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ABSTRACT 
Herein, a novel non-linear procedure for producing non-linear behaviour and stable limit cycle 
amplitudes of non-linear systems subjected to super-critical Hopf bifurcation point is presented. This 
approach, called Complex Non-Linear Modal Analysis (CNLMA), makes use of the non-linear 
unstable mode which governs the non-linear dynamic of structural systems in unstable areas. In this 
study, the computational methodology of CNLMA is presented for the systematic estimation of the 
non-linear behavior of structural system, and it is applied to a complex system with quadratic and cubic 
non-linearities.  Results from this non-linear method are compared with results obtained by integrating 
the full original non-linear system. This procedure appears very interesting in regard to computational 
time, formulation, and also necessitates very few computer resources. Thus the CNLMA is suited to 
computational implementation for various complex non-linear system with many degrees-of-freedom. 
 
KEYWORDS 

Non-linear dynamics, stability analysis, non-linear mode, friction induced vibration. 

1 INTRODUCTION 
Many complex structures which are composed of several non-linearities are subject to stable and 
unstable behaviour depending on physical parameters [1-8]. For such structures, estimation of the non-
linear behaviour in near-critical steady-state equilibrium points is essential. However, numerical 
integration may be computationally expensive. In such cases it is convenient to applied non-linear 
approaches by taking advantages of the dynamic properties of the non-linear dynamical systems. Most 
of the standard non-linear methods for generating approximate solutions of non-linear dynamical 
systems are based either on approaches in which the solution is represented as an assumed and 
approximated form [2-3,9-10] or on simplification and reduction approaches of non-linear original [11-
26]. 
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Due to their great potential of savings in computational time for simulations, the non-linear model 
reduction have been studied by many researchers in recent years for weak and strong non-linear 
systems [14-26] and have undergone considerable evolution since their original and fundamental 
concept (Rosenberg [18-19]). The main objective of these non-linear methods is to extract and 
characterize the non-linear behaviours of structural systems by using non-linear interpretations of 
modes and non-linear extensions of principal coordinate transformations. This concept of non-linear 
normal modes has great potential for reduction techniques [20-26]. However, these non-linear methods 
based on reductions or simplifications are computationally intensive in the formulation stage even if 
they offer savings in computational time for simulations [23] (due to the reduced-order and simplified 
model obtained).  
To avoid these disadvantages, Nayfeh and Balachandran [3, 27-28] propose in very elegant analysis to 
use the method of the multiples scales [3] to obtain a first-order approximation for the amplitude of the 
limit cycles by considering harmonic solution. They formulate a perturbation solution of the non-linear 
equations that is valid in the neighborhood of a given fixed point. They demonstrate that the method of 
multiple scales involves less algebra that the method of normal forms. As explained by Nayfeh and 
Balachandran , this perturbation analysis can be applied to high-dimensional systems but is restricted in 
the case of approximating limit cycles close to a Hopf bifurcation point. Moreover, it may be observed 
that the control parameter of the non-linear system needs to be expanded as a power series in a small 
parameter about the critical point associated with a given fixed point. In this paper, a method called the 
Complex Non-Linear Modal Analysis [29] that may be shown as a variant of the previous method 
developed by Nayfeh and Balachandran [3, 27-28], is proposed for calculating the periodic solutions of 
non-linear systems subjected to super-critical Hopf bifurcation point with several degrees-of-freedom. 
This approach is based on the evolution of the unstable mode and the estimation of the associated 
unstable solution curve in order to obtain an approximated periodic solution of the stable limit cycles 
for non-linear systems subjected to supercritical Hopf bifurcation point. The principle of the equivalent 
linearization based on the replacement of the non-linear dynamic system by a linear system [29-32] is 
applied. Using this principle, it will be possible to estimate the stable limit cycle amplitudes far from 
the super-critical Hopf bifurcation point. This method is tested in the case of non-linear systems with 
quadratic and cubic non-linearitites in order to obtain the periodic limit cycles amplitudes near and far 
from the Hopf bifurcation point without assuming a form for the control parameter. However, it will be 
shown that this CNLMA approach works in the case of stable limit cycles. 
Firstly, the description and explicit construction of the Complex Non-Linear Modal Analysis for non-
linear systems is developed. Secondly, this non-linear method is applied to an illustrative example 
which is an complex non-linear aircraft brake system subject to friction-induced instability phenomena: 
results from stability analysis are briefly presented and discussed in order to detect the stable and 
unstable regions. In a second way, the non-linear behaviour of the system when a super-critical Hopf 
bifurcation point appears and the associated stable limit cycle amplitudes are approximated by using 
the CNLMA. Results from this non-linear modal approach  are compared with results obtained by 
integrating the full original non-linear system. Then the suitability of the CNLMA for computational 
parametric design studies is demonstrated. Finally, the paper closes with a discussion concerning some 
of the most interesting features and results of this approach. 
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2 THE COMPLEX NON-LINEAR MODAL ANALYSIS 

