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EMBEDDING PROPERTIES OF ENDOMORPHISM

SEMIGROUPS

JOÃO ARAÚJO AND FRIEDRICH WEHRUNG

Abstract. Denote by PSelf Ω (resp., Self Ω) the partial (resp., full)
transformation monoid over a set Ω, and by Sub V (resp., End V ) the
collection of all subspaces (resp., endomorphisms) of a vector space V .
We prove various results that imply the following:

(1) If card Ω > 2, then Self Ω has a semigroup embedding into the dual
of Self Γ iff card Γ > 2cardΩ. In particular, if Ω has at least two
elements, then there exists no semigroup embedding from Self Ω
into the dual of PSelf Ω.

(2) If V is infinite-dimensional, then there is no embedding from (Sub V, +)
into (Sub V,∩) and no embedding from (End V, ◦) into its dual
semigroup.

(3) Let F be an algebra freely generated by an infinite subset Ω. If F

has less than 2cardΩ operations, then End F has no semigroup em-
bedding into its dual. The cardinality bound 2cardΩ is optimal.

(4) Let F be a free left module over a left ℵ1-nœtherian ring (i.e., a
ring without strictly increasing chains, of length ℵ1, of left ideals).
Then End F has no semigroup embedding into its dual.

(1) and (2) above solve questions proposed by B. M. Schein and G. M.
Bergman. We also formalize our results in the settings of algebras en-
dowed with a notion of independence (in particular independence alge-

bras).

1. Introduction

A (partial) function on a set Ω is a map from a subset of Ω to Ω. The

composition g ◦ f of partial functions f , g on Ω is a partial function, with

domain the set of all x in the domain of f such that f(x) belongs to the

domain of g. The set PSelf Ω of all partial functions on Ω is a monoid

under composition. Denote by Self Ω the submonoid of PSelf Ω consisting

of all endomaps of Ω. The dual Sop of a semigroup (resp., monoid) S with

multiplication · is defined as the semigroup (resp., monoid) with the same

underlying set as S and the multiplication ∗ defined by the rule x∗y = y ·x
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for all x, y ∈ S. A dual automorphism (resp., a dual embedding) of S is an

isomorphism (resp., embedding) from S to Sop.

In the present paper, we solve the following three questions:

Question 1. Suppose that Ω is infinite. Does Self Ω have a dual embedding?

Question 2. Suppose that Ω is infinite. Does PSelf Ω have a dual embed-

ding?

Question 3. Does the endomorphism monoid of an infinite-dimensional

vector space have a dual embedding?

Question 1 originates in an earlier version of a preprint by George Berg-

man [3] and Questions 1 and 2 were proposed by Boris Schein in September

2006 while he gave a course on semigroups at the Center of Algebra of the

University of Lisbon. After learning some of the results of the present paper,

proved by the second author, that implied a negative answer to Question 1,

Bergman changed [3] and subsequently asked Question 3. This question was

solved by the second author as well. The original solution of Question 1 was

obtained via an analogue of Theorem 3.1 but with a non-optimal bound;

in our present formulation of that theorem, the optimal bound 2card Ω is

proved. Furthermore, the similarity of the methods used in the (negative)

solutions of all these questions lead us to the investigation of more general

classes of algebras where similar negative results would hold, for example

M-acts or modules.

The road to the latter goal is opened as follows. As both Self Ω and

End V are endomorphism monoids of universal algebras, we move forward

to identify more general classes of universal algebras whose endomorphism

monoids cannot be embedded into their dual. In particular, this is the

case for the free objects in any nontrivial variety with small enough similar-

ity type (Theorem 6.1), but not necessarily for all free M-acts for suitable

monoids M (Theorem 6.2). In Section 8, we introduce a rather large class

of algebras whose endomorphism monoids cannot be embedded into their

dual, called SC-ranked algebras (Definition 8.4 and Corollary 8.6). These

algebras arise from the study of algebras endowed with a notion of indepen-

dence (see Section 7). This gives, for example, new results about M-acts for

monoids M without large left divisibility antichains (Theorem 9.1), in par-

ticular for G-sets (Corollary 9.5), but also for modules over rings satisfying

weak nœtherianity conditions (Corollary 10.7).

Denote by Sub V (resp., End V ) the collection of all subspaces (resp.,

endomorphisms) of a vector space V . Our results imply the following:

• (cf. Corollary 3.8) Let Ω and Γ be sets with card Ω > 2. Then Self Ω

has a semigroup embedding into (Self Γ)op iff card Γ > 2card Ω.
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• (cf. Theorems 4.4 and 5.1) Let V and W be right vector spaces over

division rings K and F , respectively, with V infinite-dimensional.

If there exists an embedding either from (Sub V, +) into (Sub W,∩)

or from (End V, ◦) to (End W, ◦)op, then dim W > (card K)dimV .

