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1 Introduction

These notes form the next episode in a series of articles dedicated to a de-
tailed proof of a cohomological index formula for transversally elliptic pseudo-
differential operators and applications. The complete notes will be published
as a monograph. The first two chapters are already available as [I§] and [fLg].
We tried our best in order that each chapter is relatively self-contained, at the
expense of repeating definitions. In this episode, we construct the relative equiv-
ariant Chern character of a morphism of vector bundles, localized by a 1-form A
and we prove a multiplicativity property of this generalized Chern character.

Let us first give motivations for the construction of the “localized Chern
character” of a morphism of vector bundles. Let M be a compact manifold. The
Atiyah-Singer formula for the index of an elliptic pseudo-differential operator P
on M with elliptic symbol o on T M involves integration over the non compact
manifold T*M of the Chern character Che (o) of o multiplied by the Todd class
of T*M:

index(P) = / (2im) = 4mM Ch, (o) Todd(T* M).
M

Here o, the symbol of P, is a morphism of vector bundles on T*M invertible
outside the zero section of T*M and the Chern character Ch.(c) is supported
on a small neighborhood of M embedded in T*M as the zero section. It is
important that the representative of the Chern character Ch.(o) is compactly
supported to perform integration.

Assume that a compact Lie group K acts on M. Let £ be the Lie algebra of
K. If X € ¢, we denote by VX the infinitesimal vector field generated by X.

If the elliptic operator P is K-invariant, then index(P) is a smooth function
on K. The equivariant index of P can be expressed similarly as the integral of
the equivariant Chern character Ch.(c) of o multiplied by the equivariant Todd
class of T*M: for X € € small enough,

index(P)(exp X) = /T *M(2m)* dim M Ch, (o) (X)Todd(T* M) (X).

Here Ch.(0)(X) is a compactly supported closed equivariant differential
form, that is a differential form on T*M depending smoothly of X € ¢, and
closed for the equivariant differential D. The result of the integration deter-
mines a smooth function on a neighborhood of 1 in K and similar formulae can
be given near any point of K.

The motivation for this article is to extend the construction of the com-
pactly supported class Ch.(o) to the case where P is not necessarily elliptic,
but still transversally elliptic relatively to the action of K. An equivariant



pseudo-differential operator P with symbol o(z,£) on T*M is called transver-
sally elliptic, if it is elliptic in the directions transversal to K-orbits. More
precisely, let T7 M be the set of co-vectors that are orthogonal to the K-orbits.
Then o(x,&), when restricted to Tk M, is invertible when £ # 0. In this case,
the operator P has again an index which is a generalized function on K. It is
thus natural to look for a Chern character with coefficients generalized functions
as well. Thus we will construct a closed compactly supported equivariant form
Ch(o,w)(X) with coefficients generalized functions on £ associated to such a
symbol. In the next chapter, we will prove that again

index(c)(exp X) = / (2im)~ 9 M Ch (0, w)(X) Todd(T* M)(X).
T M

As the differential form Ch. (o, w)(X) is compactly supported, the integration
can be performed and in this case the result determines a generalized function
on a neighborhood of 1 in K. Similar formulae can be given near any point of
K.

Here w is the Liouville 1-form on T*M which defines a map f,, : T*M — £*
by the formula

(fu(n), X) = (w(n), VuX)

and T M is precisely the set f1(0). Our construction of the Chern character
Che(o,w) is based on this fact.

Thus given a K-manifold N and a real invariant one form A on N, we consider
the map fy : N — € defined by (f\, X) = (A, VX). Define the “critical set”
C\ by Cy = f;l(O). In other words, the point n € N is in C), if the co-vector
A(n) is orthogonal to the vectors tangent to the orbit K -n. We will associate to
any equivariant morphism of vector bundles ¢ on IV, invertible outside a closed
invariant set F', an equivariant (relative) Chern character Chyei (o, A), with C'—°°-
coefficients, with support on the set C, N F. In particular, if this set is compact,
our equivariant relative Chern character leads to a compactly supported Chern
character Ch¢(o, A) which is supported in a neighborhood of C) N F. Then
we will prove a certain number of functorial properties of the Chern character
Chyei(o, ). One of the most important property is its multiplicativity.

The main ideas of our construction come from two sources:

e We use the construction basically due to Quillen of the equivariant relative
Chern character Chye (o) already explained in [@], 1L9).

e We use a localization argument on the “critical” set f,° 1(0) originated in
Witten [RJ and systematized in Paradan [[[4, [[§]. Indeed, the fundamental
remark inspired by the “non abelian localization formula of Witten” is that

1=0

in equivariant cohomology on the complement of the critical set Cly.

The idea to use the Liouville one-form w to construct a Chern character
for symbols of transversally elliptic operators was already present in the pre-
ceding construction of Berline-Vergne [E] In this work, a Chern character on



T*M was constructed with gaussian look in transverse directions to the K-
action and oscillatory behavior in parallel directions of the K-action. Thus this
Chern character was integrable in the generalized sense. Our new construction
gives directly a (relative) Chern character with compact support equal to the
intersection of the support of the morphism o with the critical set T} M.

Let us now explain in more details the content of this article.

In Section E, we define the equivariant differential D, the equivariant rela-
tive cohomologies H*™ (¢, N, N \ F) with C™ coefficients as well as the relative
cohomology H™°(¢, N, N\ F) with C'~°° coefficients and the product in relative
cohomology ¢ : H™°(¢, N, N\ F;)xH> (¢, N, N\Fy) — H~>°(¢, N, N\(F1NF3)).

In Section E, we start by recalling Quillen’s construction of the relative Chern
character that we studied already in [B], @] Let us consider a K-equivariant
morphism o : €T — £~ between two K-vector bundles over N: the symbol o
is invertible outside a (possibly non-compact) subset ' C N. Following an idea
of Quillen [@], we defined the equivariant relative Chern character Chye(o) as
the class defined by a couple (a, 8(0)) of equivariant forms:

e o :=Ch(ET) — Ch(E7) is a closed equivariant form on N.

e (o) is an equivariant form on N \ F which is constructed with the help
of the invariant super-connections A7 (t) = V+it(c @ c*), t € R. Here V
is an invariant connection on £T @ £~ preserving the grading.

e we have on N \ F, the equality of equivariant forms
(1) alyr = D(B(0)).

In this construction, the equivariant forms X — a(X) and X — ((0)(X)
have a smooth dependance relatively to the parameter X € €. Thus Chye (o)
is an element of the relative cohomology group H> (¢, N, N \ F).

In Subsection , we deform the relative Chern character of o by using as a
further tool of deformation an invariant real 1-form A on N. Using the family
of invariant super-connections

A%At) =V +it(c®o*) +ith, t€R
we construct an equivariant form (o, A) on N \ (F' N Cy) such that

(2) aln\(rnoy) = D(B(o,A)
holds on N \ (F N Cy). There are two kinds of difference between ([]) and ([).

e the subset N\ (F N Cy) contains N \ F so Equation () which holds on
N\ (FNCy) is in some sense “stronger” than Equation () which holds
on N\ F.

e the equivariant form X — ((c, A)(X) has a C~°° dependance relatively to
the parameter X € ¢.



We define the relative Chern character of o deformed by the 1-form A as the
class defined by the couple (o, 3(o,\)) : we denote it by Chyei(o, A). It is an
element of the relative cohomology group H~>°(¢, N, N \ (F N C))).

One case of interest is when F' N C) is a compact subset of N. Using an
invariant function y on N, identically equal to 1 in a neighborhood of F N Cj
and with compact support, the equivariant form

pP(Chyei (o, N)) := xa + dx (o, A)

is equivariantly closed, with compact support on N, and has a C~° dependance
relatively to the parameter X € & its equivariant class is denoted Ch(o, \).

An important case of K-equivariant bundle is the trivial bundle represented
by the trivial symbol [0] : N x C — N x {0}. In this case, we denote the relative
class Chyel([0], A) by Prei(M). The class Prei()) is defined by a couple (1, 8(X))
where B()) is a generalized equivariant form on N \ C) satisfying

1= D(B(A))-

This equation 1 = 0 on N \ Oy, together with explicit description of B()), is the
principle explaining Witten “non abelian localisation theorem”.

In Subsection [] we study the functorial properties of the classes Chyel(a, \)
and Chc(o, ). We prove in particular that these classes behave nicely under
the product. When 01,02 are two equivariant symbols on N, we can take
their product o1 ® o2 which is a symbol on N such that Supp(c; @ 03) =
Supp(c1) N Supp(oz). We prove then that

(3) Chre1(01, )\) < Chrel(O'Q) = Chrel(0'1 ® o9, )\)

We have then a factorized expression for the class Chye (o, A) by taking o1 = [0]
in ({]): we have

(4) Chyei(0, \) = Prei(A) ¢ Chyel (o).

The first class Chyel (o) is supported on Supp(o) while the second class Pyei(A)
(equivalent to 1) is supported on Cj.

When K is a torus, and A the invariant one form associated to a generic
vector field VX via a metric on TM, the set Cy coincide with the set N¥ of
fixed points for the action of the torus K. Then P ()\)(X) can be represented
as a differential form with coefficients boundary values of rational functions of
X € t. In this special case, Equation (@) is strongly related to Segal’s localization
theorem on the fixed point set for equivariant K-theory.

In Subsection @, we study the multiplicativity properties of our Chern
characters when a product of groups acts on N. If A\, u are 1-forms invariant
by K; x K, we define C} to be the critical set of A with respect to K; and
C’ﬁ the critical set of p with respects to Ks. Let o and 7 be two K; X Ko-
equivariant morphisms on N which are invertible respectively on N \ F; and
N \ F». Then the relative Chern character Chl (o, ) is defined as a class

rel

in H=°>°(; x &, N,N \ (Ci N Fy)) while Ch? (7, 1) is defined as a class in



H =2 (81 X £, N, N \ (C7 N F)). As suggested by the notation, an element
in H=°%°(#; x t3, N, N \ F') can be represented as a couple («(X,Y), 5(X,Y))
of differential forms with smooth dependence in Y, and a generalized function
in X. Then we can multiply the classes Chl, (o, A) and Ch? (7, ). One main
theorem, which will be crucial for the functoriality properties of the equivariant

index, is Theorem
Chl, (0, \) o Ch2, (1, 1) = Chyet(o0 © T, A + p).

rel

In Section @, we consider the case where the K-manifold N is the cotangent
bundle T*M of a K-manifold M. Let T} M be the set of co-vectors that are
orthogonal to the K-orbits. If o is invertible outside a closed invariant set
F C T"M, o is a transversally elliptic morphism if FF NT% M is compact. We
work here with the Liouville one form w on T*M. It is easy to see that the set
C,, coincides with T3 M. So, for a transversally elliptic morphism o we define
its Chern class with compact support as the class Ch.(o,w).

We finally compare our construction with the Berline-Vergne construction.

2 Equivariant cohomologies with C~* coefficients

Let N be a manifold, and let A(N) be the algebra of differential forms on N.
We denote by A.(N) the subalgebra of compactly supported differential forms.
We will consider on A(N) and A.(N) the Zs-grading in even or odd differential
forms.

Let K be a compact Lie group with Lie algebra €. We suppose that the man-
ifold N is provided with an action of K. We denote X — V X the corresponding
morphism from £ into the Lie algebra of vectors fields on N: forn € N,

d
Vo X = o exp(—eX) - nfc=o-

Let A>®(¢,N) be the Zs-graded algebra of equivariant smooth functions
a:t — A(N). Its Zs-grading is the grading induced by the exterior degree.
Let D = d — +«(VX) be the equivariant differential: (Da)(X) = d(a(X)) —
t(VX)a(X). Here the operator «(V X) is the contraction of a differential form
by the vector field VX. Let H*> (¢, N) := KerD/ImD be the equivariant coho-
mology algebra with C'*°-coefficients. It is a module over the algebra C> (&)X
of K-invariant C'*°-functions on £.

The sub-algebra A (¢, N) C A (¢, N) of equivariant differential forms with
compact support is defined as follows : o € AS°(¢, N) if there exists a compact
subset K, C N such that the differential form a(X) € A(N) is supported on K,
for any X € t. We denote H2°(€, N) the corresponding algebra of cohomology:
it is a Zs-graded algebra.

Kumar and Vergne [@] have defined generalized equivariant cohomology
spaces obtained by considering equivariant differential forms with C~°° coeffi-
cients. Let us recall the definition.



Let A=°°(¢, N) be the space of generalized equivariant differential forms. An
element a € A7°°(¢, N) is, by definition, a C~*°-equivariant map « : ¢ — A(N).
The value taken by o on a smooth compactly supported density Q(X)dX on ¢
is denoted by [, a(X)Q(X)dX € A(N). We have A>°(¢,N) C A=>°(¢,N) and
we can extend the differential D to A~>°(¢, N) [[2]. We denote by H~=>°(¢, N)
the corresponding cohomology space. Note that A~°°(¢, N) is a module over
A% (€, N) under the wedge product, hence the cohomology space H~°° (¢, N) is
a module over H>™ (¢, N).

The sub-space A_ (¢, N) C A=°°(¢ N) of generalized equivariant differen-
tial forms with compact support is defined as follows : « € A °°(¢, N) if there
exits a compact subset K, C N such that the differential form [, a(X)Q(X)dX €
A(N) is supported on I, for any compactly supported density Q(X)dX. We
denote H_>° (¢, N) the corresponding space of cohomology. The Zs-grading on
A(N) induces a Zy-grading on the cohomology spaces H~°° (¢, N) and H_ > (¢, N).

Let us stress here that a generalized equivariant form a(X,n,dn) on N is
smooth with respect to the variable n € N. Thus we can restrict general-
ized forms to K-equivariant submanifolds of N. However, in general, if G is
a subgroup of K, a K-equivariant generalized form on N do not restrict to a
G-equivariant generalized form.

More generally, if g : M — N is a K-equivariant map from the K-manifold
M to the K-manifold N, then we obtain a map ¢g* : A=°(¢, N) — A~°(¢, M),
which induces a map g* in cohomology. When U is an open invariant subset of
N, we denote by o — «|y the restriction of & € A7°(¢, N) to U.

There is a natural map H*> (¢, N) — H~°°(¢, N). This map is not injective
in general. Let us give a simple example. Let U(1) acting on N = R?\ {0} by
rotations. Let € ~ R be the Lie algebra of U(1). The vector X € €& produces
the infinitesimal vector field VX = X(y8, — x9,) on R%. Denote by % any

generalized function of X € € such that X(%) =1. Let A = Ijz;gg“ Then

D(2N) = (d— L(VX))(%A) =1

Thus the image of 1 is exact in H~>°(¢, V), so that the image of H*> (¢, N) is 0
in H™*°(¢, N).
2.1 Examples of generalized equivariant forms

In this article, equivariant forms with generalized coefficients appear in the
following situation. Let ¢t — n:(X) be a smooth map from R into A (¢, N).
For any ¢ > 0, the integral

Bu(X) = / 7a(X)ds

defines an element of A (¢, N). One may ask if the “limit” of 5;(X) when ¢
goes to infinity exists.



Let X1,..., Xdimx be a base of €. For any v := (v1,...,Vaimk) € NImK,

v
we denote 6;)3(” the differential operator [], (aixi) of degree |v| :== )", v;.

Definition 2.1 For a compact subset IC of € and r € N, we denote || — || the
semi-norm on C*°(¥) defined by ||Q)|

K, = SUPx ek, |v|<r ’%Q(X)

We make the following assumption on 7;(X). For every compact subset
K x K' C £ x N and for any integer r € N, there exists cst > 0 and ' € N such
that the following estimate

(5) | [ne@ax]m < et wer oo
¢ (1+1)"
holds for every function @ € C*°(£) supported in K. Here the norm || — || on the

differential forms on N is defined via the choice of a Riemannian metric on N.

Under estimates (), we can define the equivariant form 3 € A=°°(¢, N) as
the limit of the equivariant forms §; € A (¢, N) when t goes to infinity. More
precisely, for every Q € C2°(t), we have

©) Jscoemax = [~ ( [nxqeoix) .

In fact, in order to insure that the right hand side of (ﬂ) defines a smooth
form on N, we need the following strongest version of the estimate (E) : we have

(7) HD(@)-/Ent(X)Q(X)dXH(n)gcstmrii’)i, nek!, t>0,

for any differential operator D(8) acting on A(N). Under (), the generalized
equivariant form 3(X) := [;° (X )dt satisfies

D(B)(X) = / " D) (Xt

Let us consider the following basic case which appears in [@, @] Let f :
N — " be an equivariant map, and let 14(X) be an equivariant form on N
which depends polynomially on both variables ¢ and X. We consider the family

(X)) = 3 (X) X teR.
Then, for any @ € C°(£), we have
/ (X)X Q(X)dX == % Q(t f)
14

where " is the Fourier transform. Since the Fourier transform of a compactly
supported function is rapidly decreasing, one sees that the estimates (f) and (f)
holds in this case on the open subset {f # 0} : the integral

/ Ye(X) et XD gt
0

defines an equivariant form with generalized coefficients on {f # 0} C N.