2.1 Introduction 

In the field of engineering, the description of a non-linear dynamical system is usually given by a n-
dimensional equation 

( ),+ + + =Mz Cz Kz FNL z z 0        (1) 

where z , z  and z  are the acceleration, velocity, and displacement response n-dimensional vectors of 
the degrees-of-freedom, respectively. M  is the mass matrix, C  is the damping matrix, K  is the 
stiffness matrix, and FNL  contains the non-linear  terms.  
The non-linear dynamical equations are usually rewritten in state variables { }Tx = z z  so that the 
description of dynamical systems is given by a 2n-dimensional differential equation 

( ),=x F x µ        (2) 
where µ  is a control parameter and  F  a non-linear function. 
To shift the fixed point  0x  of the system (2) which is defined by ( ), =0F x 0µ  to the origin, the 
transformation = + 0x y x   is used. The non-linear system (2) is transformed by 

( ),= 0y F x + y µ       (3) 
Assuming that the function  F  is at least C2, the non-linear system (3) can be extended in a Taylor 
series about 0x  for small y  

( ) ( ) ( ) ( ) ( ) ( ) ( )1, , , , kO += + = + + + + +NL 2 3 ky J y F y A y F y F y F y yµ µ µ µ µ µ   (4) 

where ( ) ( ),= x 0J D F xµ µ is the 2 2n n×  matrix of first derivatives of F  evaluated at the fixed point ( ),0x µ  

and ( ),kF y µ  defines a degree-k     polynomial series in the principal coordinates of degree y . 

We remain that eigenvalues λ  of the linearized system xD F provide information about the local 
stability of the non-linear system of (2); if all real parts of eigenvalues are inferior or egal zero, the 
system is stable; neither the system is unstable.  

2.2 The non-linear modal approximated solution  

Considering that  the non-linear system defined in equation (3) has a super-critical Hopf bifurcation 
point for the control parameter 0µ = µ such that  

( )( )
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and for 0 0µ = µ +µ > µ  
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the non-linear autonomous system is defined by 
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( ) ( )0 0,= + + +NLy J y F yµ µ µ µ      (7) 
Assuming that all the modal participations of the stable modes (associated with the eigenvalues 

( )0jλ µ +µ ) are negligible in front of the unstable mode (associated with the eigenvalues ( )0iλ µ +µ ), 
equation (3) is governed by the unstable approximated solution curve  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 0 2 0
0 1 0 2 0, t t a ib t a ib tt e e e eλ µ µ λ µ µµ µ µ µ µ µ+ + + −+ = + + + = +y Y Y Y Y   (8) 

where ( )1 0 a ibλ µ µ+ = +  and ( )2 0 a ibλ µ µ+ = −  are the complex eigenvalues of xD F  having a 

positive real part ( 0a > ) and Y  and Y define the associated eigenvectors at the unfolding parameter 
0µ µ+ . The real part of 1λ  and 2λ  describes the behaviour of the fixed point and the imaginary part of 

1λ  defines the value of the associated unstable frequency at the unfolding parameter 0µ µ+ ; it may be 
noted that the unstable solution curve is composed of the pair of eigenvalues 1λ  and 2λ  with the 
associated eigenvector Y and conjugated eigenvector Y due to the fact that the mechanical non-linear 
system has been rewritten in state variables. 
Then, the stable periodic approximated solution (for 0µ = µ +µ ) of the non-linear system (3), which is 
obtained for  

( )Re 0   for    =1,2i iλ =        (9) 
can be written  

( )0 0

0 0

0( )
2

p pi t i t
p p

pt e e−= +y Y Yω ω     (10) 

where 0

2
p  , 

0pω  and 
0pY are the amplitude, the frequency and the associated eigenvector of the periodic 

approximated solution governed by the unstable mode at 0µ µ+ . The purpose of the Complex Non-
Linear Modal Analysis (CNLMA) consists on the determination of these parameters 0p , 

0pω  and 
0pY  

in order to obtain the periodic approximated solution 
00( , , )pt py ω  at the unfolding parameter 

0µ = µ +µ . It may be observed that no assumption is made about the value of the control parameter 
and more particularly that the stable limit cycle amplitudes may be estimated far from the super-critical 
Hopf bifurcation point. 

