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Introduction

The present work is motivated by an aeronautic application: the objective consists in evaluating, under a specific benchmark, the performance of a pneumatic actuator when controlling the position of a steering mechanism (Figure 1). As a matter of fact, the use of pneumatic actuators is a solution for high accuracy positioning problem due to their advantages (law maintenance cost, lightweight and good force/weight ratio) in spite of their traditional drawbacks (friction, variation of the actuators dynamics with respect to load and piston position along the cylinder stroke, nonlinearities, ...). One of the advantages of pneumatic energy lies in the fact that, versus electrical energy and in the considered aeronautic context, this kind of energy is still avalaible in aerial vehicles fitted with a turbocharge: as a matter of fact, in a such system, it is possible to recover the unused gas either for control of rudders actuators, either for its storage in an accumalator. Therefore, it yields in an overall energy consumption reduction leading to an overall weight reduction of the system and then a larger duration of the mission (aerial autonomous vehicles or satellites, for example) or the system range (rockets or missiles, for example). For this specific application, a new experimental setup has been designed that is quite different to previous ones used by the authors [START_REF] Brun | Control of an electropneumatic actuator, comparison between some linear and nonlinear control laws[END_REF][START_REF] Laghrouche | Higher order sliding mode control based on optimal approach of an electropneumatic actuator[END_REF] because of actuator dynamics (faster), reference trajectories (higher frequency), presence of external disturbance force (springs), actuator dimension (smaller size). Then, through the design of an adequate benchmark, the goal is to evaluate the performance of pneumatic actuator controller by taking into account the aeronautic context: the actuator has to be slight and able to develop sufficient forces with high accuracy/dynamic performances. The development of high-performance linear/nonlinear controllers [START_REF] Ming-Chang | Identification and position control of a servo pneumatic cylinder[END_REF][START_REF] Hamiti | Position control of a pneumatic actuator under the influence of stiction[END_REF][START_REF] Richard | Comparison between linear and lonlinear control of an electropneumatic servodrive[END_REF][START_REF] Edge | The control of fluid power systems -responding to the challenge[END_REF][START_REF] Kimura | Feedback linearization for pneumatic actuator systems with static friction[END_REF][START_REF] Brun | Control of an electropneumatic actuator, comparison between some linear and nonlinear control laws[END_REF][START_REF] Smaoui | A study on tracking position control of electropneumatic system using backstepping design[END_REF][START_REF] Brun | Influence of the process design on the control strategy: application in electropneumatic field[END_REF][START_REF] Kyoungkwan | Intelligent switching control of pneumatic actuator using on/off solenoid valves[END_REF][START_REF] Miyajima | Development of a digital control system for high-performance pneumatic servo valve[END_REF][START_REF] Rao | Modeling and Control of a Miniature Servo Pneumatic Actuator[END_REF][START_REF] Schultea | Fuzzy state feedback gain scheduling control of servo-pneumatic actuators[END_REF][START_REF] Chiang | Large stroke and high precision pneumaticpiezoelectric hybrid positioning control using adaptive discrete variable structure control[END_REF] has shown the positionning feasibility for a pneumatic actuator. However, due to uncertainties, robust controllers are necessary to ensure positioning with high precision. In this way, sliding mode controllers are used for electropneumatic actuators [START_REF] Bouri | Sliding control of an electropneumatic actuator using an integral switching surface[END_REF][START_REF] Paul | Reduced order sliding mode control for pneumatic actuator[END_REF][START_REF] Yang | Sliding mode tracking for pneumatic muscle actuators in bicep/tricep pair configuration[END_REF][START_REF] Smaoui | A combined first and second order sliding mode approach for position and pressure control of an electropneumatic system[END_REF]. However, since the sampling frequency of the controller is limited, chattering phenomena appears. Higher order sliding mode control [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF][START_REF] Bartolini | Chattering avoidance by second-order sliding mode contro[END_REF][START_REF] Levant | Universal SISO sliding-mode controllers with finite-time convergence[END_REF][START_REF] Laghrouche | Practical higher order sliding mode control: optimal control based approach and application to electromechanical systems[END_REF][START_REF] Laghrouche | Higher order sliding mode control based on optimal approach of an electropneumatic actuator[END_REF][START_REF] Plestan | Multivariable practical higher order sliding mode control[END_REF][START_REF] Plestan | A new algorithm for high-order sliding mode control[END_REF] is a recent approach which allows to remove the standard sliding mode restrictions, while preserving the main sliding-mode features and improving its accuracy. In [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF][START_REF] Bartolini | Chattering avoidance by second-order sliding mode contro[END_REF], results only concern second order sliding mode control. In [START_REF] Levant | Universal SISO sliding-mode controllers with finite-time convergence[END_REF], a general approach (for all sliding mode order) is proposed, but the convergence time is only bounded, not exactly known in advance, and the convergence condition is not constructive. The controller proposed in [START_REF] Laghrouche | Practical higher order sliding mode control: optimal control based approach and application to electromechanical systems[END_REF][START_REF] Plestan | Multivariable practical higher order sliding mode control[END_REF] combines standard sliding mode control with linear quadratic one over a finite time interval with a fixed final state. The algorithm needs the relative degree of the system with respect to the sliding variable and the bounds of uncertainties. The upper bound of the convergence time is known and can be adjusted in advance, the condition on the gain implies that its tuning is constructive, and the structure of the controller is well-adapted to practical implementations (pneumatic actuators control in [START_REF] Laghrouche | Higher order sliding mode control based on optimal approach of an electropneumatic actuator[END_REF]). However, two drawbacks appear with this approach. It ensures only a practical sliding mode establishment (only convergence in finite time to an arbitrarily small vicinity of the origin is ensured), and the reaching time is bounded but cannot be fixed exactly and in advance. In [START_REF] Laghrouche | Higher order sliding mode control based on integral sliding mode[END_REF][START_REF] Plestan | A new algorithm for high-order sliding mode control[END_REF], these two drawbacks (sliding variable and its time derivatives are exactly at 0 in finite time) are erased, and the convergence time is imposed by keeping all the features of the previous approach (general order of sliding mode, finite time convergence, constructive approach). Results in [START_REF] Laghrouche | Higher order sliding mode control based on integral sliding mode[END_REF] are based on integral sliding mode concept and need an auxiliary dynamic system in order to compute the switching variable. Note also that high order sliding mode control based on integral sliding mode is also proposed in [START_REF] Levant | Integral high-order sliding modes[END_REF]. In [START_REF] Plestan | A new algorithm for high-order sliding mode control[END_REF], the approach, which is selected for this current work, consists in computing adequate reference trajectories which ensure that the higher order sliding mode is established at the desired time, in spite of uncertainties. In Section 2, a benchmark is given and the experimental setup is described. Section 3 displays nonlinear and linear models of the system and the associated assumptions. Section 4 presents a linear feedback control with experimental results in order to establish performance comparisons with other controllers. Section 5 displays the high order sliding mode controller in single input-single output (SISO) context (only actuator position control) with experimental results. In Section 6, a multi input-multi output (MIMO) high order sliding mode controller (actuator position and chamber pressure control) is designed and experimental results are given. For this system, the main advantage of multivariable control is no zero dynamics (in SISO case, it is a very difficult task to formally prove the zero dynamics stability [START_REF] Brun | Control of an electropneumatic actuator, comparison between some linear and nonlinear control laws[END_REF]). Furthermore, as one of the pressure is controlled, it is possible to act on the actuator accuracy and rigidity in case of perturbation. This latter feature is a key point for the current application, because the steering mechanism position has to be as accurate and rigid as possible with respect to external perturbation.

