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In this work we describe an extension of the convolution approximation for the ionization prob-
ability and energy-loss straggling as a function of the impact parameter for swift ions. Analytical
formulas for these quantities are derived and compared to full first-order Born calculations. The
physical inputs of the model are the electron density and oscillators strengths of the target as well
as the screening function of the projectile (in the case of dressed ions). A very good agreement
is obtained for all impact parameters. In addition, we propose a general schema to add contribu-
tions from distant and close collisions. In this way physical processes arising from large and small
impact-parameters can be easily included into a single expression valid for all impact parameters.
This model is then used to investigate the projectile-charge q dependence of ionization, stopping
and straggling cross-sections.

PACS numbers: 34.50.Bw , 34.50. Fa,34.10.+x, 61.85.+p

I. INTRODUCTION

The slowing down of fast ions in matter is dom-
inated by electronic processes namely target ioniza-
tion/excitation, projectile ionization/excitation and elec-
tron capture [1]. The basic physical quantities used to
describe such electronic processes are single-event prob-
abilities, mean energy loss and energy loss fluctuation.
For gas targets or amorphous materials the related cross-
sections are more meaningful. However, for crystalline
targets [2] as well as for the description of processes in-
volving many electrons within the independent particle
model [3] the accurate determination of the probabilities
and energy loss as a function of the impact parameter
is required. In particular the extension of nuclear track
models to crystalline materials, to explain e.g. the for-
mation of chains of nanodots by heavy ion irradiation as
observed recently [4], is needed.

The determination of the impact-parameter-dependent
ionization probability, mean energy loss and straggling is
in general a very complex task, and even in the frame-
work of the first-order Born and independent particle
model ends up in a large-scale calculation. Neverthe-
less, for the mean energy loss only, an analytical formula
has been proposed recently, which is able to reproduce
full first-order and coupled-channel calculations in the
so-called perturbative [5] (PCA) and unitary [6] (UCA)
convolution approximation respectively (for a review in
connection with heavy ions see refs [7–9]).

In this work we extend the PCA model [5] to cal-
culate the moments of electronic energy-loss distribu-
tion as well, namely the ionization probability (Pion(b))
and energy-loss fluctuation (Q̄2(b)) as a function of the
impact-parameter b. As in ref [10], the physical input
is the one underlying Bethe’s theory. Thus, the validity

range of the present model is limited by Z/v < 1 (Z is
the projectile-nuclear charge and v is the projectile speed
in atomic units). This model approaches full first-order
calculations for all impact parameters without large-scale
calculations. The physical inputs are the target electronic
density, the oscillator strengths for each allowed optical
transition and the projectile screening function in the
case of projectiles carrying electrons. With the present
model we have also investigated the projectile-charge q
dependence of the ionization, stopping and straggling
cross-sections. If not indicated otherwise, atomic units
(e = 1, me = 1, h̄ = 1) are used throughout the paper.

II. MODEL

According to the impact-parameter method [11] the
ion in an ion-atom collision following a classical trajec-

tory determined by an impact parameter ~b provides a
time-dependent perturbation on the target electrons. Ne-
glecting capture processes that are of minor importance
at high velocities, the amplitude for a given electronic
transition from the ground-state |0〉 (with energy ε0) to
a final target state |f〉 (with energy εf ) is given in first-
order perturbation theory by [1]

af (~b) = −i

∫ ∞

−∞

dt ei(ǫf−ǫ0)t < f |V (~r − ~R(t))|0 > . (1)

Here V (~r − ~R(t)) is the interaction potential between
the projectile ion and a target electron. Only one active
electron is considered and the other ones are treated in
the framework of the independent particle model. Except
for extraordinary small impact parameters or very low
speeds, the ion trajectories are generally well described

by straight lines R(t) = ~vt +~b, ~v being the ion velocity.
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The probability for a electronic transition to a final
state f will be then |af |2 and for an energy transfer T =
εf − ε0 will be

dP

dT
(b) =

∑

f

|af (b)|2δ(T − (ǫf − ǫ0)) (2)

which involves a sum over all final target states (mostly

continuum states). From this expression we can obtain
the mean ionization probability Pion(b), mean energy loss
Q(b) and mean squared energy loss Q̄2(b) as follow

Pion(b) =

∫

T>Ib

dT
dP

dT
(b), (3)

Q(b) =

∫

dT T
dP

dT
(b), (4)

Q̄2(b) =

∫

dT T 2 dP

dT
(b), (5)

where Ib is the binding energy (Ib = −ǫ0). An expression
similar to Eq.(3) will be also used for the total reaction
probability, Ptot(b), but with T > ωmin, where ωmin is
the minimum energy transfer.