2.3 The Complex Non-Linear Modal Analysis (CNLMA) 

Considering the non-linear system (3) at 0µ = µ +µ , the linearized system ( )0= +y J yµ µ  at the 

equilibrium point ( )0, = +0y = 0 µ µ µ  has one pair of unstable modes associated with the complex 

eigenvalues 1λ  and 2 1=λ λ  ( ( )1Re 0λ >  and ( )2Re 0λ > ), and eigenvectors Y and Y .  
To determine the value of 0p p=  that leads the stationary periodic approximated solution (9) of the 
non-linear system, the objective of the CNLMA procedure is to follow the evolution of the eigenvalues 
( )i pλ  (with 1 2i ,= ) and the associated deformations ( )i pY  (with 1 2i ,= )  that lead to the stationary 

periodic solution of the system.  
The evolution of the approximated solution curve ( , , )t py λ  for a given value of p is defined by 

( ) ( ) ( ) ( )( , , ) p t p tt p p e p e= +y Y Yλ λλ      (11) 

with ( ) ( )1p p=λ λ  and ( ) ( )1p p=Y Y . As explained previously, ( )( )Re pλ  gives information 
about the stability of the approximated solution (10) for each value of the value p. The stationary 
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periodic solution and the associated value of 0p  will be obtained when ( )( )Re 0pλ = . Considering 
equations (5),(7), (8-9) and (10),  it clearly appears that 

   
( )( ) ( )( )
( )( ) ( )( )

0
0 0

0 0
lim Re         and        lim Im

lim Re 0       and        lim Im  
p p

pp p p p

p a p b

p p
→ →

→ →

λ = λ =

λ = λ = ω
   (12) 

Then, to follow the evolution of the unstable approximated solution curve ( , , )t py λ , the eigenvalues 
( )pλ  and eigenvectors ( )pY , the original non-linear system at the equilibrium point 

( )0, = +0y = 0 µ µ µ  defined by 

( ) ( )0 0,= + + +NLy J y F yµ µ µ µ       (13) 
will be approximated by introducing the stationary periodic solution  

( ) ( ) ( ) ( )( ) ( )( , , )
2 2

p pi t i ti p t i p t
p p p

p pt p p e p e e e−−= + = +y Y Y Y Yω ωω ωω     (14) 

The non-linear approximated system is given by 
( ) ( )0 0,= + + +NLy J y F yµ µ µ µ         (15) 

The evolutions of the eigenvalues ( )pλ and eigenvectors ( )pY  will be calculated by considering the 
concept of the equivalent linearization [30-34]. This principle is based on the idea of finding a linear 
system which is equivalent to the non-linear system at the unstable fixed point ( )0, +0x µ µ : 

( ) ( ) ( )0 0 0= + + + = +'y J y J y A yµ µ µ µ µ µ     (16) 
The replacement of the non-linear system (13) by a linear system is made to minimize the difference 
between the two systems 

( ) ( )0 0,= + +'
NLF y - J yε µ µ µ µ        (17) 

The minimization of ε  is performed according to the criterion 
2 T

0
Min

π ω⎛ ⎞
⎜ ⎟
⎝ ⎠∫ ε ε  and the procedure 

used to solve the optimisation problem is the least-square method. In place of the mean square criterion 
specified previously, other criterion can be used as well. However, a comparative study of the most 
commonly used criteria has shown that there is no significant superiority in terms of approximate 
solution accuracy of any specific criterion over the others (Iwan [32-33]).Then, the solution of the 
associated linear system is taken as an approximation of the original non-linear problem at the unstable 
fixed point ( )0, +0x µ µ . One of the advantages of this equivalent linearization procedure is that the 
resulting linear problem may be solved by any convenient technique, and this approach is easily 
implemented. Moreover, the linearized system may be obtained for a control parameter 0+µ µ  far from 
the super-critical Hopf bifurcation point 0µ  so that the stable limit cycle amplitudes should be 
estimated for all the unstable area of the non-linear system. 
The evolutions of ( )pλ and ( )pY  are obtained by determining the eigenvalues and associated 
eigenvectors of A . If all eigenvalues have their real part  negative or zero, the equivalent linearized 
system (14) is stable and the approximated stationary periodic solution is given by 

( , , ) p pi t i t
p p pt p e e−= +y Y Yω ωω . If the previously condition is not verified, it means that the 

approximated solution (12) is always on the unstable approximated solution curve ( , , )t py λ  defined in 
equation (10); 
it implies that the value of p is to small in order to reach the stable periodic solution.  
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To obtain the stable approximated periodic solution 
00( , , )pt py ω , the value p  is incremented by pδ  

and the unstable eigenvalues and eigenvectors of equation (12) are corrected by considering the new 
estimation of the eigenvalues unstableλ  of A  corresponding to the equivalent linearized system (14) and 
having  their real part positive (with the associated eigenvectors unstableY ) 

( ) ( )
( ) ( )

  
  

  
unstable

unstable

p p p
p p p

p p p

→ +

→ + =

→ + =Y Y Y

δ
λ λ δ λ

δ

    (18) 

Finally, the value 0p and the associated stable periodic approximated solution  

( ) ( ) ( ) ( )( ) ( )0 0 0 0

0 0 0

0 0
0 0 0( , , )

2 2
p pi t i ti p p t i p p t

p p p p
p pt p p p p e p p e e e−= − == = = = + = = +y Y Y Y Yω ωω ωω ω  (19) 

 are obtained by incrementing p  and calculating the eigenvalues of the linearized equivalent system 
(14) until ( )( )Re 0unstable pλ =  (with ( )( )Re 0pλ <  for the others eigenvalues of A ). The complete 
procedure and description of the Complex Non-Linear Analysis is illustrated in Figure 1. 
Considering the previous procedure and associated developments, it may be shown that the CNLMA 
approach works only if the limit cycles are stable. Effectively, if the limit cycles are unstable, by 
increasing the value of the parameter p , the evolution of the real part of eigenvalues corresponding to 
the equivalent linearized system (14) and the evolution of the approximated solution curve ( , , )t py λ  
given in equation (20) may be affected by the nature of the limit cycles. 