Benchmark and experimental setup

Most of aeronautic applications use electric or hydraulic actuators for steering mechanisms. Currently pneumatic actuators are rarely used in such applications because of their weak (static and dynamics) performances when controlled by standard components and classical controllers. The new challenge exposed in this paper consists in improving their performances by application of advanced control strategies to obtain the high performances required in aeronautics. Thus, by taking into account the aeronautic context, a specific benchmark is designed for evaluation of controller performances.

Benchmark

In the sequel, typical dynamic and static desired performances of aeronautic steering mechanims in a reduced scale are described through a specific benchmark. Several desired actuator position trajectories are described, each trajectory being typical of a flight phase (high, medium or law altitude) (see Figure 2 for low altitude trajectory)

• High altitude: ±4 mm actuator position trajectory with 1 Hz frequency and ±300 N maximum load force,

• Medium altitude: ±12 mm actuator trajectory with 1 Hz frequency and ±900 N maximum load force,

• Low altitude: ±16 mm actuator trajectory with 1 Hz frequency and ±1200 N maximum load force .

Note that desired position trajectories are such that velocity, acceleration and jerk are continuous functions. In order to evaluate dynamics performances of closed-loop system, a Bode diagram is defined (Figure 3), by supposing that the desired position trajectory reads as a sinusoidal signal with an amplitude equal to 16 mm. For each desired trajectory displayed in Figure 2, the closed-loop system has to fulfill the following performances • The static error ε p is such that ε p ≤ 0.2 mm,

• The rise time t r maximum value is fixed through the minimum desired velocity 0.4 m/s for 32 mm displacement, which gives t r ≤ 0.08 s

• The overshoot is lower than 4.6 %.

On aeronautic applications, space and weight are crucial for performances and technical solution feasibility. For this reason, in the case of pneumatic actuator, the total fluid consummation used during a typical flying sequence (succession of low, medium and high altitudes) is evaluated: of course the objective is to bring the smaller fluid tank.

Electropneumatic system

The electropneumatic system under interest is a double acting actuator controlled by two servodistributors (see Figure 4) and composed by two chambers denoted P (as positive) and N (as negative). Piston diameter is 63 mm and rod diameter is 16 mm. With a 7 bar source pressure, the actuator maximum force is 1750 N. The air mass flow rates q m entering in the chambers are modulated by two three-way servodistributors Servotronic (Asco-Joucomatic) controlled by a micro-controller. The pneumatic jack horizontally moves a load carriage of mass M. This carriage is coupled to 4 springs (which restrain the displacement of the carriage and restore the initial position in the middle of the total stroke equal to 50 mm -see Figure 4) for a total of 63000 N/m rate. Additional dry friction is controlled by two skates, with a maximum value equal to 40 N. As the maximal displacement of carriage is 16 mm, the maximal disturbance spring force F s equals 1200 N. The electropneumatic plant model is obtained from three physical laws: the mass flow rate through a restriction, the pressure behavior in a variable chamber volume and the fundamental mechanical equation. The experimental setup is simulated with a fluid power systems dedicated software AMESim (Imagine SA), and the control law is developed with Matlab/Simulink (Mathworks). These software choices imply a cosimulation program [START_REF] Brun | Contributions of the cosimulation in the chain of design of an electropneumatic system[END_REF] and the development of two models

• the first one takes into account physical phenomena as temperature variations, practical values of mass flow rate, dynamics of servodistributors. It is developed under AMEsim.

• the second one is simpler than the previous one and is used to design the controller (Simulink). In this paper, experimental results are exclusively presented: only control models are described in the sequel. Each chamber of the pneumatic actuator is considered as a variable volume, in which the air mass evolves with time.

State the following assumptions A1. Air is a perfect gas ands its kinetic is inconsequential.

A2. The pressure and the temperature are homogeneous in each chamber.

A3. The mass flow is pseudo-stationary.

A4. Dynamic part of servodistributor is neglected.

A5. The temperature variations in each chamber are inconsequential with respect to the supply temperature T .

A6. The process is polytropic and characterized by coefficient k (with 1 < k < 1.4) [START_REF] Shearer | Study of pneumatic processes in the continuous control of motion with compressed air[END_REF].

Then, pressures dynamics read as (with X = P or N)

dp X dt = -k p X V X dV X dt + kr g T V X (q mX in -q mX out ) (1) 
with q mX in the mass flow rate brought inside the X chamber and q mX out the mass flow rate brought outside the X chamber, V P and V N being the volume of chambers P and N defined as

V P (y) = V 0 + S • y and V N (y) = V 0 -S • y (V 0
being equal to the half of the cylinder volume.