Even in a first-order treatment, the direct calculation
of the above quantities demands an considerable compu-
tational effort. Therefore, we search for an approximate
solution of these quantities without being a large-scale
calculation. In a recent work [5] this goal has been al-
ready achieved for the mean energy loss Q(b). The an-
alytical formula derived in [5] virtually reproduces full
first-order calculations for all impact parameters. How-
ever, an extension of this model for Pion(b) and Q̄2(b) is
not easily made. This is due to the fact that the interpo-
lation schema between distant and close collisions used
in ref [5] is only realizable for the mean energy loss Q(b).

In the following we will proceed as in ref [5] by dividing
the ion-atom collisions essentially into distant and close
collisions but using another interpolation schema which
is more general and can be used for the energy loss dis-
tribution dP/dT (b) itself.

At large impact parameters the so-called dipole approx-

imation [12, 13] for V (~r − ~R(t)) can be used, where

V (~r− ~R(t)) ≈ V (~r− ~R(t))|~r=0
+~r · ~∇~rV (~r− ~R(t))|~r=0

(6)

and thus, an analytical expression [13] for dP/dT (b) may
be obtained in the form

(

dP

dT
(b)

)

dipole

=
1

2

∑

j

fj

T
|Ê(b, T )|2δ(T − ωj) (7)

with Ê(b, ω = T ) being the Fourier transform of the pro-

jectile electrical field ( ~E(b, t) = −∇~rV (~r− ~R(t))|~r=0
) and

ωj are the transition energies (ωj ≡ ǫj − ǫ0). The sym-
bols fj are the well known dipole-oscillator strengths (

fj = 2 | < j|z|0 > |2 (ǫj − ǫ0)), which fulfill the sum rule
∑

j fj = 1 [14].
For bare projectiles with nuclear charge Z the inter-

action potential is just the Coulomb one and the square
modulus of the Fourier transform of the electric field will
read

|Ê(b, ω)|2 = 2
2Z2

v2b2
g(

ωb

v
) (8)

with

g(x) = x2
(

K2
0 (x) + K2

1 (x)
)

. (9)

K0 and K1 are the modified Bessel functions. Other ex-
pressions for the function g(x) are presented for different
projectile interaction potentials in the Appendix. As a
general behavior, the function g(ωb/v) tends to the value
of 1 for small impact parameters and approaches zero
exponentially at large impact parameters. The solution
given by Eq.(7) is exact for asymptotically large values
of b, but it is completely inadequate for small impact pa-
rameters, where other multipole terms gain importance.

For small impact parameters the influence of the tar-
get potential can be neglected at high projectile energies
[15]. Thus, the three-body problem (active electron, ef-
fective target and projectile) is reduced to a two-body one
namely the scattering of the active electron described by
a wavepacket corresponding to the ground-state wave-
function φ0(~r) = 〈~r|0〉 by the projectile potential. This
problem can be solved either in the projectile reference
frame [16] or in the frame where the target atom is ini-
tially at rest. In the latter case, Eq.(1) can be worked
out in the following way

af (~b)= −i

∫ ∞

−∞

dt eiωf t 〈f |V (~r − ~R(t)) |0〉 (10)

=−i

∫ ∞

−∞

dt
eiωf t 〈f | [H0 − ǫ0, V (~r − ~R(t))] |0〉

ωf

(11)

where H0 is the target Hamiltonian. An analytical for-
mula for dP/dT can be obtained by replacing the final
target-continuum states by plane waves with momentum
~k in Eq.(11). This approximation is more suitable in ex-
pression in Eq.(11) than in the original expression Eq.(1),
because a constant potential leads to wrong probability
transitions in Eq.(1) but not in Eq.(11) since plane waves
are not orthogonal to the ground-state wavefunction. By
combining Eqs (1,2) and (11) in order to obtain |af |2 (or
dP/dT ) we note that an integration over the orientation

of ~k leads to the following integral

∫

dΩk ei~k.(~r1−~r2) = 4π
sin(k|~r1 − ~r2|)

k|~r1 − ~r2|
, (12)

which deviates significantly from zero only for the very
narrow range |~r1 − ~r2| < 1/k. Since at high velocities
large values of k dominate the integral, some unwanted
commutators drop out and the energy transfer probabil-
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ity will then read

