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ABSTRACT 
Friction induced vibrations are a major concern in a wide variety of mechanical systems. This is especially the 
case in aircraft braking systems where the problem of unstable vibrations in disk brakes has been studied by a 
number of researchers. Solving potential vibration problems requires experimental and theoretical approaches.  
A nonlinear model for the analysis of mode aircraft brake whirl is presented and developed based on 
experimental observations. The non-linear contact between the rotors and the stators, and mechanisms between 
components of the brake system are considered.  
Stability is analyzed by determining the eigenvalues of the Jacobian matrix of the linearized system at the 
equilibrium point. Linear stability theory is applied in order to determine the effect of system parameters on 
stability. 

1 INTRODUCTION 
An aircraft brake system is given in Figure 1. As shown, the brake is composed of a stack of rotating brake discs 
(rotors) which engage the wheel, and stationary brake discs (stators), which engage the torque tube. The torque 
tube is attached to the piston housing that links to the landing gear through a torque take-out rod. During 
operation, the brake is activated by the hydraulic system pressure, which compresses the heat stack: the rotors 
and the stators are squeezed together by hydraulic pistons and the brake produces torque by virtue of friction 
forces generated at the rubbing interface between the rotors and the stators. Then, vibration can be further 
induced by the friction characteristics of the heat sink material.  
Two important specific complex nonlinear phenomena have been identified: squeal and  whirl. The other major 
vibration modes are gear walk and chatter. Gear walk is defined as the cyclic fore and aft motion of the landing 
gear assembly. The frequency spectrum of gear walk is in the 5 – 20 Hz range. Chatter is defined as a torsional 
motion of the rotating parts of the brake-wheel-tire assembly about the axle and against the elastic restraint of the 
tire. The frequency spectrum of chatter is in the 50-100 Hz range. Squeal is defined as torsional vibrations of 
non-rotating brake parts around the axle. The frequency spectrum of squeal is in the 100 – 1000 Hz range. Whirl 
is defined as a motion/mode wherein the cantilevered end of the torque plaque orbits about the axle accompanied 
by unphased pumping of the brake pistons. Brake whirl mode within the same frequency range as brake squeal 
(200-300 Hz range) and can couple parametrically. Hydraulic damping provided by the piston housing fluid 
circuit represents a prime source of whirl damping. If the hydraulic damping provided by the piston housing 
fluid is insufficient, orifices may be used to increase damping to required levels. 
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The goal of this study is to present an analysis of the whirl vibration in aircraft brake system. A simplified 
aircraft braking system and parametric studies are used in order to understand the stable and unstable behavior of 
the  aircraft brake system.  
First, some basic concepts of aircraft brake systems will be introduced. Second, experimental tests and their 
results will be presented, in which a combination of experimental and analytical techniques are employed in 
order to solve potential vibration problems. 
Next, a model for analyzing whirl mode vibration in aircraft braking systems will be presented. The model 
considers the non-linear contact between the rotors and the stators and some mechanisms between the 
components of the brake system. This model does not use brake negative damping and predicts that system 
instability can occur with a constant brake friction coefficient. Then, results from stability analyses and 
parametric studies using this model will be presented. System stability can be altered by changes in the brake 
friction coefficient, pressure, the sprag-slip mechanism, geometry and various brake design parameters. More 
particularly, it will be demonstrated that adding damping may change the stability of the aircraft brake system 
and may have disastrous effects on the stability analysis. 