3 APPLICATION OF THE CNLMA 
To demonstrate the non-linear procedure and ideas presented above, the Complex Non-Linear Modal 
Analysis is applied to a complex problem for which instability and the associated stable non-linear 
limit cycles have been observed.  

3.1 Non-linear dynamical system 

The system consists on a aircraft brake system as illustrated in Figure 2 : industry experience [35] has 
identified an important  specific unstable vibration mode called whirl. Experimental approaches and 
laboratory vibrational tests that represent the aircraft operating environment  indicate that the 
consequences of this whirl instability due to friction-induced vibration can be drastic and cause large 
amplitude oscillations of the aircraft brake system components. Whirl instability is defined as a 
complex rotating-bending mode of the brake and axle around 200-300Hz (Feld [36]). 
The whirl modelling and the complete equations of the non-linear autonomous system have been 
developed in a previous study [37] and are briefly described in Annexe A. This non-linear system can 
be written is the following form 

( )+ + = + NL
pressureMx Cx Kx F F x     (20) 

where x , x  and x  are the acceleration, velocity, and displacement response 15-dimensional vectors of 
the degrees-of-freedom, respectively. M  is the mass matrix, C  is the damping matrix, K  is the 
stiffness matrix, pressureF  is the vector force due to brake pressure and NLF  contains the linear and 
non-linear quadratic and cubic terms due to the friction contact. 

3.2 Stability analysis and detection of unstable regions  

To examine the stability of the non-linear system (20) around an equilibrium point 0x  defined by  
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( )= + NL
0 pressure 0Kx F F x      (21) 

the solution λ  of the characteristic equation  

( )2det 0− + + − =NL
LM C K Kλ λ     (22) 

need to be determined. NL
LK  defines the linearized expressions of the non-linear terms NLF  around the 

equilibrium point 0x . The system becomes unstable if any of the eigenvalues λ  develop positive real 
parts. 
A computational example considering various values of the friction coefficient is illustrated in Figures 
3-7. Figure 3 indicates the evolution of all the real part. It appears that the system is unstable for 

[ ]0 32 0 81. .µ∈ .  Figure 4 illustrates the evolution of the two coupling unstable modes for 

[ ]0 32 0 81. .µ∈ . The unstable mode occurs at 250Hz that indicates a perfect correlation with 
experimental tests [35]. Finally, Figure 5 gives the evolution of the unstable mode in the complex plane 
with the determination of the two Hopf bifurcation points corresponding to the beginning and the end 
of the instability. 

3.3 Stable non-linear limit cycles 

To evaluate the vibration amplitudes at the unstable fixed point, the time-history solutions of the full 
set of the non-linear equations can be calculated by using a classic fourth-order Runge-Kutta algorithm. 
Figure 6 shows the transient response analysis and the predicted non-linear vibration amplitudes of all 
the displacements x  and velocities x  at the instability region  0 01 1.µ = µ +µ = µ   (in  this study the 
friction coefficient is used as the control parameter). As illustrated in the Figure 6, the non-linear 
oscillations ( ),x x grow until periodic oscillations called limit cycle amplitudes. Even if the time-
history oscillations have been obtained using a fourth-order Runge-Kutta algorithm, this procedure is 
rather expensive and consumes considerable resources both in terms of the computation time and in 
terms of the data storage requirements. 
To avoid all these inconvenients the Complex Non-Linear Analysis will now be applied to obtain the 
stable periodic approximated oscillations of the non-linear dynamical system (20). 
The transformation = + 0x y x  permits to shift the fixed point  0x  of the system (20) to the origin. In 

state variables { }T=y x x  the non-linear system (20) is given by 

( ) ( )0 0,= + + +NLy J y F yµ µ µ µ     (23) 

with 

( )
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

-1 NL -1
L

0 I
J

-M K - K -M C
    (24) 

( ) ( )
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

NL -1 NL

0
F y

-M F y
     (25) 

We remain that the purpose of the CNLMA is to find the stationary approximated periodic solution of 
the non-linear system (23) defined as follow 

( )( , , )
2

p pi t i t
p p p

pt p e e−= +y Y Yω ωω     (26) 

by following the evolution of the real part and imaginary part of the unstable mode. 
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The computational procedure described previously in Figure 1 is used; Figure 7 illustrates the 
evolution of the real part for the unstable mode. The final stationary approximated solution is obtained 
for 0p =2.4. The associated evolution of the imaginary part which describes the frequency evolution of 
the unstable mode is shown in Figure 8. 
The approximated limit cycle amplitudes for each degree-of-freedom are given in Figure 9. It may be 
observed that the stationary approximated periodic solutions are closed to the non-linear solutions 
obtained by considering the original non-linear system (previously calculated by applying the 4th order 
Runge-Kutta algorithm). 