• (cf. Theorems 6.1 and 6.2) Let V be a variety of algebras, not all

reduced to a singleton, in a similarity type Σ, and let Ω be an infinite

set. If card Σ < 2card Ω, then the endomorphism semigroup of the

free algebra on Ω in V has no dual embedding. The cardinality bound

2card Ω is optimal, even for M-acts for a suitably chosen monoid M .

• (cf. Theorem 10.7) Let F be a free left module over a ring in which

there is no strictly increasing ℵ1-sequence of left ideals. Then the

semigroup End F has no dual embedding.

In Section 11, we formulate a few concluding remarks and open problems.

2. Basic concepts

For a nonzero cardinal κ, we put κ − 1 = card(Ω \ {p}), for any set Ω of

cardinality κ and any p ∈ Ω (so κ − 1 = κ in case κ is infinite). We denote

by P(Ω) the powerset of a set Ω, and by [Ω]<ω the set of all finite subsets

of Ω. We put

Ker f = {(x, y) ∈ Ω × Ω | f(x) = f(y)} , for any function f with domain Ω.

We also denote by rng f the range of f . We denote the partial operation of

disjoint union by ⊔.

We denote by Eq Ω the lattice of all equivalence relations on Ω under

inclusion, and we denote by [x]θ the θ-block of any element x ∈ Ω, for

each θ ∈ Eq Ω. We put

Eq62 Ω = {θ ∈ Eq Ω | card(Ω/θ) 6 2},

Eq2 Ω = {θ ∈ Eq Ω | card(Ω/θ) = 2},

Eqfin Ω = {θ ∈ Eq Ω | Ω/θ is finite}.

The monoid Self Ω has the following subsets, the first three of which are

also subsemigroups:

Sym Ω = {f ∈ Self Ω | f is bijective},

Self62 Ω = {f ∈ Self Ω | card(rng f) 6 2},

Selffin Ω = {f ∈ Self Ω | rng f is finite},

Self2 Ω = {f ∈ Self Ω | card(rng f) = 2}.

We put ker f = f−1{0} (the usual kernel of f), for any homomorphism f

of abelian groups. For a right vector space V over a division ring K, we

denote by Subfin V (resp., Subfin V ) the sublattice of Sub V consisting of
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all finite-dimensional (resp., finite-codimensional) subspaces of V . Further-

more, we denote by Endfin V the semigroup of all endomorphisms with finite-

dimensional range of V . In particular, the elements of Subfin V are exactly

the kernels of the elements of Endfin V .

3. Embeddings between semigroups of endomaps

For any f ∈ Self Ω, denote by f−1 the endomap of the powerset P(Ω)

that sends every subset of Ω to its inverse image under f . The assignment

Self Ω → Self P(Ω), f 7→ f−1 defines a monoid embedding from Self Ω

into (Self P(Ω))op. Moreover, both Self 1 and Self ∅ are the one-element

monoid, which is self-dual. For larger sets the following theorem says that

the assignment f 7→ f−1 described above is optimal in terms of size.

Theorem 3.1. Let Ω and Γ be sets with card Ω > 2. If there exists a

semigroup embedding from Self62 Ω into (Self Γ)op, then card Γ > 2card Ω.

We prove Theorem 3.1 in a series of lemmas. Assuming an embedding

from Self62 Ω into (Self Γ)op, Lemma 3.3 is used to associate the kernel of

a function in Self62 Ω with the range of its image under the embedding. As

any two distinct members of Eq2 Ω join to the coarse equivalence relation in

an ‘effective’ way (Lemma 3.2), this will give, in Lemma 3.5, a partition of

a suitable subset of Γ with many classes. Proving that each of these classes

has at least two elements is the object of Lemmas 3.6 and 3.7; this will give

the final estimate.

Lemma 3.2. Let α and β be distinct elements in Eq2 Ω. Then there are

idempotent maps f, g ∈ Self2 Ω such that Ker f = α, Ker g = β, and f ◦ g

is constant.

Proof. As α 6= β, we can write Ω/α = {A0, A1} and Ω/β = {B0, B1} with

both A0 ∩B0 and A0 ∩B1 nonempty. Pick bi ∈ A0 ∩Bi, for i < 2, and pick

a ∈ A1. Define idempotent endomaps f and g of Ω by the rule

f(x) =







b0 (x ∈ A0),

a (x ∈ A1),
g(x) =







b0 (x ∈ B0),

b1 (x ∈ B1),
for all x ∈ Ω.

Then Ker f = α, Ker g = β, and f ◦g is the constant function with value b0.

�

Now let ε : Self62 Ω →֒ (Self Γ)op be a semigroup embedding.

Lemma 3.3. Ker f ⊆ Ker g implies that rng ε(g) ⊆ rng ε(f), for all f, g ∈

Self62 Ω.