2 EXPERIMENTAL APPROACH 
Tests of brake systems can be conducted using a roadwheel dynamometer which is a large rotating mass 
simulating aircraft inertia, as illustrated in Figure 2. The roadwheel dynamometer is brought up to speed. Then, 
the wheel and brake system are set on this roadwheel. Finally, the brakes are activated by the hydraulic system 
pressure, which compresses the heat stack. The roadwheel dynamometer is stopped. This test is a simulation of 
aircraft brake stopping.  
A series of tests with a fully instrumented aircraft brake (51 accelerometers) is performed in order to analyze 
precisely the mechanisms of the main resonances appearing on this brake in the 0-1000 Hz frequency range. In 
particular, the torque tube was instrumented with accelerometers. Figure 3 shows the accelerometer locations on 
each instrumented part. A typical example of a torque tube signal evidencing the whirl mode is presented in 
Figures 4 and 5. Figures 6 and 7 illustrate the large amplitude of pressure oscillations at the piston housing due 
to the whirl phenomenon. Due to this instability, the amplitude oscillation of the signal increases and the whirl 
instability appears between 240 and 280Hz, as illustrated in Figure 5 and Figure 7. This instability may be 
associated with “whirl” vibrations by considering the experimental vibrations of the aircraft brake system. The 
typical deformation of the entire aircraft brake system due to the experimental instability is given in Figure 8. 
Markers from  to  indicate the evolution of deformation of the brake system for one period. All 
accelerometer locations on the aircraft brake system are given again in the last image of Figure 8. An axial 
deflection of the axle tube and a complex rotating-bending motion of the brake may be observed (indicated by 
the whirling motion of the torque plate and the piston housing at the top and bottom of the aircraft brake system 
from marker  to ). This complex rotating-bending mode of the brake and axle around 200-300Hz due to the 
wobble-type plate motion of the brake friction stack coupled with the axle bending in two perpendicular planes 
is defined as the standard whirl mode [1-3]. 

3 THEORETICAL APPROACH 
In this section, an analytical model will be developed based on the previous experimental observations in order 
to reproduce the whirl instability. First, the whirl description and modeling will be presented based on the 
previous experimental approaches. Second, the mechanism of friction-induced vibration will be introduced in 
order to model the contact at the interface between rotors and stators of the aircraft brake system. Then, the non-
linear behavior of the rotor/stator stack will be investigated and the complete whirl modeling will be established. 

3.1 Whirl modeling 

Friction-induced vibration has been described and analyzed in a number of published studies of varying 
complexity. In a previous work, Ozbek et al.[1-2] and Gordon [3] present whirl vibration as a wobbling motion 
between the brake’s rotating and stationary parts. Whirl can be detected by piston pressure oscillations. Feld and 
Fehr [4] explain whirl vibration: the disks in the brake stack are compressed by the hydraulic pressure applied to 
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the brake, as illustrated in Figure 9. Without vibration, the normal pressure is distributed uniformly over the 
rubbed surface between rotating and stationary disks. When vibration is present, disks in the brake stack are 
subjected to out-of-plane rotation called accordion motion. The uniform normal pressure over the disk interface 
is then altered by this accordion motion: the normal pressure increases over half of the interface and relaxes over 
the other half. Moreover, the friction force varies proportionally to this normal pressure and produces the whirl 
motion [5]. 

Considering the previous experimental results (illustrated in Figure 8), it has been observed that lateral 
displacement and rotations in two perpendicular planes of the rotor and stator appear. Figure 4 and 5 indicate 
rotation of the piston housing. Figure 8 shows that the axle bending and rotation of the stator’s and rotor’s shaft 
are important. So, the retained degree of freedom for the modeling of the whirl instability are 

- the rigid body lateral displacement of the rotor and stator: sx and rx , 

- the stator rigid body yaw rotation in the two perpendicular planes: sθ and sψ , 
- the rotor rigid body yaw rotation in the two perpendicular planes: rθ and rψ , 

- the piston housing rigid torsional rotation sϕ , 
- the axle deflection and axle bending rotation of the axle stator’s shaft in the two perpendicular planes: 

ay , az , aθ  and aψ , 
- the axle deflection and axle bending rotation of the axle rotor’s shaft in the two perpendicular planes: 

by , bz , bθ  and bψ  
Finally, the vector of degree of freedom for the aircraft brake system is defined by 

{ }T
s s s s r r r b b b b a a a ax x y z y z= θ ψ ϕ θ ψ θ ψ θ ψx  (1) 

Before writing the global equation of motion of the aircraft brake system, the mechanism of friction and the 
contact at the rotor/stator interface will be investigated. 