(

dP

dT
(b)

)

close

=
1

2

∫

d3k

(2π)3
1

T
| < ~k|Ê~r(b, T )|0 > |2δ(T−k2

2
)

(13)

where Ê~r(b, ω = T ), differently from previous Ê(b, ω) is
the Fourier transform of the projectile electrical field at
the electron position ~r

Ê~r(ω) =

∫ ∞

−∞

dt −∇~rV (~r − ~R(t))eiωt (14)

Eq.(13) can be worked out using the coordinate represen-
tation. The electronic ground-state wave function φ0(~r2)
can be then replaced by φ0(~r1) because, according to
Eq.(12), only ~r2 ≈ ~r1 contributes to the integral result.
In fact, this peaking approximation removes the exact
treatment of the momentum distribution of the bound
electron. Thus, the energy transfer probability will read

(

dP

dT
(b)

)

close

=

∫

d2r⊥ Pclose(T,~b − ~r⊥)

∫

dz ρ(~r⊥, z)

(15)
with

Pclose(T, b) =
2Z2

v2b2

C(2vb,
√

T
2v2 )

√
8v2T

3

2

. (16)

For bare projectiles the function C reads

C(x, y) = x2 (y3J0(xy
√

1 − y2)K0(y
2x) (17)

+ y2
√

1 − y2J1(xy
√

1 − y2)K1(y
2x)).

Expressions of the function C(x, y) for other projectile
interaction potentials are presented in the Appendix. For
the mean energy loss Q(b) (see Eq.(4)), the corresponding
expression is the same as in refs.[5, 16, 17].

The results from Eq.(7) and Eq.(13) are only valid for
large and small impact parameters respectively. In what
follows we propose the following interpolation ansatz,

dP

dT
(b) =

∫

d2r⊥ P(T,~b − ~r⊥)

∫

dz ρ(~r⊥, z) (18)

with

P(T, b) = Pclose(T, b)F1(b) +

(

dP

dT
(T, b)

)

dipole

F2(b)

(19)
where the functions F1(b) and F2(b) are connecting
functions, which must satisfy the following conditions :
F1(b) → 0 for b → ∞ and F2(b) → 0 for b → 0 . Thus,
the close and distant collisions contributions are turned
on/off as a function of the impact parameter. The first
term in Eq. (19) describes violent binary collisions and
the last term accounts for the long ranged dipole transi-
tions. For latter case we note that for large impact pa-
rameters (b >> rshell, rshell being the shell radius) the
convolution from Eq.(18) disappears since the range of
perpendicular distances r⊥, where the electron density

is significant, is small compared to b and the function

P(~b−~r⊥) is not sensitive to small variation of r⊥ at high
velocities. Hence, Eq. (18) agrees with the results ob-
tained from the dipole approximation given by Eq.(7).

The expressions for the ionization probability, energy
loss and straggling as a function of the impact parameter
using the definitions from Eqs.(3-5) and the the present
model for dP/dT (Eq.(18)) will then read

Pion(b) =

∫

d2r⊥ K(0)(~b − ~r⊥)

∫

dz ρ(~r⊥, z) (20)

Q(b) =

∫

d2r⊥ K(1)(~b − ~r⊥)

∫

dz ρ(~r⊥, z) (21)

Q̄2(b) =

∫

d2r⊥ K(2)(~b − ~r⊥)

∫

dz ρ(~r⊥, z) (22)

with

K(n)(b) =
2Z2

v2b2
((2v2)n−1h(n)(2vb)F1(b) (23)

+
∑

j

fj ωn−1
j g(

ωjb

v
)F2(b)),

and

h(n)(2vb) = (2v2)1−n

∫

dT Tn
C(2vb,

√

T
2v2 )

√
8v2T

3

2

(24)

The connecting functions F1(b) and F2(b) can be de-
termined from the mean energy-loss formula. Recalling
the interpolation procedure from ref.[5], where close and
distant collisions were connected successfully through a
product ansatz (using the same notation)