Proof. There exists h ∈ Self62 Ω such that g = h◦f . Thus ε(g) = ε(f)◦ε(h)

and the conclusion follows. �
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Lemma 3.3 makes it possible to define a map

µ : Eq62 Ω → P(Γ) \ {∅}

by the rule µ(Ker f) = rng ε(f), for each f ∈ Self62 Ω.

Lemma 3.4. α ⊆ β iff µ(β) ⊆ µ(α), for all α, β ∈ Eq62 Ω.

Proof. The direction from the left to the right (i.e., the map µ is anti-

tone) follows from Lemma 3.3. Now assume that µ(β) ⊆ µ(α). There

are idempotent f, g ∈ Self62 Ω such that α = Ker f and β = Ker g. As

rng ε(g) ⊆ rng ε(f) and ε(f) is idempotent, ε(f) ◦ ε(g) = ε(g), that is,

ε(g ◦ f) = ε(g), and thus, as ε is one-to-one, g ◦ f = g, and therefore

Ker f ⊆ Ker g. �

Let 1 = Ω × Ω denote the coarse equivalence relation on Ω.

Lemma 3.5. µ(α) ∩ µ(β) = µ(1), for all distinct α, β ∈ Eq2 Ω.

Proof. It follows from Lemma 3.2 that there are idempotent f, g ∈ Self Ω

such that Ker f = α, Ker g = β, and f ◦ g is constant.

Let x ∈ µ(α) ∩ µ(β). This means that x belongs to both rng ε(f)

and rng ε(g), hence, as both ε(f) and ε(g) are idempotent, that it is fixed

by both these maps, hence that it is fixed by their composite, ε(g) ◦ ε(f) =

ε(f ◦ g), hence it lies in the range of that composite, which, as f ◦ g is a

constant function, is µ(1).

So we have proved that µ(α)∩µ(β) is contained in µ(1). As the converse

inequality follows from Lemma 3.3, the conclusion follows. �

Denote by kx the constant function on Ω with value x, for each x ∈ Ω.

Hence µ(1) = rng ε(kx).

Lemma 3.6. The set µ(1) has at least two elements.

Proof. Otherwise, µ(1) = {z} for some z ∈ Γ, and so ε(kx) is the constant

function on Γ with value z, for each x ∈ Ω. As ε is one-to-one, this implies

that Ω has at most one element, a contradiction. �

Lemma 3.7. The set rng ε(e) \ µ(1) has at least two elements, for each

idempotent e ∈ Self2 Ω.

Proof. Let rng e = {x, y}. It follows from Lemmas 3.3 and 3.4 that rng ε(e)

properly contains µ(1). Suppose that rng ε(e) \ µ(1) = {t}, for some t ∈ Γ.

For elements a and b in a semigroup S, let a ∼ b hold, if there are elements

x1, x2, y1, y2 ∈ S such that a = x1b = bx2 and b = y1a = ay2. It is obvious

that if S is a subsemigroup of Self Ω, then a ∼ b implies that a and b

have same kernel and same range. Furthermore, in case S = Self62 Ω, it is
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easy to verify that the converse holds (first treat left and right divisibility

separately, then join the two results). In addition, a ∼ b in Self62 Ω implies

that ε(a) ∼ ε(b) in Self Γ.

We shall apply this to the maps e and f =
(

x y
)

◦ e (where, as said

above, {x, y} = rng e). Observe that f 2 = e and e ∼ f ; hence ε(f)2 = ε(e)

and ε(e) ∼ ε(f), so Ker ε(e) = Ker ε(f) and rng ε(e) = rng ε(f). We shall

evaluate the map ε(f) on each Ker ε(e)-block, that is, on each block of the

decomposition

Γ =
⊔

v∈rng ε(e)

[v]Ker ε(e) =
⊔

v∈µ(1)

[v]Ker ε(e) ⊔ [t]Ker ε(e) . (3.1)

From µ(1) = rng ε(kx) and kx◦g = kx it follows that ε(g)◦ε(kx) = ε(kx) for

each g ∈ Self62 Ω, thus ε(g) fixes all the elements of µ(1); we shall use this

in the two cases g = e and g = f . As [v]Ker ε(e) = [v]Ker ε(f) for each v ∈ µ(1),

it follows that each element of that block is sent to v by both maps ε(e)

and ε(f); hence ε(e) and ε(f) agree on
⊔

v∈µ(1)[v]Ker ε(e). As the maps ε(e)

and ε(f) have same kernel and same range, they also agree on [t]Ker ε(e).