3.2 Mechanism of friction-induced vibration for an aircraft brake system 
In this section, the general mechanisms of friction-induced vibration are developed and more particularly the 
sprag-slip phenomenon and the associated geometric coupling are evaluated. Friction-induced vibration occurs 
in many industrial applications with rotating and sliding parts and is undesirable due to its detrimental effects on 
the performance of mechanical systems and its role on the accelerated wear of components, damage and noise. 
Different types of vibrations induced by friction have been studied in the past by several researchers: Ibrahim [6-
7], Crolla and Lang [8], and  Kinkaid et al. [9] provide an extensive study of many aspects of friction-induced 
vibration. Moreover, the contact forces between two surfaces play an important role in self-excited vibrations: cf. 
Oden and Martins [10] proposed review of frictional contact of metallic surfaces. The different mechanisms of 
friction-induced vibration fall into four classes: stick-slip, variable dynamic friction coefficient, sprag-slip and 
geometric coupling of degrees of freedom. In this study, we will consider the latter two approaches that use 
modal coupling to develop instability when the friction coefficient is constant. 
The first two approaches rely on using the changes in the friction coefficient: the stick-slip is a low sliding speed 
phenomenon caused by the static friction coefficient being higher than the dynamic friction coefficient. The 
simple system which has been used to examine the stick-slip phenomenon, is that of a mass sliding on a moving 
belt. Stick-slip motion is seen to depend on the speed of kinematic friction and produce self-excited vibration.  
The 1960s saw new developments of mechanisms for friction-induced vibration and the introduction of sprag-
slip motions and geometric coupling. In 1961, Spurr [11] proposed a mechanism for friction-induced vibrations 
which is known as sprag-slip. Consider a strut inclined at an angle θ  to a sliding surface, as illustrated in Figure 
10(a). The magnitude friction force is given by 

1 tan
LF µ

µ θ
=

−
      (2) 



4 

where µ  defines the coefficient of friction and L  the load. It is seen that when µ  approaches cotθ , the 
friction force F  approaches infinity. When cotµ θ= , the strut sprags or locks and motion becomes 
impossible. However, by introducing the second section ' ''O O , as shown in Figure 10(b), Spurr releases the 
sprag through the new equivalent angle 'θ . The arm rotates about the elastic pivot 'O . If the moment opposing 
the rotation about 'O  becomes so large that ' ''PO O  becomes equivalent to a rigid strut ''PO . In this case, ''O  
becomes the primary pivot point and the incline angle 'θ  is reduced to ''θ . The elastic energy stored in 'O  can 
now be released: 'O P  swings off the surface; this produces slip and the cycle then repeats itself . 
The last mechanism involves the coupling of the different degrees of freedom. It is an extension of the sprag-slip 
model and requires at least two degrees of freedom. This phenomenon was first demonstrated by Jarvis and Mills 
[12] in a pioneering study of a cantilever-disk system. It was the first approach attempting to mathematically 
simulate an experimental system. Following this work, several authors have made contributions to support this 
theory of geometric coupling. Earles and Soar [13] conducted extensive studies on squealing pin-disk systems; 
Millner [14] and North [15] theoretically demonstrated that geometric coupling could cause brake squeal. 
D’Souza and Dweib [16] attributed friction vibration of their pin-disk system to the coupling of vibrations. 
These studies have illustrated that frictional instability can be caused by geometrically induced instabilities that 
do not require variations in the coefficient of friction. 
For an aircraft brake system, component clearances within the brake can affect dynamic system stability. This is 
why understanding this mechanism is an important element of the analytical model [6-16]. On some gear 
systems, the brake rod attaches to the brake housing in an offset, cantilevered fashion such that the rod operates 
out-of-plane with the hydraulic system. Due to this offset, an angle β  may appear between the brake rod and the 
housing, as shown in Figure 11. This offset angle β  couples the normal and tangential contact force and 
introduces kinematic constraints and modal coupling to develop the instability [7-9]. This coupling is one of the 
primary causes of instability for whirl vibration. In this case, instability can occur with a constant brake friction 
coefficient. 

3.3 Nonlinear contact stress 
Experimental results (static tests, as illustrated in Figure 12) have shown that the load-deflection relationship is 
highly non-linear. One assumes that the non-linear normal stress F  acting at the interface surface between the 
stator and rotor can be expressed as a cubic polynomial in the relative displacement between the rotor and stator 
in compression 

3

1

i
i

i
F K xδ

=

=∑       (3) 

where xδ  is the relative displacement between the rotor and stator. This assumption is verified by static tests, as 
illustrated in Figure 12: the non-linear relationship between load and deflection is used to determine the non-
linear coefficients ( )  1, 2 and 3iK i = . As shown in Figure 13, there is good agreement with the experimental non-
linear contact stress and the cubic polynomial solution. 