A7. The leakages between the two chambers and between servodistribuor and jack are negligible.

By defining q m (u X , p X ) := q mX inq mX out , one gets

dp P dt = -k p P V P (y) dV P (y) dt + kr g T V P q m (u P , p P ) dp N dt = -k p N V N (y) dV N (y) dt + kr g T V N q m (u N , p N ) (2) 
A8. Mass flow rate has been identified by the following function

q m (u X , p X ) = ϕ X (p X ) + ψ X (p X , sign (u X )) u X
with ϕ X and ψ X defined as 5 th -order polynomials with respect to p X [START_REF] Belgharbi | Analytical model of the flow stage of a pneumatic servo-distributor for simulation and nonlinear control[END_REF].

A9. All dry frictions forces are neglected.

A10. There is no control signal saturation.

Mechanical model

The second Newton law gives

dv dt = 1 M [S (p P -p N ) -b v v -F s ] dy dt = v (3)
with F s the springs force.

A11. Springs force F s is unknown and viewed as a bounded external perturbation1 , i.e. |F s | < ∆F.

MIMO nonlinear model

Knowing that uncertainties taken into account in the control design concern polytropic constant k (such that k = 1.2 + ∆k with |∆k| ≤ 0.2), mass flow q m , temperature T , mass M, viscous friction coefficient b v , and that there is bounded external perturbation F s , the experimental setup nonlinear model reads as

ṗP = (1.2 + ∆k)r g (T + ∆T ) V P (y) [ϕ P + ∆ϕ- S r(T + ∆T ) p P v]+ (1.2 + ∆k)r g (T + ∆T ) V P (y) (ψ P + ∆ψ)u P ṗN = (1.2 + ∆k)r g (T + ∆T ) V N (y) [ϕ N + ∆ϕ+ S r(T + ∆T ) p N v]+ (1.2 + ∆k)r g (T + ∆T ) V N (y) (ψ N + ∆ψ)u N v = (M -1 + δM)[Sp P -Sp N -(b v + ∆b v )v -∆F] ẏ = v (4) with |∆T | < T M , |∆ϕ| < ϕ M , |∆ψ| < ψ M , |δM| < M M , |∆b v | < b vM and |F s | < ∆F; T M , ϕ M , ψ M , M M , b vM
and ∆F being all bounded real values. Position, pressures and control are limited by physical domain as -18 mm ≤ y ≤ +18 mm, 1 bar ≤ p X ≤ 7 bar and -10 V ≤ u X ≤ 10 V .

SISO nonlinear model

As the experimental set-up is equiped by two servodistributors, a such structure allows to define only one control objective (for example, actuator position) [START_REF] Brun | A comparative study between two control laws of an electopneumatic actuator[END_REF] by fulfilling the following assumption A11. In SISO case, only the actuator position is controlled: the single control u S reads as u S = u P = -u N .

It yields that the experimental setup nonlinear model in a SISO context reads as ṗP = (1.2 + ∆k)r g (T + ∆T )

V P (y) [ϕ P + ∆ϕ- S r(T + ∆T ) p P v]+ (1.2 + ∆k)r g (T + ∆T ) V P (y) (ψ P (p P , sign(u S )) + ∆ψ)u S ṗN = (1.2 + ∆k)r g (T + ∆T ) V N (y) [ϕ N + ∆ϕ+ S r(T + ∆T ) p N v]- (1.2 + ∆k)r g (T + ∆T ) V N (y) (ψ N (p N , sign(-u S )) + ∆ψ)u S v = (M -1 + δM)[Sp P -Sp N -(b v + ∆b v )v -∆F] ẏ = v (5) with |∆T | < T M , |∆ϕ| < ϕ M , |∆ψ| < ψ M , |δM| < M M , |∆b v | < b vM and |F s | < ∆F as previously.
Position, pressures and control are limited by physical domain as -18 mm ≤ y ≤ +18 mm, 1 bar ≤ p X ≤ 7 bar and -10 V ≤ u X ≤ 10 V .

SISO linear model

The equilibrium set reads as ẋ = f (x e , u e S ) = 0. By supposing that there is no uncertainty on (4), it yields y = y e , v = v e = 0, S(p e Pp e N )b v v e = 0, q e mP = q e mN = 0. Note that, at the equilibrium set, for all position y e , the velocity v is null, the pressure in both chambers p P and p N are the same. In fact, the springs tends to bring back the position to zero. For all position except zero, the real equilibrium set is defined by S(p e Pp e N ) -F s = 0. Note that for all control law synthesis, the springs force (viewed as an external perturbation) is considered as unknown. From [START_REF] Brun | A comparative study between two control laws of an electopneumatic actuator[END_REF], the tangent linearized model reads as

    ṗP ṗN v ẏ     =          -1 τ e P 0
-

kp e P S V P (y e ) 0 0 -1 τ e N kp e N S V N (y e ) 0 S M -S M -b v M 0 0 0 1 0          •     p P p N v y     +            kr g T V P (y e ) G e uP - kr g T V N (y e ) G e uN 0 0            u S ( 6 
)
with τ e P and τ e N defined as τ e P =

V P (y e ) kr g TC p P P e

, τ e N =

V N (y e ) kr g TC p N N e [START_REF] Brun | Contributions of the cosimulation in the chain of design of an electropneumatic system[END_REF] and [START_REF] Smaoui | A study on tracking position control of electropneumatic system using backstepping design[END_REF] In the pneumatic field, conventional position control laws consist in position, velocity and acceleration feedbacks. The use of acceleration feedback instead of pressure or differential pressure can be justified by the fact that acceleration is quickly influenced by an external perturbation force. Moreover, the use of a pressure sensor is a hard task due to the very small size of the dead volume. Only position sensor is used, velocity and acceleration being obtained via a robust differentiator [START_REF] Smaoui | A robust differentiator-controller design for an electropneumatic system[END_REF]. In order to obtain a third order model with position, velocity and acceleration state variables, a solution consists in replacing each time constant of each chamber by an average time constant τ e m (geometric mean) [START_REF] Kellal | Electropneumatic servodrive for a robot[END_REF]. Then, a reduced SISO linear model is obtained