K(1)(b) =
2Z2

v2b2



h(1)(2vb) ×
∑

j

fj g(
ωjb

v
)



 , (25)

we have the following condition for F1(b) and F2(b)

h(1)(2vb)F1(b) + g(
ωb

v
)F2(b) = h(1)(2vb) × g(

ωb

v
). (26)

The general solution is F1(b) = g(ωb
v

) × Γ(b) and F2 =

h(1)(2vb)× (1−Γ(b)). Since for intermediate impact pa-
rameters both function h(1) and g approach a value of
1 (ref [5]), the exact form of the function Γ(b) is not
so important (for the mean energy loss). Thus, Γ(b) is
assumed here to be of the form exp(−α(b/bc)

2), with bc

being an intermediate impact parameter determined from
the geometric mean of 1/v (the de Broglie wavelength of
target electron in the projectile frame) and v/ωmin (the
adiabatic radius). The value of the constant α was de-
termined from a best fit to first-order Born results for
the total reaction probability and was fixed at α = 2/3.
It is pointed out that the connecting functions may also
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FIG. 1: The electronic energy loss Q(b) (in eV), total reac-
tion probability Ptot(b) and ionization probability Pion(b) are
displayed as a function of the impact parameter for bare ions
(with nuclear charge Z) colliding with H and He atoms at 300
keV/u. The symbols (squares) represent full first-order calcu-
lations from ref[21] and the solid and dashed lines correspond
to the present model. Note that the probabilities may exceed
100% for large nuclear charges Z.

depend on the energy transfer T , but this was not con-
sidered here.

It can be shown that the present analytical formulas
are consistent with the Bethe stopping [18] and Bohr
straggling[19] formulas at high velocities respectively.
Therefore, for asymptotically high projectile energies the
present model gives the exact limiting impact-parameter
dependencies of the electronic energy loss and energy
straggling. Moreover, the exact definition of the bor-
derline between close and distant collision is of little im-
portance as demonstrated by Fano [20]. Thus, the exact
form of the connecting functions is not crucial. It is also
pointed out that the present formulas as given above are
strictly valid only for a one-electron system. In the frame-
work of the independent-particle model, however, we can
still use the results of Eq.(18), but we have to consider
the electronic density and the oscillators strengths for
each electron of all occupied target shells.

III. COMPARISON WITH FULL FIRST-ORDER

CALCULATIONS

In figures 1 to 3 we show the results of the present
model for the total reaction and ionization probabilities
and energy-loss fluctuation of ions colliding with H, He
and C targets (solid lines) in comparison with full first-
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FIG. 2: The electronic energy loss Q(b) (in eV), ionization
yield and mean squared energy loss are displayed as a func-
tion of the impact parameter for 5 MeV/u bare ions colliding
with C atoms. The symbols represent full first-order calcula-
tions from ref[21] and the solid lines correspond to the present
model.

order calculations[21] (symbols). First-order perturba-
tion theory yields reliable results at Z/v < 1, where the
condition of a small perturbation is fulfilled. All input
parameters (electronic densities and oscillator strengths)
were obtained from analytical formulas for the H target
and from Hartree-Fock-Slater wavefunctions for He and C
[21, 22]. It is pointed out that the present full first-order
Born results agree with the results from the pioneering
works of Kabachnick and coworkers [10].

Fig. 1 shows a comparison for the impact parameter
dependence of incident bare ions at 300 keV/u with two
different targets (H and He). In all cases we obtain a
very good agreement with full SCA calculations. The
same agreement is observed for other higher projectile
velocities. The largest deviation of only about 10% is
found for the ionization probability of H at impact pa-
rameters around 1.5Å. The ionization probability has a
pronounced maximum at small impact parameters. How-
ever, this does not mean that these small impact param-
eters will dominate the ionization cross-section. In fact,
for the He target example, impact parameters larger than
the He shell radius contribute mostly to the ionization
cross-section. Fig. 1 also shows the present calculations
with another constant α (a factor of two smaller) for the
interpolation function Γ(b). It can be seen that the re-
sults are in general very insensitive to the choice of the
weighting function Γ(b).

