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ABSTRACT 
The invariant manifold approach is used to explore the dynamics of a nonlinear rotor, by determining 

the nonlinear normal modes, constructing a reduced order model and evaluating its performance in the 
case of response to an initial condition. The procedure to determine the approximation of the invariant 
manifolds is discussed and a strategy to retain the speed dependent effects on the manifolds without 
solving the eigenvalue problem for each spin speed is presented. The performance of the reduced system 
is analysed in function of the spin speed. 
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Nomenclature 
C: damping matrix 
G: gyroscopic matrix 
M: mass matrix 
K: stiffness matrix 
Γ : nonlinear coefficients matrix 
x: generalized coordinates 
α: nonlinearity parameter 
Ω:        spin speed 
aij, bij: coefficients for the approximation of the manifold 
c11, c22: elements of the damping matrix 
g12, g21: elements of the gyroscopic matrix 
m11,m22: elements of the mass matrix 
k11, k22: elements of the stiffness matrix 
u:  modal displacement 
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v:  modal speed 

1 INTRODUCTION 

The increasing need of optimized performance of structural systems enhance the importance of the 
nonlinear effects on their dynamics. To avoid the use of oversized components in obtaining optimal 
functioning of their systems, the designers and analysts began to extend the linear models to incorporate 
some kind of elements to reproduce the nonlinear peculiarities.  

For linear structures the modal analysis technique is one of the most valuable tools and from its 
results the response of one structure may be found by solving ordinary differential equations with 
constant coefficients (Meirovitch, 1996). The key to this technique is to determine the linear 
transformation that takes the problem from one space where the description of the dynamical behavior is 
complex (in the sense where couplings between coordinates demand special care to solve the system of 
differential equations) to another space where the system of differential equations may be readily solved. 
The modal analysis allowed the development of reduction techniques that are very well developed 
nowadays. For rotor-bearing systems, perhaps the most simple and known reduction is the pseudo-modal 
method (Lalanne and Ferraris, 1990). This method of reduction retains the modal base of the system with 
null speed to describe the motions of the system at several spin speeds, and the reduction is achieved by 
retaining the low frequencies modes. Another kind of model reduction is the balanced model reduction 
(Mohiuddin et al, 1998). 

The techniques mentioned above are well suited for linear systems. In rotor-bearing system there are 
many sources of nonlinearities, such as play in bearings, fluid dynamics in journal bearings, contacts 
between rotor and stator, among others  (Yamamoto and Ishida, 2001; Ehrich, 1992; Vance, 1988). These 
phenomena lead to nonlinear differential equations of motion to express the dynamics of the system.  
Several methods are available, such as perturbation methods, harmonic balance methods, normal forms 
and center manifold methods (Nayfeh and Mook, 1979; Nayfeh and Balachandran, 1995; Guckenheimer 
and Holmes, 1986; Hsu, 1983-a;  Hsu, 1983-b; Szemplinska-Stupinicka, 1979-a; Szemplinska-Stupinicka, 
1990-b; Yu, 1998; Jézéquel and Lamarque, 1991; Sinou et al., 2003-a; Sinou et al., 2003-b; Sinou et al., 
2003-c; Sinou et al., 2004; Huseyin, 2002; Raghothama and Narayanan, 1999 ; Cameron and Griffin, 
1989; Nelson and Nataraj, 1989). To try one of the reduction techniques, one approach is to linearize the 
system near to an equilibrium point. Clearly, this approach is valid when the vibrations are sufficiently 
small. In addition, it must be noted that the nonlinearities may lead to coordinate couplings that makes the 
linear modal reduction techniques difficult. Specialized methods for creating reduced models of nonlinear 
systems are available (Steindl and Troger, 2001), where the reduction is done with the aid of nonlinear 
Galerkin method and center manifold reduction. 