C
  ẏ v ȧ   =   0 1 0 0 0 1 0 -ω 2 ol -2z ol ω ol     y v a   +   0 0 b   u S (9) with b = kr g T M SG u e P V P (y e ) + SG u e N V N (y e ) (10) 
The damping coefficient denoted z ol reads as

z ol = 1 2ω ol 1 τ e m + b v M ( 11 
)
The open loop proper frequency ω ol equals

ω ol = ω 2 cyl + b v τ e m M (12) 
with

ω cyl = kS M p e P V P (y e ) + p e N V N (y e ) (13) 
Remark that all the parameters depend on the piston position as shown by Figure 5; the open loop proper frequency is minimum for the central position.

Linear position control

In this section, a SISO linear control based on gain scheduling (GS) and designed from the reduced SISO linear model ( 9) is presented and experimentally evaluated on the experimental setup. This approach has still been applied on an electropneumatic actuator in [START_REF] Brun | Control of an electropneumatic actuator, comparison between some linear and nonlinear control laws[END_REF] and is displayed here only to be compared with more advanced robust nonlinear controllers. The gain scheduling approach is a very classical and widespread nonlinear control technique. The underlying idea is to design at one or more operating points linear time invariant controllers using the associated linearized plant models. The nonlinear control law is then obtained by interpolating (or scheduling) these controllers as a function of the operating point [START_REF] Reichert | Dynamic scheduling of modern-robust-control autopilot designs for missiles[END_REF][START_REF] Leith | Survey of gain-scheduling analysis and design[END_REF][START_REF] Rugh | A survey of research on gain scheduling[END_REF][START_REF] Fromion | A theoretical framework for gain scheduling[END_REF]]. 

Control design

The control law reads as

u S = K y (y d )(y -y d ) + K v (y d )v + K a (y d )a (14) 
This controller has been designed from ( 9) by computing gains K y , K v and K a by Ackerman's approach such that poles placement authorizes 4.6% overshoot [START_REF] Franklin | Feedback Control of Dynamic Systems[END_REF] as defined in benchmark, Section 2.

The gains are calculated in order to have the maximum of bandwidth compared to actuator variable position. Of course, K y , K v and K a depend on the desired position (gain scheduling method). As detailed in [START_REF] Brun | Control of an electropneumatic actuator, comparison between some linear and nonlinear control laws[END_REF], for different positions along the stroke, gains are calculated. Then, each gain is viewed as a second order polynomial with respect to the position, coefficients of this polynomial being obtained from interpolation and approximation with the least square method.

Application on experimental setup

The control law is implemented on DS1005 Board (dSpace Co.) with a 1 ms sample time. Two kinds of experimental tests have been made. The first one, named "Nominal case", consists in moving a mass equal to 0.8kg (the control law has been designed with this hypothesis) in presence of springs force disturbance. The second one, named "Robust case", consists in increasing the moving mass to 1.8kg (+125%) without changing the controller gains and always in presence of springs force disturbance. For a sake of clarity, only results for "low altitude trajectory" which is the most difficult trajectory are displayed in the sequel.

Nominal case. The actuator position (Figure 6) converges to the desired trajectory more than 0.6 s with a control saturation at the initial time. The maximum error position in steady state is 0.48mm (Figure 7-Bottom) which means that the developed actuator force allows to compensate springs force. During all trajectory tracking, there is no pressure saturation (Figure 7-Top), and control input has wise values (Figure 7-Bottom). Performances have been evaluated on three trajectories, through the static position error. The results are summarized in Table 1. The static position error is minimal when the amplitude trajectory is small. Of course, when the position amplitude increases, springs force also increases. This result shows the limit of gain scheduling control in order to compensate unknown perturbations, and then justifies the interest of the robust nonlinear controllers designed in the sequel. 

Robustness evaluation.

The convergence time is 0.72 s (Figure 8). The maximum error position in steady state is the same that previously and there is still control saturation at the initial time.

Frequency response. The frequency response (Fig. 9) is evaluated from the 1 st harmonic of the position measurement. The gain (resp. the phase) is lower than the gain (resp. the phase) template, thus the bandwidth is lower than the desired one. In fact, the gain is limited by mass flow rate saturation and could be significantly increased by using another servodistributor with highest maximum mass flow rate. On the other hand, the phase can be increased by using an other controller, as seen in the sequel of the paper.

Consumption. The consumption is evaluated over a typical flying sequence (i.e. succession of low, medium and high altitude trajectories) and reads as (X = P or N, q mX in being the mass flow rate brought inside the X chamber)

C X = Z t f ly 0 q mX in dt (15) 
Unfortunately, the mass flow rate is not measurable in a dynamic context, because it does not exist adequate sensor with sufficient bandwidth. As seen previously, the mass flow rate has been identified in terms of pressures and control input [START_REF] Sesmat | Static characteristics of a three way servovalve[END_REF]: then the consumption is computed by simulation [START_REF] Brun | Limited energy consumption in positioning control of electropneumatic actuator[END_REF] from [START_REF] Girin | A third order sliding mode controller based on integral sliding mode for an electropneumatic system[END_REF] from experimental datas (Table 2).

Consumption C P 463 g Consumption C N 420 g Table 2. Gain scheduling controller. Total consumption in each chamber during a flying sequence.

High order sliding mode position controller (SISO)

If a high accuracy position control is the objective, assumptions for the model design imply that a robust control law with respect to uncertainties (frictions, mass flow rate, temperature variations, ...) and perturbations (mass variation, spring force, ...) is required. From [START_REF] Plestan | A new algorithm for high-order sliding mode control[END_REF], a high order sliding mode controller is derived. Its main features are robustness, finite time convergence and high accuracy performances. In the sequel, theorical aspects on this control and its application to the pneumatic system are developed.