Therefore, ε(e) = ε(f), and thus e = f , a contradiction. �

Pick an element ∞ ∈ Ω and set Ω∗ = Ω \ {∞}. We put

θZ = {(x, y) ∈ Ω × Ω | x ∈ Z ⇔ y ∈ Z}, for each Z ⊆ Ω. (3.2)

If Z belongs to P(Ω) \ {∅, Ω}, then the equivalence relation θZ has exactly

the two classes Z and Ω \ Z. This holds, in particular, for each nonempty

subset Z of Ω∗. In addition, θX and θY are distinct elements in Eq2 Ω, for

all distinct nonempty subsets X and Y of Ω∗, so, by Lemma 3.5, we get

µ(θX) ∩ µ(θY ) = µ(1). Furthermore, it follows from Lemma 3.4 that µ(θX)

properly contains µ(1), and so the family
(

µ(θX)\µ(1) | X ∈ P(Ω∗)\{∅}
)

is a partition of some subset of Γ. In particular, by using Lemmas 3.6

and 3.7, we obtain

card Γ > card µ(1)+2 · card
(

P(Ω∗)\{∅}
)

> 2+2 · (2card Ω−1 −1) = 2card Ω .

This concludes the proof of Theorem 3.1.

Corollary 3.8. Let Ω and Γ be sets with card Ω > 2. Then the following

are equivalent:

(i) There exists a semigroup embedding from Self62 Ω into (Self Γ)op.

(ii) There exists a monoid embedding from Self Ω into (Self Γ)op.

(iii) card Γ > 2card Ω.

Proof. (ii)⇒(i) is trivial, and (i)⇒(iii) follows from Theorem 3.1. Finally,

we observed (iii)⇒(ii) at the beginning of Section 3. �



ENDOMORPHISM SEMIGROUPS 7

As PSelf Ω embeds into Self(Ω ∪ {∞}) (for any element ∞ /∈ Ω) and,

in case card Ω > 2, the inequality 2card Ω > card Ω + 1 holds, the following

corollary answers simultaneously Questions 1 and 2 in the negative.

Corollary 3.9. There is no semigroup embedding from Self Ω into (PSelf Ω)op,

for any set Ω with at least two elements.

4. Subspace lattices of vector spaces

The central idea of the present section is to study how large can be a

set I such that the semilattice ([I]<ω,∩) embeds into various semilattices

obtained from a vector space, and then to apply this to embeddability prob-

lems of subspace posets.

We start with an easy result.

Proposition 4.1. For a set I and a right vector space V over a division

ring K, the following are equivalent:

(i) ([I]<ω,∪,∩, ∅) embeds into (Subfin V, +,∩, {0});

(ii) ([I]<ω,∩) embeds into (Sub V,∩);

(iii) card I 6 dim V .

Proof. (i)⇒(ii) is trivial.

Suppose that (ii) holds, via an embedding ϕ : ([I]<ω,∩) →֒ (Sub V,∩),

and pick ei ∈ ϕ({i}) \ ϕ(∅), for any i ∈ I. If J is a finite subset of I,

i ∈ I \ J , and ei is a linear combination of {ej | j ∈ J}, then ei belongs

to ϕ({i}) ∩ ϕ(J) = ϕ(∅), a contradiction; hence (ei | i ∈ I) is linearly

independent, and so card I 6 dim V .

Finally suppose that (iii) holds. There exists a linearly independent fam-

ily

(ei | i ∈ I) of elements in V . Define ϕ(X) as the span of {ei | i ∈ X},

for every X ∈ [I]<ω. Then ϕ is an embedding from ([I]<ω,∪,∩, ∅) into

(Subfin V, +,∩, {0}). �

For embeddability of [I]<ω into (Sub V, +), we will need further results

about the dimension of dual spaces. It is an old but nontrivial result that the

dual V ∗ (i.e., the space of all linear functionals) of an infinite-dimensional

vector space V is never isomorphic to V . This follows immediately from the

following sharp estimate of the dimension of the dual space (which is a left

vector space) given in the Proposition on Page 19 in [2, Section II.2].

Theorem 4.2 (R. Baer, 1952). Let V be a right vector space over a division

ring K.

(i) If V is finite-dimensional, then dim V ∗ = dim V .

(ii) If V is infinite-dimensional, then dim V ∗ = (cardK)dim V .
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Strictly speaking, the result above is stated in [2] for a vector space over

a field, but the proof presented there does not make any use of the commu-

tativity of K so we state the result for division rings. Also, we emphasize

that this proof is non-constructive, in particular it uses Zorn’s Lemma. Of

course, replacing ‘right’ by ‘left’ in the statement of Theorem 4.2 gives an

equivalent result.

By using Baer’s Theorem together with some elementary linear algebra,

we obtain the following result.

Proposition 4.3. For a set I and an infinite-dimensional right vector

space V over a division ring K, the following are equivalent:

(i) ([I]<ω,∪,∩, ∅) embeds into (Subfin V,∩, +, V );

(ii) ([I]<ω,∩) embeds into (Sub V, +);

(iii) card I 6 (card K)dimV .