The results of the present model are shown in Fig. 2 for
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bare ions at 5 MeV/u colliding with a C atom, which has
three sub-shells. Calculations for the ionization probabil-
ity (Pion(b)), mean energy-loss (Q(b)) energy-loss fluctu-
ation ( ¯Q2(b)) have been performed for each C sub-shell.
The agreement of present model (solid lines) with full
SCA calculations (squares) is very good, in particular
for Q(b) and ¯Q2(b). It is pointed out that the present
model as well as the full SCA calculations account for
the Pauli exclusion principle. This means that transi-
tions to occupied sub-shells are explicitly excluded. The
Pauli principle is taken into account by our present model
by using an appropriate set of oscillator strengths and en-
ergy transfers in Eq.(18).

The energy dependence of the electronic straggling
(W =

∫

2πbdbQ̄2(b)) is presenteds in Fig. 3 for bare
ions colliding with atomic hydrogen. The results are
compared with plane-wave Born approximation (PWBA)
[14, 23] and with the Bohr straggling [19]. Although the
PCA and PWBA rely on the Born approximation they
may differ because of the additional approximations per-
formed to derive the PCA model. Here we have also used
the kinematical correction from ref [24] in order to extend
the present PCA model down to lower energies. This
correction is the main contribution to the so-called shell-
correction in stopping theory [24] and has been adopted
by replacing the close-collision contribution h(n) by the
value < h(n) > averaged over the momentum distribu-
tion of the target electron (the Comptom profile) accord-
ing to formulas from ref. [24]. Thus, the information on
the target electron velocity, which was destroyed by the
peaking approximation used to derive the convolution ap-
proximation is partially restored. It is pointed out that
the way to average the close-collision contribution is dif-
ferent for probability (or cross-section), energy-loss (stop-
ping cross-section) and mean energy-loss squared (energy
straggling cross-section). As can be observed from this

10 100 1000 10000
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W
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FIG. 3: The straggling cross-section for bare ions in H(1s) as
a function of the projectile energy. The symbols correspond
to PWBA [23] calculations from ref[21] and the solid lines
correspond to the present model with and without kinematical
correction from [24]. Note the strong zero-suppression of the
straggling values.

figure, the inclusion of the kinematical corrections for
the electronic straggling turns out to be very important
for an accurate description of the overshooting (over the
Bohr straggling value) part of the energy-loss straggling
[25]. In fact, since the energy-loss straggling is much
more sensitive to close than to distant collisions, this cor-
rection is more important than the one corresponding to
the case of stopping or ionization cross-sections. Con-
versely, the kinematical correction is not so important
for the ionization cross-section since it is dominated by
distant collisions.

IV. PROJECTILE CHARGE DEPENDENCE

In order to obtain the projectile-charge q dependent
ionization, stopping and straggling cross-sections, we
have assumed the following screened projectile potential
Vp

Vp(~r) = −
(

Z − ne

r
+

ne

r
Φ(r)

)

(27)

where ne is the number of electrons carried by the pro-
jectile ( ne = Z − q), and Φ(r) is the projectile screening
function, which is obtained from

Φ(r) = Φneutral(r/a), (28)

with an approximate screening length a = 1 − q/Z or
(a = ne/Z) (taken from ref.[27]), where Φneutral is the
screening function for the corresponding neutral projec-
tile. It has been tabulated for all elements, for instance
using Dirac-Hartree-Fock-Slater (DHFS) calculations, in
ref.[28], as a sum of exponentials functions. The analyt-
ical formulas for the distant and close collision contribu-
tions for a screened projectile are given in the Appendix.

Fig. 4 shows the projectile-charge dependence of the
ionization, stopping and straggling cross-sections for Ne
ions at 60 MeV/u colliding with Xe atoms (Z/v ≈ 0.2).
Also shown are curves proportional to q2. As can be
observed from this figure, the q2 scaling, largely used
for the stopping power calculations, fails to describe the
present stopping and straggling calculations. Only the q-
dependent ionization cross-section can be reasonable well
approximated by a q2 law (for a discussion on and use of
the q2 dependence see ref. [27, 29–33]). This behavior can
be explained by the fact that the ionization cross-section
is dominated by distant collisions where the projectile
behaves as a point charge q. On the other hand, the
energy-loss straggling depends only on close collisions.
Since the screening due to the bound projectile electrons
is not totally effective for close collisions, the energy-loss
straggling will depend much more on the projectile nu-
clear charge Z and much less on q (as can be observed
from the lowest panel of Fig. 4). In the case of the stop-
ping power distant and close collisions contribute equally
at high energies. This fact is known as the Bethe equi-
partition rule and it leads to a reduction factor of about
two in the q dependence of Se, specifically at low q.
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FIG. 4: Ionization, stopping and straggling cross-sections for
60 MeV/u Ne ions in Xe as a function of the projectile charge-
state q. The solid lines correspond to the present model and
the dashed-lines represent a q2 dependence.