Synthesis of high order sliding mode controller (SM)

Consider an uncertain nonlinear system ẋ = f (x) + g(x)w z = h(x) [START_REF] Hamiti | Position control of a pneumatic actuator under the influence of stiction[END_REF] with x ∈ IR n the state variable, w ∈ IR the input control and z ∈ IR a measured smooth output function. Let s(x,t) denote the sliding variable defined as s(x,t) = h(x)h d (t), h d (t) being the smooth desired trajectory. f (x) and g(x) are uncertain smooth nonlinear functions. Assume that H1. The relative degree r [START_REF] Isidori | Nonlinear control cystems: an introduction -Third edition[END_REF] of ( 16) with respect to s is constant and known.

The control objective is to fulfill the constraint s(x,t) = 0 in finite time and to keep it exactly by feedback control.

Definition 1 [START_REF] Levant | Universal SISO sliding-mode controllers with finite-time convergence[END_REF] Consider the nonlinear system [START_REF] Hamiti | Position control of a pneumatic actuator under the influence of stiction[END_REF], closed by some possibly-dynamical discontinuous feedback. Then, provided that2 s, ṡ, • • •, s (r-1) are continuous functions, and the set

S r = {x | s(x,t) = ṡ(x,t) = • • • = s (r-1) (x,t) = 0},
called "r th order sliding set", is non-empty and is locally an integral set in the Filippov sense [START_REF] Filippov | Differential Equations with Discontinuous Right-Hand Side[END_REF], the motion on S r is called "r th order sliding mode" with respect to the sliding variable s.

The r th order sliding mode control approach allows the finite time stabilization to zero of the sliding variable s and its r -1 first time derivatives by defining a suitable discontinuous control function. The output s satisfies

s (r) = χ(x) + Γ(x)w -h (r) d (t) := χ(•) + Γ(•)w (17) 
with 3 Γ := L g L r-1 f h, χ := L r f h and χ := χh (r) d (t) [START_REF] Plestan | A new algorithm for high-order sliding mode control[END_REF]. H2. The solutions are understood in the Filippov sense [START_REF] Filippov | Differential Equations with Discontinuous Right-Hand Side[END_REF], and system trajectories are supposed to be infinitely extensible in time for any bounded Lebesgue measurable input.

H3. Functions χ(•) and Γ(•) are bounded uncertain functions, and, without loss of generality, the sign of the control gain χ is taken constant and strictly positive. Thus, there exist

K m ∈ IR + * , K M ∈ IR + * , C 0 ∈ IR + such that 0 < K m < Γ < K M |χ| ≤ C 0 . (18) 
for x ∈ X ⊂ IR n , X being a bounded open subset of IR n within which the boundedness of the system dynamics is ensured.

The synthesis of a high order sliding mode controller for ( 16) is made through the following idea: switching variable is defined such that the system evolves, early from t = 0, on a switching manifold. Furthermore, the sliding variable and its time derivatives reach the origin in finite time in spite of uncertainties thanks to discontinuous control. The design of the controller consists in two steps

• design of the switching variable for ( 17),

• design of a discontinuous control input w maintaining the system trajectories on a switching manifold which ensures the establishment of a r th order sliding mode in finite time t F , in spite of uncertainties.

The switching variable described in the sequel is an adaptation of the result of [START_REF] Plestan | A new algorithm for high-order sliding mode control[END_REF]. Of course, it ensures that theorically, a r th order sliding mode behavior is established in a a priori well-known time, and practically it ensures the stability of the system in a vicinity of the origin.

Switching variable.

Let S the switching variable defined as

S = s (r-1) (x,t) -F (r-1) (t) + λ r-2 s (r-2) (x,t) -F (r-2) (t) + • • • + λ 0 [s(x,t) -F (t)] (19) 
with λ r-2 , • • • , λ 0 such that P(z) = z (r-1) + λ r-2 z (r-2) + • • • + λ 0 is a Hurwitz polynomial in the complex variable z.

The function F (t) is a C r -one defined as

s[x(0), 0] = F (0), s[x(t F ),t F ] = F (t F ) = 0, ṡ[x(0), 0] = Ḟ (0), ṡ[x(t F ),t F ] = Ḟ (t F ) = 0, . . . . . . s (r-1) [x(0), 0] = F (r-1) (0), s (r-1) [x(t F ),t F ] = F (r-1) (t F ) = 0 ( 20 
)
This choice ensures that the system is evolving early from t = 0 on the manifold S = 0, and that it is evolving on S r from exactly t = t F . A solution for F (t) reads as (1 ≤ j ≤ r) [START_REF] Plestan | A new algorithm for high-order sliding mode control[END_REF] 

F (t) = Ke Ft T s (r-j) (0) (21) 
with F a 2r × 2r-dimensional stable matrix (strictly negative eigenvalues) and T a 2r × 1-dimensional vector.

H4. The integer j is such that s (r-j) (0) = 0 and bounded. 3 Given a(x) a real-valued function and b(x) a vector field, both defined on X ⊂ IR n , the derivative of a(•) along b(•) is written as L b a and is defined as L b a = ∂a ∂x b(x) [START_REF] Isidori | Nonlinear control cystems: an introduction -Third edition[END_REF].

Lemma 1 ([33]

) There exist a stable matrix F and a matrix T such that 2r × 2r-dimensional matrix K defined as

K = F r-1 T s (r-j) (0) | F r-1 e Ft F T | F r-2 T s (r-j) (0) | F r-2 e Ft F T | • • • | T s (r-j) (0) | e Ft F T (22)
is invertible.

From Lemma 1, as system (20) of 2r equations is linear in the 1 × 2r-dimensional gain matrix K, its resolution is then trivial and there exists always only a single solution

K = s (r-1) (0) 0 s (r-2) (0) 0 • • • s(0) 0 • K T -1 (23) 
H5. There exists a finite positive constant Θ ∈ IR + such that

KF r e Ft T s (r-j) (0) -λ r-2 s (r-1) -KF r-1 e Ft T s (r-j) (0) -• • • -λ 0 ṡ(x,t) -KFe Ft T s (r-j) (0) < Θ (24) 
Equation S = 0 describes the desired dynamics which satisfy the finite time stabilization of vector [s (r-1) s (r-2) • • • s] T to zero. Then, the switching manifold on which system ( 17) is forced to slide on via the discontinuous control w, is defined as

S = {x | S = 0}. ( 25 
)
Given equation ( 20), one gets S(t = 0) = 0: at the initial time, the system still evolves on the switching manifold.