2.2 Relative equivariant cohomology : the C™* case

Let I be a closed K-invariant subset of N. We have a restriction operation r :
a +— a|y\p from A7°(¢, N) into A™°°(¢, N'\ F). To an equivariant cohomology
class on N vanishing on N \ F, we associate a relative equivariant cohomology
class. Let us explain the construction : see [E, B] for the non-equivariant case,
and [@] for the equivariant case with C* coefficients. Consider the complex
A7 (¢, N, N \ F) with

A", N, N\ F) = A=°(t, N) & A~®(t, N \ F)

and differential D, (a, 5) = (Da,a|N\F - Dﬁ). Let A (¢, N,N \ F) be the
sub-complex of A7 (¢, N, N \ F) formed by couples of equivariant forms with
smooth coefficients : this sub-complex is stable under D.

Definition 2.2 The cohomology of the complexes (A= (¢, N, N\ F), Dya1) and
(A®({,N,N \ F),D.c) are the relative equivariant cohomology spaces
H=°(,N,N\ F) and H>*(¢, N,N \ F).

The class defined by a D,q-closed element (o, 3) € A=°(¢, N, N \ F) will
be denoted [a, 3].

The complex A™°(¢, N,N \ F) is Zs-graded : for € € Zo, we take
[A=°(e, N,N\ F)|° = [A=°(&,N)]° @ [A=>°(&, N\ F)]"". Since D, sends
[A=°(e, N, N \ F)] into [A=>°(¢, N, N \ F)]"*", the Z,-grading descends to the
relative cohomology spaces H™°(¢, N, N \ F).

We review the basic facts concerning the relative cohomology groups. We
consider now the following maps.

e The projection j : A=°(&,N,N \ F) — A~°(¢,N) is the degree 0 map
defined by j(«, ) = a.

e The inclusion ¢ : A=, N\ F) - A"°(¢,N,N\ F ) is the degree +1
map defined by i(8) = (0, ).

e The restriction 7 : A€, N) — A=, N\ F) is the degree 0 map
defined by r(a) = a|n\ -

It is easy to see that i, 7,7 induce maps in cohomology that we still denote
by ¢, 7, 7.

Lemma 2.3 e We have an exact triangle
H->®(f,N,N\ F)

H=<(e, N\ F) H=(¢, N).




e I[f F C F' are closed K-invariant subsets of N, the restriction map
(o, B) = (a, B|n\p) induces a map

(8) I'F/,FZH_OO(E,N,N\F)HH_OO(E,N,N\F/).

e The inclusion A&, N,N \ F) — A"k N,N \ F) induces a map
H® (¢, N,N \ F) — H~%(t, N,N \ F).

2.3 Product in relative equivariant cohomology

Let Fi and F» be two closed K-invariant subsets of N. In [@], we have define
a product o : H®(¢, N, N \ F}) x H>®(¢, N,N \ F5) — H>(¢, N, N \ (F1 N F3)).
Let us check that this product is still defined when one equivariant form has
generalized coeflicients.

Let Uy ::N\Fl, U, ::N\FQ so that UZ:N\(FlﬂFg) = Uy UUs,. Let
® := (P, P3) be a partition of unity subordinate to the covering U; U Us of U.
By averaging by K, we may suppose that the functions ®j are invariant.

Since ®, € C>(U)X is supported in Uy, the product v +— @7 defines
maps A® (&, U,) — A®(E,U) and A7, Ux) — A", U). Since d®; =
—d®, € A(U)¥ is supported in U; NUs, the product v — d®; A+ defines a map
A_OO(E, Ui N UQ) — A_OO(E, U).

With the help of ®, we define a bilinear map o¢ : A" (&, N, N \ F1) X
A®(, N, N\ F5) - A=, N, N \ (F1 N Fy)) as follows.

Definition 2.4 For an equivariant form ai := (a1,51) € A", N,N \ F1)
with generalized coefficients and an equivariant form as := (a2, f2) € A® (¢, N, N\
F>) with smooth coefficients, we define

ay ¢ az := (a1 A ag, B(a1,a2)) with

Blar,az) = ®161 A ag + (—1)1%ay A Byfy — (=1)111dd; A By A B
Remark that ®181 A as, ay A ®385 and d®; A 81 A [P are well defined
equivariant forms with generalized coefficients on U; U Us. So a1 ¢¢ as €
Aioo(k, N, N \ (F1 N FQ)) Note also that a1 a2 € Aoo(é, N, N\ (Fl n FQ)), if
aq, /1 have smooth coefficients.

A small computation shows that Diei(a; ¢ az2) is equal to (Dyela1) ¢ as +
(=1)letla; 0g (Dyeras). Thus og defines bilinear maps

(9) H™®(&,N,N\ F) x H®(t,N,N \ F3) 2% H~®(¢, N, N\ (F\ N F)),
and
(10)  H®(@E,N,N\ F) x H®(&, N, N\ Fy) =% H®(E, N, N\ (F, N F)).

Let us see that this product do not depend of the choice of the partition of
unity. If we have another partition ® = (@}, ®}), then &1 — &) = — (Do — P)).
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It is immediate to verify that, if Dye(a1) = 0 and Dyei(a2) = 0, one has aq ¢¢
az — a1 0¢ az = Dyer (0, (—1)!421(@) — )31 A Ba).
So the products (f)) and ([[() will be denoted by o.

Lemma 2.5 e The relative product is compatible with restrictions: if Fy C F}
and F» C Fj are closed invariant subsets of N, then the diagram
(11)

H°(E,N,N\ F) x H2EN,N\F) = H NN\ (FNE)

H(e,N,N\F]) x HN N\F) -2 H-@N,N\ (F NF)

is commutative. Here the r; are the restrictions maps defined in (B)

o The relative product is associative. More precisely, let Fy, Fy, F3 be three
closed invariant subsets of N and take F' = Fy N Fy N F3. For any relative
classes a; € H™(¢, N, N\ F1) and a; € H*(¢, N, N\ F}) fori = 2,3, we have
(a1 <>a2)<>a3 = a1<>((I2<>a3) m H_OO(E,N,N\F>

Proof. The proof is identical to the one done in Section 3.3 of [[L]].

2.4 Inverse limit of equivariant cohomology with support
Let U be an invariant open subset of N.

Definition 2.6 A generalized equivariant form o on N belongs to A;” (¢, N)
if there exists a closed invariant subset C,, C U such that the differential form
fé a(X)Q(X)dX is supported in C,, for any compactly supported density Q(X)dX
on t.

Note that the vector space A (€, V) is naturally a module over A* (¢, N).
An element of A;;* (¢, N) will be called an equivariant form with support in U.
Let AP (8, V) be the intersection of A, (¢, N) with A*(¢,N) : o € AP (¢, N)
if there exist a closed set C, C U such that «(X)|, = 0 for all X € £ and all
neU\C,.

The spaces Ag (¢, N) and A, (¢, N) are stable under the differential D,
and we denote HP (¢, N) and H;,°° (¢, N) the corresponding cohomology spaces:
both are modules over H> (¢, N).

Let U,V be two invariants open subsets of N. The wedge product gives a
natural bilinear map

(12) H5 (8, N) x Hs2 (6, N) =5 H;2, (8, N)
of H> (¢, N)-modules.

Let F' be a closed K-invariant subset of N. We consider the set Fr of
all open invariant neighborhoods U of F which is ordered by the relation
U< Vifandonlyif V C U. If U <V, we have then the inclusion maps
AP (e, N) — A (&, N) and A, (¢, N) — A, (¢, N) which gives rise to the
maps H (6, N) — HP (¢, N) and H, (¢, N) — H;°° (¢, N) both denoted fy,v .
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Definition 2.7 e We denote by H (¢, N) the inverse limit of the inverse sys-
tem (HgP (¢, N), fuv; U,V € Fr).

o We denote by Hp> (¢, N) be the inverse limit of the inverse system
(M5 (e, N), fu; U,V € Fr).

We will call H (¢, N) and Hz" (¢, N) the equivariant cohomology of N
supported on F (with smooth or generalized coefficients) : both are module
over H* (¢, N).

Let us give the following basic properties of the equivariant cohomology
spaces with support.

Lemma 2.8 ¢ H.*(¢,N) = {0} if F = 0.

e There is a natural map HF (8, N) — Hz (¢, N).

o There is a natural map Hp"" (¢, N) — H~>°(¢,N). If F is compact, this
map factors through Hp" (¢, N) — H_ (¢, N).

o If F C F' are closed K -invariant subsets, there is a restriction morphism

(13) v/F D HE® (6, N) — Ha (8, N).

o If F1 and F5 are two closed K -invariant subsets of N, the wedge product
of forms defines a natural product

(14) HE (6, N) x HE (6, N) = Hp2p (8, N).

o If 1 C F| and Fy C F} are closed K-invariant subsets, then the diagram

(15)  HE (¢ N) x BEN) " HpSn (6 N)
H;li’o(E,N) X %OQ,(E,N)—A> H;f;FZ,(E,N)

is commutative. Here the r' are the restriction morphisms defined in @)

Proof. The proof of these properties are left to the reader. Note that the
product ([[4) follows from ([[g).

2.5 Morphism p;: H &, N,N\ F) — H.~7(¢,N)

Now we define a natural map from H=°°(¢, N, N \ F) into Hz*(¢, N).

Let 8 € A=®°(,N \ F). If x is a K-invariant function on N which is
identically 1 on a neighborhood of F, note that dx( defines an equivariant form
on N, since dy is equal to 0 in a neighborhood of F'.

Proposition 2.9 For any open invariant neighborhood U of F, we choose x €
C®(N)E with support in U and equal to 1 in a neighborhood of F.

12



e The map

(16) pX (o, B) = xao + dxf3

defines a homomorphism of complexes pX : A&, N, N\ F) — A, (¢, N).

In consequence, let « € A=°(¢, N) be a closed equivariant form and €
AT, N \ F) such that a|y\p = Df, then pX(«a, ) is a closed equivariant
form supported in U.

e The cohomology class of pX(a, 3) in H;;* (¢, N) does not depend of x. We
denote this class by py(a, 3) € H> (¢, N).

e For any neighborhoods V. C U of F', we have fyyv opy = py-

Proof. The proof is similar to the proof of Proposition 2.3 in @] We repeat
the main arguments. The equation pX o D, = D o pX is immediate to check.
In particular pX(«, 8) is closed, if Do (o, 3) = 0. For two different choices x
and \/, we have pX(a, 3) — pX (o, ) = D ((x — x')B). Since x — ' = 0 in a
neighborhood of F', the equivariant form (x —x’)5 is well defined on N and with
support in U. This proves the second point. Finally, the last point is immediate,
since py (o, B) = py (a, B) = pX(a, B) for x € C>*(N)X with support in V C U.

Definition 2.10 Let a € A (¢, N) be a closed equivariant form and
B e A=, N\F) such that a|y\p = D3. We denote by pp(c, 5) € Hp™ (¢, N)
the element defined by the sequence py (e, 5) € Hy™ (8, N), U € Fr. We have
then a morphism

(17) pp i H™(6, N, N\ F) — Hz>® (&, N).

We will say that the element py(a, 3) € H;> (¢, N) is the U-component of
pF(aa 6)

In [@], we made the same construction for the equivariant forms with smooth
coefficients: for any closed invariant subset F' we have a morphism

(18) pr:H®(E,N,N\F)— HFEN).
The following proposition summarizes the functorial properties of p.

Proposition 2.11 e If FF C F' are closed invariant subsets of N, then the
diagram

Pr

(19) H>°(,N,N\ F) HE> (8, N)

Pr/

H=(6, N, N\ F') = M52 (e, N)
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is commutative. Here r1 and v are the restriction morphisms (see (E) and

(B

o If F1, Fy are closed invariant subsets of N, then the diagram
(20)

H(,N,N\F1) x HXENN\F) ——= HEN,N\(FNF))

\Lppl l/PFZ \LpFlmFZ
A

Hp (8, N) X HE (8, N) Henr, (& N)

15 commutative.

Proof. The proof is entirely similar to the proof of Proposition 3.16 in [E]
where one considers the case of smooth coefficients.

If we take F/ = N in ([Ld), we see that the map pp : H~°(&, N,N \ F) —
HZ> (8, N) factors the natural map H=°(¢, N, N\ F) — H~>°(¢,N).

If F' is compact, we can choose a function y with compact support and
identically equal to 1 in a neighborhood of F'.

Definition 2.12 Let F' be a compact K-invariant subset of N. Choose x €
C®(N)E with compact support and equal to 1 in a neighborhood of F. Let
a e A (¢ N) be a closed equivariant form and 3 € A=°(¢, N \ F) such that
aly\p = DB. We denote by p.(o, 3) € HZ(¢,N) the class of pX(a, ) =
xa +dxB in H;>°(¢, N). We have then a morphism

(21) P H E,N,N\F)— H_>(tN).

3 The relative Chern character: the C~°° case

Let N be a manifold equipped with an action of a compact Lie group K. Let
£ = £T ® £~ be an equivariant Zs-graded complex vector bundle on N. We
recall the construction of the equivariant Chern character of £ that uses Quillen’s
notion of super-connection (see [f).

We denote by A(N,End(€)) the algebra of End(&)-valued differential forms
on N. Taking in account the Zs-grading of End(£), the algebra A(N,End(&))
is a Zo-graded algebra. The super-trace on End(€) extends to a map Str :
A(N,End(€)) — A(N).

Let A be a K-invariant super-connection on &£, and F = A? its curvature,
an element of A(N,End(€))". Recall that, for X € €, the moment of A is the
equivariant map p® : € — A(N,End(€))T defined by the relation p*(X) =
L(X) - [t(VX),A]. We define the equivariant curvature of A by

(22) F(X)=A?+,4X), Xet
We usually denote simply by F the equivariant curvature, keeping in mind

that in the equivariant case, F is a function from ¢ to A(N,End(£))*.
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Definition 3.1 The equivariant Chern character of (€,A) is the equivariant
differential form on N defined by Ch(A) = Str(eF) (e.g. Ch(A)(X) = Str(eF(X))).

The form Ch(A) is equivariantly closed. We will use the following transgression
formulas (see [[], chapter 7, [Ld]).

Proposition 3.2 e Let Ay, fort € R, be a one-parameter family of K -invariant
super-connections on £, and let LA, € A(N,End(€))~. Let Fy be the equivari-
ant curvature of A;. Then one has

d d
2 = Ch(A) = D (Str (A e™ ) ).
(28) i Clla) = D (st ((Goe
o Let A(s,t) be a two-parameter family of K-invariant super-connections.
Here s,t € R. We denote by F(s,t) the equivariant curvature of A(s,t). Then:

g (L Fen ) - g (4 F(s,)
o Str ((th(s,t)) e ) g Str ((dSA(s, t))e )

= ([ str (LA, (L s, )70 Yo
0 ds ’ dt ’ )

In particular, the cohomology class defined by Ch(A) in H*> (¢, N) is inde-
pendent of the choice of the invariant super-connection A on £. By definition,
this is the equivariant Chern character Ch(&) of €. By choosing A = VT &V~
where V¥ are connections on £, this class is just Ch(£1) — Ch(£7). However,
different choices of A define very different looking representatives of Ch(E).

3.1 The relative Chern character of a morphism

Let £ = £ET @ £~ be an equivariant Zo-graded complex vector bundle on N and
o :EY — £~ be a smooth morphism which commutes with the action of K. At
each point n € N, o(n) : & — & is a linear map. The support of o is the
K-invariant closed subset

Supp(c) = {n € N | o(n) is not invertible}.

Let us recall the construction carried in [@] of the relative cohomology
class Chye(o) in H*(8, N, N \ Supp(c)). The definition will involve several
choices. We choose invariant Hermitianstructures on £+ and an invariant super-
connection A on £ without 0 exterior degree term.

Introduce the odd Hermitian endomorphism of £ defined by

(24) vg:<2 "0)

oc'c 0
0 oo
& which is positive definite on N \ Supp(o).

Then v2 = (

. ) is a non negative even Hermitian endomorphism of

15



Consider the family of invariant super-connections A% (t) = A +itv,, t € R
on €. The equivariant curvature of A?(¢) is thus the map

(25) F(o, A 1)(X) = —t202 +it[A, v,] + A% + 12 (X).

Consider the equivariant closed form Ch(o, A, ¢)(X) := Str (eF(‘T’A’t)(X))
with the transgression form

(26) (o, A, t)(X) := — Str (wa eF<0aAat><X>) :
In [@], we prove the following basic fact.

Proposition 3.3 The differential forms Ch(o, A, t)(X) and n(o, A, t)(X) (and
all their partial derivatives) tends to 0 exponentially fast when t — oo uniformly
on compact subsets of (N \ Supp(c)) x &.

As v, = LA7(t), we have 4 Ch(o, A, t) = —D(n(o,A,t)). After integra-
tion, it gives the following equality of equivariant differential forms on N

(27) Ch(A) — Ch(o, A,¢) = D ( /0 Cn(o A, s)ds) ,

since Ch(A) = Ch(o, A,0). Proposition allows us to take the limit ¢ — oo
in (R7) on the open subset N \ Supp(c). We get the following important lemma
(see R0, [l for the non-equivariant case).