The concept of nonlinear normal modes of vibration presents a great potential in system modeling 
and reduction techniques. Rosenberg's work (Rosenberg, 1966; Rosenberg, 1962) is the cornerstone of 
the study of nonlinear normal modes. He defined the nonlinear normal mode for autonomous systems as 
one synchronous motion with fixed relations between generalized coordinates. In recent years, many 
studies explored the notion of nonlinear normal modes and nonlinear natural frequencies (Szemplinska-
Stupinicka, 1979-a; Szemplinska-Stupinicka, 1990-b; Vakakis et al., 1996).  The invariant manifold 
approach (Shaw and Pierre, 1991; Shaw and Pierre, 1993) brings the philosophy of the modal analysis to 
the nonlinear problems. In this approach a nonlinear normal mode is a motion that takes place on an 
invariant manifold that is tangent to the linear modal subspaces at the point of equilibrium. This definition 
leads to a nonlinear transformation that relates physical coordinates to nonlinear modal coordinates. The 
invariant manifold methodology has one aspect that seems to be very promising when searching for 
reduced models, since one nonlinear normal mode is constructed by projecting the other modes over it by 
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means of a nonlinear relationship. These projections contain the nonlinear effects, and the performance of 
the reduced model is adapted to weak nonlinearities in virtue of the power series used to obtain the 
approximation. This approach allowed the incorporation of the nonlinear effects systematically into real 
world structures (Soares and Mazzilli, 2000). 

This paper presents a numerical investigation of a nonlinear rotor-bearing system using the invariant 
manifold based methodology. As the solution of the eigenproblem of a rotor is dependent on the spin 
speed and the cost to search for it is very high when the dynamics of the system is to be known for several 
spin speeds, one strategy is presented to allow the determination of the linear invariant manifolds for 
several spin speeds based only in a few really calculated ones. By this strategy, a reduced model is 
constructed and its performance is evaluated and discussed. 

 

2 THE NONLINEAR NORMAL MODES 
 
Consider a gyroscopic system with the following equation of motion: 

 
( ) =3*Mx + C+ΩG x+Kx+Γx 0  (1)

 
where M is the mass matrix (symmetric), K is the stiffness matrix (symmetric), C is the damping matrix 
(symmetric), G is the gyroscopic matrix (skew symmetric) and x is the vector of generalized coordinates. 
The term 3*Γx  represents a stiffness type nonlinearity, observing that 3* means that the power acts over 
the elements of the vector and Γ  is a diagonal matrix of coefficients. The matrices are given by 
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(2)

 

Equation (1) may be written in the state space as: 
 

1 1

311 11 12
1 1 1 2 1

11 11 11 11

x y
c k gy y x y x
m m m m

=⎧
⎪
⎨ = − − +Ω −⎪⎩

α  (3)

2 2

22 22 21
2 2 2 1

22 22 22

x y
c k gy y x y
m m m

=⎧
⎪
⎨ = − − −Ω⎪⎩

 (4)

 
Then, to apply the invariant manifold approach, the following functions can be defined 
 

( ) 311 11 12
1 1 2 1 2 1 1 2 1

11 11 11 11

, , , c k gf x x y y y x y x
m m m m

= − − +Ω −
α  (5)

( ) 22 22 21
2 1 2 1 2 2 2 1
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, , , c k gf x x y y y x y
m m m

= − − −Ω  (6)
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The first pair of modal displacement and speed is taken as reference. The second mode is written as 
function of the first as a fifth order power series expansion: 
 

1

1

x u
y v
=⎧

⎨ =⎩
 (7)

 
( ) 2 2 3 2 2 3 4

2 2 10 01 20 11 02 30 21 12 03 40

3 1 2 2 3 4 5 4 1 3 2 2 3 4 5
31 22 13 04 50 41 32 23 14 05

,x X u v a u a v a u a uv a v a u a u v a uv a v a u

a u v a u v a uv a v a u a u v a u v a u v a uv a v

= = + + + + + + + + + + +

+ + + + + + + + + + +
 (8)