There is no reaching phase in opposition to previous approaches as [START_REF] Laghrouche | Practical higher order sliding mode control: optimal control based approach and application to electromechanical systems[END_REF][START_REF] Laghrouche | Higher order sliding mode control based on optimal approach of an electropneumatic actuator[END_REF].

Controller design.

The attention is now focused on the design of the discontinuous control law w which forces the system trajectories of ( 17) to slide on S , to reach in finite time the origin and to maintain the system at the origin.

Theorem 1 ([33]

) Consider the nonlinear system ( 16) with a relative degree r. Suppose that it is minimum phase and that hypotheses H1, H2, H3 and H4 are fulfilled. Let r be the sliding mode order and 0 < t F < ∞ the desired convergence time. Define S ∈ IR by [START_REF] Kimura | Feedback linearization for pneumatic actuator systems with static friction[END_REF] with K unique solution of [START_REF] Laghrouche | Practical higher order sliding mode control: optimal control based approach and application to electromechanical systems[END_REF] given by [START_REF] Laghrouche | Higher order sliding mode control based on integral sliding mode[END_REF] and suppose that assumption H5 is fulfilled. The control input w defined by w = -α sign(S) ( 26)

with α ≥ C 0 + Θ + η K m , (27) 
C 0 , K m defined by [START_REF] Isidori | Nonlinear control cystems: an introduction -Third edition[END_REF], Θ defined by [START_REF] Leith | Survey of gain-scheduling analysis and design[END_REF], η > 0, leads to

s = ṡ = • • • = s (r-1) = 0 at t = t F .
Sketch of proof. Condition [START_REF] Levant | Integral high-order sliding modes[END_REF] allows to satisfy the η-attractivity condition ṠS ≤ -η|S|. For more details, see [START_REF] Plestan | A new algorithm for high-order sliding mode control[END_REF].

In order to ensure the establishment of r th order sliding mode behaviour, and given that s and its (r -1) first time derivatives equal 0 at t = t F , control w is designed for t > t F only in order to maintain these latter equalities, which gives w = -α sign(S)

S =        s (r-1) -KF r-1 e Ft T s (r-j) (0) + λ r-2 s (r-2) -KF r-2 e Ft T s (r-j) (0) + • • • + λ 0 s -Ke Ft T s (r-j) (0) for 0 ≤ t ≤ t F s (r-1) + λ r-2 s (r-2) + • • • + λ 0 s for t > t F (28)

Application to pneumatic actuator position control

The objective consists in designing a robust (with respect to uncertainties/disturbances) position controller: then, define s the sliding variable as s = yy d (t). From ( 5), its relative degree with respect to u S equals 3, which implies that a 3 rd order sliding mode controller can be designed. One has

s (3) = χ(•) + Γ(•)u S ( 29 
)
with

χ(•) = (M -1 + δM)(1.2 + ∆k)r g (T + ∆T )S ϕ P + ∆ϕ V P (y) - ϕ N + ∆ϕ V N (y) -(M -1 + δM)(1.2 + ∆k)S 2 v p P V P (y) - p N V N (y) -(M -1 + δM) 2 (b v + ∆b v ) (S (p P -p N ) -(b v + ∆b v )v) -y (3) d Γ(•) = (M -1 + δM)(1.2 + ∆k)r g (T + ∆T )S ψ P + ∆ψ V P (y) + ψ N + ∆ψ V N (y) (30) 
The control law is defined as4 u S = Γ -1 nom • [-χ nom + w] with Γ nom (resp. χ nom ) the nominal value of Γ (resp. χ), i.e. derived from [START_REF] Ming-Chang | Identification and position control of a servo pneumatic cylinder[END_REF] with no uncertainty. Note that Γ nom is always strictly positive: then, u S has the same sign as (-χ nom + w). From ( 29), χ nom and w are independent of u. One gets

s (3) = χ(•) + Γ(•)w (31) 
with χ = χ -ΓΓ -1 Nom χ Nom and Γ = ΓΓ -1 Nom . As introduced in Section 5.1, the design follows two steps. The first one consists in computing off-line matrix K (equation ( 23)) which gives function F (t) (equation ( 21)). This latter and their time derivatives are computed on-line in order to ensure the convergence of s, ṡ, and s to 0 at a fixed time t F . The second step is the synthesis of discontinuous control which ensures the convergence in spite of uncertainties.

Switching variable.

The switching variable S reads as (from ( 28))

S = s -KF 2 e Ft T s(0) + 2ξω n ṡ -KFe Ft T s(0) + ω 2 n s -Ke Ft T s(0) for 0 ≤ t ≤ 0.5 s + 2ξω n ṡ + ω 2 n s for t > 0.5 (32) 
with ξ = 1, ω n = 250 rad • s -1 (ω n has been chosen close to the open-loop proper frequency ω ol ). Initial conditions are s(0) = 0 ms -2 , ṡ(0) = 0 ms -1 and s(0) = 0.020 m. The convergence time is stated as t F = 0.5 sec. K is computed from [START_REF] Laghrouche | Higher order sliding mode control based on integral sliding mode[END_REF] with F and T defined as (Lemma 1)

T =         1 1 1 1 1 1         , F =         -1 0 0 0 0 0 0 -1.1 0 0 0 0 0 0 -1.2 0 0 0 0 0 0 -1.3 0 0 0 0 0 0 -1.4 0 0 0 0 0 0 -1.5         (33) 
Discontinuous part w. w = -α • sign (S) with α = 12 • 10 4 (in order to satisfy [START_REF] Levant | Integral high-order sliding modes[END_REF] by taking into account the bounded uncertainties and mass variations (+125%)).