The q dependent stopping cross-section for 2MeV/u U
ions in Xe (Z/v ≈ 10) is depicted in Fig. 5. In this case, a
q2 dependence is clearly observed for U ions carrying few
electrons (q close to Z). In fact, the projectile electrons
screen so strongly the projectile nuclear charge, that only
q elementary charges are left for the interaction with
the Xe target electrons. Nevertheless, this case (strong
screening) is only possible for Z/v > 1, which precludes
the use of the present model, since it is based on the
first-order Born approximation. In fact, non-pertubative
calculations must be used, as the unitary convolution ap-
proximation (UCA) [6, 34] (see dashed line). Because of
the influence of higher-order effects, the q-dependence
departs at all q significantly from the q2 curve. In Fig. 5
we find a strong non-perturbative suppression of Se (ex-
ceeding a factor of 3) due to the non-unitary behavior
of perturbation theory (ionization yields in perturbation
theory may exceed 1 per initial target electron). This
non-unitary does not show up in the UCA results and
of course it is also absent in exact quantum mechani-
cal treatments such as coupled-channel calculations [6].
At higher speeds or lower Z values we expect an addi-
tional flattening of the q dependence of Se, due to the
Bloch terms and due to the projectile ionization contri-
bution. Generally, a q2 scaling (as it is often used in
literature [33]) can only approximately be valid for very
restricted parameter regions as for example in the exper-
iments involving planar channeling by Golovchenko et al.

[29] where a complete cancellation of higher-effects has
been reported [29, 35, 36].

V. CONCLUSIONS

Analytical formulas for the ionization/total reaction
probabilities, electronic energy loss and energy straggling
as a function of the impact parameter are developed that
are valid at high energies and for a wide range of impact
parameters. For the mean energy loss and mean squared
energy loss, the integral over all impact parameters re-
covers the Bethe formula and Bohr straggling formula
respectively.

The physical input of the model are the projectile
screening function, in the case of dressed projectiles, elec-
tron density and the set oscillator strengths for each
sub-shell. A general interpolation procedure between
close and distant collisions has been proposed by intro-
ducing additive connecting functions. Thus, expressions
derived for small and large impact parameters can be
smoothly joined with good precision at high projectile
energies. Comparisons with full first-order calculations
(SCA) show that the present model yields reliable values
of probabilities, energy loss, and straggling as a function
of the impact parameters.

We have also discussed the projectile charge-state de-
pendence of ionization, stopping and straggling cross-
sections. In particular for the stopping cross-section,
the use of the q2 scaling has to be avoided. The con-
tribution of projectile bound-electrons is responsible for
the deviation of the q2 dependence. Only in the case
of strongly screened projectiles, the q2 scaling of the
stopping power could be expected in a first-order ap-
proach. However, this condition implies that the shell ra-
dius for the projectile bound electrons (≈ 1/Z) should be
much smaller than the typical minimal impact parameter
(≈ 1/v) (down where the h vanishes). In other words, in
order to have a strongly screened projectile Z/v should be
larger than one, which contradicts the first-order assump-
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FIG. 5: The stopping cross-sections for 2 MeV/u U ions in
Xe as a function of the projectile charge-state q. The solid
line corresponds to the perturbative PCA model and the red
dashed line to the non-perturbative UCA model. The dotted-
lines represent a q2 dependence.
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tion. The same analysis can be done for non-perturbative
collisions as well, where the q2 dependence could emerge
from a compensation between higher-order effects and
the contribution of the nuclear charge Z in the case of
partial screening due to the bound electrons. Projectile
screening, projectile ionization and Bloch terms lead to a
reduction, specifically to a flattening of the charge-state
dependence of the energy loss, as shown in this work. A
possible steepening due to Barkas terms and electron cap-
ture is usually important only at lower velocities. Thus,
the q2 scaling can generally not be realized at high speeds
and typical powers x for qx are significantly below two for
Se. These powers are only slightly below two for the ion-
ization cross-section, but close to zero for the energy-loss
straggling.
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VII. APPENDIX