 
( ) 2 2 3 2 2 3 4

2 2 10 01 20 11 02 30 21 12 03 40

3 1 2 2 3 4 5 4 1 3 2 2 3 4 5
31 22 13 04 50 41 32 23 14 05

,y Y u v b u b v b u b uv b v b u b u v b uv b v b u

b u v b u v b uv b v b u b u v b u v b u v b uv b v

= = + + + + + + + + + + +

+ + + + + + + + + + +
 (9)

 
Equations (8) and (9) are time differentiated to obtain ( )2 , , ,X u v u v  and ( )2 , , ,Y u v u v . Then, the time 

derivatives of u  and v  are obtained with the aid of equations (3) and (5). Finally, the previous results are 
inserted in the equations (4), which gives: 

 
( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( )
2 2 1 2 2

2 2 2 2 1 2 2

, , , , , , , , 0

, , , , , , , , , , , , 0

Y u v X u v f u X u v v Y u v

f u X u v v Y u v Y u v f u X u v v Y u v

− =

− =
 (10)

 
Applying the definitions of the functions involved in the equations, one can obtain a set of 40 

equations (ignoring the terms of order greater than 5) on the coefficients ija  and ijb . These equations may 
be solved by blocks, that is, for each set of coefficients of a given order there is one set of equations that 
is function of the previous order coefficients. For the terms of first order, the equations to be solved are 
represented by the following nonlinear system of equations: 
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 (11)

 
 

The system of equations (11) is nonlinear in the linear coefficients, and its solution is not 
straightforward. For the underdamped system there are two sets of real roots representing the linear 
modes of vibration, and the solutions are denoted by ( )1

10a , ( )1
01a , ( )1

10b , ( )1
01b , ( )2

10a , ( )2
01a , ( )2

10b  and ( )2
01b , where 

the superscript indicates the mode. However, there is an easier way to get the solutions of (10): as the 
linear coefficients are elements of the eigenvectors of the system expressed in other base than the usual, it 
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is possible to determine them by solving the traditional eigenvalue problem and then perform a 
normalization in such a way that they represent the modal planar manifolds. 

After finding the two sets of coefficients for the linear modes, the terms of higher order may be 
calculated by solving a linear system of equations. In the problem considered here, all the second and 
fourth order terms are zero. For the third order terms the linear system consists of an 8×8 coefficient 
matrix with elements that are functions of the first order terms, the physical constants and the spin speed. 
Next the fifth order terms are found by solving a 12×12 linear system that is function of the linear and 
third order terms, the physical constants and the spin speed. The two linear systems can be defined as 
follow  

 
3 4 1 30 01

1 2 21 01

5 1 2 12

3 6 1 03

5 1 2 30

3 7 1 21

5 2 12

3 8 03

0 0 0 0 0
0 0 0 0 0 0
3 2 0 0 0 0 0

0 0 0 3 2 0 0
0 2 2 3 0 0 0 0
0 0 0 0 2 3 0
0 0 1 3 0 0 0 0
0 0 0 0 0 1 0

a b
a a
a
a
b
b
b
b

θ θ θ α
θ θ α
θ θ θ
θ θ θ

θ θ θ
θ θ θ

θ θ
θ θ

−⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢−⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢−
⎢ ⎥ ⎢ ⎥ ⎢−⎢ ⎥ ⎢ ⎥ ⎢=⎢ ⎥ ⎢ ⎥ ⎢−
⎢ ⎥ ⎢ ⎥ ⎢

−⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥ ⎣⎣ ⎦ ⎣ ⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

 

 
 

(12) 

  
  