Experimental results. As detailed in previous section, "Nominal case" and "Robust case"' tests are made, in order to evaluate performances and robustness of the controller. Nominal case. The actuator position (Figure 10) converges to the desired trajectory in 0.5s as scheduled without control saturation (Figure 11-Bottom). The maximum position error in steady state is 0.02mm in spite of springs forces. There is no pressure saturation (Figure 11-Top). In order to compare performances between gain scheduling and high order sliding mode SISO controllers, static position errors are summarized in Table 3. Recalling that the maximum position error allowed by the benchmark is 0.2 mm, the sliding mode SISO controller fulfills this constraint, which is not the case for the gain scheduling one. Robustness evaluation. (Figure 12). The controller still ensures convergence in 0.5s without overshoot or control saturation. In steady state, the maximum position error equals 0.02mm which confirms the efficiency and robustness of this controller. Frequency response. (Figure 13) The frequency response is evaluated in the same conditions than previously. This test shows that, as previously mentioned in Section 4.2 (Frequency response item), the gain is not significantly improved by nonlinear control. However, the phase is now lower than the phase template which is not the case with linear controller and is a key-point with respect to desired performances.

Consumption. The consumption is evaluated by the same way than previously and results are displayed in Table 4. With the current controller, chattering effect appears and leads to high frequency control variations. These latter imply variation of mass flow rate during steady state position: the fluid consumption is increasing.

Controller

Gain scheduling SISO controller Higher order sliding mode SISO controller Consumption C P 463 g 551 g Consumption C N 420 g 546 g Table 4. Total consumption in each chamber during a flying sequence.

High order sliding mode position-pressure controller (MIMO)

Given the structure of the experimental setup, the use of two servodistributors allows to define two different control objectives. Then, in this section, a MIMO controller is displayed. As mentioned in Introduction, in order to improve system performances, in particular actuator positioning accuracy and rigidity, controller is now designed such both actuator position and pressure in one chamber are controlled. As pressure is now controlled, accuracy and rigidity are also improved, which is also a crucial point for steering mechanism application. Note also that, in MIMO case, there is no more zero dynamics, which ensures the stability of the whole system. The first objective consists in controlling actuator position, the second objective consisting in designing a robust pressure controller in order to fix pressure p P in a high level (for rigidity and accuracy improvement). Define the sliding variables s 1 and s 2 as

s 1 = y -y d (t) s 2 = p P -p P d (t). (34) 
From ( 4), relative degree of s 1 w.r.t. u equals 3, which implies that at least a 3 rd order sliding mode controller has to be designed for position. Relative degree of s 2 w.r.t. u equals 1 which implies that at least a 1 st order sliding mode controller has to be designed for pressure. From (4), defining h

(x) = [h 1 h 2 ] T := [y p P ] T , one gets s (3) 1 s (1) 2 = χM (x,t) + ΓM (x) • u P u N ( 35 
) with χM = L 3 f h 1 -y (3) d (t) L f h 2 -ṗP d (t) and ΓM = L g 1 L 2 f h 1 L g 2 L 2 f h 1 L g 1 h 2 0
. Denoting χM Nom and ΓM Nom the nominal values (i.e.

without uncertainty) of χM and ΓM , the control input u reads as 5

u = u P u N = Γ-1 M Nom -χM Nom + α 1 • sign(S1) α 2 • sign(S2) (36) 
with w the discontinuous input displayed in the sequel. From (35), one gets

s (3) 1 s (1) 2 = χM + Γ M Γ-1 M Nom [-χM Nom + w] = χM -Γ M Γ-1 M Nom χM Nom χ + Γ M Γ-1 M Nom Γ w (37) 
Switching vector S. The switching vector S = [S 1 S 2 ] T reads as (from ( 28))

         S 1 = s1 -K 1 F 2 1 e F 1 t T 1 s 1 (0) + 2ξ 1 ω n 1 ṡ1 K 1 F 1 e F 1 t T 1 s 1 (0) + ω 2 n 1 s 1 -K 1 e F 1 t T 1 s 1 (0) for 0 ≤ t ≤ t F 1 S 1 = s1 + 2ξ 1 ω n 1 ṡ1 + ω 2 n 1 s 1 for t > t F 1 S 2 = s 2 -K 2 e F 2 t T 2 s 2 (0) for 0 ≤ t ≤ t F 2 S 2 = s 2 for t > t F 2 (38) 
For S 1 , one states ξ 1 = 0.7, ω n 1 = 180 rads -1 , t F 1 = 0.5 sec, s1 (0) = 0 ms -2 , ṡ1 (0) = 0 ms -1 and s 1 (0) = 0.020 m. From (23), one gets

K 1 = [ s1 (0) 0 ṡ1 (0) 0 s 1 (0) 0] • F 2 1 T 1 s 1 (0) | F 2 1 e F 1 t F 1 T 1 | F 1 T 1 s(0) | F 1 e F 1 t F 1 T 1 | T 1 s(0) | e F 1 t F 1 T 1 T -1 5 
Matrix ΓM is invertible on the work domain with F 1 and T 1 defined as (Lemma 1)

T 1 =         1 1 1 1 1 1         F 1 =         -1 0 0 0 0 0 0 -1.1 0 0 0 0 0 0 -1.2 0 0 0 0 0 0 -1.3 0 0 0 0 0 0 -1.4 0 0 0 0 0 0 -1.5        
For S 2 , one has t F 2 = 0.5 sec, s 2 (0) = 5 bar. From ( 23), one gets

K 2 = [s 2 (0) 0] • T 2 s 2 (0) | e F 2 t F 2 T 2 T -1
with F 2 and T 2 defined as (Lemma 1)

T 2 = 1 1 F 2 = -1 0 0 -1.1
Discontinuous input w. The input w is tuned through gains α 1 and α 2 in order to satisfy [START_REF] Levant | Integral high-order sliding modes[END_REF] by taking into account the uncertainties and variations of mass (+125%): the experimental tests have been made with α 1 = 2 • 10 5 and α 2 = 8 • 10 6 .