Proof. (i)⇒(ii) is trivial.

Suppose that (ii) holds. To every subspace X of V we can associate its

orthogonal X⊥ = {f ∈ V ∗ | (∀x ∈ X)(f(x) = 0)}, and the assignment X 7→

X⊥ defines an embedding from (Sub V, +) into (Sub V ∗,∩). It follows that

([I]<ω,∩) embeds into (Sub V ∗,∩). Therefore, by applying Proposition 4.1

to the left K-vector space V ∗, we obtain, using Theorem 4.2, that card I 6

dim V ∗ = (card K)dimV .

Finally suppose that (iii) holds. By Theorem 4.2, there exists a linearly

independent family (ℓi | i ∈ I) of V ∗ (indexed by I). We put ϕ(X) =
⋂

i∈X ker ℓi, for every X ∈ [I]<ω (with the convention that ϕ(∅) = V ). It is

obvious that ϕ is a homomorphism from ([I]<ω,∪, ∅) to (Subfin V,∩, V ).

For every finite subset X of I, if the linear map ℓX : V → KX , v 7→

(ℓi(v) | i ∈ X) were not surjective, then its image would be contained in the

kernel of a nonzero linear functional on KX , which would contradict the

linear independence of the ℓis; whence ℓX is surjective. As ker ℓX = ϕ(X),

it follows that

codim ϕ(X) = dim KX = card X. (4.1)

Therefore, ϕ embeds ([I]<ω,⊆) into (Subfin V,⊇).

Finally let X and Y be finite subsets of I. We apply the codimension

formula to the subspaces ϕ(X) and ϕ(Y ), so

codim(ϕ(X) + ϕ(Y )) + codim(ϕ(X) ∩ ϕ(Y )) = codim ϕ(X) + codim ϕ(Y ).

As ϕ(X) ∩ ϕ(Y ) = ϕ(X ∪ Y ), an application of (4.1) yields

codim(ϕ(X)+ϕ(Y )) = card X+card Y −card(X∪Y ) = card(X∩Y ) = codim ϕ(X∩Y ).

As ϕ(X ∩ Y ) is finite-codimensional and contains ϕ(X) + ϕ(Y ), it follows

that ϕ(X) + ϕ(Y ) = ϕ(X ∩ Y ). Therefore, ϕ is as desired. �
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We obtain the following theorem.

Theorem 4.4. Let V and W be right vector spaces over respective division

rings K and F , with V infinite-dimensional. If there exists an embedding

from (Subfin V, +) into (Sub W,∩), then dim W > (cardK)dim V .

Of course, taking W = V ∗ and sending every subspace X of V to its

orthogonal X⊥, we see that the bound (card K)dimV is optimal.

Proof. Put κ = (card K)dimV . It follows from Proposition 4.3 that ([κ]<ω,∩)

embeds into (Subfin V, +). Hence, by assumption, ([κ]<ω,∩) embeds into

(Sub W,∩), which, by Proposition 4.1, implies that κ 6 dim W . �

Corollary 4.5. Let V be an infinite-dimensional vector space over any

division ring. Then there is no embedding from (Subfin V, +) into (Sub V,∩).

Remark 4.6. The statement obtained by exchanging ∩ and + in Corol-

lary 4.5 does not hold as a rule. Indeed, let V be an infinite-dimensional

vector space, say with basis I, over a division ring F , and assume that

card F 6 card I. Now Sub V is a meet-subsemilattice of (P(V ),∩), which

(using complementation) is isomorphic to (P(V ),∪), which (as card V =

card I) is isomorphic to (P(I),∪), which embeds into (Sub V, +) (to each

subset of I associate its span in V ): so (Sub V,∩) embeds into (Sub V, +).

5. Endomorphism monoids of vector spaces

Let V be an infinite-dimensional vector space, with basis I, over a division

ring F . Assume, in addition, that card F < 2card I . If End V embeds into

(End V )op, then, as Self I embeds into End V and End V is a submonoid

of Self V , it follows from Corollary 3.8 that 2card I 6 card V , a contradiction

as card V = card F +card I < 2card I (see also the proof of Theorem 6.1). In

the present section we shall get rid of the cardinality assumption card F <

2card I . The special algebraic properties of vector spaces used here will be

further amplified from Section 7 on, giving, for instance, related results for

G-sets (Corollary 9.5) and modules over nœtherian rings (Corollary 10.7).

Theorem 5.1. Let V and W be infinite-dimensional vector spaces over

division rings K and F , respectively. If there exists a semigroup embedding

from Endfin V into (End W )op, then dim W > (card K)dim V .

Of course, taking W = V ∗ and sending every endomorphism to its trans-

pose, we see that the bound (card K)dimV is optimal.