Here we have considered the following projectile
screening potential

V (~r−~R) = −
(

(Z − np)

|~r − ~R|
+ np

nmax
∑

i

e−ci|~r−~R|

|~r − ~R|
(ai + bi|~r − ~R|)

)

,

(29)
which is a sum of generalized single zeta-potentials. Each
of them describes the interaction of the active target
electron with projectiles carrying one or two electrons
(np = 1, 2) in hydrogen-like 1s orbitals. Therefore the
sum is appropriate for projectiles carrying many bound
electrons. The coefficients ai, bi and ci can be obtained
by a fit to the numerically determined potential. Here
we have used the coefficients tabulated for DHFS calcu-
lations [28]. Usually, the number of single-zeta potential
terms, nmax, corresponds to the number of atomic shells
of the projectile.

The corresponding expression for the function g(x)
(similar to the expressions for distant collisions from
ref [27]) in the Eq.(8) is

g(x) = f1(x)2 + f2(x)2

with

f1(x) = np/Z
∑

i

(

aiK1(
√

x2 + λ2
i )

√

x2 + λ2
i

+ ηiλiK0(
√

x2 + λ2
i )

)

+ (1 − np/Z)xK1(x)

f2(x) = np/Z
∑

i

(

aixK0(
√

x2 + λ2
i )

+ xηiλiK1(
√

x2 + λ2
i )/

√

x2 + λ2
i

)

+ (1 − np/Z)xK0(x).

with ηi ≡ bib and λi ≡= cib.

The function C(x, y) for close collisions in Eq.(16) and
for the general screening potential above reads

C(x, y) = x2F (y)
G(x, y)

Z2
(30)

with the auxilary functions defined by:

G(x, y) = (Z − np)(y
3J0(yx

√

1 − y2)K0(y
2x) (31)

+ y2
√

1 − y2J1(yx
√

1 − y2)K1(y
2x))

+ np

∑

i

ai(y
3J0(yx

√

1 − y2)K0(x
√

y4 + γ2
i ) (32)

+
√

1 − y2

√

y4 + γ2
i J1(yx

√

1 − y2)K1(x
√

y4 + γ2
i ))

+ np

∑

i

βiγix(
y3

√

y4 + γ2
i

J0(yx
√

1 − y2)K1(x
√

y4 + γ2
i )(33)

+
√

1 − y2J1(yx
√

1 − y2)K0(x
√

y4 + γ2
i ))

and

F (y) = (Z − np) + np

∑

i

(

ai

y2

y2 + γ2
i

+ βiγi

y2

(y2 + γ2
i )2

)

(34)
with βi ≡ bi/(2v) and γi ≡ ci/(2v).

[1] M. R. C. McDowell and J. P. Coleman, Introduction to
the Theory of Ion-Atom Collisions (Amsterdam: Noth
Holland, 1970).

[2] D. S. Gemmell, Rev. Mod. Phys. 46, 129 (1974).
[3] N.M. Kabachnik, V.N. Kondartyev, Z. Roller-Lutz and

H.O. Lutz, Phys. Rev. A 56,2848 (1997). Z. Kaliman,
N. Orlic, N.M. Kabachnik and H.O. Lutz, Phys. Rev. A
65,012708 (2001).

[4] E. Akcoeltekin, T. Peters, R. Meyer, A. Duvenbeck, M.
Klusmann, I. Monnet, H. Lebius and M. Schleberger, Na-
ture Nanotechnology 2, 290 (2007).

[5] P. L. Grande and G. Schiwietz, Phys. Rev. A 58, 3796
(1998).

[6] G. Schiwietz and P. L. Grande, Nucl. Instr. and Meth. B
153, 1 (1999).

[7] P.L. Grande and G. Schiwietz, Nucl. Instr. and Meth. B



8

195, 55 (2002).
[8] G. Schiwietz, M. Roth, K. Czerski, F. Staufenbiel, and

P.L. Grande, Nucl. Instr. Meth. B225, 4-26 (2004) and
Nucl. Instr. Meth. B226 (2004) 683-704

[9] P.L. Grande and G. Schiwietz, ”Ionization and energy
loss beyond perturbation theory”, in ”Advances in Quan-
tum Chemistry”, vol. 45, pp.7-46 (book article ed. by J.
Sabin, 2004, Elsevier Inc.)