Nominal case. The actuator position (Figure 14) converges to the desired trajectory in t F1 = 0.5s without control saturation. The maximum position error in steady state is 0.02mm in spite of springs force disturbance. There is no pressure saturation (Figure 15-Top). The control input is displayed in Figure 15-Bottom. In Table 5 are summarized results on static position error for different trajectories (corresponding to different altitudes flights). The MIMO high order sliding mode controller appears to be the most efficient controller w.r.t. the static position error. Robustness evaluation. (Figure 16). The controller ensures convergence in 0.5s without overshoot in spite of the mass variation. The maximum position error in steady state equals 0.02mm which confirms the efficiency/robustness of this controller.

Frequency response. (Figure 17). The frequency response is evaluated in the same conditions than previously, and the results are close to SISO ones.

Consumption. The desired pressure trajectory has been computed in order to have a maximum pressure in each chamber, which implies that rigidity is maximum with better accuracy. Experimental results also show that the high order sliding mode controller in MIMO case increases chattering on pressure p P (as pressure controller is first order sliding mode one): it induces a more important consumption through the mass flow rate (see table 6). A solution would be to find, through an optimization way, a pressure trajectory with minimum consumption, maximum rigidity and/or to increase the order of sliding mode pressure controller. 

Controller

Conclusion

The structure of the experimental setup and the benchmark (on which controllers are evaluated) are designed in order to check the use of such actuator in aeronautic context. In order to validate the benchmark performances, three controllers are designed. Experiments show that a linear gain scheduling feedback controller is not sufficient for this application. Higher order sliding mode controllers (SISO and MIMO) fulfill the main benchmark objectives. However, one of the performance criteria, the bandwidth at -1 dB of the closed-loop system, is still limited. In order to improve this point, a solution is the use of an other servodistributor able to ensure a higher mass flow rate. An other key point is the fluid consumption: high order sliding mode controllers need more fluid, but have greatly better accuracy and robustness performances. A future work will consist in designing pressure trajectory references (through optimization study) such that accuracy and robustness are kept.
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 1 Figure 1: Scheme of a steering mechanism and its actuator.
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 2 Figure 2: Low altitude flight: Actuator desired position (m) versus time (s).

Figure 3 :

 3 Figure 3: Bode template. Top -Gain (dB) versus frequency (Hz). Bottom. Phase (deg) versus frequency (Hz).

Figure 4 :

 4 Figure 4: Electropneumatic system scheme.

Figure 5 :

 5 Figure 5: Linear reduced model. Open-loop proper frequency ω ol (rad.s -1 ) versus rod position y (mm).
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 6 Figure 6: Nominal case -Top. Desired and current positions (mm) versus time (s). Bottom. Position tracking error (mm) versus time (s).

Figure 7 :

 7 Figure 7: Nominal case -Top. Pressures p P and p N (bar) versus time (s). Bottom. Control signals u P and u N (V ), and saturation line (V ) versus time (s).

Figure 8 :

 8 Figure 8: Robustness evaluation -Top. Desired and current positions (mm) versus time (s). Bottom. Position tracking error (mm) versus time (s).

Figure 9 :

 9 Figure 9: Bode diagram of closed-loop system.

Figure 10 :

 10 Figure 10: Nominal case -Top. Desired and current positions (mm) versus time (s). Bottom. Position tracking error (mm) versus time (s).

Figure 11 :

 11 Figure 11: Nominal case -Top. Pressures p P and p N (bar) versus time (s). Bottom. Control signals u P and u N (V ), and saturation line (V ) versus time (s).

Figure 12 :

 12 Figure 12: Robustness Evaluation -Top. Desired and current positions (mm) versus time (s). Bottom. Position tracking error (mm) versus time (s).

Figure 13 :

 13 Figure 13: Closed-loop system Bode diagram.

Figure 14 :

 14 Figure 14: Nominal case -Top. Desired and current positions (mm) versus time (s). Bottom. Position tracking error (mm) versus time (s).

Figure 15 :

 15 Figure 15: Nominal case -Top. Pressures p P and p N (bar) versus time (s). Bottom. Control signals u P and u N (V ) versus time (s).

Figure 16 :

 16 Figure 16: Robustness evaluation -Top. Desired and current positions (mm) versus time (s). Bottom. Position tracking error (mm) versus time (s).

Figure 17 :

 17 Figure 17: Bode diagram of closed-loop system.

Table 1 .

 1 Static position error (mm) with gain scheduling controller.

	Altitude	Low (±16mm)	Medium (±12mm)	High (±4mm)
	Static position error	0.48	0.38	0.16

Table 3 .

 3 Static position error (mm) with gain scheduling (top) and sliding mode SISO (bottom) controllers.

	Altitude	Low	Medium	High
	Gain scheduling SISO controller	0.48 0.38 0.16
	Higher order sliding mode SISO controller	0.02 0.01 0.08

Table 5 .

 5 Static position error (mm) with gain scheduling (Top), SISO sliding mode (middle) and MIMO sliding mode (bottom) controllers.

	Trajectory	Low	Medium	High
	Gain scheduling SISO controller	0.48 0.38 0.16
	Higher order sliding mode SISO controller	0.02 0.01 0.08
	Higher order sliding mode MIMO controller	0.01 0.01 0.01

Table 6 .

 6 Gain scheduling controller Sliding mode SISO controller Sliding mode MIMO controller Total consumption in each chamber during a flying sequence.

	Consumption C P	463 g	551 g	623 g
	Consumption C N	420 g	546 g	544 g

This hypothesis is taken due to the context: in fact, on the experimental setup, springs are modeled in a very simple way, the air on the steering mechanism during the flight. Of course, in this latter real situation, this external force is not easy to evaluate. Then, the controllers do not use this value.

All over this paper, s(•)(k) (k ∈ IN) denotes the k th time derivative of the function s(•). This notation is also applied for every function.

An interest of equivalent control is to reduce the value of discontinuous part gain[START_REF] Castro-Linares | High order sliding mode observer-based control[END_REF] which implies a reduction of chattering effect.
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