Lemma 3.4 We can define on N \ Supp(o) the equivariant differential form
with smooth coefficients

(28) B(o,A)(X) = /OOO n(o, A t)(X)dt, X et
We have Ch(A)|y\Supp(s) = D (B(0, A)).

We are in the situation of Subsection . The closed equivariant form
Ch(A) on N and the equivariant form (o, A) on N \ Supp(c) define an even
relative cohomology class [Ch(A), B(c, A)] in H*> (&, N, N \ Supp(c)). We have
the following

Proposition 3.5 ([LY]) e The class [Ch(A), 3(c,A)] € H>(¢, N, N \ Supp(c))
does not depend of the choice of A, nor on the invariant Hermitian structure on
E. We denote it by Chye(0).

o Let F be an invariant closed subset of N. For s € [0,1], let 05 : ET — £~
be a family of equivariant smooth morphisms such that Supp(cs) C F. Then all
classes Chyel(0s) coincide in H®(¢, N, N \ F).
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3.2 The relative Chern character deformed by a one-form

If we allow equivariant cohomology with C'~° coefficients, we can restrict fur-
ther the support of the equivariant Chern character of a bundle by modifying
the term of exterior degree 1 of the super-connection. We use an idea originally
due to Witten [3] and systematized in Paradan [14, [Lg], see also 2. The idea
is to use as further tool of deformation a K-invariant real-valued one-form A
on N, or equivalently a K-invariant vector field on N. This tool was also used
earlier in K-theory by Atiyah-Segal and Atiyah-Singer for deforming the zero
section of T*M (see [B, ).

We will need some definitions. Let N be a K-manifold. Let A be a K-
invariant real-valued one-form on N. At each point n € N, A(n) € T, N.

Definition 3.6 The one-form A defines an equivariant map

(29) N -

by (fa(n), X) = (A(n), Vo X).

Definition 3.7 e We define the invariant closed subset of N:
Cy={fn=0}.

e For any K -equivariant smooth morphism o : ET — £~ on N, we define
the invariant closed subset

Cx,c = Cx N Supp(o).
In Section , we have associated to a K-equivariant smooth morphism

o : ET — £ the relative class Chye(0) € H™(¢, N, N \ Supp(c)). Here we
consider the cohomology space H~>°(¢, N, N \ C) ). We have the diagram

H=>(,N,N\Chs)

e

H>(¢, N, N \ Supp(0)) H~>°(¢, N, N \ Supp(0)).

€

where r is the restriction morphism, and e is the morphism of extension of
coefficients.

The goal of this section is to construct a class Chy(o,A\) €
H=°(¢, N, N \ C) ) which is equal to Chyel(o) in H™°(8, N, N \ Supp(0)).

We choose K-invariant Hermitian structures on £* and a K-invariant super-
connection A on £ without 0 exterior degree term. Now we will modify A by
introducing a 0 exterior degree term and we will also modify its term of
exterior degree 1.
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Introduce the odd Hermitian endomorphism of £ defined by

A oF
(U \ )—)\Idg—i—va.

To simplify notations, we may write A instead of AIdg. We consider the
family of invariant super-connections

A°Mt)=A+it(A\+v,), teER.

The equivariant curvature of A% (¢) is F(o, \, A, t) = F(o,A,t) + it D\, where
F(o,A,t) is the equivariant curvature of A?(¢). More explicitly,

F(o, M\ A 1)(X) = —t202 —it{fr, X) + p™(X) +it[A, v,] + A% + itd .

In particular, the term of 0 exterior degree of F(o, A\, A, t)(X) is the section
of End(€) given by —t%v2 — it(fy, X) + ,u/[%] (X). We are interested by the
equivariant differential form

Ch(o, A, A, t) := Ch(ATA(t)) = Str (eFWv*Aa”) .
Then Ch(c, A\, A, t) = P> Ch(c, A, t) and the transgression forms are:
0o\ A (X) = —Str (i(vg ) eF(U”\’A’t)(X))

_ itDA(X) gy (i(vg ) eF(a,A,t)(X)) _

We repeat the argument of Section @ The relation % Ch(o, \,At) =
—D(n(o, A\, A,t)) gives after integration the following equality of equivariant
differential forms on NV

(30) Ch(A) — Ch(o, A\, A,t) = D </Ot n(o, M\ A, s)ds> .

Now, we will show that we can take the limit of (B) when ¢ goes to co on
the open subset N \ Cj o

In the following proposition, h?(n) > 0 denotes the smallest eigenvalue of
v2(n). We choose a metric on the tangent bundle to N. Thus we obtain a norm

| = || on AT N ® End(&,,) which varies smoothly with n € N.

Proposition 3.8 Let K1 x Ky be a compact subset of N x £. Let r be any
positive integer. There exists a constant cst (depending of K1, K2, and r) such
that for any smooth function @ on € supported in Ko we have

14¢ dim N _ 2
(1+1) — [|Qllxcs 2r €M

o | o000 quxan] o <o

forallt >0 and n € K.
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Proof. We use the first estimate of Proposition @ of the Appendix to
estimate the integral

/e—it(fA,X) e—tQR(n)-l—S(n,X)-l-T(t,n) Q(X)dX
¢

with R(n) = v2(n), S(n,X) = p*(n)(X), T(t,n) = it[A,v,|(n) + itd\(n) +
A2(n). We obtain the estimate (BI) on K.

The estimate (BI]) on the open subset
N\Crs={ne N | hs(n)>0or|fr(n)|| >0}
gives the following

Corollary 3.9 e For a function @ € C*(¥) with compact support, the element
of A(N,End(€))* defined by Io(t) := [, e¥@M40X) Q(X)dX tends rapidly to
0 when t — oo, when restricted to the open subset N \ C o .

e The integral [;° Io(t)dt defines a smooth form on N\ Cx, with values in
End(&).

o The equivariant Chern form Ch(o, A, A,t), when restricted to N \ Cy o, tends
to 0 as t goes to oo in the space A= (&, N\ C ).

e The family of smooth equivariant forms, Jp = fOT n(o, A\, A, t)dt, when re-
stricted to N \ Ch,, admits a limit in A=, N\ Cx ) as T goes to infinity.

Proof. We consider the estimates (BI) when the compact subset K; is
included in N \ Cy,. We can choose ¢ > 0 such that either h,(n) > ¢ or
| £r(n)[|? > ¢, for n € K1. Then (B) gives for t > 0 and n € Ky :

(32) H IQ(t)H(n) < est]|Qllxea.zr (1 + £)3™ N sup (m, et )

Since r can be chosen large enough, ) proves the first point: the integral
fooo Zg(t)dt converge on N \ Cy . We have to check that it defines a smooth
form with values in End(€). If D(9,) is any differential operator acting on
A(N,End(€)), we have to show that, outside C ,, the element of A(N, End(£))
defined by I3 (t) := [, D(9y) - eF@MADE) Q(X)dX tends rapidly to 0 when
t — oo. This fact follows from the estimate (BJ) of Proposition f.6. Then
Jo” Zq(t)dt is smooth and we have D(8,,) - [, Zo(t)dt = [;° Z5(¢).

Since we have the relations [, Ch(o, A\, A, )(X)Q(X)dX = Str(Zy(t)) and
[,30(X)Q(X)dX = —iStr ((UU + 0 fF IQ(t)dt), the last points follow from
the first one.

Remark 3.10 The estimate @) still holds when @Q is a smooth map from ¢
into A(N) (or A(N,End(€))). See Remark ..
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We can then define on N \ C) , the equivariant differential odd form with
C'~°° coefficients

(33) B(o, A, A) = /0 h n(o, A\, A, t)dt.

If we take the limit of (BJ) when ¢ goes to oo on the open subset N\ Cy ,, we
get

(34) Ch(A)lme,., =D (Blo, A A))  in AT, N\ Chp).
Theorem 3.11 e The class
[Ch(A), B(g, \,A)] € HT*°(¢, N,N \ C) )

does not depend of the choice of A, nor on the invariant Hermitian structure on

E. We denote it by Chyel(o, A).

e Let F be a closed K-invariant subset of N. For s € [0,1], let o5 : E¥ — £~
be a family of smooth K -equivariant morphisms and As a family of K-invariant
one-forms such that Cx_,, C F. Then all classes Chyel(os, \s) coincide in
H->°(,N,N\F).

Proof. Let us prove the first point. Let Ag,s € [0,1], be a smooth
one-parameter family of invariant super-connections on £ without 0 exterior
degree terms. Let A(s,t) = A, + it(v, + A). Thus LA(s,t) = LA, and
4 A(s,t) = i(vy + A). Let F(s,t) be the equivariant curvature of A(s,t). We
have

d d

L Ch(A,) = D(v,), with ~, = (—As F<570>).
35 L Ch(A) = D). with % =St ((a,)e
We have (o, \, Ay, t) = — Str(i(vy + \) ¥ ). We apply the double transgres-
sion formula of Proposition @, and we obtain

(36) (00 Ay, 1) = —% Str (42470 ) — D(u(s,1))

4
ds " ds

with v(s,t)(X) = fOl i Str ((%AQ e“F(S’t)(X)(Ua + ) e(l—u)F(s,t)(X)) du.
Let Q(X) be a smooth and compactly supported function on €. We consider
the element of A(N,End(£)) defined by

d
Io(u,s,t) = /Ei(EAs)e“F(S’t)(X)(Ua 4 )\)e(lfu)F(s,t)(X) Q(X)dX,

where u, s € [0,1] and ¢ > 0. Now

F(s,t)(X) = —it{fr, X) — t202 + p* (X) + A2 + t[As, v,] + itd\.
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If we write R = v2, S(X) = p#(X) and T(t) = A2 + t[As, v,] + itd), our
integral Ig(u, s,t) is equal to

/iefzﬁfhx)(iA))eu(ftzRJrS(X)JrT(t))(,U 1) eI (PRESCORTW) (X)X
ds S (e M
4

We apply Proposition @ of the Appendix. Let K X 3 be a compact subset
of N x t. Let r be any integer. There exists a constant cst > 0, such that: for
any @ € C*(¢) which is supported in K3, we have

(14 ¢)dimN o t2ho(n)
(L + 2| fa(n)]?)"

HIQ(u, s,t)H (n) < cst]|Qllxcs,2r

for all n € Ky, ¢t >0, and (u, s) € [0,1]%
If the compact subset K5 is included in N \ C} ,, we can choose ¢ > 0 such
that either h,(n) > c or || fa(n)||> > ¢, for n € K1. Then we have

HIQ(U, s, t)H(n) < est||Qllxcs2r (1 4+ 1)H™ N sup (m, e ),
for n € K1, t >0, and (u, s) € [0,1]2.

Since r can be chosen large enough, we have proved that Ig(u,s,t) €
A(N,End(€)), when restricted to the open subset N\ C) , is rapidly decreasing
in ¢ (uniformly in (u, s) € [0,1]?). Thanks to Proposition @ of the Appendix,
the same holds for any partial derivative D(0,)Ig(u,s,t). Since

/Py(s,t)(X)Q(X)dX = Str (/01 IQ(u,s,t)du),

the integral e, = [ v(s, t)dt defines for any s € [0, 1] a generalized equivariant
differential form on N \ Cj ;.

So, on the open subset N \ Cy ,, we can integrate (B6) in ¢ from 0 to co: we
get

(1) 30N Ag) =7~ Dles).

If we put together (BF) and (B7), we obtain

2 (Ch(A,). BN A)) = (D)7, — Dies))
= Drel(’)’saes)-

We have proved that the class [Ch(A), B(o, A\, A)] € H™>°(¢, N, N \ C» ) does
not depend of s.

We now prove the second point. We consider the invariant super-connection
A(s,t) = it(vy, +Xs)+A. Thus LA(s,t) = it (v, +)s) and LA(s,t) = i(ve, +
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As). Let F(s,t) be the curvature of A(s,t). Let n(os, A, t) = — Str((%A(s, t)) eF sy,
By the double transgression formula,

(38) (00 e A1) = —% Str (i (v, + A0)) P ) = Dl(s,)

4
ds " ds

where the equivariant form v(s,t)(X) is given by

1
d ,
v(s, t)(X) = /O Str ((i%(vgg + Xs)) e FEDE) (44, +i>\s)e(1_“)F(s’t)(x)) du.

We use again Proposition @ of the Appendix, and we see that for any test
function Q(X), the integral [, v(s,t)(X)Q(X)dX is rapidly decreasing in ¢ on
N\ F. Then the integral e;(X) = fooo v(s,t)(X)dt defines for any s € [0,1] a
generalized equivariant differential form on N \ F.

So, on the open subset N \ F', we can integrate (Bg) in ¢ from 0 to oco. This
gives the relation %5(05, As, A) = —D(es) and then

4
ds

The class of (Ch(A), 3(cs, As,A)) does not depend of s.
With a similar proof, we see that it does not depend on the choice of invariant
Hermitianstructure on .

(Ch(A)a B(Us; )‘Sa A)) = Drel (0, 65) .

In particular, we obtain the following corollary.

Corollary 3.12 e The classes Chyei(0,A) € H™° (¢, N, N\C) ») and Chyei(0) €
H> (€, N, N \ Supp(c)) are equal in H=°°(¢, N, N \ Supp(o)).
o Let 0 be a K-invariant morphism. Let Ag and A1 be two K-invariant one-
forms such that Ao(n) = A1 (n) for any n € Supp(c). Then Cyyo = Cry,0 = F
and

Chrel(av )\0) = Chrel(av )\1) in Hioo(kv Nv N \ F)
e Let \ be a K-invariant one-form. Let g : ET — &~ and oy : ET — E~ be

two K -invariant morphisms such that og(n) = o1(n) for any n € Cx. Then
C)\,go = C)\,gl =F and

Chyel(0g, A) = Chyei(o1,A) in H™°(¢, N, N \ F).

Proof. Indeed, for the first point, we consider the family A; = sA. It is
obvious that Chyei(o,0) = Chyei(o) in H™°°(¢, N, N \ Supp(c)). For the second
point, we consider the family A\; = sA\g + (1 — s)A;. For the third point, we
consider the family o, = sog + (1 — s)o1, and we employ Proposition .
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3.3 The trivial bundle and the “non abelian localization
theorem”

A particularly important case is the zero morphism [0] between the vector bun-
dles ET = N xCand £~ = N x {0} : £T is equipped with the connection d,
then the invariant real one-form A allows us to deform d in d + itA.

Then c(t,\) = e is the corresponding Chern character, with transgres-
sion form n(t, \) = i)\ ePA . Outside C\ [0 = Cx, we can define the generalized
equivariant form S(A) = —i [ e*PA dt. The following formula, a particular
case of Formula (@) is the principle of the Witten localization formula [23].

Theorem 3.13 (Non abelian localization theorem) We have
1= D(B(N)

outside C'y.

Morally, we have 3(\) = 35, so that D(3(\)) = 83 = 1.

Definition 3.14 The class defined by (1, 3(\)) in H=>°(¢, N, N\ C)) is denoted

>

Prel()\)-
Let us rewrite Theorem in this particular case.

Theorem 3.15 Let F be a closed K-invariant subset of N. For s € [0,1], let
As be a family of K-invariant one-forms such that Cx, C F. Then all classes
Prei(As) coincide in H=>°(¢, N, N\ F).

Let us give some very simple examples.

e Let N := R? with coordinates (z,y). The circle group S* acts by rotations.
We identify its Lie algebra Lie(S!) with R. The element X € Lie(S!) produces
the vector field VX = X (y9, — xz9y). Let A = xdy — ydx. Then Cy = {(0,0)}.
We have DA(X) = 2dz A dy + X (22 + y?). Thus

BAN(X) = szf oit(X (2% +y?)+2dzndy) jp
CEd dz ol
- gJ,»:Z fo X dt

The generalized function X — —i [~ e"¥ dt is equal to the boundary value,
denoted by ﬁ, of the function 1/z. We obtain

1 zdy —ydr
"X 400 22+ 92

Prel()\) =

in H—°°(Lie(S1), R, R? \ {(0,0)}).

o Let N := T*S! = S! x R. The circle group S* acts freely by rotations on
St If (%, ¢) is a point of T*S! with & € R, the Liouville 1-form is \ := —¢&d.
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The element X € Lie(S') produces the vector field VX = —Xdy. The critical
set C is S1 embedded in T*S! as the zero section. We have DA(X) = dfd¢ —
X¢. Thus
ﬁ()\)(X) = —i\ fOOO eit(—Xﬁ-{-dG/\df) dt
= i&df [, e "X dt

We obtain Pya(\) = [1, B(\)] in H~>°(Lie(S1), T*S', T*S' \ S) with

BON(X) = Xiioda if € >0,
1

BX) = 50 if ¢ <0.

3.4 Tensor product

Let &1, &, be two equivariant Zs-graded vector bundles on N. The space £ ® &
is a Zs-graded vector bundle with even part £ ® & ® & ® & and odd part
Ef @ &F @ & ® &5 . The super-algebra A*(N, End(€; ® £2)) can be identified
with A*(N,End(&;)) ® A*(N,End(&2)) where the tensor is taken in the sense
of super-algebras.