[10] N. M. Kabachnik, V. N. Kondratev, and O. V. Chu-
manova, Phys. Status Solidi B 145, 103 (1988); N. M.
Kabachnik, V. Ya. Chumanov, O. V. Chumanova, Nucl.
Instr. and Meth. 111 , 22 (1996).

[11] N.F. Mott, Proc. Cambr. Phil. Soc., 27, 553 (1931);
J.Bang and J.M.Hansteen, Kgl. Dan. Vidensk. Selsk.
Mat. Fys. Medd. 31, No.13 (1959); L. Wilets and S. J.
Wallace, Phys.Rev. 169, 84 (1968); M.R. Flannery and
K.J.MacCann, Phys. Rev. A8 , 2915 (1973).

[12] J.D Jackson,”Classical Electrodynamics”,Chapter 13
(John Wiley and Sons, Inc. 1975).

[13] C.O. Reinhold and J.Burgdoerfer, J. Phys. B: At. Mol
Opt. Phys 26, 3101 (1993).

[14] H. A. Bethe, R.W. Jackiw, ” Intermediate Quantum Me-
chanics” (2nd edition, W.A. Benjamin, inc, 1968).

[15] F. Bloch, Ann. Physik 16, 285 (1933).
[16] V.A. Knodyrev J. Phys. B:Ar. Mol. Opt. Phys. 33, 5045

(2000).
[17] In ref. [5] was omitted a part integration in Eq.(13)
[18] H. Bethe, Ann. Physik 5, 325 (1930).
[19] N. Bohr, Philos. Mag. 25,10 (1913); N. Bohr, Phys. Rev.

59, 270 (1941).
[20] U. Fano, Penetration of protons, alpha particles, and

mesons. Ann. Rev. Nucl. Sci. 13 1, (1963).
[21] The numerical procedures are same as used in G.

Schiwietz and P.L. Grande, Nucl. Instr. and Meth.
B69,10 (1992); P.L.Grande and G. Schiwietz, Phys. Rev.

A47,1119 (1993);P.L. Grande and G. Schiwietz, Nucl. In-
str. and Meth.B132, 264 (1997).

[22] F. Herman and S. Skillmann, in Atomic Structure Calcu-
lations, (Prentice-Hall, Inc. Englewood Cliffs, New Jer-
sey,1963).

[23] D.R. Bates and G.W. Griffing. Proc. Phys. Soc. A 68

(1955).
[24] P. Sigmund, Phys. Rev. A 26, 2497(1982).
[25] P. Sigmund, L.G. Glazov, Europ. Phys. J. D. 23, 211

(2003).
[26] P.L. Grande and G. Schiwietz, Phys. Rev. A44, 2984

(1991).
[27] P. Sigmund, Phys. Rev. A 56, 3781 (1997).
[28] F. Salvat, J.D. Martinez, R. Mayol and J. Parellada,

Phys. Rev. A 36, 467 (1987).
[29] J. A. Golovchenko, A. N. Goland, J. S. Rosner, C. E.

Thorn, H. E. Wegner, H. Knudsen, and C. D. Moak,
Phys. Rev. B 23, 957 (1981).

[30] G. Maynard, M. Chabot and D. Gardes, Nucl. Instr. and
Meth. B164-165, 139 (2000)

[31] A.F. Lifschitz and N.R. Arista, Phys. Rev. A 69, 012902
(2004).

[32] G. Zwicknagel, P.G. Reinhard, C. Seele,, C. Toepffer,
Fusion Engineering and Design, vol.32-33, 523-8, (1996).

[33] W. Brandt and M. Kitagawa, Phys. Rev. B. 26, 3968
(1982).

[34] The computational implementation of the UCA
method [5, 6], CasP (Convolution Approximation
for Swift Particles) program, is available at
http://www.hmi.de/people/schiwietz/casp.html.

[35] G. de M. Azevedo, P.L. Grande, M. Behar and J.F. Dias,
Physical Review Letters 86, 1482 (2001).

[36] P. Sigmund and A. Schinner, Physical Review Letters 86,
1486 (2001).