3.4 Parametric studies for instability phenomena 

 As explained in  the previous section, the CNLMA procedure appears very interesting in regard to 
computation time and requires less computer resources in order  to obtain the limit cycle amplitude. 
Then this computational approach is advantageous when parametric studies are applied. In this section, 
we illustrate the possibility to investigate parametric studies using two parameters in order to conduct 
complex stability analysis and in order to determine the limit cycle amplitudes in the unstable regions. 
For example, Figure 10 shows stability parametric analysis with various brake friction coefficient and 
various brake hydraulic pressures. In this Figure 10, the black line drawn on the map describing the 
real part evolution of the potential unstable eigenvalue (associated to the unstable mode) defines the 
contour where this real part is zero. Then, this black line represents the borderline between the stable 
and unstable regions versus the brake friction coefficient and the brake hydraulic pressure. 
Moreover Figure 11 illustrated the associated evolutions of the frequencies in the complex plane. It 
may be observed that  the unstable mode is in the 240-252Hz frequency range. 
Now, the CNLMA will be applied to obtain the limit cycle amplitudes when the fixed point is unstable. 
Two parametric studies will be considered. The first one considers the evolution of the stable limit 
cycles amplitudes versus the evolution of the friction coefficient ( )0max maxµ µ = µ +µ µ  for 

P P 0 5max .= . We remain that the fixed point unstable for [ ]0 32 0 81max . .µ µ ∈  as indicated in Figure 
3. The evolution of value p of the unstable solution (11) used in order to determine the stable periodic 
solution via the CNLMA is indicated in Figure 12. Figure 13 shows the evolution of the limit cycle 
amplitudes for each degree-of-freedom. It may be observed that the limit cycle amplitudes are 
calculated near or far from the super-critical Hopf bifurcation point. 
Secondly, the limit cycle evolutions versus the evolution of the brake hydraulic pressure P Pmax  are 
determined for 01 1.µ = µ  as illustrated in Figure 14. The associated evolution of the Hopf bifurcation 
point is indicated in Table 1. Figure 15 shows the evolution of value p for the unstable mode used in 
the CNLMA computational process. As indicated in Figure 14, the equilibrium point changes for the 
various brake pressure: it is clearly shown for the degrees-of-freedom sx  and rx . 

Thus the CNLMA approach permits the determination of  approximated limit cycle amplitudes of the 
non-linear original system near the Hopf bifurcation point (as illustrated in Figure 13) but also far from 
the Hopf bifurcation point (as illustrated in Figure 14). In all cases, the evolutions of the fixed point  
are determined. 

4 SUMMARY AND CONCLUSION 

In this paper, the Complex Non-Linear Modal analysis is presented and developed for systematic 
estimations of non-linear behaviour of structural systems subjected to super-critical Hopf bifurcation 
point. This method uses the non-linear unstable mode which governs the non-linear dynamic of 
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structural systems in unstable areas in order to obtain the periodic approximated oscillations of non-
linear mechanical systems.  In this study, the computational methodology of CNLMA is applied to a 
complex aircraft brake system with quadratic and cubic polynomial non-linear terms. Excellent 
agreements are found between the results obtained by the CNLMA  method and the complete solution 
of the non-linear system integrated by using the 4th order Runge Kutta algorithm. 
Some of the most interesting features of the CNLMA method are the following: firstly, one main 
advantage is that this method is suited to computational implementation  and appropriate to complex 
non-linear system with many degrees-of-freedom. Secondly, this non-linear modal approach offers 
savings in computational time for simulations and parametric design studies; it appears very interesting 
in regard to formulation stages, and also necessitates very few computer resources. Finally, this method 
is clearly not restricted to dynamical systems with polynomial non-linearities and may be used for 
various non-linear systems.  
This non-linear modal method shows significant promise for the understanding of non-linear behaviour 
of complex non-linear dynamical system. It is hoped that this non-linear modal approach will be 
applied for large-scale engineering structures subject to instabilities in order to obtain rapidly 
approximated solutions in the unstable regions. 