Let oy : & — & and 09 : & — &, be two smooth equivariant morphisms.
With the help of invariant Hermitian structures, we define the morphism

0100 (E10E)T — (E1®&)

by 01 ® 02 := 01 ®Id52+ +Id51+ ® o9 +Id5; ®0o5 + o] ®Idg;.

Let vs, , Vs, and vy, @0, be the odd Hermitian endomorphisms associated to
01,02 and 01 ® 02 (see (@)) Since v2 =02, ®Ide, +1de, ®v2,, it follows

01002

that Supp(o1 ® o2) = Supp(c1) N Supp(o2).

We proved in ] that the relative Chern character is multiplicative : the
equality Chye1(01 ® 02) = Chyel(01) © Chyer(o2) holds in H*° (¢, N, N \ Supp(o1 ©®
02)). This property admits the following generalization.

Theorem 3.16 (The relative Chern character is multiplicative) Let
01,09 be two equivariant morphisms on N. Let A be an invariant one form
on N. The relative equivariant cohomology classes

o Chya(o1,A) € H=(¢, N, N\ Ch,,),
e Chye(o2) € H*®(¢, N, N \ Supp(o2)),
e Chri(01 ©®02,A) € H™°(E, N, N \ Cx 5,00,)
satisfy the following equality
Chyei(01 ® 02, ) = Chyel(01, A) © Chyer(02)

in H=°(&, N, N \ C,0,00,). Here o is the product of relative classes (see ().
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In Subsection .3, we considered the zero morphism [0] : N x C — N x {0}.
Since for any morphism o we have [0] ® o = o, we get the following

Corollary 3.17 For any invariant one form X\, we have
Chrel(d, )\) = Prel()\) < Chrel(a)
in H™°(&,N,N\ Cro).

The remaining part of this section is devoted to the proof of Theorem .

For k = 1,2, we choose invariant super-connections A, without 0 exte-
rior degree terms on the Zs-graded vector bundles . We consider the closed
equivariant forms

Cl(t) = Ch(o-h)\aAl;t)v CQ(t) = Ch(O—Q;AQat)
and the transgression forms
Ul(t) = n(glaAaAlat)a 772(t) = n(gQaAQat)

so that %(ck(t)) = —D(ni(t)).

Let 31 = fooo n(t)dt @ it is an equivariant form on Uy := N \ C) 4, with
generalized coefficients. Let (o = fooo na2(t)dt : it is an equivariant form on
Us := N\ Supp(o2) with smooth coefficients. The representatives of Chyei(o1, A)
and Chyei(o2) are respectively (¢1(0), 51), (c2(0), 52).

For the symbol o1 ® o2, we consider A(t) = A + it(A + vy, 00, ) Where A =
Ay ®@1dg, +1dg, ® Aa. Then Ch(A) = ¢1(0)c2(0). Furthermore, it is easy to see
that the transgression form for the family A(t) is

n(t) = m(t)ea(t) + ()2 ().
Let B2 = [, n(t)dt : it is an equivariant form on
U := N\ (Supp(o1) N Supp(az) N Cy)
= U U U,
with generalized coefficients. A representative of Chye(o1 ® o02,\) is
(c1(0)¢2(0), B12)-

We need the following lemma.

Lemma 3.18 e The integral

I = // n(s) Ana(t)dsdt
0<s<t

defines an equivariant form with smooth coefficients on Us.
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e The integral

I := // m(s) Ana(t)dsdt
0<t<s

defines' an equivariant form with generalized coefficients on Uy .
e We have the relations DIy = 12— 1¢2(0) on Uy and DIy = — 12+ B2¢1(0)
on Us.

Proof. Let K2 be a compact subset of Us. Let hy > 0 such that h,,(n) > ho
for n € k3. Let K be a compact subset of . From Proposition @ we know
that there exists constants cst and cst’ (depending of K2, K) such that: for
(X,n) € K x Ko we have

(39) an( ” ) < cst (1 +t)4mNe —hat® , forallt>0,
and
(40) Hm H ) <est' (14 9)8mN 0 for all s > 0.

Then, when 0 < s < ¢, we have, on Ka: [|n1(s)Ana(t)]| < cst” (14¢)2d4m N g=hat”
So the integral I5 is absolutely convergent on 0 < s < ¢. Since similar majoration
holds for the partial derivative of 7y (relatively to the variables n € N and
X € t), the integral I defines a smooth map from ¢ into A(Uz).

Let us prove the second point. Let K be a compact subset of £. For any
test function Q(X) on € supported in K, let us estimate the form ~(s,t, Q) :=
Jem (s)(X)n2(£)(X)Q(X)dX on 0 < ¢ < s and on a compact subset K of Uy.
We have

st @) = [N (s, 8 X)QUX) X
e
where Y(s,t, X) = "% Str (—i(vy, + A) eF@1A1E)) Ay (£)(X). Let r be a
positive integer. If we use the estimates of Proposition @ (see also Remark

B-7). we get

14 g)dim N .
H’Y(Sa t Q)H( < cst H?’]g QH ( + S) —hi(n)s

e VT 2L ¢ ’

for all t,s > 0 and n € K. Here cst is a constant depending of r, Iy, I, and
hi(n) > 0 is the smallest eigenvalue of v2 (n).

The term ||72(¢)Q| x,2-(n) is smaller than () lc,2r(n). If we use
the second point of Proposition @ of the Appendix, we see that

‘ng(t) . (n) < cst/(14t)4™mN for alln € Ky, t > 0.
27

!The integral I1 is the limit when T' — oo of the family ([fy«,«.cqp M () An2(t)dsdt)r>o
of equivariant forms with smooth coefficients. S
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Finally, for 0 <t < s and n € K1, we have:

(1 +S)2dimN 7h1(n)52
K.2r (L4 82| fa(n)[I?)"

If the compact subset Ky is included in N\ C »,, we can choose ¢ > 0 such
that either hi(n) > c or ||fa(n)||* > ¢, for n € K1. Then we have

(41) H'y(s, ¢, Q)H( ) < cst”

<

) 1
[+t @) < st Qe (1 924 0w (™).

forne Ky and 0 <t <s.

Since r can be chosen large enough, we have proved that the integral of
the differential forms v(s,t,Q) on 0 < t < s is absolutely convergent. Since
similar majoration holds for the partial derivative of v(s,t, Q) (relatively to the
variables n € N and X € ¢). the integral I;(X) defines a C~*°-map from ¢ to
A(U1) by the relation [, Ii(X)Q(X)dX = [[_,. V(s t,Q)dsdt.

For the last point we compute

o - (e )

I (owemo - noDm)ds
0<t<s

Now we use D(n;(s)) = —-¢;(s), so that we obtain

D(L) = // ( ~ Dm0 + ) el ) dst
([ atmis [ meas) - a0

0

= 2 —c2(0)fh.
Similarly, we compute D(I2) = —B12 + ¢1(0) 2.

Let &1 + &5 = 1y be a partition of unity subordinate to the decomposition
U = Uy UUs : the functions &, are supposed K-invariant. We consider I :=
®,1; — P51, which is an equivariant form with generalized coefficients on U. We
now prove that

(42) (Cl(o)aﬁl) ©p (02(0),52) - (01(0)02(0)a512) = Diel (O,LP)-

Indeed the product (c1(0),51) ©¢a (c2(0),082) is equal to
(cl(O)CQ(O),q)lﬁlq(O) + ¢1(0)P202 — d@lﬁlﬁg), so that the first member of

Equality (@) is (0, D1 5162(0) 4+ ¢1(0)P2fB2 — dD1 5152 — 512). Thus we need to
check that

(43) —D(Ip) = ®151¢2(0) 4 ¢1(0) D252 — dP1 5132 — fra.
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Using the last point of Lemma , we have

—D(Iq>) = d®sly — dP11; + &5 DIy — &1 D14
—d®1(Io + I1) 4+ P2 (=12 + ¢1(0)B2) — P1(B12 — c2(0)51)
= —d®181062 — Pi2 + P2c1(0)B2 + P1c2(0) 5.

which was the equation to prove. Here we have used that ®; + ®5 = 1y, hence
d®y = —dPy.

3.5 The Chern character deformed by a one form

Let o : E7 — £~ be an equivariant morphism on N, and ) be an invariant one
form on N. Following Section E, we consider the image of the relative class
Chyel(o, A) through the map

H_Oo(kv Nv N \ C)\.,a') - Héfoa (Ev N)
The following theorem summarizes the construction of the image.

Theorem 3.19 e For any invariant neighborhood U of C », take x € C®(N)¥
which is equal to 1 in a neighborhood of C , and with support contained in U.
Then

(44) cloy, A A, x) = x Ch(A) + dx (o, A\ A)

s an equivariant closed differential form with generalized coefficients, supported
in U. Its cohomology class cy(o, ) € H;> (¢, N) does not depend of the choice
of A, x and the invariant Hermitian structures on E*. Furthermore, the inverse
family cy (o, X) when U runs over the neighborhoods of Cy » defines a class

Chaup (0, A) € HZ (8, N).

e The image of Chsup(o,A) in H > (8, N) is equal to Cheyp(0).

o Let F be a closed K -invariant subset of N. For s € [0,1], let 05 : E¥ — £~
be a family of smooth K -equivariant morphisms and s a family of K-invariant
one-forms such that Cx, ,, C F. Then all classes Chgyp(0s, As) coincide in
HEZT(E,N).

Definition 3.20 When C) , is a compact subset of N, we define
Che(o,\) € HZ*°(¢, N)

as the image of Chsup(o,\) € H® (€, N) in HZ°(¢, N). A representative
of Che(o,\) is given be the equivariant form c(o, A\, A, x), with x compactly
supported.
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When ¢ is elliptic, we have already a class Ch.(0) € H (8, N) with compact
support. If we use the second point of Theorem , one sees that

Ch.(o) = Che(o,A) in H_*®(E N),

for any invariant one-form A. So the class with compact support Ch.(c, A) will
be of interest when o is not elliptic, but C) , is compact.

In Subsection B.3, we considered the zero morphism [0] : N x C — N x {0}
and its relative Chern character Pyei(A) € H™°(¢, N, N \ C)). The associated
generalized equivariant class in H;° (¢, V) will be denoted Par()) : this class
was defined in [@, B] We repeat Theorem for this special case.

Recall that B(A)(X) = —i [~ PN X dt is an equivariant form with
generalized coefficients on N \ Cj.

Theorem 3.21 [@/ o Let x € C®°(N) be a K-invariant function which is equal
to 1 in a neighborhood of Cy and with support contained in U. The equivariant
differential form Par(X, x) = x + dx S()\) is an equivariantly closed differential
form with C~°° coefficients, supported in U. Its cohomology class Pary(\) €
H; (8, N) does not depend of the choice of x. Furthermore, the inverse family
Pary (X) when U runs over the neighborhoods of Cy defines a class

(45) Par(\) € Ho® (8, N).

e The image of this class in H~°°(¢, N) coincides with 1.

o Let F be a closed K-invariant subset of N. For s € [0,1], let \s be a family
of K -invariant one-forms such that Cx, C F. Then all classes Par(\;) coincide
in Hp"° (¢, N).

We proved in Theorem (see also Corollary ) that Chyel(o1 @ 02, A)
is equal to the product Chyei(01,A) ¢ Chyel(o) in H™°(&, N, N \ Cx 5,00,)- If
we use the commutativity of the diagram (ﬁ) for the closed invariant subsets
Fy = C)\_’gl, Fy = Supp(O'Q) and F1 N Fy = C)\_’gl@gz, we get

Theorem 3.22 We have the following relation in Ha’ileaz (&,N) :
(46) Chgup(o1 © 02, A) = Chgup (o1, A) A Chgup(02).
In particular, if o1 = [0], we have

Chgup(o, A) = Par(A) A Chsup(o) in HET (E,N).

3.6 Product of groups

Let Ki, K5 be two compact Lie groups, with Lie algebras €;,%, and N a
K, x K5 manifold. We wish to multiply two elements a1 (X,Y) and ao(X,Y)
of A=>°(#; x 2, N). The product will be well defined if o;(X,Y) depends
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smoothly on Y, while aa(X,Y’) depends smoothly on X. We introduce thus
A7 (8 x 3, N) as the space of generalized equivariant forms «(X,Y") de-
pending smoothly on Y: for any compactly supported function @ € C*>(¢;),
the integral ag(Y) := [, a(X,Y)Q(X)dX converges and depends smoothly of
Y € €. We denote by H™°°(£; x €2, N) the corresponding cohomology space
of equivariant cohomology classes a(X,Y") depending smoothly on Y € £;5. Sim-
ilarly we define the space H_ (¥ X 3, N) of equivariant cohomology classes
with compact support depending smoothly on Y € €. If F'is a closed K; x K>
invariant subset of N, then we define similarly H~°%>°(¢; x 3, N, N\ F') as well
as Hp""" (8 x €2, N). If Fy, F5 are two closed K x Ks-invariant subsets of N,
the product

(47) H°(f; x by, NN\ F})  x HO0 (k) x £y, N, N\ F2)

H_Oo({fl X EQ,N,N\ (Fl N Fg))

is well defined by the same formula as in Definition @
Similarly the wedge product

(48)  HE O™ (kX b, N) x oy (8 x &2, N) - M0 (8 X €, N)

is well defined and the map pp (Section E) is compatible with the products.

3.6.1 The case of 1-forms

Consider a K7 x Ko-manifold N and a K7 x Ks-invariant one form on N denoted
A. We write the map fy from N into € x € as fy := (f3, f7). We have

Cy = CLlnC?

where C4 = {f} = 0}.
Consider on N \ C, the equivariant form with generalized coefficients

BA)(X,Y) = —iA / UPAMXY) gt (X,Y) € ¥ x .
0

Lemma 3.23 The restriction of 3(\) to the open subset N\ C3 C N\ Cy
defines a generalized function of (X,Y) € &1 x 2 which depends smoothly of Y.
In other words, B(A)|x\c1 belongs to A7°%%° (8 x 3, N\ Cy).

Proof. Let us check that, for jany compactly supported function @ €
C>®(t1), the integral co(Y) = [, BA(X,Y)Q(X)dX converges in
A(N\ C}) and depends smoothly of Y € &.

Consider the form on N defined by Ig(t,Y) = [, e"PXXY) Q(X)dX. At

apoint n € N, Ig(¢,Y)(n) is equal to

e~ it(f(n)Y) eitd/\(n)/ o it(f2(n),X) Q(X)dX = o it(fX(n)Y) gitdA(n) @(t FL(n)).
31
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The term e#dA (") is a polynomial in ¢ of degree bounded by dim N. Since
the Fourier transform @) is rapidly decreasing, we have, for any integer r, the

estimate

(1 +t)dimN
L+
for all ¢ > 0 and (n,Y") in a compact subset of N x £;.

Let K be a compact subset of N\ C} : one can choose ¢ > 0 such that
| f+]| > ¢ on K. For any integer ¢, we have then the estimate

(49) HIQ(t, Y)(n)H < cst

cst
50 HI Y H < st
(50) otV < G
forall t > 0, n € K, and Y in a compact subset of 5. Thus the integral
Jo" Ig(t,Y)dt is absolutely convergent. Since the estimates ([19) and (BJ) hold
for any derivative D(9,,y )Ig(¢,Y) in the variable (n,Y), the integral co(Y) =
—iX [y Iq(t,Y)dt defines a smooth map from € into A(N \ C3).

Definition 3.24 We define PL (\) € H=°°(t; x &, N,N \ C}) to be the

rel
relative class

Pla() = [ Imey

Assume now that we have two K7 x Ka-invariant one forms A\ and p on N.
We write fy = (f3, f3) and f, = ( i,fﬁ) Let C} := {fy = 0}, and Cﬁ =
{f2 = 0}. Then the form P}, (A)(X,Y) € H™>>>(t; x £5, N, N \ C}) depends
smoothly on Y € €y, while the form P2, (1)(X,Y) € H> (¢, x &, N, N\ C})
depends smoothly of X € £, and one can form the product of the relative
classes:

PLy(A) o P2

rel

(k) € H™>°(b1 x &2, N, N\ (C3 N C})).

We consider the invariant one form A + p and the associated map
(fs + fi, 2+ fﬁ) : N — £ x # which vanishes on

Corp={f+ =0} {R+f =0}

Let Prei(A+p) € H°(8 x 82, N, N\ Cx4,.) be the relative class associated
to A+ p.

We take some invariant norms on £}, €5, and we consider the following func-
tions on N : [[£1], 2]l I£2]1 [l £2]l- In order to compare PL,(X)o P2, (s with
Pre1(A + ), we introduce the following

Definition 3.25 We define the closed invariant subset

(51) COnum) = LA < LT Y LFEN < AR -

Clearly the set C(\, p) contains C; N C% as well as the set Cy4,. Thus the
following restriction operations are well defined:
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o r:H >t x b, NN\ (Cin C’Z)) — H™®(t x &, N, N\ C(\pn)),
o1 H_Oo({fl X ¢y, N, N \ C)\'HA) — H_OO(El X EQ,N,N\C(A,/L)).
The aim of this section is to prove the following theorem.

Theorem 3.26 We have the following equality

(52) r (Pl o P2i(n) =1/ (Pra(A+p))

in H=>°(t; x t, N, N\ C(A, ).