1 2

3 4 1

5 1 2

3 6 1

5 1 2

3 7 1

5 1 2

3 8 1

5 1 2

3 9 1

5 2

3 10

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

5 2 0 0 0 0 0 0 0 0
0 0 0 0 0 5 2 0 0 0
0 4 2 3 0 0 0 0 0 0 0
0 0 0 0 0 0 4 3 0 0
0 0 3 3 4 0 0 0 0 0 0
0 0 0 0 0 0 0 3 4 0
0 0 0 2 4 5 0 0 0 0 0
0 0 0 0 0 0 0 0 2 5
0 0 0 0 1 5 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

θ θ
θ θ θ

θ θ θ
θ θ θ

θ θ θ
θ θ θ

θ θ θ
θ θ θ

θ θ θ
θ θ θ

θ θ
θ θ

−
−

−
−

−
−

−
−

−
−

12 21 30
21

11

12 21 30
21

11

12 21 21 12 21 21
12

11

50 12
12

41

32

23

14

05

50

41

32

23

14

05

2
2

2
2

g a b
a

m
g a b

b
m

g a b g a b
a

m
a g b

b
a
a
a
a
a
b
b
b
b
b
b

α

α

α

α

Ω
− +

Ω
− +

Ω + Ω
− +

Ω⎡ ⎤ ⎡ ⎤ − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

2
12 30 12 21

11

12 21 12 12 03 30 12 12 21
03

11

12 21 12 12 03 30
03

11

12 21 03 12 03 21 12 12 12

11
2

12 03 21 12 12

11

12 12 03 12 03 12 12 13 02

11

12 0

3 2
3

3 3
3

3 2

4 2

2 3 3

5

b g b
m

g a b g a b g a b
a

m
g b b g b b

b
m

g a b g a b g a b
m

g b b g b
m

g a b g a b g a b
m

g b

α

α

+Ω

Ω + Ω + Ω
− +

Ω + Ω
− +

Ω + Ω + Ω

Ω + Ω

Ω + Ω + Ω

Ω 3 12

11

12 03 03

11
2

12 03

11

3

3

b
m

g a b
m

g b
m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Ω⎢ ⎥
⎢ ⎥
⎢ ⎥

Ω⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥

 

 
 
 
 
 
 
 

(13)
 
 
 
 
 
 

 



 

   6

 
where :  
 

12 10 12 0111
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(14)

  
The linear systems are solved for the two sets of real solutions of (11), giving the nonlinear 

coefficients for each mode. It is interesting to note that when the spin speed is zero all the coefficients of 
equation (8) and equation (9) are zero, which is expected since the system is coupled by the gyroscopic 
matrix. After finding all the constants of the equations (6), they are inserted in the equations (3) to obtain 
the projection of the dynamics of each mode over u and v, described by the following oscillator: 

 

( )
1 1

311 11 12
1 1 1 2 1 1 1

11 11 11

,

u v
c k gv v u Y u v u
m m m

α

=⎧
⎪
⎨ = − − +Ω −⎪⎩

 (15)

 
 

3 STRATEGY FOR GYROSCOPIC SYSTEMS 
 

Generally speaking, the methodology presented starts by finding the planar invariant manifolds 
representing the linear normal modes of the linearized system, and then looking for the nonlinear 
invariant manifolds tangent to the linear ones that accounts for the nonlinearities. 

For a gyroscopic system it may be a problem since the planar invariant manifolds are function of the 
spin speed. It means that one must perform at least a modal analysis for each value of the spin speed and 
then solve the linear systems for the higher-order terms, two systems for each order. Things get worse 
when the number of degrees of freedom of the system grows, because the size of the matrices involved in 
the calculations grows dramatically. One simple strategy to avoid such an enormous numerical effort is to 
find the first order coefficients for relatively few values of the spin speed and approximate the 
relationship between the coefficients and the spin speed by least squares polynomials. This strategy will 
be illustrated by a numerical example in the next section. 