5 NOMENCLATURE 

x   vector of displacement 
x    vector of velocity 
x   vector of acceleration 

0x   equilibrium point 
x   small perturbation 
C   damping matrix 
K   stiffness matrix 
M    mass matrix 

pressureF   vector force due to the net hydraulic pressure 
NLF   vector of linear and non-linear  terms 

J  Jacobian matrix of the linear system in state variables 
J'  matrix of the equivalent linear system in state variables 
y  approximated solution of the unstable mode 

pω  pulsation’s evolution of the unstable mode  

pY  eigenvector’s evolution of the unstable mode 
p  amplitude of the unstable mode 

0pω  pulsation of the stationary periodic approximated solution  

0pY  eigenvector of the stationary periodic approximated solution 

0p  amplitude of the stationary periodic approximated solution  
µ  brake friction coefficient 
µ  unfolding brake friction coefficient 

0µ  brake friction coefficient at the Hopf bifurcation point 
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6 ANNEXE 1 : WHIRL MODELING  

The whirl instability due to friction-induced vibration is defined as a wobbling motion between the 
brake’s rotating and stationary parts [36-39]: the disks in the brake stack are compressed by the 
hydraulic pressure applied to the brake, as illustrated in Figure 16. Without vibration, the normal 
pressure is distributed uniformly over the rubbed surface between rotating and stationary disks. When 
vibration is present, disks in the brake stack are subjected to out-of-plane rotation called accordion 
motion. Then, the uniform normal pressure over the disk interface is altered by this accordion notion : 
the normal pressure increases over half of the interface and relaxes over the other half. Mechanism of 
friction-induced vibration for an aircraft brake system. On some aircraft brake systems, the brake rod 
attaches to the brake housing in an offset, such that an angle may appear between the brake rod and the 
housing as illustrated in Figure 17. This offset angle which can be compared with the sprag-slip 
mechanism [40-43] couples the normal and tangential contact force and is one of the primary cause of 
instability in the whirl vibration. 
To reproduce the wobbling interaction between the stationary and rotating parts, the rigid body lateral 
displacement and the two yaws of the stator (stationary parts) and rotor (rotating parts) are considered. 
For simplification, the multi-stage brake is represented by a single rotor-stator system (as illustrated in 
Figure 18) with the effective brake friction coefficient 2total n=µ µ  where n is the number of interfaces 
between stators and rotors. 
For any point ( ),M r θ  on the rotor-stator equivalent interface, and by considering small 
displacements, the normal displacement is [37-38] 

( , ) ( , ) ( , ) ( ) sin ( ) cos ( )stator rotor s r s r s rx r x r x r x x r rθ θ θ θ θ θ θ ψ ψ= − = − − − − −  (27) 
where sx , rx , sθ , rθ , sψ  and rψ  are the stator and the rotor lateral displacement, and the stator and 
rotor rotations, respectively. 
The normal force XF , the moments XM , YM  and ZM  that generate whirl instability due to the normal 
contact ( ),N r θ between the rotor and the stator friction surface are given by 

( )
2 0

0
,

R

X Ri
F N r rdrd

π
θ θ= ∫ ∫       (28) 

( ) ( )
2 0 2 02 2

0 0
, ,

R R

X totalRi Ri
M T r r drd N r r drd= =∫ ∫ ∫ ∫

π π
θ θ µ θ θ        (29) 
2 0 2

0
( , ) sin

R

Y Ri
M N r r drd

π
θ θ θ= −∫ ∫       (30) 

2 0 2

0
( , ) cos

R

Z Ri
M N r r drd

π
θ θ θ= −∫ ∫       (31) 

where tangential contact  T  is generated by the Coulomb law ( ) ( ), ,totalT r N r=θ µ θ .  

Considering static tests [35], it has been observed that the normal contact ( ),N r θ at the rotor-stator 
interface can be represented by a cubic polynomial in the relative displacement between the rotor and 
stator in compression 
 

( ) ( )
3

1
, ,i

i
N r K x r

=

=∑θ θ      (32) 
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Replacing equation (32) in equations (28-31),The expressions of the normal force XF , the moments 

XM , YM  and ZM  are given by 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2
1 2 2 2 4 4

3 2 2
3 2 4 4

1 1
4 4

3 3
4 4

X s r s r s r r s

s r s r s r s r s r

F K A x x K A x x A A

K A x x A x x A x x

θ θ ψ ψ

θ θ ψ ψ

⎛ ⎞= − + − + − + −⎜ ⎟
⎝ ⎠

⎛ ⎞+ − + − − + − −⎜ ⎟
⎝ ⎠

   (33) 

( ) ( )( )

( )( ) ( ) ( ) ( )

1 2 4

2 3 2
3 4 6 6

1 1
4 2

3 1 1
4 8 8

Y s r s r s r

s r s r s r s r s r

M K K A x x

K A x x A A

θ θ θ θ

θ θ θ θ θ θ ψ ψ

= − − − − −

⎛ ⎞− − − + − + − −⎜ ⎟
⎝ ⎠

  (34) 