Proof.  Consider the closed invariant sets Fy = {||fi| < ||fi||}, Py =
{IF211 < [If31I}. Then C} C Fi and G} C Fy. The form P (A) € H™>(f; x
€2, N, N \ C}) restricts to PLL(N) € H™%(¢; x €2, N, N \ F}) while P2, (1)
restricts to Pfezl( ) € H® (8 x £, N, N \ F»). Using the diagram ([T]), we
see that T (Pl (A) 0 Pry (1) = Pri(V) o Pri(n).

We thus need to compare the forms PE3 (\)oPE2 (1) and Prej(A+p). We work
with the invariant open subsets U; := N\ F; and U = U; UU; = N \ C(\, p).

The relative classes PE(\), PE2(u) and v (Pye(A + 1)) are represented by the
couples (1, 31(A)), (1, () and (L, A+ o)) -

o the form B(A\)(X,Y) := —iX [, e*PXXY) dt defines on N \ C} an equiv-
ariant form with generalized coefficients depending smoothly on Y. We denote
by f1(A)(X,Y) the restrlctlon of this form on Uj.

o the form B(p)(X,Y) := —ip [;° e PHEY) dt defines on N\ C2 an equiv-
ariant form with generahzed coefficients depending smoothly on X. We denote
by B2(p)(X,Y) the restriction of this form on Us.

o the form B(A + p)(X,Y) = —i(A + p) [;° ePAFWEY) gt defines on
N\ Cx4, an equivariant form with generalized coefficients. We denote by S(A+
)|u(X,Y) the restriction of this form on U.

Let &1 + &5 = 1 be a partition of unity on U = U; U U; : the function ®;
are supposed K; x Ks-invariant. We want to prove that

(1, 81(N) 0a (1, Ba(p)) — (1, BOA + p)|v)

is D,q-exact.

Let 11(s) = —iAe™PANXY) and ny(s) = —ipePHXY) We consider the
family of smooth equivariant forms on N
Vo) (X,Y) = m(s) Ama(t)

= —pelsdtitdi o=ilfin,(XY)

where f(s4) : N — € x £ is equal to (sfl+ tfﬁ, sf3+ tfﬁ)

Lemma 3.27 e The integrall; := ff0<t<s V(s,t)ds dt defines a Ky x Ko-equivariant
form with generalized coefficients on Uy .
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e The integral Is := ff0<s<t’7(s,t)d5 dt defines a K; x Ky-equivariant form
with generalized coefficients on Us.

e We have D(I1) = B + plu, — Bi(A) on Ur and D(lz) =
=B+ v, + B2(u) on Us.

Proof. For any compactly supported function Q(X,Y) € C™(¢; x &) we
consider the integral Jo(s,t) == [, ¢, V(.0 (X, Y)Q(X,Y)dXdY. At a point
n € N, Jg(s,t)(n) is equal to

AP aA)itdi(n) / e~ Uen (X)) (X, Y)dX dY =

él XEZ

*/\,LL eisd)\(n)-i—itdu(n) @(f(s,t) (TL))

Since @ is rapidly decreasing, and e?@(")+itdi(n) g 54 polynomial in the variable
(s,t), we have, for any integer r, the estimate

(s,t)
H_ 1+||f(st)( 2

for all s,t > 0 and n in a compact subset of N. Here P(s,t) is a polynomial
function and || fs, (n)lI* = [sf3(n) + £ (n)|1? + [Isf3(n) + £ (n)]1*.

Let us prove the first point. We work on a compact subset K of Uy :=
{Ifall < I£2l}- Let 0 < < 1and € > 0 such that on K we have : || f;]| < 7| fi]l
and || f]] > €. We use then that

[ ey = (1 =72 | fr(n)|I” > es?,

forn € K and 0 < t < s (we take ¢ = (1 — r)%€?). Finally, for n € K and
0 <t <s, we get the estimate of the form

HJQ(S t

306,00 < —=

< =
~ (14 cs?)

where ¢ can be taken as large as we want. For any differential operator D(9)
acting on A(N), we can prove by the same arguments that

|p@) - Jas,)m)| < ﬁ

forneKand 0<t<s
This proves that I defines a K; x Ko-equivariant form with generalized coeffi-
cients on U through the relation: [, , Li(X,Y)Q(X,Y)dXdY =

Jo<ics Jo(s, t)dsdt.
The proof of the second point is the same, exchanging A and p.
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The last point follows from the computation done in the proof of Lemma
. We repeat the argument. We have on U;

//O<t<s D(m1(s)n2(t))ds dt

//(KKS D(m (s))n2(t)ds dt — //(KKS m(s)D(na2(t))ds dt
d

= f// —(CZSDA)T]Q(t)det+// m(s)— (P ds dt
o<t<s dS 0<t<s dt

Now — ffO<t<s %(ei‘SD}‘)ng (t)ds dt = fooo eitD)\ ng(ﬁ)dt _ _,L-M fooo eitDA-i—itDu dt
while T

d . 00 ) o
// m (S)E(e”D“))ds dt = / m (s)ePH ds — / m(s)ds
0<t<s 0 0
= —iX / e/ SPATIDI g — B(N).
0

D(lLy)

Thus we obtain on U; the wanted equality D(I;) = (A + u)|y, — B(A). The
proof of the equality —DIs = B(A + u)|y, — B(1) is entirely similar.

Thanks to Lemma , we define the following equivariant form on U :
Iq> = (19111 — (I)QIQ. The relation

(1.6:) e0 (1.B20)) = (1, BO+Wlv ) = Draa(0,1s ).

admits the same proof than the one of Equality (@)
We denote Par' (\) the image of PL()\) in Ho” ™ (81 x €2, N) and by Par?(p)
A
the image of P2, (1) in Hgys ™ ™ (€1 X €2, N). We denote by Par(A+ u) the image
m
of Prat(A + 1) in Hes (&4 x €2, N). We use here the restriction maps
r: HE‘;%C,%(
r Hafiu(kl X EQ,N) — HE(O;#)(El X EQ,N)

{?1 X EQ,N) — Hg(o)iu)(él X EQ,N)

The fact that the map pp is compatible with products and restrictions gives us
the following corollary.

Corollary 3.28 We have the following equality
(53) r (Par1 (M)A Par2(,u)) =71 (Par()\ + M))

m Hg(o;#)(kl X EQ,N).
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Remark 3.29 In later applications, it will happen that the set C(\, ) is exactly
equal to Cxy,. In this case, we obtain the equality

r (Par' (A) A Par®(u)) = Par(\ + p)

in Mg (81 x by, N).

3.6.2 The case of morphisms

We now consider the case of a K; x Ks-equivariant morphism o : €T — £~
over N. Let A a K1 X K5 equivariant one form on N. We choose an invariant
super-connections A, without 0 exterior degree terms on the Zs-graded vector
bundle £.

The relative Chern class Chyel(o,A\) € H™°(8; x €3, N, N \ Cy ) is repre-
sented by a couple (Ch(A), B(o, A\, A)) where 3(o, A\, A) is a K; x Ko-equivariant
differential form on N \ C) , with generalized coefficients.

As in Section we write C) as the intersection C'} N C% where C} =
{fi =0}. We define the closed invariant subsets

C}.o = Supp(o) N C5.
We will restrict equivariant forms on N \ C , to the open subsets N \ C’i,a.

Lemma 3.30 The equivariant form [(o, A\, A)(X,Y), when restricted to
N\ C}\,a, depends smoothly on'Y € &,.

Proof. For any compactly supported function @ € C*(#;), consider the
element of A(N,End(€)) defined by

Tot,Y) = / F@AADXY) O(X)dX.
21

At a point n € N, Zg(t,Y)(n) is equal to

efit(ff(n),Y>/ efit(fi(n),X) eftZR(n)JrS(n,X,Y)JrT(t,n)Q(X)dX
31

with R(n) = v2(n), S(n, X,Y) = u*(n)(X,Y), T(t,n) = it[A, v,](n)+itd\(n)+
A2(n). If we use Proposition @ of the Appendix, we have, for any integer r,
the estimate

(14 ¢)dimN o—ho ()t
(T+ 2 fi(n)]?)" ’

for all ¢t > 0 and (n,Y) in a compact subset of N x €. The only change
with respect to Proposition @ is that we work with the map f} instead of
fr = (fi, f}). As in Corollary @, we see that the integral fOOO Io(t,Y)dt
defines a smooth map from € into A(N \ C} ,, End(£)).

HIQ(t, Y)H(n) < cst
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When we restrict the equivariant form G(o, A\, A)(X,Y) to the open subset
N\ Cj,, we get the relation

| B0 Ay, (X Y)QX)AX = Su (z’(vg + ) /0 To(t, Y)dt) .

It proves then that Y +— ((o, )\,A)|N\Ci (X,Y) is smooth.

We can make the following definition.

Definition 3.31 We define Ch}, (o, \) € H™°°(¢, x 2, N, N\ C} ) to be the
relative class

[Ch(A)v ﬂ(o—a A, A) |N\C§’U]'

Consider now on N : two K; X Ks-equivariant morphisms o, 7 and two
invariant one forms A, u. We then consider the relative classes:
e Chl (0,)\) € H=>>°(8 x éQ,N,N\C}l\,G),

rel

o Ch? (T, ,LL) € Hoo’ioo(él X EQ,N,N\C&_’T),

rel

o Chyel(0 @7, A+ p) € H=(t x €2, N, N\ Cripo0r)-

The element Chl, (o, ) (resp. Ch%, (7, u)) is represented by an equivariant
form with generalized coefficients which is smooth relatively to Y € €5 (resp.
X € £1). Hence we can form the product Chl, (o, A) © ChZ (7, ) which belongs

to H_Oo({fl X EQ,N,N\ (Supp(o’ © T) N C)l\ n Cﬁ))
We denote by Chl, (o,)) the image of Chl, (o, \) in H_ 7" (€; x €, N).

sup rel C)l\
It is represented by equivariant forms with generalized coefficients which are
smooth relatively to Y € €.
Similarly, we denote by ChZ, (7,u) the image of ChZ(7,u) in

Hgoz’foo({?l X €2, N). Tt is represented by equivariant forms with generalized
m

\T

coefficients which are smooth relatively to X € ¢;.
As in Theorem B.26, we look at the image of Chl, (o, A) o Ch2 (7, x) and

rel

Chyel(o @ 7, A+ p) in H™°(€; x €5, N, N \ (Supp(c ©® 7) NC(A, p))). We leave
the natural restriction maps implicit.

Theorem 3.32 e The following equality
Chl,(,\) o Ch2,(1, 1) = Chyet(0 © T, A + 1)

rel
holds in H~°°(t; x €2, N, N \ (Supp(c © 7) NC(A\, i))).
e The following equality
(54) Chlyp (0, A) A ChZ, (7, 1) = Chgup(o © 7, A + 1)

sup

holds in 'Hgﬁ;’)p £ x t, N).

(GGT)QC(/\#L)(
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Proof. As in Corollary B.I7, it is easy to see that Chl (o, \) = P}

rel re1(>‘) <
Chyer(0) and ChZ (7, ) = PL (A) © Chyei(o). Thus, using the associativity of
the product, we have

PL,(\) o Cha(0) © P2, (1) © Chyet(7) = PL(N) 0 PZ,(1) © Chyer(0) © Chyer (1)

rel rel rel rel
Prel()\ + ,U/) <o Chrel(a O] T)
= Chyl(c ©7,A+ ).

Let us recall the meaning of Equation (f4). For any neighborhood V of
Supp(c ® 7) N C(A\u), let cp(c ® 7,A + p) be the component of
Chsup(o0 © 7, A + ) in H,,%° (€1 x €2, N). Then we have

(55) Cy, (Ua )‘) A Cy, (Ta :U/) =Cy (U o, A+ M)

in H,°(&, x €2, N). Here Vi and V, are respectively any neighborhood of
Supp(c)NC4 and Supp(7) ﬂCﬁ such that V1 NVy C V. The class ¢y, (o, A) (resp.

v, (7, 1)) is the component of Chl, (o,\) (resp. ChZ, (7, ) in Hy, ™™ (8 x

sup sup

EQ,N) (resp. H;z’ioo(kl X ég,N)).

Let o and 7 be two morphisms such that Supp(c ©® 7) NC(A, ) is compact,
hence Supp(o ©® 7) N Cx4,, is compact. In this case, the Chern equivariant class
with compact support Ch.(c ® 7, A + ) is equal to the product

v, (Ja /\) A Cy, (Ta ,LL)

in H,°(& x €2, N). Here V; and Vs are resp_ectively any neighborhood of
Supp(c) N C} and Supp(7) N Cﬁ such that V; NV, is compact.
In particular, we obtain the following theorem.

Theorem 3.33 Let 0 and T be two equivariant morphisms such that
e Supp(c) N C} is compact,
e Supp(1) N C} is compact,
e Supp(c © 7) NC(A, ) is compact.
Then
Chl(o,\) A Ch2(7, 1) = Che(o © 7, A + ).

3.7 Retarded construction

Let o : £t — £~ be a K-equivariant smooth morphism and let A be a K-
invariant one-form.

Let A be a K-invariant super-connection without 0 exterior degree term and
let F(o, A\, A t) = itDX + F(o,A,t) be the equivariant curvature of the super-
connection A% (t) = A + it(v, + A). For any T' € R, we consider the Chern
character

(56) Ch(o, A\, A, T) := Str(eF@AAD),
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On N\ C),, we have Ch(o,\,A,T) = D(B(o, A\, A, T)) where the generalized
equivariant odd form (o, A\, A, T) is defined on N \ C , by the integral

(57) B(o, \,A,T) :/ n(o, A, A, t)dt,
T
where n(o, A\, A, t) := —iStr ((vy + A) eF(‘T’)"A’t)). It is easy to check that the
following equality
(58) (Cn(a), Bo. 2, 4)) = (Chio, A, A,T), B0, A A, T) ) =

T
Drel (/ 7](0',>\,A, t)dt, 0)
0

holds in A~>°(¢, N, N \ C) ). Hence we get the following

Lemma 3.34 For any T € R, the relative Chern character Chye(o, \) satisfies
Chia(,A) = [ Ch(a, X, 4, T), B(0, A, 4,T)]
in H™°(,N,N\ Cho).

Using Lemma , we get

Lemma 3.35 For any T > 0, the class Chgup(o, ) can be defined with the
forms c(o, \, A, x,T) := x Ch(o, \, A, T) + dx B(c, \, A, T).

Proof. It is due to the following transgression

T
(59) c(o, A, x) —clo, A, x,T) =D (x/ n(a, A,A,t)dt> ,
0

which follows from (5q).

In some situations the Chern form Ch(c, A, A, 1) enjoys good properties
relative to the integration. So it is natural to compare the differential form
c(o, A\, A, x) and Ch(o, )\, A, 1).

Lemma 3.36 We have
1
c(o,\, A, x) — Ch(o,\,A,1) =D (X/ nlo, A, A, s)ds> +
0
D((x = Blo. A A, 1))

Proof. This follows immediately from the transgressions (Bd) and (59).
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3.8 Example of Hamiltonian manifolds

There are several natural situations where a K-invariant one-form exists.
Let (N, 2, ®) be a Hamiltonian K-manifold: here € is a symplectic form on
N. The moment map ® : N — ¢ is a K-equivariant map satisfying the relation

d(®, X) = ((VX)Q,

for every X € ¢ so that the equivariant symplectic form Q(X) := (@, X) + Q is
a closed equivariant form.

With the help of an invariant scalar product on £*, we have an identification
£* ~ £ : the moment map ® will be a map from N on €. We consider then the
Kirwan vector field k(n) = V,,(®(n)) : note that k is the Hamiltonian vector
field of the function 1||®||> : N — R. Here we can define the invariant one-form

(60) A = (k, )N

where (—, —)n is any K-invariant Riemannian metric on N. It is easy to see
that, for n € N,

fr(m) =0 M\(n) =0 <= k(n) =0+ d(|®||*)(n) = 0.

Hence the set Cy, coincides with the set Cr(||®||?) of critical points of the
function ||®||%. In this situation, the generalized equivariant form Par(\x) have
been studied in [[14] [L5]

We note that

(61) {2 =0} c Cr(|2?).

There are interesting situations where (§1) is an equality.

Suppose now that the symplectic form 2 is exact: there exists a K-invariant
one form w on N such that Q@ = dw. We can choose as associated moment
map (@, X) = —(w, VX) and the equivariant symplectic form is exact: Q(X) =
Dw(X). We have then two different one forms on N, the one form Ak associated
to the Kirwan vector field and the one form w.

Lemma 3.37 Assume Q = dw and (D, X) = —(w,VX). We have then f, =
—® and Cy, = C, ={® =0}.