3.1 EXAMPLE  
This example consists of a rotor-bearing system illustrated in Figure 1. The shaft is 0.4m long and its 

diameter is 0.02m. The disk has a diameter of 0.55 m and thickness of 0.05m. They are both made of steel 
with E=2×1011 N/m2 and ρ=7800 kg/m3. The bearings are asymmetric with kxx=5×105 N/m and kzz=2.1 
N/m. The stiffness in the X direction has a cubic nonlinearity associated. The position of the disk and the 
bearing is lD=0.13m and lP=0.27m, respectively. The physical characteristics of the system lead to the 
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following numerical values for the matrices of the equation of motion, obtained by a Rayleigh-Ritz 
procedure (Lalanne and Ferraris, 1990): m11=m22=97.2 kg, k11=1.6×106 N/m, k22=2.8×106 N/m, 
c11=c22=75 Ns/m, g12=g21=54.3 Ns/m and α=1×1010 N/m3. The Campbell's diagram is constructed by 
solving the eigenvalue problem of the corresponding linear system and is shown in Figure 2. From the 
diagram, the first mode is at 18.06 Hz and the second mode is at 36.20 Hz. If the inverse whirl is 
multiplied by three, it will cross the direct whirl curve at approximately 47 Hz, as illustrated in Figure 2. 
This frequency corresponds to an internal resonance. 

In this study the spin speed of the system is allowed to assume any positive value up to 50 Hz. To 
apply the strategy presented in the previous section, the eigenvalue problem is solved for twenty equally 
spaced values of the spin speed to find the first order coefficients, as illustrated in Figure 3. The function 
chosen to interpolate the data presented in the Figure 3 is a  5th degree polynomials. With the interpolated 
values, the third order coefficients are calculated and shown in Figures 4 and 5. From these Figures it can 
be seen that there is a singularity at approximately 47 Hz, the frequency of the internal resonance. A 
result like this is expected since the methodology employed here is not able to deal with systems with 
internal resonance. 

For a spin speed equal to 8Ω =  Hz, the constants of equation (7) are calculated by using the 
previously presented strategy. For an initial condition completely in the first mode, the dynamics of the 
system can be described only by the oscillator corresponding to the first mode, which is represented by: 

 

( )
1 1

1 4 1 10 3
1 1 1 2 1 1 17.7157 10 1.6156 10 2.7793 10 , 1 10

u v

v v u Y u v u−

=⎧⎪
⎨ = − × − × + × − ×⎪⎩

 (15)

 
where the function ( )2 1 1,Y u v  is expressed by the equation (9), with the constant defined previously. After 
integration, equation (8) gives the speed and displacement of the second mode. 

The initial conditions for equation (11) are chosen to be: [ ] 4
1 1 9 10 0

TT

ini
u v −⎡ ⎤= ×⎣ ⎦ . These initial 

conditions are sufficient to show the nonlinear effects. The final time for the time integration is chosen to 
be 0.5s. The results of the simulations for the exact, reduced and linear systems are shown in Figures 6 
and 7; the time integration of equation (15) is named as "reduced system" and is compared with the direct 
integration of the full model (defined by the equations (3) and (4) and named as "exact system"), and with 
the linear system given by the equations (2) and (3) without the nonlinear term and named as "linear 
system”. The initial conditions for the exact model are obtained from the reduced system and equations 
(7) and (8) at time t=0 s. The comparison of the reduced system with the direct integration shows a very 
good agreement. It shows that nonlinear effects are present and are well captured by the reduced model. 
Moreover, Figures 8 and 9  show the modal displacement and speed manifold for the first mode and the 
results of the associated simulations, respectively.  

Then, the same type of simulation was made for 24Ω =  Hz as illustrated in Figures 10-13. In this 
case, the results given by the reduced model are quite good and the effects of the nonlinear terms appear 
to be significant. Finally, simulations are made for 44Ω =  Hz, as illustrated in Figure 14-17. In this last 
case, the nonlinear terms are very important. The modal displacement and speed manifold for the first 
mode is very complex as illustrated in Figures 16 and 17. Although the comparison between the reduced 
and exact systems is not perfect, it may be observed that the reduced system is a first approximation of 
the exact system. Moreover, it shows that the performance of the reduced model near the internal 
resonance is penalized, as the interaction between the modes cannot be captured. 