Denote our semigroup embedding by ε : Endfin V →֒ (End W )op. We start

as in the proof of Theorem 3.1.
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Lemma 5.2. ker f ⊆ ker g implies that rng ε(g) ⊆ rng ε(f), for all f, g ∈

Endfin V .

Proof. There exists h ∈ Endfin V such that g = h◦f . Thus ε(g) = ε(f)◦ε(h)

and the conclusion follows. �

Lemma 5.2 makes it possible to define a map µ : Subfin V → Sub W by

the rule µ(ker f) = rng ε(f), for each f ∈ Endfin V .

Lemma 5.3. X ⊆ Y iff µ(Y ) ⊆ µ(X), for all X, Y ∈ Subfin V .

Proof. The direction from the left to the right follows from Lemma 5.2. Now

assume that µ(Y ) ⊆ µ(X). There are idempotent f, g ∈ Endfin V such that

X = ker f and Y = ker g. As rng ε(g) ⊆ rng ε(f) and ε(f) is idempotent,

ε(f) ◦ ε(g) = ε(g), that is, ε(g ◦ f) = ε(g), and thus, as ε is one-to-one,

g ◦ f = g, and therefore ker f ⊆ ker g. �

Lemma 5.4. µ(X + Y ) = µ(X) ∩ µ(Y ), for all X, Y ∈ Subfin V .

Proof. Put Z = X ∩ Y and let X ′, Y ′, T be subspaces of V such that

X = Z ⊕ X ′, Y = Z ⊕ Y ′, and (X + Y ) ⊕ T = V . It follows that V =

Z ⊕X ′ ⊕ Y ′ ⊕ T . Let f and g denote the projections of V onto Y ′ ⊕ T and

X ′ ⊕ T , respectively, with kernels X and Y , respectively. Then g ◦ f is the

projection of V onto T with kernel X + Y .

Let x ∈ µ(X) ∩ µ(Y ). This means that x belongs to both rng ε(f)

and rng ε(g), hence, as both ε(f) and ε(g) are idempotent, that it is fixed by

both these maps, hence that it is fixed by their composite, ε(f)◦ε(g) = ε(g◦

f), hence it lies in the range of that composite, which, as ker(g◦f) = X+Y ,

is µ(X + Y ).

So we have proved that µ(X) ∩ µ(Y ) is contained in µ(X + Y ). As the

converse inequality follows from Lemma 5.2, the conclusion follows. �

Now Theorem 5.1 follows immediately from Theorem 4.4.

Observe the contrast with the case where V is finite-dimensional and K

is commutative: in this case, V is isomorphic to its dual vector space V ∗,

and transposition defines an isomorphism from End V onto End V ∗.

Corollary 5.5. Let V be an infinite-dimensional vector space over any

division ring. Then there is no semigroup embedding from Endfin V into

(End V )op.

Corollary 5.6. Let Ω be an infinite set and let V be a vector space over a

division ring. If Selffin Ω has a semigroup embedding into (End V )op, then

dim V > 2card Ω.
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Proof. Denote by F2 the two-element field. Apply Theorem 5.1 to the F2-

vector space (F2)
(Ω) with basis Ω instead of V , and V instead of W . We

obtain that if there exists a semigroup embedding from Endfin

(

(F2)
(Ω)

)

into (End V )op, then dim V > 2card Ω. Now observe that as F2 is finite,

Endfin

(

(F2)
(Ω)

)

is a subsemigroup of Selffin((F2)
(Ω)

)

. As Ω and (F2)
(Ω) have

the same cardinality, our result follows. �

6. Endomorphism monoids of free algebras

Most popular varieties of algebras have a finite similarity type (i.e., set

of fundamental operations). Our next result deals with the embeddability

problem for such varieties (and some more). For a variety V of algebras, we

shall denote by FV(X) the free algebra in V on X. We say that V is trivial

if the universe of any member of V is a singleton.

Theorem 6.1. Let V be a nontrivial variety of algebras with similarity

type Σ. Then there is no semigroup embedding from End FV(Ω) into

(End FV(Ω))op, for every infinite set Ω such that card Σ < 2card Ω.

Proof. Suppose that there is a semigroup embedding from End FV(Ω) into

(End FV(Ω))op. As V is nontrivial and every endomap of Ω extends to a

unique endomorphism of FV(Ω), Self Ω embeds into End FV(Ω). As the

latter is a submonoid of Self FV(Ω), we obtain that Self Ω embeds into

(Self FV(Ω))op, so, by Theorem 3.1, we obtain that card FV(Ω) > 2card Ω.

However, card FV(Ω) 6 card Ω + card Σ + ℵ0 < 2card Ω, a contradiction. �

Observe that the context of Theorem 6.1 covers most examples of algebras

provided in [4, Section 2.1].