Proof. The first equality is by definition of the moment map:
(62) (@(n), X) = —{w(n), VaX), neN.
If one takes X = ®(n) in (62) , it gives [|®(n)||> = —(w(n),k(n)) and then

Cxe = Cr(|@]?) = {® =0} = {f., = 0} = C...
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It is natural to compare the elements Par()), Par(—w) € Hs230) (&, N). We
consider the following family of one-forms: Ay = sAx — (1 — s)w, s € [0,1].
Since fx, = sfy, — (1 — 8)fw, we have Cy, C C,, for any s. We have also:
{fr.(n),®(n)) = s|k||*> + (1 — s)||®(n)||* for any n € N, which shows that
Cy, C Cy,.. We have proved that Cy_, = C), for any s € [0,1]. With the help
of Theorems and , we can conclude with the following

Proposition 3.38 Let N be a K-manifold, equipped with an exact symplectic
two form Q = dw. The moment map ® : N — ¥ is defined by (@) We have
Cr(||®]]?) = ®7(0) and

Proi(Mk) = Pra(—w) in H™®(E, N, N\ &1(0)),

Par(Ax) = Par(—w) in Hg% g (&, N).

3.8.1 The cotangent manifold

Here N = T*M, where M is a K-manifold. Let p : T*M — M be the pro-
jection. We denote by w the Liouville form on T*M : —wp, ¢(w) = (£, psw).
Then Q := dw is the canonical symplectic structure on T*M. The correspond-

ing moment map for the Hamiltonian action of K on (T*M,Q) is the map
fo : T"M — € defined by the relation

(63) fo(@,8) : X = (€, Vo X).

Here f;1(0) is the subset T;cM C T*M formed by co-vectors orthogonal to
the K-orbits. In this situation we define a classes

(64) Pra(w) € H™(, T"M, T"M \ T;::M).
and
(65) Par(w) € H;gM(E, T"M).

This form Par(w) will be used extensively in a subsequent article to give a
new cohomological formula for the index of transversally elliptic operators.

3.8.2 Symplectic vector space

Let N =V be a real vector space of dimension 2n, with a non-degenerate skew-
symmetric bilinear form Q : we have = dw where w = Q(v,dv) on V. Let
K be a compact Lie group acting on V' by linear symplectic transformations.
Then V is a K-Hamiltonian space with moment map (®x (v), X) = Q(Xv,v).

Assume for the rest of this section that the moment map &y : V — &
is proper. Since @k is a homogeneous map, this assumption of properness is
equivalent to one of the following conditions:

e &.1(0) =0.
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e There exists ¢ > 0 such that ||®x(v)|| > ¢|jv| for all v € V.

In this case, we obtain a class Prei(w) € H™2°(¢, V,V \ {0}) that we wish to
compare with the relative Thom class.

We have shown in [[J] that H>°(€, V,V \ {0}) is a free module over C*° (€)X
with basis the Thom classe Thye (V). More precisely to any class a = [a, 8] €
H> (e, V,V \ {0}) we consider the integral

(Apxw@vecwwK

where p,(a)(X) = xa(X) + dxB(X) is a K-equivariant class with compact
support on V defined with the help of a function x € C*(V)X with compact
support and equal to 1 in a neighborhood of 0.

We have the

Theorem 3.39 [[4] For any class a € H>(¢,V,V \ {0}), we have the relation

(66) azgﬁpxwam¢v>
in H=(e,V,V \ {0}).

The same result, with same proof, holds if one work with equivariant forms
with generalized coefficients. For any a € H™°(¢,V,V \ {0}) the integral
Jiy p.(a) defines an invariant generalized function on £ Since Thye (V) has
smooth coefficients, the product ( [y, p.(a)) - Thye (V) makes sense for any a €
H=>°(¢,V,V \ {0}), and Equality (@) holds in this case.

Let dv := Qn—T,L be the symplectic volume form on V.

Proposition 3.40 The following relation holds in H=>°(¢,V,V \ {0}):
Prel(w) =0- Threl(V)a

where © € C~°(8)K is defined by the relation

O(X) := (i)"/ Uk X) gy X et
1%
Proof. Following Theorem , we have just to compute the integral O(X) :=
Sy Pe(Prei(w))(X). Let f € C*°(R) be a compactly supported function which
is equal to 1 in a neighborhood of 0. We work with the invariant function
x(v) == f(||v]|*) on V, where || — || is any K-invariant Euclidean norm on V.
The equivariant form with generalized coefficient x +dx A S(w) which represents
the cohomology class p,(Prei(w)) € H, (8, V) is the limit, as T" goes to infinity,
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of the equivariant forms with compact support

T
nt = x+dxA(—z'w)A/ e"tP) gy
0
T T4 .
= x+D X(fiw)/\/ P @)I(X) er/ —etPw) gy
T
xe'T P 4+ p (X(iw) /\/ eiD(“’)(X)> .
0

Hence O(X) is the limit, as T' goes to infinity, of the integrals

/nT(X):/ yelT D).
1% 1%

Since D(w)(X)|, = Q + (Px(v), X) is homogeneous of degree 2 in the variable
v, we have T D(w)(X) = 65(D(w)(X)) where d7(v) = vVTv. Then [, n7(X) =

fv || H etD(@)(X) tends to

/eiD(w)(X) _ (i)n/ @K (1).X) gy
14 14

when T goes to infinity.

3.9 Comparison with other constructions
3.9.1 Integration in mean

As stressed in the case of ordinary cohomology, one of the main purposes of
constructing Chern character of an elliptic morphism ¢ as a cohomology class
with compact support is the fact that such classes are integrable.

In the case of equivariant cohomology, we introduce appropriate cohomology
spaces for defining the integral of an equivariant differential form. Of course,
if « € H* (¢, N), and the manifold N is compact and oriented, the integral of
« is the K-invariant C*°-function of X € ¢ defined by [y a(X). If N is non
compact, we may have to define this integral in the generalized sense.

Let a be an equivariant form with C'*° coefficients on a vector bundle N — B
over a compact basis. It may happen that although «(X) is not integrable on
N, it is integrable in mean: by integrating a(X) against a smooth compactly
supported density, we obtain a differential form «( fe X)dXx. If
this form is rapidly decreasing over the fibers of N — B then we can 1ntegrate
a(®) on N. In other words, if for any test function @ on £, the form «(Q) is
rapidly decreasing over the fibers, we can define the integral [ N @ in the sense
of generalized functions:

/E (| eeEx = [ a(@
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We define A% (¢, N) as the space of equivariant differential forms

mean-dec-rap
with C coefficients such that, for any test function @ on ¢, the form «(Q) =
Jy (X)Q(X)dX is rapidly decreasing on N, as well as all its derivatives.

Similarly, we define A_>° dec-rap (€, N) as the space of equivariant differential

forms with C'"~°° coefficients such that, for any test function @ on £, the form
a(Q) = [, (X)Q(X)dX is rapidly decreasing on N, as well as all its derivatives.

Clearly A decrap(t; V) is contained in A 20 (o (8, N).

The operator D is well defined on A_ 2% .. .. (€, V) and we denote the coho-
mology space by H_ % o .8 N). The inclusion A_*(¢,N) <
A eon-decrap(8 IV) induces a map HZ (&, N) — H 0 joe rap (6 N).

If o and 8 are two closed equivariant forms in A 0 . .. (€, N) which
defines the same class in H_°° dec_rap({?, N), then their integrals on N define

the same generalized function on &.

If the basis B of the fibration # : N — B is not compact, the definition
of Al:lz:;n—dec—rap(é’ N) makes sense over any relatively compact open subset of
the basis B. If the bundle N — B is oriented, then the integral over the fiber
defines a map m, : H_° (6, N) — H~>°(¢, B).

mean-dec-rap

3.9.2 Partial Gaussian look

Assume that N is a K-equivariant real vector bundle over a K-manifold B: we
denote by m : N — B the projection. We denote by (x,£) a point of N with
r € Band ¢ € N, := 7 '(z). Let £ — B be two K-invariant Hermitian
vector bundles. We consider a K-invariant morphism o : 7*€+T — 7*€~. Let A
be a K-invariant one-form on V.

We choose a metric on the fibers of the fibration N — B. We work under
the following assumption on o and A.

Assumption 3.41 e The morphism o : 7%t — 7*E~ and all its partial
derivatives have at most a polynomial growth along the fibers of N — B.

e The one-form A and all its partial derivatives have at most a polynomial
growth along the fibers of N — B.

o Moreover we assume that, on any compact subset K1 of B, there exists
R >0 and ¢ > 0 such that

(67) ho (2, €) + [ fa(z, €I > cll€]®

when ||€|| > R and x € Ky. Here hy(x,£) > 0 is the smallest eigenvalue of the
positive hermitian endomorphism vy (x,§).

Let U(1) be the circle group with Lie algebra u(1) ~ iR. In the following
example we denote for any integer k by C; the vector space C with the action
of U(1) given by: t-z = tFz.
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Example 3.42 (Atiyah symbol 1) Let us consider the case of the Atiyah
symbol. We consider B = {pt} and N = T*Cpj ~ Cyj x Cjy). We consider the
U(1)-equivariant symbol

O‘ZNX(C[O] —_— NX(CD]
(&v) — (& o))

defined by o(§) = & — &y for & = (&1,&2). We take for one form A on T*Cp;
the Liouville one form : X\ = Re(&d€;). Here we have f\(€) = Im(&¢&;) and
ho(€) = &2 — i&1]? for € € C2. We compute

ho(€) +IHOIF = 16 + &P - 2im(&E) + In(&E)?
1 2
> Sl

if [|€1% = [€1]% + |€2]> > 2. Hence the Atiyah symbol satisfies Condition (53).

If we consider the set Cy o := {hy = 0} N {fx = 0}, Condition (f7) implies
that, for any compact subset K1 of B, the intersection 7=1(K1) N Cy, is a
compact subset of N. Hence we have a natural map

Hafoa (E’ N) - H;ZZn—dec-rap(E’ N)

Our purpose in this section is to give a representative of Chgyp(o, A) in
H ean-decrap (& V) with “partial Gaussian look”. We will use the results of
Section B.1.

Let V= VT @® V™~ be a connection on £ — B, let A = 7*V and consider
the invariant super-connection A%*(t) = A + it(v, + A). Let Ch(o, A, A, 1) and
B(a,\, A, 1) be the equivariant forms defined in (f6) and (57).

Lemma 3.43 The differential forms Ch(o, A\, A, 1) and B(o, A\, A, 1) belong re-
spectively to A% (&, N) and A (&, N\ Cxro).

mean-dec-rap mean-dec-rap

Before going into the proof, let us look at the example

Example 3.44 (Atiyah’s symbol 2) In the case of the Atiyah symbol, we
have C o := {|€&2 —i&1]? = 0} N{Im(&&;) = 0} = {(0,0)}. We work on N ~ C?
with the coordinates z1 = & — &1 and zo = &9 + &1

We take on the vector bundle N x (Cjq) @ Cyy)) the connection V = d. The
equivariant curvature of the invariant super-connections A7 = d + itv, s

o —t|=)? itdzy
Ft(’e)_( itdzy  —t2)21|? + ith

for i € u(1). The Volterra expension formula gives

Fi(i0) _ o~ (14 (9'(i0) — g(i0)tdzdzr itg(if)dz
itg(if)dz e +g'(i0)t?dz dz1
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where g(z) = ezz_l. In the coordinates z = (21, 22), we have

DX(i0) = ~ (dz1dz1 + dzodzs — 0(|21)* — |22]?))

=

Hence

Ch(o, A, V,1)(8) = P py(Fa(i))

= a(b,z)e R )
where (0, z) depends polynomialy of z. For any test function @ on u(l), we
see that the differential form fu(1) Ch(o, A\, V,1)(0)Q(0)dd on C? decomposes

in forms of the type 77(2)6"“‘2 h(|z2|? — |21|?) where 1 depends polynomialy
of z, and h is a rapidly decreasing function on R : hence Ch(o,\,V,1) €

A?ean—dec-rap (u(l ) ) (CQ ) .
Now we consider the equivariant forms
_ . it DA(if) 0 Z1 ) Fu9)
n(o, A\, V,1)(0) = —ie Str .0 )¢
1

= g(i0)(z1d7T — Fdz )t e 1 12117 @it DAGO)

= (0,t,2)e Il H U2l =1nl)

where v(0,t, z) depends polynomialy of (t,z). Now the integral

(o, A, V,1)(0) = /1 eV, 0)(0)dt

defines an U(1)-equivariant form on C?\ {(0,0)} with generalized coefficients :
it decomposes in sum of generalized equivariant form of the type

o0
a(0,2) [ el A g
1

where «(0, z) is an equivariant form which depends polynomialy of z.
For any test function Q on u(l), we see that the differential form
fu(l) B(o, A\, V, 1)(0)Q(0)do on C?\ {(0,0)} decomposes in forms of the type

"(z) / e B B(t(zf? — [20]2))dt
1

where v depends polynomialy of z, and h is a rapidly decreasing function on R:
hence B(o, A\, V,1) € A_>° dec_“w(u(l),(c2 \ {(0,0)}).

mean-

Proof of Lemma B.43. We consider the equivariant curvature F(t) :=
F(o,\, A, t) of the invariant super-connection A%*(¢). We have

F(t)(X) = —t2v2 —it{f\, X) + 7*F(X) + it[n*V, v,] + itd),
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where F(X) € A(B,End(£)) is the equivariant curvature of V, and the terms
[1*V,v,] € AL(N,End(7*€)),d\ € A%(N), have at most a polynomial growth
along the fibers of N — B.

Let @ be a test function on € with support in a compact subset K" of
. We need to estimate the behavior on the fiber of the differential form
[, eFOX) Q(X)dX over m~(K;1) where Ky is a compact subset of B. More
explicitly, at a point n = (z,£) € N, we have

< / FO) O(xX)d X) (n) = / eIt X) = PRS0 X)HT(6m) (X)X
¢ ¢

with R(n) = v,(n)?, S(n, X) = m*pu®*(X)(n) and T(t,n) = itd\(n) + 7*V2(n)+
it[m*V,vs](n). The assumptions of Section f.d of the Appendix are satisfied:
the map R(n) and T'(t,n) are slowly increasing along the fiber and the map
S(n, X) does not depend of the variable £ € N,.

The form e is a finite sum of powers of td\, so that, over 7*(K;), it is
bounded in norm by a fixed polynomial P(¢, ||£]|) (it is due to our assumption
on \).

If we use the estimate (@) of the appendix, we have, for every integer r, the
estimate

H / PO QX)X (w,€) < est | Qicnzr (1+ )TN x
4

(1 + (1€ o tho (2.6)
(L + lltfa (=, §)%)"

for (z,€) € m~1(K1) and ¢t > 0. Here p does not depend of the choice of p.
Consider the subset S = {(z,&); ||¢]| > R,z € K1} of #=*(K1). Thus, on S,

the estimate h,(z,€) + [|fa(z,€)]|? > c||€||* holds. Since for any positive real

a,b, we have (14+a)"e™® < (14+a+b/r)"", we get the following estimate

Pt [lEl)

i 1 2
| [0 Queyax|(e.6) < est @l (140X Pl el ;e L
! (+220El?)
for (z,£) € S and t > 0. Combining this estimate with the fact that r can be
chosen large enough, we see that, for any integer ¢, we can find a constant cst(q)
such that, on S, and for any ¢ > 1,

(68) H /EeF(t)(X) Q(X)dX H(:c,g) < %-

This implies that Ch(c, A, A, 1) = Str (e¥() is rapidly decreasing in mean along
the fibers.

Consider now (o, A\, A, 1) = éﬁx Str (vg eF(t)) dt which is defined, at least,
for [|€]] > R + 1. The estimate (pg) shows also that (o, A, A, 1) is rapidly de-
creasing in mean along the fibers. With the help of Proposition é, Wwe can prove
in the same way that all partial derivatives of Ch(o, A\, A, 1) and S(o, A\, A, 1) are
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rapidly decreasing in mean along the fibers: hence Ch(o, A\, A, 1) and 5(o, \, A, 1)
belong respectively to A% (¢, N) and to A_S° (&, N\ Chro).

mean-dec-rap mean-dec-rap

Combining Lemmas and B.43, we obtain the following proposition.

Proposition 3.45 The equivariant form Ch(o, A\, A 1) € A?ean_dec_rap({%,N)
represents the image of Chgup(o, A) in Hr_ngjn_dec_mp(?, N).

When the fibers of 7 : N — B are oriented, we have an integration morphism
Tw t H_ SO (¢, N) — H=>°(¢, B).

mean-dec-rap

Corollary 3.46 We have 7. (Ch(o, A\, A, 1)) = 7, (Chgup (o, ) in H™°(¢, B).

4 The transversally elliptic case

Here N = T*M, where M is a K-manifold (not necessarily compact). We
denote by w the Liouville form on T*M. The moment map for the action of
K on (T*M,dw) is the map f,, : T*M — &* defined by (63). We denote by
T} M C N the set of zeroes of f,,. In other words, an element (z,€) is in T M,
if ¢ vanishes on all the tangent vectors at x to the orbit K - z.

In Example , we have defined in this situation the generalized equivari-
ant class

Par(w) € HE‘;M({?, T"M).

Let £ — M be Hermitian K-vector bundles. Let p : T*M — M be the
projection. Let o : p*£T — p*E€~ be a K-equivariant morphism. We suppose
that o is K-transversally elliptic: the subset

Cu.o = Supp(c) N T M

is compact.