To investigate the performance of the reduced model over the spin speed range, the correlation 
between the time response of the reduced model and the time response of the full model is calculated and 
shown in the Figure 18. It can be seen that the reduced model has a very good performance up to 42 Hz, 
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where the correlation indicates that the coupling between the first and second modes starts to get 
significant. Moreover, the simulation was carried out for a reduced model constructed with third order 
expansions for the manifolds and the correlation is plotted in Figure 18. It is shown that the third order 
expansion gives almost the same results as that of the fifth order expansion up to 32 Hz and then it drops 
more dramatically than does the fifth order model. The disturbance caused by the internal resonance is 
more remarkable for the third order reduced model. 

 

4 CONCLUSION 
 

The methodology of invariant manifolds for the construction of nonlinear normal modes was 
employed in a rotor system with a nonlinear cubic stiffness in one plane. It allows the uncoupling of 
nonlinear problem as in traditional modal analysis. Unfortunately the manifolds need to be calculated for 
each value of the spin speed, which can be a costly task. To overcome this problem a simple strategy is 
presented. Firstly, the linear modal manifolds for a relatively few spin speeds must be found. Secondly, a 
least squares polynomial which describes the behavior of the linear modal manifolds over the spin speed 
range is adjusted to the points obtained. This description is much more simple to calculate than the 
original one. It was found that the system under study had an internal resonance. Singularities were 
observed in the calculation of higher order terms of the manifolds since the invariant manifold 
methodology employed can not treat this phenomenon. 

The order of the power series expansion for the manifolds is a delicate question. In this study, we 
showed a comparison of the performance of a third order manifold with a fifth order manifold for a given 
initial condition. However, the order of the series expansion has to be increased if the nonlinear effects 
are more pronounced of if the system is vibrating near of a internal resonance. This last working 
condition was explored in the numerical example, where it was shown that the effects of the interaction 
between the first and the second modes are more pronounced in the case of a third order power series 
expansion for the manifolds. 

For systems with a greater number of degrees of freedom, the interpolation strategy used for the first 
order coefficients combined with a methodology which takes into account internal resonances can be very 
interesting. 
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Figure 1 - Rotor with a non-linear bearing 

 
 

 
Figure 2 - Campbell's Diagram and a internal resonance frequency 
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Figure 3- First order coefficients calculated at 20 frequencies 

 
 

 
Figure 4 - The third order coefficients (aij) in function of the spin speed, for the first mode 
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Figure 5 - The third order coefficients (bij) in function of the spin speed, for the first mode 
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Figure 6 - Comparison between the exact, reduced and linear systems at Ω=8  Hz 
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Figure 7 - Comparison between the exact, reduced and linear systems at Ω=8  Hz 

 

 
Figure 8 - Modal speed manifold for the first mode at Ω=8  Hz 
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Figure 9 - Modal speed manifold for the first mode at Ω=8  Hz 
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Figure 10 - Comparison between the exact, reduced and linear systems at Ω=24  Hz 
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Figure 11 - Comparison between the exact, reduced and linear systems Ω=24  Hz 

 
 

 
Figure 12 - Modal speed manifold for the first mode for Ω=24  Hz 
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Figure 13 - Modal speed manifold for the first mode for Ω=24  Hz 
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Figure 14 - Comparison between the exact, reduced and linear systems Ω=44  Hz 
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Figure 15 - Comparison between the exact, reduced and linear systems Ω=24  Hz 

 

 
Figure 16 - Modal speed manifold for the first mode for Ω=44  Hz 

 



 

   18

 
Figure 17 - Modal speed manifold for the first mode for Ω=44  Hz 

 

 
Figure 18 - Correlation between the exact and reduced models in function of the spin speed 

 
 


