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Abstract 

Vibration peaks occurring at rational fractions of the fundamental rotating critical speed, here 
named Local Resonances, facilitate cracked shaft detection during machine shut-down. A modified 
Jeffcott-rotor on journal bearings accounting for gravity effects and oscillating around nontrivial 
equilibrium points is employed. Modal parameter selection allows this linear model to represent 
first mode characteristics of real machines. Orbit evolution and vibration patterns are analyzed 
yielding useful results. For crack detection results indicate that, instead of 1x and 2x components, 
analysis of the remaining local resonances should have priority, this is due to crack-residual 
imbalance interaction and to 2x multiple induced origins. Therefore local resonances and orbital 
evolution around ½, 1/3 and 1/4 of the critical speed are emphasized for various crack-imbalance 
orientations. 
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Résumé  
Les pics de vibration apparaissant au passage des fractions de la vitesse de critique de rotation des 
systèmes tournants, appelées résonances locales, facilitent la détection de fissures sur les machines. 
Dans cette étude, un  modèle de rotor Jeffcott modifié avec une fissure tournante, comportant des 
coussinets et prenant en compte  les effets de pesanteur et de balourd est présenté. Le choix modal 
des paramètres permet de représenter les caractéristiques liées au premier mode des machines 
tournantes usuelles. Les évolutions des vibrations et des orbites du système comportant une fissure 
sont analysées et permettent d’obtenir des résultats utiles pour la détection des fissures sur les 
machines tournantes. Ainsi, ces résultats indiquent que, en plus des composants 1x et 2x, l'analyse 
des autres résonances locales restantes doivent être regardées  avec attention du fait de l’interaction 
possible entre les différentes orientations de la fissure et du  balourd, et des origines multiples 
pouvant engendrer la présence des résonances 2x. Par conséquent les résonances et l’évolution des 
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orbites obtenus autour de ½ , 1/3 et 1/4 de la vitesse critique sont étudiées pour différentes variations 
d’angle entre le balourd et l’orientation de la fissure. 
 
Mots-clés: 
Dynamique des vibrations, dynamique des rotors, détection des fissures, résonance locale, modèle 
de Jeffcott étendu, évolution des orbites. 
 