3.4 Friction interface 
Assuming that the tangential stress T  is generated by the brake friction coefficient µ , we now take into account 
the Coulomb friction. The multi-stage brake is represented by a single rotor, as illustrated in Figure 14, and stator 
with the effective brake friction coefficient 2total Nµ µ=  where N  is the number of interfaces between stators 
and rotors. It is assumed that the rotor and stator friction surfaces are always in contact. In this whirl system, we 
take into account the rigid body lateral displacement and the two yaws of the stator and rotor. For any point 

( ),M r θ  on the rotor and stator, and taking into account small displacements, the normal displacement of the 
rotor and the stator are  
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( )
( )

, sin sin cos sin sin cos

, sin sin cos sin sin cos
rotor r r r r r r

stator s s s s s s

x r x r r x r r

x r x r r x r r

θ θ θ θ ψ θ θ ψ θ

θ θ θ θ ψ θ θ ψ θ

= − − ≈ − −⎧⎪
⎨

= − − ≈ − −⎪⎩
  (4) 

where sx , rx , sθ , rθ , sψ  and rψ  are the stator and the rotor lateral displacement, and the stator and rotor 

rotations, as illustrated in Figure 14. Then, for any point ( ),M r θ  on the disk surface, the normal displacement 
is 

( , ) ( , ) ( , ) ( ) sin ( ) cos ( )stator rotor s r s r s rx r x r x r x x r rθ θ θ θ θ θ θ ψ ψ= − = − − − − −  (5) 
The normal force XF  due to the normal contact between the rotor and the stator friction surface, and the 

moments XM , YM  and ZM  are given by 

( )
2 0

0
,

R

X Ri
F N r rdrd

π
θ θ= ∫ ∫       (6) 

( ) ( )
2 0 2 02 2

0 0
, ,

R R

X Ri Ri
M T r r drd N r r drd

π π
θ θ µ θ θ= =∫ ∫ ∫ ∫        (7) 

2 0 2

0
( , ) sin

R

Y Ri
M N r r drd

π
θ θ θ= −∫ ∫       (8) 

2 0 2

0
( , ) cos

R

Z Ri
M N r r drd

π
θ θ θ= −∫ ∫       (9) 

The force and moments due to the friction at the rotor/stator interface are indicated in Figure 14. 

3.5 Equations of motion 
In this section, the global equation of motion for the whirl will be established. As explained previously, the 
vector of the degree-of-freedom is given by 

{ }T
s s s s r r r b b b b a a a ax x y z y z= θ ψ ϕ θ ψ θ ψ θ ψx  (10) 

where sx , rx , sθ , rθ , sψ , rψ , sϕ , ay , az , aθ , aψ , by , bz , bθ  and bψ  are the stator and the rotor lateral 
displacement, the stator and rotor rotations, the piston torsional rotation and the axle deflections and rotations of 
the stator and rotor shaft, respectively. 
First, normal hydraulic pressure is applied at the left side of the stator rigid body in the X-direction as illustrated 
in Figure 14. The vector associated with the hydraulic pressure is given by 

{ }0 0 0 0 0 0 0 0 0 0 0 0 0 0
T

hyd / XF=pressureF   (11) 

where /hyd XF  is the brake force due to the hydraulic pressure, as indicated in Figure 15. It is given by 

( )
( )

2 2
/ /

/ 2 2
0

piston outer piston inner
hyd X hydraulic piston

i

R R
F P n

R R

−
=

−
   (12) 

where pistonn , /piston outerR ,  /piston innerR  are the number of pistons, the outer and inner radius of the piston surface 

in contact with the stator, respectively. 0R and iR  define the outer and inner radius of the rotor/stator interface, 
respectively.  
Then, considering the previous expressions (6-9) of the normal friction force and friction moment due to the 
contact at the rotor/stator interface, the vector associated with the contact friction expressions is given by 

{ }0 0 0 0 0 0 0 0 T
X Y Z X X Y ZF M M M F M M= − − −contactF  (13) 

The normal force and moments are completely defined in Figures 14 and 15. The complete expressions are given 
in equations (6-9) 
Then, the load due to the brake rod (indicated in Figure 15) is given by 

{ }0 0 0 0 0 0 0 0 0 0 0 0
T

couple / Z e couple / X e couple / Y e couple / Y eF d F R F d F R= + −coupleF (14) 
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where /couple XF , /couple YF  and /couple ZF  represent the load due to the brake rod, as indicated in Figures 14 and 15. 