Our next result will show that the cardinality bound card Σ < 2card Ω in

Theorem 6.1 is optimal. For a monoid M , an M-act is a nonempty set X

endowed with a map (M ×X → X, (α, x) 7→ α · x) such that 1 · x = x and

α · (β · x) = (αβ) · x for all α, β ∈ M and all x ∈ X. Hence the similarity

type of M-acts consists of a collection, indexed by M , of unary operation

symbols. Furthermore, the free M-act on a set Ω, denoted by FM(Ω), can

be identified with M ×Ω, endowed with the ‘inclusion’ map (Ω →֒ M × Ω,

p 7→ (1, p)), and the multiplication defined by α · (β, p) = (αβ, p).

For any set Ω, we shall consider the monoid Rel Ω of all binary relations

on Ω, endowed with the composition operation defined by

α ◦ β = {(x, y) ∈ Ω × Ω | (∃z ∈ Ω)((x, z) ∈ β and (z, y) ∈ α)}, (6.1)

for all α, β ∈ Rel Ω. The right hand side of (6.1) is denoted in many refer-

ences by β ◦α, however this conflicts with the notation g ◦f for composition
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of functions, where every function is identified with its graph; as both com-

position operations will be needed in the proof, we choose to identify them.

This should not cause much confusion as the monoid Rel Ω is self-dual,

that is, it has a dual automorphism. The latter is the transposition map

α 7→ α−1, where

α−1 = {(x, y) ∈ Ω × Ω | (y, x) ∈ α}, for any α ∈ Rel Ω.

Theorem 6.2. Let Ω be an infinite set and put M = Rel Ω. Then the

monoid End FM(Ω) has a dual embedding.

Proof. The strategy of the proof will be the following:

(i) prove that for every monoid M and every infinite set Ω, the monoid

Mop embeds in End FM(Ω); therefore M →֒ (End FM(Ω))op;

(ii) in case M = Rel Ω, prove that End FM(Ω) →֒ M ;

(iii) items (i) and (ii) put together imply that End FM(Ω) →֒ (End FM(Ω))op.

We start with any monoid M . We put x ·y = (x(p) · y(p) | p ∈ Ω) for any

x, y ∈ MΩ, and we endow E(M) = (Self Ω) × MΩ with the multiplication

given by

(α, x) · (β, y) = (αβ, y · (x ◦ β)), for all (α, x), (β, y) ∈ E(M).

Each (α, x) ∈ E(M) defines an endomorphism f(α,x) of FM(Ω) = M ×Ω by

the rule

f(α,x)(t, p) = (t · x(p), α(p)), for each (t, p) ∈ M × Ω.

It is straightforward to verify that the assignment (α, x) 7→ f(α,x) defines an

isomorphism from (E(M), ·) onto (End FM(Ω), ◦). Furthermore,

Mop has a monoid embedding into End FM(Ω), (6.2)

namely the assignment x 7→ (idΩ, kx), where kx denotes the constant func-

tion on Ω with value x (as in Section 3).

Now we specialize to M = RelΩ. Let ∞ be an object outside Ω and put

Ω = Ω ∪ {∞}. With every α ∈ Rel Ω we associate the binary relation α =

α ∪ {(∞,∞)}. It is obvious that the assignment α 7→ α defines a monoid

embedding from Rel Ω into RelΩ.

For each (α, x) ∈ E(M), we define the binary relation η(α, x) on Ω × Ω

by

η(α, x) = {((p0, q0), (p1, q1)) ∈ (Ω × Ω)2 | p1 = α(p0) and (q1, q0) ∈ x(p0)}.

It is straightforward to verify that the map η defines a monoid embedding

from E(M) into Rel(Ω × Ω). (That η is one-to-one follows from our pre-

caution of having replaced Ω by Ω in the definition of the map η; indeed,
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as the binary relation x(p0) always contains the pair (∞,∞), η(α, x) de-

termines the pair (α, x).) As Rel(Ω × Ω) is isomorphic to Rel Ω (use any

bijection from Ω × Ω onto Ω) and by (6.2), it follows from the self-duality

of RelΩ that the monoids Rel Ω and End FM(Ω) embed into each other. As

M = Rel Ω is self-dual, the conclusion follows. �

As shows the coming Corollary 9.5, Theorem 6.2 cannot be extended to

G-sets (i.e., G-acts), for groups G. See also Problem 3.