1. INTRODUCTION 
Personal safety, operating costs and increasing overhaul-time intervals motivate research in cracked 
rotor detection and make structural assessment by monitoring vibration much convenient. Crack 
detection is most feasible during frequency sweeps such as machine shut-down, when several local 
vibration resonances occurring at rational fractions of the fundamental critical speed can indicate 
structural problems. There has been extensive research on the vibration behaviour of crack rotor and 
the use of response characteristics to detect cracks [1-9]. 
In his literature review Gash [3] provided a useful survey on the state of the art in this field. Friswell 
team has work in several interesting topics among which the simplified models for the crack [4] are 
analyzed. Penny and Friswell conclusion has relevance since the simple harmonic crack breathing 
function as proposed by Mayes [2] allows this model to be linear and yet yield similar system 
behavior as an equivalent and more involved nonlinear model. Baschmichdt and Pennacchi [8] have 
carefully studied and developed crack modeling, mostly when affected by thermal effects as it 
occurs in vertical cooling pumps. For the case of a vertical cracked rotor having significant 
gyroscopic effects Yamamoto and Ishida [5] proposed an interesting nonlinear model also capable 
to analyze the crack-imbalance orientation effect in the absence of gravity terms. Although for quite 
different rotor configurations both works, [5] and the present one reach similar results concerning 
the existence of Local Resonances, the masking influence of mass imbalance, and the complex 
system vibration responses. 
In this study, an extended Jeffcott Rotor on lubricated journal bearings having masses and 
imbalances at disc and bearings developed by Gómez-Mancilla [6-7], is used to characterize orbital 
evolution and vibration patterns at the local resonances, including the critical speed. The model here 
used includes gravity and yield periodic responses even in the absence of imbalance excitations. In 
rotors with small gyroscopic effects where the coupling to other shafts is flexible, and a crack is 
located near or at the shaft mid-span, the present simplified model is sufficiently for good 
qualitative description of actual machine vibrating at its first mode. While using Jeffcott-rotor 
models the key relays on proper selecting the modal parameter values, which allows adequate 
representation for real machines. 
The relative orientation angle between residual imbalance and crack and its interaction drastically 
affect the system response making crack detection very difficult. Existence of Local Resonances at 
several rational sub-super and combination harmonics permit good vibration characterization 
reducing the influence of interaction between unknown vectors; i.e., residual imbalance and cracked 
shaft magnitudes and orientations. Certain controversy exists while establishing which component 
is more relevant to damage detection, synchronous 1x or 2x vibration. For practical purposes, crack 
presence significantly affects the synchronous 1x component and renders confusing prognosis due 
to its large dependence on the magnitude and on the relative phase angle existing between the 
unknown residual imbalance and crack vectors. Recall that in real situations crack-imbalance 
magnitudes and relative angle are not known a priori.  Then the authors recommend to focus on the 
all combinations of 1,2,3 super-sub-harmonic components since all of them are capable of inducing 
what we call Local Resonances. For the previous reasons evolution and analysis of orbital shapes 
due to speed sweep with special emphasis on Local Resonances of synchronous, twice and three 
times harmonic are presented.  
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2. EXTENDED JEFFCOTT ROTOR  
In ref. [6] the used mathematical model is introduced with detailed derivation of the equations; and 
its physical configuration is illustrated in Figure 1. The modified Jeffcott-rotor on journal bearings 
here used includes gravity, crack and unbalance; then, for self-contained purposes the mathematical 
equations expressed in dimensionless form and its main characteristics are briefly presented. A total 
of four degrees of freedom, two at the disc Xd , Yd, plus two at both bearing locations Xb, Yb result. 
Bearing differential displacements, the eight rotordynamic coefficients and the corresponding 
bearing equilibrium locus εxo, εyo, are used to express the bearing reaction forces yielding 
oscillations around nontrivial equilibrium points. 
Applying Newton Second Law at the disc location and normalizing each term in accordance to the 
nomenclature and using the coordinate system as figure 1(b) we obtain, 
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In a similar fashion, force balance and normalization at the bearing locations yields, 
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where relevant parameter values are ∆Xb = Xb – εxo;  ∆Yb =Yb - εyo; ∆Xd = Xd – (εxo + Wg); ∆Yd = Yd - 
εyo; ∆K1 =∆Kξ  + ∆Kη ; ∆K2 =∆Kξ – ∆Kη;; Φ = ωt + ϕd + β  =  τ + ϕd + β; Wg = δs/Cr. 
The existence of mass at the disc and at the bearings allows performing several types of useful 
analyses such as, a number of imbalance combinations varying relative magnitudes and angular 
phases at the disc-bearing and with respect to the crack orientation; also by varying α different shaft 
lumped mass distributions can be accounted for. A simple crack breathing phenomenon such as 
discussed by Gash [3], typical in weight dominated systems, is assumed: 
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3. NUMERICAL RESULTS 
A single mid-span crack with medium crack size depth (∆Kξ = 0.10 and ∆Kη = 0.017) 
corresponding to 40% of the shaft diameter is used with Ud = 0.08, corresponding to similar crack-
imbalance interaction. Crack breathing model displaying a squared period, as indicated in Equation 
(5) is employed; yet as previously mentioned by Friswell [4], results are lightly depended on the 
breathing model. The important relative angular orientation existing between the disc imbalance 
vector and the crack ξ-axis, see Figure 1, is varied and computed for various orthogonal directions. 
Rest of the used simulation parameter values are as follows: relative mass at the bearings, α = 0.50, 
corresponding to approximate uniform shaft mass distribution; weight parameters, Wg =2.0, is a 
weight dominant sag; journal bearing to operating critical speed numbers ratios, So= 0.90 
corresponding to relatively flexible shaft-bearing support stiffness ratio. The shaft supported on 
relatively short journal bearings having L/D = 0.5 and corresponding bearing dynamic coefficients 
are employed. 
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In Figure 2, horizontal and vertical vibrating amplitudes at disc and bearings plotted as functions of 
the operating frequency Ω are illustrated for various crack-imbalance vectors orientations. Local 
resonance peaks both, in vertical and horizontal directions show small yet significant differences in 
magnitude, and peak occurs at slightly different speeds; also clear differences between orthogonal 
directions and between disk and bearing locations can be observed. The latter differences can be 
attributed to weight effect and bearing asymmetric characteristics as well as damping existing at the 
bearings. Moreover, a significant variation both on magnitude and phase angle of the response 
occurs due to the relative phase angle between the crack and the imbalance vectors thereby 
impacting on the orbit shapes and its associated evolution. 
As illustrated by Figures 2, crack and residual imbalance (both been unknown vectors) can mask the 
crack’s presence and make traditional detection techniques difficult. Unfortunately such interaction 
mostly affects both, operating speed and twice synchronous frequencies; i.e., 1x and 2x 
respectively. Since the 2x component is also attributed to misalignment and to other symptoms, the 
mere presence of 2x does not unequivocally means a crack. Moreover, depending on the relative 
angle between imbalance and crack vectors φd, mostly 1x component can increase or even decrease 
in magnitude, thereby considerably deform orbit shapes at disc and bearings. 
Moreover, disc and bearing orbit responses at some Local Resonances for four crack-imbalance 
relative orientation angles (φd = 0, π/2, 3π/2, 2π) are presented in Figures 3. In this fashion, two 
important features of the cracked system can be examined, its orbital shapes affected by the φd 
angle, as well as the vibration evolution with the operational frequency sweep for the range 0.3 < Ω 
< 0.6, as illustrated in Figures 4 and 5. Then, the classical orbital internal loop at speed Ω ≈ 0.5 
(mostly due to 2x component) is practically independent of crack-imbalance angular orientation, as 
illustrated in in Figures 3(b) and 3(d). On the other hand this model also produces outside-inside 
loops phenomena and orbital angle evolution of the internal loop around 1/3 and ½ of the first 
resonance, as observed experimentally by by Adewusi and Al-Bedoor [9] (Figures 4 and 5). As 
expected, the synchronous response component is the most influenced by this angular variation. 
Perhaps with the exception of the local resonance around Ω ≈ ½, every other local peak occurring 
within the range 0.45< Ω < 1.20 displays sufficient dissimilar vibration pattern and orbit; see 
overlapped orbits in Figs. 3. However all local resonances outside this frequency range, plus the one 
at Ω ≈ ½, can be properly post-processed and analyzed to reveal the crack presence.  
Therefore crack detection at low frequency (sub-critical speed range) is possible, since for typical 
system parameter values resonance amplitudes at fractions equal/lower than one half the normalized 
critical speed (i.e., 45%), are in general significant. That is, for medium/larger cracks vibration 
magnitudes and orbit shapes at lower resonances are generally large enough to be measured, 
processed and analyzed. In this manner, mid-span crack detection hampering by imbalance-crack 
interaction becomes much less influential.  
 