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

2 2 2
1 3 2 3 5 5

3 2 2
3 3 5 5

2 2 1 1
3 3 5 5

2 3 3
3 5 5

X total s r s r s r s r

s r s r s r s r s r

M K A x x K A x x A A

K A x x A x x A x x

⎛ ⎛ ⎞= − + − + − + −⎜ ⎟⎜ ⎝ ⎠⎝
⎞⎛ ⎞+ − + − − + − −⎜ ⎟⎟⎝ ⎠⎠

µ θ θ ψ ψ

θ θ ψ ψ
 (35) 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 4 2 4

2 3 2
3 4 6 6

1 1
4 2

3 1 1
4 8 8

Z s r s r s r

s r s r s r s r s r

M K A K A x x

K A x x A A

ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ θ θ

= − − − − −

⎛ ⎞− − − + − + − −⎜ ⎟
⎝ ⎠

 (36) 

with  ( )0 for   2 6k k
k iA R R kπ= − ≤ ≤ . 0R  and iR  are the outer and inner radius of the discs. 

Finally, the equations of motion for the non-linear aircraft brake system are  
/ /s s xs s couple X hyd X Xm x C x F F F+ = + −            (37) 

/ /( ) ( )  s s as s a s s as s a couple X e couple Z e YI C K K F R F d Mθ θθ θ θ θ θ θ+ − + + − = + +     (38) 

/( ) ( )s s as s a s s as s a couple Y e ZI C K K F d Mψ ψψ ψ ψ ψ ψ ψ+ − + + − = +      (39) 

/s s s s couple Y e XI C F R Mϕ ϕϕ ϕ+ = − +           (40) 

r r xr r rr r Xm x C x K x F+ + =            (41) 
( ) ( )r r br r t br r t YI C K M+ − + − = −θ θ θ θ θ θ         (42) 

( ) ( )r r tr r t tr r t ZI C K M+ − + − = −ψ ψ ψ ψ ψ ψ                      (43) 

11 11 12( ) ( ) 0t t t t yft t f t t t t yft t fm y C y C y y K y K K y y+ + − + + + − =θ      (44) 

22 21 22( ) ( ) ( ) ( ) 0t t t t tr t r ft t f t t t t tr t r ft t fI C C C K y K K K+ + − + − + + + − + − =θ θθ θ θ θ θ θ θ θ θ θ θ                  (45) 

11 11 12( ) ( ) 0t t t t zft t f t t t t zft t fm z C z C z z K z K K z z+ + − + + + − =ψ      (46) 
 22 21 22( ) ( ) ( ) ( ) 0t t t t tr t r ft t f t t t t tr t r ft t fI C C C K z K K K+ + − + − + + + − + − =ψ ψψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ         (47) 

  11 11 12( ) ( ) 0f f f f yf f t f f f f yft f tm y C y C y y K y K K y y+ + − + + + − =θ              (48) 

22 21 22( ) ( )  ( ) ( ) 0f f f f fs f s ft f t f f f f fs f s ft f tI C C C K y K K K+ + − + − + + + − + − =θ θθ θ θ θ θ θ θ θ θ θ θ         (49) 

11 11 12( ) ( ) 0f f f f zft f t f f f f zft f tm z C z C z z K z K K z z+ + − + + + − =ψ      (50) 

22 21 22( ) ( ) ( ) ( ) 0f f f f fs f s ft f t f f f f fs f s ft f tI C C C K z K K K+ + − + − + + + − + − =ψ ψψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ (51) 
where sx , rx , sθ , rθ , sψ , rψ , sϕ , ty , tz , tθ , tψ , fy , fz , fθ  and fψ   are the stator and the rotor 
lateral displacement, the stator and rotor rotations, the piston torsional rotation and the axle deflections 
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and rotations of the stator and rotor shaft, respectively. fsK  and fsC  define the stiffness and the 
damping between the stator and the shaft of the stator, called torque tube, via notches on the inner 
perimeter of the disk. brK  and brC  define the stiffness and the damping between the rotor and the shaft 
of the rotor, via drive keys on the outside of the disk. ftKψ , ftKθ , yftK , zftK  and ftCψ , ftCθ , yftC , zftC   
represent the contact stiffness and the contact damping between the rotor's and stator's shaft, 
respectively. rrK  represents the stiffness of the backplate of the brake. ( ), 1, 2fijK i j =  and 

( ), 1, 2fijC i j =  are the axle bend stiffness and axle bend damping for the stator's shaft, respectively. 
( ), 1, 2tijK i j =  and ( ), 1, 2tijC i j =  are the axle bend stiffness and axle bend damping for the rotor's shaft, 

respectively. ed  and eR  represent the brake rod lateral offset and the distance axle to brake rod 
axis. XF , XM , YM  and ZM  are the normal contact between the rotor and the stator friction surfaces and 
the associated moments calculated previously.  