ed  and eR  represent the brake rod lateral offset and the axle to brake rod axis distance, as indicated in Figures 
14 and 15. 
Considering the offset angle (Figure 11), the complete expressions due to the brake rod are  

sin sin sin

cos cos

cos cos

couple/X rod e s rod s rod e s

couple/Y rod e s rod e s

couple/Z rod e s rod e s

F K R K x K R

F K R K d

F K R K d

φ α α θ α

φ α θ α

φ α ψ α

⎧ = + +
⎪⎪ = −⎨
⎪ = −⎪⎩

  (15) 

where rodK  defines the axial stiffness of the brake rod and α  is the offset angle due to the brake rod angle with 
the rotor/stator interface. 
Finally, interconnections between each element of the aircraft brake system need to be taken into account in 
order to established the complete equations of motion. First, the stator and the shaft of the stator interact via 
notches on the inner perimeter of the disk, and the rotor and the shaft of the rotor interact via drive keys on the 
outside of the disk as illustrated in Figure 15. Moreover, the right side of the rotor is retained by the backplate of 
the brake and torque plate (with the associated stiffness rrK ), as indicated in Figure 15. The left side of the 
stator is retained by the hydraulic element (with the associated stiffness hydK ), as illustrated in Figure 15. 
Finally, by considering these interconnections between each element and the classical structural mass, damping 
and stiffness matrices of the aircraft brake system, the global non-linear expression is given as 

( ) ( )+ + = + +pressure contactcoupleMx Cx Kx F F x F x     (16) 

where x , x  and x  are the acceleration, velocity, and displacement response 15-dimensional vectors of the 
degrees-of-freedom, respectively. pressureF  is the vector force due to net brake hydraulic pressure. contactF  

contains the linear and non-linear contact force terms at the stator and rotor interface and coupleF  defines the 

brake rod load. M  is the structural mass matrix, C  and K  are the global damping and stiffness matrices of the 
system. They are given by 

= +C C C        (17) 
=K K + K        (18) 

where C  and K  are the structural damping and stiffness matrices, and C  and K  define the damping and 
stiffness matrices due to the interconnections between each element. 
The complete expression of the mass matrix M , damping matrix C  and stiffness matrix K  are  
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asK  and asC  define the stiffness and the damping between the stator and the shaft of the stator, called torque 
tube, via notches on the inner perimeter of the disk. brK  and brC  define the stiffness and the damping between 
the rotor and the shaft of the rotor, via drive keys on the outside of the disk. abKψ , abKθ , yabK , zabK  and abCψ , 

abCθ , yabC , zabC   represent the contact stiffness and the contact damping between the rotor's and stator's shaft, 

respectively. rrK  represents the stiffness of the backplate of the brake. ( ), 1, 2aijK i j =  and ( ), 1, 2aijC i j =  are 
the axle bend stiffness and axle bend damping for the stator's shaft, respectively. ( ), 1, 2bijK i j =  and 

( ), 1, 2bijC i j =  are the axle bend stiffness and axle bend damping for the rotor's shaft, respectively.  
Finally, the general form of the equation of motion for the non-linear system can be expressed in the following 
way: 

( ) ( )ˆ+ + − = +pressure contactMx Cx K K x F F x    (24) 

with ( ) ˆ
coupleF x = Kx . Finally, a non-linear 15-degree-of-freedom whirl system is defined (Sinou [6]). It has the 

form  

( )+ + = +pressure NLMx Cx Kx F F x      (25) 

where x , x  and x  are the acceleration, velocity, and displacement response 15-dimensional vectors of the 
degrees-of-freedom, respectively. M  is the mass matrix, C  is the damping matrix and K  is the stiffness matrix. 

pressureF  is the vector force due to brake command and NLF  contains the quadratic and cubic  non-linear  terms.  
Now we move on to the static problem and the stability analysis: the steady-state operating point for the full set 
of non-linear equations is obtained by solving them for the equilibrium point. Stability is investigated by 
determining the eigenvalues of the Jacobian matrix of the linearized system at the equilibrium point. 