4. CONCLUSION 
An extended cracked Jeffcott-rotor, which applies well to simple machines flexibly coupled and 
supported on journal bearings where a crack at or near its shaft mid-span exists and having small 
gyroscopic effects, is used. The model has advantages of linear systems, yet the nontrivial 
equilibrium approach yields multi-frequency response which allows characterizing cracked shafts. 
During run up/down several Local Resonance peaks at fractions of the operating normalized critical 
speed occur in cracked shaft machines. Vertical and horizontal responses of the disc and bearings 
orbital evolution around nontrivial equilibrium and Bode plots generated by frequency sweep and 
by orthogonally varying the imbalance orientation for a rotor configuration having similar crack-
imbalance influences are analyzed. It results that orbital evolution around ½ and 1/3 of the first 
resonance can be used to detect rotor cracks, even if the crack-imbalance orientation is unknown. 
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Nomenclature 
Cr: bearing radial clearance 
ki,j (i,j = x,y): bearing stiffness coefficients; ci,j(i,j=x,y) : bearing damping coefficients 
eu = e0 : imbalance mass eccentricity; ϕcos00 eex = ,  0 0ye e sin= ϕ  
ks : integral un-cracked shaft stiffness 
∆kξ, ∆kη : crack stiffness change, directions ξ, η 
md, mb: concentrated mass, disc and bearing, responses 
W : force load on bearing. 
δs = mg/ks : static shaft deflection 
ω = rotor operating speed [rad/s] 
ωc = rigid support critical speed  
ξ, η = rotating coordinates, ξ  crack orientating axis 
α : bearing and disc mass ratio 
Ud : disc mass imbalance ratio magnitude (=eu/Cp) 
Kox,, Koy : compensating equil. bearing stiffness 
∆Kξ : stiffness change along dir. ξ (= ∆kξ/ks) 
∆Kη : stiffness change, orthog. dir. η, (=∆kη/ks ) 
De : external damping (= cd / 2 md ωc) 
So : fixed Sommerfeld number, = S/Ω = DLωcµ / 2πW(R/ Cr)2 with S  bearing Sommerfeld number 