Choose an invariant super-connection A on p*E, without 0 exterior de-
gree term. We consider, as in Subsection @, the family of invariant super-
connections A% (t) = A + it (w + v,),t € R, on £ with equivariant curvature
F(o,w, A, t). Recall the equivariant forms :

n(o,w,At) = —iStr ((vg + w) eF(a,w,A,t)) 7

B(o,w, A) /O " (0w, A, 1)t

The Chern character Chgup(o,w) can be constructed as a class in
Heoo, (6, T"M) (see Section B.5). Since C., , = Supp(c) N T} M is compact, we
have a natural map Ho> (¢, T*M) — H_>°(¢, T*M), and we define Ch,(o,w)
as the image of Chsup(o,@) in H_ (¢, T*M) (see Definition B.2(). We gave in
Theorem another way to represent the class Ch.(o,w) as the product of
Par(w) € H};M(E, T*M), with Chg,p(0) € Hgg;p(a) (e, T"M).

We summarize our results in the following proposition.
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Proposition 4.1 e Let x € C(T*M) be a K-invariant function, with com-
pact support and equal to 1 in a neighborhood of Supp(c) T M. The following
generalized equivariant form on T*M

(69) clo,w, A, x) = x Ch(A)(X) + dx (o, w, A)(X)

is closed, with compact support, and its cohomology class Ch.(o,w) in
H (8, T*M) does not depend of the data (A, x). Furthermore this class de-
pends only of the restriction of o to T M.

o Let x1,x2 € C°(T*M) be K-invariant functions such that : x1 is equal
to 1 in a neighborhood of T M, x2 is equal to 1 in a neighborhood of Supp(o)
and the product x1x2 s compactly supported. Then the product

(31 + 1 B)(X)) A (x2 Ch(A)(X) + dx2 B(o, A)(X))

s a closed equivariant form with generalized coefficients and with compact sup-
port on T*M. Its cohomology class coincides with Ch.(o,w) in H; (¢, T*M).

4.1 Free action

Let G, K be two compact Lie groups. Let P be a compact manifold provided
with an action of G x K. We assume that the action of K is free. Then the
manifold M := P/K is provided with an action of G and the quotient map
q: P — M is G-equivariant.

We consider the canonical bundle map V : P x £ — TP defined by the K-
action : V(z, X) =V, X. Let 6 be an invariant connection one form on P: it is
a K x G-equivariant bundle map

0: TP — P xt

such that 6 oV is the identity on P x €. We may also think at # as an invariant
one-form on P with values in £.

Let j: TP — P x £ and 6* : P x £ — T*P be the bundle maps which
are respectively dual to the bundle maps V and 6. The kernel of j is equal to
T P. We obtain the direct sum decomposition

T'P=Pxt e TP
and the dual direct sum decomposition
TP =P x t® Hor.

Here P x ¢ is isomorphic to the vertical tangent bundle and the bundle Hor
is the bundle of horizontal tangent vectors. The projection T*P — T3P is
defined by n — n — 0* o j(n).

Note that, for each € P, we have a canonical isomorphism T P|, ~
T* M |4z defined by 1 — 7o Tql,.

48



Definition 4.2 The smooth map Q : T*P — T*M is defined as follows. For
n € T Pl,, we have Q(x,n) = (q(x),n') where n € T"M|y) is the image
of n through the projection T*P|, — T3 Pl. composed with the isomorphism

Let wp and wj; be the Liouville 1- forms on T*P and T*M respectively,
and let f,7 : TP — ¢ x g* and [ :
equivariant maps.

We consider the K x G invariant one form v on P X £ which is defined by
(70) v(z, &) = (0(x),§).

The corresponding map (f;(,fuc) : P x & — B x g* satisfies ff (x,8) =&, and
ff (x,8) = =& o u(xz). Here u: P — hom(g, t) is the moment of the connection
1-form 0 : p(z)(Y) = —(0(x), V. Y).

T*M — g* be the corresponding

Lemma 4.3 e We have wp = Q*(war) + j*(v).
e We have

KxG

(71) fart = (£ i, foy 0 Q+ £ 2J).

Proof. We write § = ", 0; ® E* where (E) is a base of £. We denote
(—, EL) the smooth function on T*P defined by (z,n) — (n, EL(z)). First we
have j*(v) = >, p*(0;)(—, E%) where p : T*P — P is the projection. Next we
have, for (z,n) € T*P and v € T(T*P) the relations :

(@ (war)(z,m),v)

|(@m)

(w(Q(z,m)), TQl@m¢)
<nan1|Q(xn)oTQ|zn >
(n',

(n

(q o p2)|(m n)U>
- S0 P Tra(o)

= (wP(‘Tan)a >+<.7 ( )(.T,T]),U).

Here Q(z,n) = (q(z),7) and we use the relation p’ o Q = ¢ o p, where p’
T*M — M is the projection. The last point is a consequence of the first one.

Following Section @, we associate to the invariant 1-forms wp and wy; the
relative equivariant classes :

o Prel(WP) S 7_{700(E X gaT*PaT*P\T;(XGP)’
o Pra(wn) € H™°(g, T"M, T"M \ T, M).

We are in the setting of Section @ We consider the manifold N := T*P
equipped with the actions of the group K7 := K and K5 := G, and the invariant
one forms p = Q*(wn), A = 55 (v).

We first consider the K x G invariant form v on P x £, and the map
fo = (fK, &) from P x £* to £ x g*.
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Lemma 4.4 We have
C, =CK =P x{0}.

Proof. As f, (z,€) = ¢, and £, (z,€) = —€ o u(z), the relation f, (z,£) = 0
implies that f& =0, so f, = 0.

We consider the class P! (v) € H7°>®(E x g, P x £, P x (¢*\ {0})).

The pull-backs Q* (Prei(wns)) and j* (PL,(v)) belong respectively to
H=>°(g, T*P,T*P\T;P), H >t x g, T*P,T*P\ T P): the relative class
Q" (Prei(wnm)) (X,Y) does not depend of X € ¢ and the relative class
Q* (PLy(v)) (X,Y) is smooth relatively to Y € g. We can then take the product

Q" (Prai(wm)) (Y) 05 (Pra(v)) (X,Y)

which belongs to H™>*°(¢ x g, T*P,T*P \ TxyP).
The main point of this section is the following

Theorem 4.5 The following equality

Prei(wp) = Q" (Prei(wnr)) © j* (P}el(y))
holds in H=>°(¢ x g, T*P, T*P \ T}, oP).

Proof. This theorem follows from Theorem [3.2§ and of the following
description of the sets where we need to work. Indeed, let us see that we have

Coruwn = C8euyy = QTEM,  Cjeyy =CEK, =TyP

WM

and
C(Q*wn,j'v) = Cup = TE i P.

As the component of f,,, on £ is equal to 0, the first equality is clear. The
second equality follows from Lemma @

To compute C(Q*wyps,j*v), we take some invariant metrics on g* and &*.
The set C(Q"war,3v) is the set {[Q* 4%, || < 7S} {13 FX] < o

Thus, on C(Q*wyr, j*v), we have j*f5X = 0. As shown by Lemma [.4, this
implies j* f¢ = 0, so that all maps j* fX, j* <, Q*fEM are zero on C(Q*wps, j*v).
We obtain the last equality.

We denote by Par' (v) € Hp™ (£ x g, P x £*) the image of the class PL,(v).
Then Par' (v)(X,Y) depends smoothly on Y. As P is compact, it defines a class
still denoted by Par'(v) in H, (¢ x g, P x £*)

Let op : p*€T — p*E~ be a K x G-transversally elliptic morphism on T P.
Let Ei — M be the vector bundles equal to the quotient £ /K. We define the

morphism oy : p*?’r — p*€  on T*M by the relation
Q*UM(JUJY) = UP([xan]T*KP)a (‘Tan) e T*P.

Here (x,7n) — [z,7]T; ar denotes the projection T*P — T P.
It is immediate to see that o,s is G-transversally elliptic, and that Q%o
defines the same class than op in K% (T o P).
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Proposition 4.6 We have the following equality
ChC(O'p, WP) = Q* ( ChC(O'I\/[, wM)) A ]* (Parl (I/))
in H;°(Ex g, T"P).

Proof. We use here the results of Section @ We work on N := T* P with the
symbol o = Q*ojs and the symbol 7 = [0]. The Chern character with compact
support Ch.(op,wp) = Ch(Q*(oar), Q* (war) + j*(v)) is equal to the product

v (@ (om), @ (war)) A v, ([0], 57 (v))
in H_>°(¢; x €2, N). Here V; is any neighborhood of

Supp(Q*(oamr)) N CQ*(wM) = Q71 (Supp(oar) N TEM)
and Vs is any neighborhood of
Supp([0]) N Cjey = (P x {0}) = TP

with the condition that V; N Vs is compact.

Here we take Vi of the form Q~'(U;) where U; is a neighborhood of
Supp(oar) N'TH M in T*M with U; compact. We take Vs of the form 571 (Us)
where Us = {(p, &) € P x t* | ||€|| < €} is defined for € small enough.

Then the class ¢y, (Q*(on), Q" (war)) and ¢y, ([0],5*(v)) are respectively
equal to Q7 (cy, (oar,war)) and to j*(cy, ([0], v)). The class ¢y, (oar, war) is equal
to Che(oar,war) in H; (g, T*M), and the class ¢y, ([0], ) defines Par'(v) in
Ho ook x g, P x t).

4.2 Exterior product

To define products of symbols, we will need to use “almost homogeneous sym-
bols”.

Definition 4.7 A morphism o : p*€T — p*E~ over T*M is said to be almost
homogeneous of order m if o([x,t£]) = t™o([x,£]), for every t > 1 and for &
large enough?.

Lemma 4.8 A K -transversally elliptic morphism o is homotopic to a K - transver-
sally elliptic morphism which is furthermore almost homogeneous of order 0.

Proof. Let ¢ > 0 such that C,, = Supp(c) N TxM C
{(z,€) e T*M | ||€|| < ¢}. We consider a smooth function ¢ : R — R=Y satisfy-
ing: $ =1o0n[0,c], ¢ >1 on [¢,2c], and ¢(y) = % for y > 2e¢.

We define now, for s € [0, 1], the morphism o*(x, &) := o(x, ¢(s]|£]])§). We
see easily that C,, , = C, = for all s € [0,1]. Hence o = ¢° is homotopic to o'
which is almost homogeneous of order 0.

Let K1, K5 be two compact Lie groups. We work with the following data:

2Tt means that ||£|| > ¢ for some Riemannian metric || - || and some constant ¢ > 0.
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e M is a Ky x Ko-manifold not necessarily compact ,

e Ms is a compact Ko-manifold

e & is a Kj X Ks-equivariant complex super-vector bundle on Mj,
e & is a Ks-equivariant complex super-vector bundle on Mo,

e 01 :pi& — P& is a K x Ky-equivariant morphism on T*M; which is
Ki-transversally elliptic

e 09 : psES — p3E5 is a Ka-equivariant morphism on T* My which is Ko-
transversally elliptic.

We consider now the exterior product o := 01 @ext 02 Which is an equivariant
morphism on M := M; x My with support equal to Supp(o1) X Supp(oz). Since
T, v, (M1 x Ma) # Ty My x Ty, My, the morphism o is not necessarily
K, x Ks-transversally elliptic. However, we will see that it is so when the
morphism o9 is taken almost homogeneous of order 0.

For k = 1,2, let py, : T*(M; x My) — T* My, be the projection. The Liouville
one form w on T*(M; x Ms) is equal to pfw; + piwe, where wy, is the Liouville
one form on T Mj,.

Lemma 4.9 Assume that the morphism o2 is taken almost homogeneous of
order 0. Then the morphism o := 01 Oext 02 on M := My X My is K1 X Ko-
transversally elliptic.

Proof. Let f2, : T"M, — € and (f),,f2) : T"M; — & x €& be the
moment maps associated to the actions of K5 on Ms and Ky X Ko on M;. An
element (n1,n2) € T*M; x T*M; belongs to Ty , g, (M1 x My) if and only if

oy (n1) = 0and fZ () + f2,(n2) = 0.
Let fy be the restriction of the map f52 to the subset Supp(cs). Then
Supp(01 Oext 02) N T*leK2 (My x M) C C! X f;l(/C)

01,W1

where C} = Supp(o1) N Tk, (M1) and K := —fE2(CL ) are compacts.

o1,Ww1 01,W1

The proof follows from the

Lemma 4.10 The map fo : Supp(o2) — € is proper.
Proof. Since o9 is Ks-transversally elliptic, we have

(72) Supp(a2) N Ty, Mo C {[|&2]| < c}-

Thus the function ||fa|| is strictly positive on the compact subset
Supp(o2) N {||&|| = c¢}. We choose v > 0 such that ||fz|| > u on
Supp(a2) N {[|€2[| = ¢}

As o4 is almost homogeneous of order 0, we can choose ¢ sufficiently large
such that oo([z,t&]) = o2([x,&]) for every t > 1 and for ||£]| > ¢, so that S} =
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Supp(o2)N{||&2]] > ¢} is stable by multiplication by ¢ > 1. It is sufficient to prove
that the restriction of fz to S5 is proper. By homogeneity, fa([z,&]) > uc|/£|| on
S%. Tt follows that the restriction of fy to S} is proper.

Consider first N; = T*M; with the K; x K invariant form w;. We are in
the situation of Section B.g. We write the map f.,, : N1 — & x € as (fL , f2).
We see that the set CZ, is just Ty, M. Let

C;wn = Supp(o1) N Tk, M.
By our assumption, this is a compact subset of T*M;. The relative class
Ch} (o1, w1) belongs to H™°>° (€} x €5, N1 \ C, ). We consider its image
Chl(o1,w) in H; (8 x &y, T*M;). A representant of Chl(oy,w:) is given
by c¢(o1,w1,A1,x1) (see (@)), where yi is an invariant compactly supported
function on T*M; which is equal to 1 in a neighborhood of Supp(o1) N Ty, M;.

From now on, we assume that the morphism o5 is taken almost homoge-
neous of order 0.

We consider the Chern classes with compact support associated to the transver-
sally elliptic morphisms o1, 02 and 0 := 01 Oext 02 :

L] Chi(ol,wl) S H:OO’OO(El X EQ,T*M:[),

. ChC(O'Q,WQ) S H;OO(€2,T*M2)7

o Ch.(o,w) € H_ (€1 x &, T*M).

We may then form the product of the generalized equivariant forms p; Chi (o1,w1)
and p3 Ch.(02,ws). The main result of this Section is the

Theorem 4.11 The following equality
p; Chtlz (Jla wl)(Xa Y) A p; Chc(027 WQ)(Y) = ChC(O', w)(Xv Y)
holds in H_ (8 x £, T*M).

Proof. This theorem follows from the results proved in Section B.d. We
consider the manifold N := T*(M; x Ms) equipped with the actions of the
groups Kj, Ky and the invariant one forms A = pj(w1) and p := pi(wq) :
A+ 1 = w. The morphism o is equal to the product pi(o1) @ pi(o2). As the
component of f, on £ is equal to 0, the closed subset C := C(A, ) of N is equal
to

¢ = {IAlI=0r{Ifull < IF31}
= Ty, M {(n,n2) € T"My x T My | || f2,(n2)]| < |1£2, ()]}

Let us check that Supp(o)NC is compact. Since Supp(o) = Supp(o1) X Supp(o2),
we have

Supp(a) NC = {(n1,12) € Cy, 5, x Supp(o2) | |12, (n2)]| < 112, (n)lI}
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where C}, . = Supp(01) T, M; is compact. Let ¢ > 0 such that || f2 (ny)]| <

¢ for all nll é o We have then

w1,01°

Supp(e) M€ C CL, 4, x (Supp(o2) 0 {112, < c})
We know from Lemma that the map f2 is proper on Supp(o2): the set
Supp(o2) N {||f2,]l < ¢} is compact and then Supp(c) NC is also compact.

We are exactly in the situation of Theorem . The equivariant Chern
character with compact support Ch.(o,w) = Ch.(pi(c1) @ pi(o2), A + p) is
equal to the product

Cy, (pT (01)’ )‘) A Cy, (p; (02)5 ,U,)

in H;%°(8 x &, T*M). Here V; and Vs are respectively any neighborhood of
Supp(pi(01)) N C3 = pi(Supp(o1) N Ti, M) and Supp(ps(02)) N Cy =
p3(Supp(02) T, M>) such that V1NV is compact. Here we take Vj, of the form
p ' (Uy) where Uy, is a neighborhood of Supp(ax) N Ty, My in T* M), with U
compact. Then the class ¢y, (pf(o1), A) and ey, (p;(01), 1) are respectively equal
to pi(cy (01,w1)) and to pi(cy,(02,ws2)). The proof is completed since each
cuy (01, w1) is equal to Chl (o, wy) in H, % (€ x €, T* M), while ey, (02, w2)
is equal to Ch¢(o2,ws) in H_ (s, T* Ms).

4.3 The Berline-Vergne Chern character

In this section, we compare Ch.(o,w) with the class defined by Berline-Vergne
[B], with the help of transversally good symbols. We suppose in this Section
that the manifold M is compact.