/couple XF , /couple YF  and /couple ZF  represent the load due to the brake rod and are approximated by [37] 

sin sin sin

cos cos

cos cos

couple/X rod e s rod s rod e s

couple/Y rod e s rod e s

couple/Z rod e s rod e s

F K R K x K R

F K R K d

F K R K d

φ α α θ α

φ α θ α

φ α ψ α

⎧ = + +
⎪⎪ = −⎨
⎪ = −⎪⎩

  (52) 

where rodK  defines the axial stiffness of the brake rod and α  the sprag-slip angle due to the brake rod 
angle offset with the rotor/stator interface. 

/hyd XF  is the brake force due to the hydraulic pressure. It is given by  is given by  

( )
( )

2 2
/ /

/ 2 2
0

piston outer piston inner
hyd X hydraulic piston

i

R R
F P n

R R

−
=

−
   (53) 

where pistonn , /piston outerR ,  /piston innerR  are the number of pistons, the outer and inner radius of the piston 
surface in contact with the stator, respectively. 0R and iR   define the outer and inner radius of the 
rotor/stator interface, respectively.  
Finally, This non-linear 15 -degree-of-freedom system has the form : 

( ) ( )+ + = + + NL
pressure coupleMx Cx Kx F F x F x     (54) 

where x , x  and x  are the acceleration, velocity, and displacement response 15-dimensional vectors of 
the degrees-of-freedom, respectively. M  is the mass matrix, C  is the damping matrix and K  is the 
stiffness matrix. pressureF  is the vector force due to net brake hydraulic pressure. NLF  contains the 

linear and non-linear contact force terms at the stator and rotor interface and coupleF  define the brake rod 
load, respectively.  
Finally, the general form of the equation of motion for the non-linear system can be expressed in the 
following way: 

( ) ( )ˆ+ + − = + NL
pressureMx Cx K K x F F x     (55) 

with ( ) ˆ
coupleF x = Kx . Finally, the non-linear 15-degree-of-freedom whirl system has the form  

( )+ + = + NL
pressureMx Cx Kx F F x          (56) 

where x , x  and x  are the acceleration, velocity, and displacement response 15-dimensional vectors of 
the degrees-of-freedom, respectively. M  is the mass matrix, C  is the damping matrix and K  is the 
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global stiffness matrix. pressureF  is the vector force due to brake command and NLF  contains 
moreover the quadratic  and cubic  non-linear  terms.  
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9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  

56  
Pressure P/Pmax Hopf bifurcation point 0 maxµ µ  

0.1667 
0.25 

0.3333 
0.4167 

0.5 
0.5833 
0.6667 

0.75 
0.8333 
0.9167 

1 

0.1458 
0.2061 
0.2618 
0.303 

0.3323 
0.3538 
0.3697 
0.3822 
0.3920 

0.4 
0.4067 

 
Table 1 : evolution of the Hopf bifurcation point 0 maxµ µ  for various brake pressures P/Pmax 
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Figure 1 : Computational procedure of the CNLMA 
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Figure 2 : aircraft brake system 
 
 
 

 
 

Figure 3 : evolution of  the real part 
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Figure 4 : evolution of  the imaginary  part for the unstable mode (coalescence of two modes)
 
 
 

 
 

Figure 5 : evolution of  the stable and unstable coupled mode in the complex plane 
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Figure 6 : evolution of  the non-linear vibrations for the complete non-linear system by using 

the 4th order Runge-Kutta algorithm (with 01 1.µ = µ  and P P 0 5max .= ). 
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Figure  7: evolution of  the real part of the unstable mode via the CNLMA procedure (with 
01 1.µ = µ  and P P 0 5max .= ). 

 

 
 

Figure 8 : evolution of  the frequency of the unstable mode via the CNLMA procedure (with 
01 1.µ = µ  and P P 0 5max .= ). 
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Figure 9 : comparison between the stationary periodic apprximate solution via the CNLMA procedure 

and the exact non-linear solution for each degree-of-freedom (with 01 1.µ = µ  and P P 0 5max .= ). 
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Figure 10 : evolution of the real part for the stable-unstable mode versus the pressure and the 
friction coefficient 

 

 
 

Figure 11 : evolution of the imaginary and real part for the stable-unstable mode versus the 
pressure and the friction coefficient in the complexe plane 
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Figure 12 : evolution of the real part for the unstable mode versus the friction coefficient 
(with P P 0 5max .= ). 
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Figure 13 : evolutions of limit cycle amplitudes versus the friction coefficient (with 
P P 0 5max .= ). 
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Figure 14 : evolutions of limit cycle amplitudes versus the brake pressure (with 01 1.µ = µ ) 
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Figure 15 : evolution of the real part for the unstable mode versus the brake presure (with 
01 1.µ = µ ) 

 
 
 

 
 

Figure 16: accordeon deformation due to whirl vibration 
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Figure 17: sprag-slip angle β  induced whirl instability 
 
 
 
 

Figure 18: whirl modeling for an aircraft brake system 
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