 Wg : gravity sagging parameter (=δs /Cp) with δs = mg/ks: static shaft deflection, sagging parameter 
Wbrg : 2α Wg  force load at brg. locations 
ϕ: angle of imbalance vector w.r.t. x-reference 
β  : relative angle between crack and imbalance 
Φ = ωt + β = τ + β : instantaneous rotating angle 
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Figure 1: Modified Jeffcott-rotor showing crack location; gravity load; imbalance and masses at both, 

disc md, and bearings ends mb; bearing rotor-dynamic coefficients. 
(a) Cracked rotor-bearing system; (b) coordinate system crack and disc imbalance 

 
Figure 1: Jeffcott rotor étendu montrant la position de la fissure, le balourd, les masses au niveau du 

disque et des coussinets et la force de gravité 
(a) Système rotor-coussinet-fissures (b) Coordonnées du systèmes fissuré et du balourd associé 
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Figure 2: Vertical and horizontal  responses of the disc and of the bearing  for various crack-imbalance 
orientation 

( dΦ =  0°: circle, dΦ =  90°: square, dΦ  =  270° : triangle) 
 
 

Figure 2: Responses verticale et horizontale du disque et des coussinets pour différentes valeurs 
d’orientation entre la fissure et le balourd 

( dΦ =  0°:  cercle, dΦ  =  90°: carré, dΦ  =  270° : triangle) 
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(a) (b)

(c) (d)  
 
Figure 3: orbits at some local resonances for various imbalance-crack orientations φd = 0, π/2, 3π/2, 2π. 

(a) trajectory of the disk for Ω=0.33   (b) trajectory of the disk for Ω=0.49 
(c) trajectory of the disk for Ω=0.98   (d) trajectory of the bearing for Ω=0.39 

 
Figure 3: orbites à différentes résonances locales pour des différentes orientations de fissure et balourd 

φd = 0, π/2, 3π/2, 2π. 
(a) trajectoire au niveau du disque pour  Ω=0.33   (b) trajectoire au niveau du disque pour Ω=0.49 

(c) trajectoire au niveau du disque pour Ω=0.98   (d) trajectoire au niveau des coussinets pour Ω=0.39 
 
 



 9

Horizontal Displacement

V
er

tic
al

 D
is

pl
ac

em
en

t
0.3Ω = 0.31Ω = 0.32Ω =

0.33Ω = 0.34Ω = 0.35Ω =

0.36Ω = 0.37Ω = 0.38Ω =

 

Figure 4: Orbital evolutions of the disc around one third of the resonance 
(Crack-imbalance orientation dΦ =270°) 

 
Figure 4: Evolutions des orbites au niveau du disque autour du tiers de la résonance  

(Orientation fissure-balourd dΦ =270°) 
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Figure 5: Orbital evolutions of the disc around half of the resonance  
(Crack-imbalance orientation dΦ =270°) 

 
Figure 5: Evolutions des orbites au niveau du disque autour de la moitié de la résonance  

(Orientation fissure-balourd dΦ =270°) 
 
 
 
 
 