4 STABILITY ANALYSIS 
The first step is the static problem: the steady state operating point for the full set of non-linear equations is 
obtained by their solution at the equilibrium point. Stability is investigated by calculating the Jacobian of the 
system at the equilibrium point [17-19]. This equilibrium point 0x  is obtained by solving the non-linear static 
equations for a given net brake hydraulic pressure. This equilibrium point satisfies the following conditions: 

( )= +0 pressure NL 0Kx F F x      (26) 

The stability is investigated by calculating the Jacobian matrix J of the system at the equilibrium points; J  is 
expressed by 
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( )( )-1 -1
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦L 0

0 I
J

-M K - K x -M C
     (27) 

where ( )L 0K x  defines the matrix of the linearized expressions of  the non-linear terms contained by NLF  at 
the equilibrium point. 
The eigenvalues of the constant matrix J  provide information about the local stability of the equilibrium point 

0x . Considering λ  the eigenvalues of the Jacobian matrix, it can be expressed as  
bia .+=λ        (28) 

where a is the real part, and b  is the imaginary part of the eigenvalue. If a  is negative or zero, the system is 
stable and there is no vibration. If a  is positive, we have an unstable root and whirl vibration. Therefore, b  
represents frequency of the unstable mode. The basic parameters chosen for the parametric studies are: 

0 33max .µ µ = ; 0 3maxP P .= ; 0 0875max .α α ; 0 04max .η η = ; 0 78rr rr maxK K .= . 
A representation of the evolution of frequencies and the evolution of the associated real part against the brake 
friction coefficient are given in Figures 16-17, and Figure 18, respectively. A representation of the evolution of 
the eigenvalues in the complex plane against the brake friction coefficient is given in  Figure 16. As long as the 
real part of all the eigenvalues remains negative, the system is stable. When at least one of the eigenvalues has a 
positive real part, the dynamical system is unstable. This analysis indicates that system instability can occur with 
a constant friction coefficient. One observes that the system is generally stable at low values of the brake friction 
coefficient and unstable at high values. The frequency of instability is obtained near 250Hz, as shown in Figures 
17 and 19. Moreover, it is possible to obtain the analytical mode shape associated to this instability for one 
period, as illustrated in Figure 20. Markers  to  indicate the evolution of the mode shape. In this case, we 
observe a wobbling motion between the brake’s rotating and stationary parts and this mode is defined as one 
wherein the cantilevered end of the torque plaque orbits about the axle. The shaded mark defines the static 
position of the aircraft brake system. As previously observed in the experimental results, an axial deflection of 
the axle tube and a complex rotating-bending motion of the rotor/stator stack is obtained (indicated by the 
whirling motion of the torque plate and the piston housing at the top and bottom of the aircraft brake system). So 
the analytical motion observed for instability near 250Hz is the same as the experimental deformation (observed 
in Figure 8) and defines the standard characteristics of whirl instability. Finally, it may be observed that there is a 
perfect correlation with experimental tests where the frequency of instability is between 240-280Hz. 
In addition, an important point is determining the Hopf bifurcation point, defined as follows 

( )( )
( )( )

( )( )( )

0

0

0

,

,

,

Re 0

Re 0

Re 0

center

non center

d
d

µ µ

µ µ

µ µ

λ µ

λ µ

λ µ
µ

=

− =

=

=

≠

≠

0

0

0

x=x

x=x

x=x

      (29) 

The first condition implies that the system (25) has a pair of purely imaginary eigenvalues centerλ  while all of its 
other eigenvalues non centerλ −  have nonzero real parts at ( )0, µ µ=0x = x . The last condition of equation (29), called 
a transversal condition, implies a transversal or nonzero speed crossing of the imaginary axis, as shown in Figure 
18. 
In order to avoid whirl instability and to understand the influence of various parameters, parametric studies may 
be investigated. In the following study, two parameters will be developed.  
First, Figures 21-26 illustrate the evolution of the static position for various parametric studies. It may be 
observed that for each parameter a correct determination of the equilibrium point is essential to estimate the 
stability of the system obtained by determining the eigenvalues of the matrix (27). Moreover, these results 
indicate that the non-linear compression behavior of the rotor/stator stack is important in order to avoid incorrect 
diagnostic for stability analysis. 
Then, Figures 21 and 22 indicate that the normal static position of the stator sx  is only dependent on the normal 

brake pressure and that the piston torsional rotation sϕ  is dependant both on the friction coefficient and the 
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brake pressure. Figures 23 and 24 illustrate that the normal static position sx  and the piston torsional rotation 

sϕ  are more dependant for the brake pressure than for the offset angle. Then, Figures 25 and 26 illustrate the 