In Berline-Vergne [E], we associated to a “transversally good elliptic sym-
bol” o a class Chpy (o) which was an equivariant differential form on T M with
smooth coefficients, rapidly decreasing in mean on T*M. If ¢ is any transver-
sally elliptic symbol, the Chern character Ch.(o,w) is compactly supported on
T* M, so defines an element of H_°° (e, T*M). Our aim is to prove that

mean-dec-rap

the classes Chpy (o) and Ch.(o,w) coincide in H_° (¢, T*M).

mean-dec-rap
We recall the definition of Chpy (o). A K-transversally elliptic symbol o :
p*ET — p*E~ is "good” if it satisfies the following conditions:
e ¢ and all its derivatives are slowly increasing along the fibers,
e the endomorphism v2 is ”good” with respect to the moment map f,,. That

(o2

is, there exists 7 > 0, ¢ > 0 and a > 0 such that? for every (x,¢) :

(73) 1 folz, )l < alléll and [I€]| > r = ho(x,€) > cll].

Let A = p*V, where V = VT @ V™ is a sum of connections on the bundles
£* — B. Consider the invariant super-connection A; = A + v, + iw with
equivariant curvature

F(o, A, 1)(X) = =02 +i(fo, X) +iQ 4 i[A, v,] + A% + A (X).

3he(x,€) > 0 is the smallest eigenvalue of the positive hermitian endomorphism o(z, ¢)2.
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If 0 is a K-transversally good symbol, Berline and Vergne have shown that
the smooth equivariant form Ch(c,w, A, 1) = e?P¥ Str(ef (@A) is rapidly de-
creasing in mean: for any test function @ on &, ft Ch(o,w, A, 1)(X)Q(X)dX is
a differential form on T*M which is rapidly decreasing along the fibers of the
projection T*M — M. Tt thus defines a class

ChBV(U) € Hﬁean—dec-rap(a T*M)

Theorem 4.12 If o is a transversally good symbol, then Chpy(c) = Ch.(o,w)
mn H_ (¢, T*M). In particular, the integrals on the fibers of Chpy (o)

mean—dec—rap

and of Ch.(o,w) defines the same element in H~°(¢, M).
Proof. The condition (73) implies that
ho(2,€) + 1 fol@, 7 2 CIEI* - when €]l = r

where ¢ = min(a?, c). So we can exploit the result of Proposition : we have

Ch(o,w,A,1) = Chsup(o,w) in H % decrap(&; T M). The proof is finished,
since Chsup(0,w) = Che(o,w) in H % decorap (& T M).

5 Appendix

We give proofs of the estimates used in this article. They are all based on
Volterra’s expansion formula: if R and S are elements in a finite dimensional
associative algebra, then

(74) e(B+5) — oR Z/ 1R Ges2R G ... GoskR Goskt1R g ... ds
k=172

the volume of A, for the measure dsq - - - dsy, is %

Now, let A = &7_,A; be a finite dimensional graded commutative algebra
with a norm ||-|| such that ||ad|| < ||a||||b]|]. We assume Ay = C and we denote by
Ap = @l A;. Thus w?™ =0 for any w € A;. Let V be a finite dimensional
Hermitian vector space. Then End(V) ® A is an algebra with a norm still
denoted by || - ||. If S € End(V), we denote also by S the element S ® 1 in
End(V) ® A.

where Ay is the simplex {s; > 0;81 + s2 + -+ + S + Sg+1 = 1}. We recall that

Remark 5.1 In the rest of this section we will denote cst(a,b, - - -) some positive
constant which depends on the parameter a,b,---.

5.1 First estimates

We denote Herm(V') C End(V') the subspace formed by the Hermitian endo-
morphisms. When R € Herm(V'), we denote m(R) € R the smallest eigenvalue

of R : we have
o] = emmem.
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Lemma 5.2 Let P(t) = >.1_, ’;c—k, Then, for any S € End(V)® A, T €
End(V) ® Ay, and R € Herm(V'), we have

le= ST < e Sl p(| ).

Proof. Letc=m(R). Then || e *“?| = e " for all u > 0. Using Volterra’s
expansion for the couple sR,sS, we obtain || e*(~=1+9) || < e=*¢¢elI9l | Indeed,
SRS = e=sR 4 572 | I with

I = sk/ e S Semo sl Gem ot gy . dy,.
Ay

The term [j is bounded in norm by %HSer_SC. Summing in k, we obtain
” efs(R+S)
o(—R+8)+T

| < e sceslISll for s > 0. We reapply Volterra’s expansion to compute
as the sum

q
e—R+S+Z/ 51 (—RES) [P sk (~R4S) P osiar (R4S g ds,
E>17 Bk

Here the sum in k is finite and stops at k = ¢. The norm of the k* term is
bounded by 2 e™° elSIH|T| k. Summing up in k, we obtain our estimate.

For proving Proposition @, we need to consider the following situation.
Let E be a (finite dimensional) vector space. We consider the following smooth
maps

e z— S(z) from E to End(V) ® A.
o (t,z) — t?R(z) from R x E to Herm(V).
o (t,x) — T(t,x) =To(z)+tTi(x) from R x E to End(V) ® A,

Proposition 5.3 Let D(9) be a constant coefficient differential operator in x €
E of degree r. Let K be a compact subset of E. There exists a constant cst > 0
(depending on K, R(z), S(z), To(z), T1(z) and D(d)) such that*

(75) HD(G) .e_tzR(z)-l-S(m)-‘rT(t,m) < st (1+ t)2r+q e—tzm(R(m))’

for all (z,t) € K x R=0.

Corollary 5.4 Let U be an open subset of E such that R(x) is positive definite
for any x € U, that is m(R(x)) > 0 for all x € U. Then the integral

/ o PR +S(@) 4 T(La) gy
0

defines a smooth map from U into End(V) ® A.
4q is highest degree of the graded algebra A.
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Proof. We fix a basis vi, ..., v, of E. Let us denote 0; the partial derivative

along the vector v;. For any sequence I := [i1,...,i,] of integers iy, € {1,...,p},
we denote J; the differential operator of order n = |I| defined by the product
HZ:l aik :

For any smooth function g : E — End(V) ® A we define the functions

(z) := sup [|0;r - g(z)|
n |1]<n

Is

and the semi-norms ||g[/x» := sup,cx |||/ (x) attached to a compact subset K
of E. We will use the trivial fact that ||g||,(z) < ||g]|m(z) when n < m. Since
any constant differential operator D(9) is a finite sum ), a;dy, it is enough to
proves ([() for the 0.

First, we analyze Oy - (e_tzR(I)). The Volterra expansion formula gives

(76) 81 . (eftQR(x)) _ 7152/ efsltZR(z) 81 . R(SC) e*SQtzR(I) dS17
A

1

and then [|9; - e=B@) || < ||R||1(z) (1 + t)2 e 'mE®) for (z,t) € E x R0,
With ([7§), one can easily prove by induction on the degree of 9; that: if
|I| = n then

(77) Hal . eft2R(z)

‘ < cst(n) (1 + ||R||n(:1;))n (1+1¢)2n o t°m(R(z))

for (v,t) € E x R2%. Note that ([77) is still true when I = () with cst(0) = 1.
Now we look at Oy - (e*tzR(zHS(I)) for |I| = n. The Volterra expansion

formula gives et B@)+5(@) — ¢=1"R(2) L 57 7, (1) with
Zu(z) = / o1 (ERE) g(7) 0= 2P K@) §()... §(z) e~ %+ (RO g, .. g,
Ay

The term Or - Zi(x) is equal to the sum, indexed by the partitions® P :=
{I,I2,...,I2k4+1} of I, of the terms

(78) Zr(P)(x) :=

/ (511 .e—81(t2R(I))) (91,-S()) - (91, -S(x)) (512“1 ,e—8k+1(t2R(l))) dsy - - - dsy
Ay

which are, thanks to (@), smaller in norm than

wt (IS, (@) .y
(79) cst(P) (1 + ”R”mt (z)) % (14 £)217 o~ t*m(B@)

The integer n}, ny, are respectively equal to the sums |I1| + |I5] + - - - + | L 41],
|Io|+|Ls|+ - -+|I2k|, and then ns+np = n. The constant cst(P) is equal to the

5We allow some of the I; to be empty.
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products cst(|1|)cst(|13]) - - - est(|lary1]). Since the sum ) cst(P) is bounded
by a constant cst’(n), we find that

(80) Haf.eftQR<r>+S<x>

| < estm) (L4 [Rlln(@) " el*1n ) (17 o)

for (z,t) € E x R=%. Note that (B]) is still true when I = § with cst/(0) = 1.
Finally we look at Oy - (e_tzR(zHS(IH‘T(m)) for |I| = n. The Volterra ex-

pansion formula gives e~ R@+S@HT (1) — o~*R(2)+S(@) L S Y, (z) with
Wh(z) = / o51(—t?R(2)+5(x)) T(t,x)---T(t,z) S+ (- R@)+S@) g .. s, .
Ag

Note that the term Wy(z) vanishes for k& > ¢. If we use (B{), we get for
(z,t) € E x R20:

k
101 - Wie(@)| < est” () (I Tolln() + [ Tilln(e) )

R
(1+ ||R||n(z)) — ISl (@) o—t*m(R(x))

Finally we get for (z,t) € E x R=0 :

(81) HaI ot R(@)+S(@) +T(t0)

< cst"(n) (1 + HRHn(x))nx
P(I\Tolln(x) - |\T1||n(x)) elISln(@) (1 4 )2nta o=t*m(R(2))

where P is the polynomial P(z) = Y7 _, 2—?
So ([75) is proved with

est = est(n) sup { (14 18(@) P (IZolla(x) + T3 la(x)) €11}

5.2 Second estimates

Consider now the case where E = W x £ : the variable x € E will be replaced
by (y,X) € W x t. We suppose that the maps R and T are constant
relatively to the parameter X € t.

Let K = K’ x K” be a compact subset of W x ¢. Let D(9) be a constant
coefficient differential operator in (y, X) € W x & of degree r : let ry be its
degree relatively to the variable y € W.

Proposition 5.5 There exists a constant cst > 0, depending on K, R(y), S(y, X),
To(y), Th (y) and D(9), such that®

(82) H D(8) - et RW+SWX)+T(ty) H < est (14 £)2w+a o=t m(RW)

for all (y, X,t) € K' x K" x R=0,
64 is the highest degree of the graded algebra A.
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Proof. We follow the proof of Proposition @ We have just to explain
why we can replace in () the factor (14 ¢)2" by (1 +¢)2"w.
We choose some basis v1,...,v,, of W and Xi,..., X, of &. Let us denote

o}, 8? the partial derivatives along the vector v; and X;. For any sequence

I = {’[:1,. ..,inl}U{jla- -~,jn2}
I(1) 1(2)

of integers where i, € {1,...,p1} and jr € {1,...,p2}, we denote 9; the differ-
ential operator of order |I| = n; 4 ny defined by the product [[;_, 8}, [T,%, &%, .

We first notice that O Ce~ PR —  if I(2) # 0. Now we look at 9y -
(e_tzR(y)*‘S(y’X)) for T = I(1) UI(2). The term Z;(P) of (g) vanishes when
there exists a subsequence Io;1 with Io;11(2) # (0. In the other cases, the integer
n;g = |I1| + |Is| + - - - + |I2k+1| appearing in @) is smaller than |I(1)| = ny. So
the inequalities (B0) and (1)) hold with the factor (1+¢)" replaced by (1+¢)2".

In order to prove Proposition @, we need to consider for every compactly
supported function @ € C*°(¢) the integral

Jo(€,9,1) = /ez‘<s,X> e~ PROFSWX)FT(0) Q(X)dX.
13

Proposition 5.6 Let K' x K" be a compact subset of W x £, and let p be any
positive integer.

e There exists a constant cst > 0, such that: for any function Q € C*(¢)
with support on K", we have

(1+¢) o *m(R())

o] < oty A1

for all (&,y,t) € € x K' x RZ°,

e Let D(0y) be a constant differential operator on W of order r. There exists
a constant cst > 0, such that: for any function Q € C*> () with support on K",
we have

(L4724

(3) | PO, Joléy b < est QUi zp oy AW
Ve P (L P
for all (&,y,t) € € x K' x R=0,
Proof. Let us concentrate on the first point. We have
(4 16 at) = [ (Dayfox) X)) o P HOHSOXT 00 Q)i
e

_ / €3 D, () - (eft2R<y>+S<y,X>+T<t,y> Q( X)) qX
¢
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where Doy, (9x) = (1->,(9x, )?)P is a constant coefficients differential operator
in X with order equal to 2p. Now Da,(dx) - (e_t2R(y)+S(y’X)+T(t’y) Q(X)) is a
finite sum of terms 9% - (e’tZR(y)JFS(y’X)*T(t*y)) (8% -Q(X)) with |a| and | 3| less
or equal than 2p. All the derivatives 8% - Q(X) are bounded by [|Q||x,,. We
now employ the estimate of Proposition @ for 0% - (e_t2R(y)+S(y’X)+T(t’y)),

where ||a| < 2p, and (y, X) € K’ x K, and we obtain our estimate.
The second point works similarly. ~ We need to estimate 9%D(9y)-

(e_tzR(yH‘S(y’X”T(t’y)). We use also the estimate of Proposition [p.5.

Remark 5.7 The estimate of Proposition still holds when @Q is a smooth
map (with compact support) from € with values in End(V) ® A.

In fact, we need still a slightly more general situation. The proof is identical
to the preceding proof.

Let us denote F(y, X,t) := —t2R(y) + S(y, X) +T(t,y). Let U1 (y), Uz2(y) be
two smooth maps with values in End(V) ® A. For any smooth function @ on ¢
with compact support, we consider the integral

To(u t,y, &) = /6“”> Ui (y) e"F@XD Uy (y) eB=WF X0 O(X)d X,
t

Proposition 5.8 Let p be any positive integer. Let K' x K" be a compact subset
of W x ¢. Let D(0y) be a constant differential operator on W of order r. There
exists cst > 0 such that: for any function @ € C*°(¥) with support in the compact
K" we have

(LD e ()

[P@,) Tatw t.6)| < estIQlcazn (e ©

for all (t,y,&) € RZ0 x K’ x €, and u € [0, 1].

5.3 Third estimates

In order to prove Theorem , we need to consider the following setting:

e The vector space W decomposes as W = W7 x Wa,

e The maps R and T do not depend of the variable X € ¢,

e The map S does not depend of the variable yo € Wo,

e The maps R, Ty and T; are slowly increasing relatively to the variable
y2 € Ws. Let us recall the definition. For any integer n, and any compact subset
K1 of Wi, there exist some positive constants cst, u such that each function
Rl (y1:y2): [ Tolln(y1,y2) and [ T1[ln(y1,y2) is bounded by est(1 + [[y2|[)* on
IC1 X Wg.
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Here we consider for every compactly supported function Q € C>® () the
integral

JQ(& Y1, Y2, t) == /ei<f»X> e*tzR(yl7y2)+S(yl,X)+T(t,y1,y2) Q(X)dX.
13

Proposition 5.9 Let K1 x K" be a compact subset of W1 x €. Let D(dy) be a
constant differential operator on W of order ry .

There exists a constant u > 0, such that for any positive integer p, there
exists cst > 0 for which the following estimate holds for any function Q € C*(¥)
with support on K" :

() D@ oyt <

1+ B s
cst || Qlx2p % (1+ t)qJFQTW et m(R(y1,y2))

fOT (§7y17y27t> €t x ICI X WQ X ]REO

Remark 5.10 In the estimate , the crucial point is that the constant p is
the same for all integer p.

Proof. In the following the parameter (y;,X) belongs to the compact
K := Kf x K" and the parameter (ys,t) belongs to W x R=Y.

As in the proof of Proposition @, we get the estimates (@) if we show that
for any differential operator D(Jx) we have the estimate:

(85) H D(3,) 0 D(Dx) - e~ RO 92+, X) 4T (1 32)

E
est (1 + [|ya|)¥ (1 + t)at2rw =" m(R(yrv2))

where the parameter 4 in (B§) does not depend of the choice of D(dx).

First, we consider the term D(9,) o D(0x) - e~*R(1.92) : it vanishes if the
order of D(dx) is not zero. In the other case we exploit ([7) with the slowly
increasing behavior of R to get

D@, ot

’ < st (14 [Jy2])® (1 + )2 e~ m(R(y1,92))

where o depends of the order D(9,).

Now we consider the term D(9,)o D(0x) ce~ P R1.92)+S(1.X) | The estimate
(I@) gives, modulo the changes explained in the proof of Proposition @, the
following

(86) HD(ay) o D(9x) - o=t R w2)+S(1.%) H <

est (1+ |ly2l))® (1 + )%™ ot m(R(y1,y2))
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where cst take into account the term” ellSl<.» . Here the term (14 ||y2||)® comes
from the term (1+ ||R||n7+) ()% of (fd). The factor n} is bounded by the order

of D(9y), hence it explains why ¢ does not depend of the order of D(9x).
Using Volterra expansion formula, it is now an easy matter to derive (B3

RA

from (B4).

The preceding estimates hold if we work in the algebra End(£) ® A, where
€ is a super-vector space and A a super-commutative algebra.
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