, unbalance and gravity forces are of 
the same order amplitude, so that the rotor and stator responses are complex, as illustrated in Figure 
3 and in Figure 4(a). In order to obtain the non-linear responses for the frequency range 11-19 Hz, 
computations are performed by using various power harmonics: with 7 or more frequency 
components, there is no visible difference between the orbits obtained with  Runge-Kutta process 
and AFT method. When reducing the number of harmonics further to six, only the AFT method 
found a totally different solution. This emphasises the problem of the AFT method: it is therefore a 
method that in general can only be used if some a priori knowledge about the system is available. 
The calculation by using the AFT method with 6, 8 and 10 harmonics components needs about 200, 
220 and 240 CPU seconds, respectively. The calculation by using the 4th –order Runge-Kutta 
process needs about 1800 CPU seconds. 
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At frequencies between 30-80 Hz, rotor and stator are always in contact and orbits are circular and 
the first frequency components are sufficient ( 1m = ), as illustrated in Figure 3 and in Figure 4(b). 
At frequencies between 1-11 Hz, the same behaviour can be observed, and  rotor-stator are always 
in contact due to the gravity effect. So, Figure 5 shows the contact evolution for each ball of the 
bearing while increasing the rotation speed. At frequencies between 11-19Hz, the rotor-stator 
contact is a complex phenomenon with a succession of contact and no-contact periods. At 
frequencies between 50-80Hz, rotor and stator are always in contact. As explained previously,  an 
interesting point is the contact’s evolution during the transit phase around 11-19Hz. As illustrated in 
Figure 5(b-e), complex non-linear behaviours are obtained.  

5. SUMMARY AND CONCLUSION 
The Alternate Frequency /Time domain method and the following path continuation were 

briefly described. They seem interesting when time history response solutions of the full non-linear 
equations are both time consuming and costly. Moreover, extensive parametric design studies can 
be done in order to appreciate the effect of specific parameter variation on the response of non-
linear systems. This method was applied to a rotor-bearing-stator system with nonlinear ball bearing 
including hertzian contact and radial clearance. Complex orbits  and evolutions of the local contact 
between the balls and the raceways were obtained.  
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 Item Units Value 
rξ , sξ  Damping ratio for the rotor and the stator - 0.01 

em e  Unbalance magnitude kg.m 50.e-3 
δ  Clearance m 2.e-5 

HK  Radial bearing stiffness N/m 10.e+10 

0
sω , 0

rω  Natural frequency of the stator and the stator rad/s 150; 500 
g  Gravity m/s2 9.8 

Table 1: Numerical model of physical parameters 

Valeurs numériques des paramètres physiques 
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Figure 1: Description of the bearing   (a) location of the thk  ball      (b) rolling bearing  
Description du roulement   (a) localisation de la èmek  bille    (b) roulement à billes 

 
 

 
 

Figure 2: Amplitudes of vibrations versus the rotational frequency 
 

Amplitudes des vibrations par rapport à la vitesse de rotation 
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(a) Frequency=3.2 Hz 

 
(b) Frequency=11.1 Hz 

  
(c) Frequency=13.4 Hz 

 
(d) Frequency=15.1 Hz 

  
(e) Frequency=19.1 Hz 

 
(f) Frequency=50.5 Hz 

Figure 3: Orbits of the rotor and the stator at different frequencies 
(continuous line: rotor, dashed line: stator) 

 
Orbites du rotor et du stator pour différentes fréquences 

(lignes continues= rotor, lignes en pointillés= stator) 
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(a) (b)

 
Figure 4: X,Y – Displacements of the rotor and stator 

(a) frequency= 13.4Hz    (b) frequency=47.8Hz 
 

X,Y - Déplacements  du rotor et stator 
(a) fréquence= 13.4Hz    (b) fréquence=47.8Hz 
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(a) Frequency=3.2 Hz 
 

(b) Frequency=11.1 Hz 
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(c) Frequency=13.4 Hz 
 

(d) Frequency=15.1 Hz 

T

2T

3T/2

T/2

T 2T0

Ball number

Contact
 Force (N)

0

Time

Contact detection

B
al

l n
um

be
r

Time

T

2T

3T/2

T/2

Ball number

Contact 
force (N)

T 2T0

Contact detection 

0

B
al

l n
um

be
r

(e) Frequency=19.1 Hz 
 

(f) Frequency=50.5 Hz 

 
Figure 5: Evolution of the contact and associated contact force for each ball 

(black zone: contact; white zone: non-contact) 
 

Evolution du contact et de la force de contact associée pour chaque bille 
(zone noire: contact; zone blanche: pas de contact) 
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