evolution of the static positions sx  and sϕ  by considering variations of the offset angle and friction coefficient. 
The contribution and influence of these last two parameters appears to be of the same order. However, the global 
variation of the normal static position of the stator sx  is less important than in the two previous cases where the 
brake pressure was considered. So it may be concluded that the static equilibrium point is greatly and firstly 
affected by the brake pressure but that all parameters affect the static position that need to be precisely 
determined in order to undertake a correct stability analysis  
Figure 27 shows whirl stability analysis versus the brake friction coefficient and the brake pressure. As indicated 
in Figure 28, whirl instability is in the range 235-255Hz. It may be observed that increasing the brake pressure 
( 0 2maxP P .> ) increases the value of the Hopf bifurcation point (versus the brake friction parameter). However, 

the whirl instability may not be eliminated if the brake friction coefficient is greater than 0 42max .µ µ > . Then, 

decreasing the brake pressure ( 0 2maxP P .< ) decreases the unstable zone associated with the whirl instability. It 
may be observed that, for a given brake pressure and by increasing the friction coefficient, the system is first 
stable, then becomes unstable, and finally is stable again. So the whirl instability may be avoided if the friction 
coefficient is high with a low brake pressure( for example 0 9max .µ µ >  and 0 2maxP P .< ). 
However, in this case, another instability appears, as indicated in Figures 29-30. This instability appears only for 
low pressure (less than the basic brake pressure, 0 2maxP P .< ) and is in the range 450-800Hz. So decreasing the 
nominal brake pressure may not be applied in order to avoid whirl instability due to the fact that the whirl 
instability may be eliminated but another instability may appear. 
Figures 31 and 32 illustrate whirl stability analysis versus the brake friction coefficient and the offset angle (and 
by keeping the nominal brake pressure 0 2maxP P .= ). Figures 33 and 34 indicate the whirl stability analysis 
versus the brake pressure and the offset angle (and by keeping the brake friction coefficient 
pressure 0 33max .µ µ = ). In both cases, the system is stable only if the brake friction coefficient and the offset 
angle, and the brake pressure and the offset angle are very small. So it will be very difficult to obtain these 
conditions for physical cases. In these cases, the whirl instability is around 250-260Hz and 220-260 Hz for the 
first and second parametric studies, as illustrated in Figures 32 and 34, respectively. 
In a broad variety of engineering systems, incorporating additional damping into one part of the brake system is 
undertaken in order to significantly reduce or eliminate friction-induced vibrations. We now proceed with two 
parametric studies in order to evaluate this design solution. First, Figure 35 and 36 illustrate whirl stability 
analysis versus the brake friction coefficient and the damping coefficient of the torque plate. Second, Figure 37 
and 38 illustrate whirl stability analysis versus the brake pressure and the damping coefficient of the torque plate. 
At low damping ( max 0 2.η η < ), the whirl instability is detected around 230-260Hz. But, the whirl instability 

disappears by adding damping on the torque plate ( max 0 2.η η > ), as illustrated in Figures 35 and 37. However, 
in these cases, the aircraft brake system may have another instability if damping is added on the torque plate, as 
illustrated in Figures 39-42. These instabilities occur near 750-780Hz and 450-700Hz.. So it may be concluded 
that increasing damping may destabilize friction-induced vibrations and that the role of structural damping is not 
a secondary effect that can be ignored. In these last two parametric studies it has been illustrated that adding 
damping into one part of the mechanical systems may have a worse effect [20-22] and cannot be considered as a 
solution to avoid instability for the aircraft brake system. 
Finally, two parametric studies consider the influence of the brake friction coefficient and the torque plate 
stiffness and the brake pressure and torque plate stiffness, respectively. Figures 43 and 44 show the associated 
stable and unstable zones. As indicated in Figures 45 and 46, the whirl instability is around 240-255Hz for the 
two parametric studies. Figures 43 and 44 clearly indicate that the stiffness of the torque plate plays an important 
role in the stability analysis of the aircraft brake system. If this stiffness is more flexible (  max 0 68rr rrK K .< ) or 

stiffer (  max 0 79rr rrK K .> ) than the nominal stiffness value of the torque plate, the whirl instability is 
eliminated and the aircraft brake system is stable (there is no other instability). So varying the stiffness value for 
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the torque plate may be considered as a design solution in order to avoid instabilities for the aircraft brake 
system. 

5 SUMMARY AND CONCLUSION 
A nonlinear model for the analysis of mode aircraft brake whirl has been developed by using experimental 
observations. Results from stability analysis are investigated by determining the Jacobian matrix of the non-
linear system for each steady-state operating point. This stability analysis indicates that system instability can 
occur with a constant friction coefficient. A perfect correlation between the numerical model and the 
experimental tests is obtained for the frequency of instability and the deformation shape of the unstable mode. 
Generally speaking, we observe that the aircraft brake system is stable at low values of brake friction coefficient 
and unstable at high values. Finally, parametric studies with linear stability theory are conducted in order to 
determine the effect of system parameters on stability. We see that the determination of the equilibrium point is 
essential in order to conduct a correct stability analysis. Moreover, it was demonstrated that eliminating 
instabilities for a mechanical system may be very difficult. More particularly, incorporating additional damping 
into one part of the aircraft brake system may have worse effects on the stability of the system. 
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Figure 1 : Aircraft brake system 
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Figure 2 : Dynamic tests 
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Figure 3: Instrumented aircraft brake 
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Figure 4 : Torques’s time plot due to whirl vibration 
 
 
 
 
 

Figure 5: Torque’s waterfall 
 
 

 

Figure 6 : Pressure’s time plot due to whirl vibration Figure 7: Pressure’s waterfall 
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Figure 8 : Experimental deformation for the whirl  

 

Figure 9 : Friction force variation on rubbed surface 
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Figure 10: Sprag-slip model 

 

 
Figure 11: Offset angle β  between the rod and the housing 
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Figure 12: Static test 

 
Figure 13 : Non-linear relationship between load and deflection experimental and theorical approaches 
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Figure 14 : Model of whirl vibration 
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Figure 15 : Model of whirl vibration 
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Figure 17: Coupling of two eigenvalues 

 
 

 
Figure 18: Evolution of the real part of two coupling modes 
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Figure 19: Evolution of the eigenvalues in the complex plane 

 
 

 
Figure 20: Analytical deformation of the whirl 
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Figure 21: Evolution of the static equilibrium point sx  

versus the brake friction coefficient and hydraulic 
pressure 

Figrue 22: Evolution of the static equilibrium point sϕ  
versus the brake friction coefficient and hydraulic 

pressure 
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Figure 23: Evolution of the static equilibrium point sx  

versus sprag-slip angle and the hydraulic pressure 
Figrue 24: Evolution of the static equilibrium point sϕ  

versus sprag-slip angle and the hydraulic pressure 
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Figure 25: Evolution of the static equilibrium point sx  

versus the brake friction coefficient and sprag-slip 
angle 

Figrue 26: Evolution of the static equilibrium point sϕ  
versus the brake friction coefficient and sprag-slip 

angle 
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Figure 27: stability analysis versus the friction and the 
pressure for the whirl vibration 

 
Figure 28: Evolution of the frequencies in the complex 
plane versus the friction and the pressure for the whirl 

vibration 
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Figure 29: stability analysis versus the friction and the 
pressure around 400-900Hz 

 
Figure 30: Evolution of the frequencies in the complex 
plane versus the friction and the pressure around 400-

900Hz 
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Figure 31: Stability analysis versus the friction and the 
angle 

 
Figure 32: Evolution of the frequencies in the complex 

plane versus the friction and the angle 
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Figure 33: Stability analysis versus the pressure and the 
angle 

 
Figure 34: Evolution of the frequencies in the complex 

plane versus the pressure and the angle 
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Figure 35: Stability analysis versus the friction and the 

damping for the whirl instability 

 
Figure 36: Evolution of the frequencies in the complex 
plane versus the friction and the damping for the whirl 

instability 
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Figure 37: Stability analysis versus the pressure and the 

damping for the whirl instability 

 
Figure 38: Evolution of the frequencies in the complex 
plane versus the pressure and the damping for the whirl 

instability 
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Figure 39: Stability analysis versus the friction and the 
damping around 700-800 Hz 

 
Figure 40: Evolution of the frequencies in the complex 
plane versus the friction and the damping around 700-

800 Hz 
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Figure 41: Stability analysis versus the pressure and the 
damping around 400-800 Hz 

 
Figure 42: Evolution of the frequencies in the complex 
plane versus the pressure and the damping around 400-

800 Hz 
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Figure 43: Stability analysis versus the friction and the 
stiffness of the backplate  

 
Figure 44: Stability analysis versus the pressure and the 

stiffness of the backplate 
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Figure 45: Evolution of the frequencies in the complex 
plane versus the friction and the stiffness of the 

backplate 

 
Figure 46: Evolution of the frequencies in the complex 

plane versus the pressure and the stiffness of the 
backplate 
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