7. C-, S-, and M-independent subsets in algebras

We first recall some general notation and terminology. For an algebra A

(that is, a nonempty set endowed with a collection of finitary operations), we

denote by Sub A (resp., End A) the collection of all subuniverses (resp., en-

domorphisms) of A. We also denote by 〈X〉 the subuniverse of A generated

by a subset X of A; in case X = {x1, . . . , xn}, we shall write 〈x1, . . . , xn〉

instead of 〈{x1, . . . , xn}〉. We shall also put X ∨ Y = 〈X ∪ Y 〉, for all

X, Y ∈ Sub A. A subset I of A is said to be

• C-independent, if x /∈ 〈I \ {x}〉, for all x ∈ I;

• M-independent, if every map from I to A can be extended to some

homomorphism from 〈I〉 to A.

• S-independent, if every map from I to I can be extended to some

homomorphism from 〈I〉 to A.

In these definitions, C stands for closure, as the definition of C-independence

relies upon a closure operator; M stands for Marczewski who introduced M-

independence in [15]; S stands for Świerczkowski who introduced this notion

in [27].

Say that a subset I of A is non-degenerate, if I ∩〈∅〉 = ∅. The following

result, with straightforward proof, shows that aside from degenerate cases,

M-independence implies S-independence implies C-independence. (None of

the converses hold as a rule [10]).

Proposition 7.1. Let I be a subset in an algebra A. The following asser-

tions hold:

(i) I is S-independent degenerate iff I is a singleton contained in 〈∅〉.

(ii) I is M-independent degenerate iff I = A = 〈∅〉 is a singleton.

(iii) If I is M-independent, then I is S-independent.

(iv) If I is S-independent non-degenerate, then I is C-independent.

The following result generalizes the main part of Proposition 4.1. It

relates the existence of large either S-independent or C-independent subsets

of an algebra A and the existence of meet-embeddings of large [I]<ω into

the subuniverse lattice of A.
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Proposition 7.2. The following statements hold, for every algebra A and

every set I:

(i) If I is a non-degenerate S-independent subset of A, then ([I]<ω,∪,∩)

embeds into (Sub A,∨,∩).

(ii) If ([I]<ω,∩) embeds into (Sub A,∩), then A has a C-independent

subset X such that card I 6 card X.

Proof. (i). Let I be a non-degenerate S-independent subset of A, we shall

prove that ([I]<ω,∪,∩) embeds into (Sub A,∨,∩). If I = ∅ then the result

is trivial. Suppose that I = {p}. As I is non-degenerate, p /∈ 〈∅〉, thus 〈∅〉

is strictly contained in 〈p〉, and the result follows.

Suppose from now on that I has at least two elements. We define a map

ϕ : [I]<ω → Sub A by setting

ϕ(∅) =
⋂

(〈p〉 | p ∈ I) , (7.1)

while ϕ(X) = 〈X〉 for any nonempty X ∈ [I]<ω. It is obvious that ϕ is

a join-homomorphism from [I]<ω to Sub A. Suppose that ϕ(X) ⊆ ϕ(Y ),

for X, Y ∈ [I]<ω, and let p ∈ X \ Y . Suppose first that Y = ∅. As

X ⊆ ϕ(X) ⊆ ϕ(Y ) = ϕ(∅) and by (7.1), we obtain that p ∈ 〈q〉 for

each q ∈ I, thus, as I is C-independent (cf. Proposition 7.1), I = {p},

a contradiction. Suppose now that Y is nonempty. Let q ∈ I. As I is

S-independent, there exists an endomorphism f of 〈I〉 such that f(p) = q

and f↾Y = idY . From X ⊆ ϕ(X) ⊆ ϕ(Y ) = 〈Y 〉 it follows that p ∈ 〈Y 〉,

hence q = f(p) = p, so I = {p}, a contradiction.

Therefore, ϕ is a join-embedding.

Now let X, Y ∈ [I]<ω, we shall prove that ϕ(X) ∩ ϕ(Y ) is contained in

ϕ(X ∩ Y ). So let a ∈ ϕ(X) ∩ ϕ(Y ). Fix one-to-one enumerations

X \ Y = {x0, . . . , xk−1},

Y \ X = {y0, . . . , yl−1},

X ∩ Y = {z0, . . . , zn−1}.

There are terms s and t such that

a = s(x0, . . . , xk−1, z0, . . . , zn−1) = t(y0, . . . , yl−1, z0, . . . , zn−1). (7.2)

Suppose first that X ∩Y 6= ∅, so n > 0. As I is S-independent, there exists

an endomorphism f of 〈I〉 that fixes all yis and all zis such that f(xi) = z0

for each i < k. From the second equation in (7.2) it follows that f(a) = a,

hence, by the first equation in (7.2),

a = f(a) = s(z0, . . . , z0
︸ ︷︷ ︸

k times

, z0, . . . , zn−1) ∈ ϕ(X ∩ Y ) .
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Now assume that X ∩ Y = ∅. By applying the case above to X ∪ {p}

and Y ∪ {p}, we obtain that a ∈ ϕ({p}) = 〈p〉, for each p ∈ I. Hence,

by (7.1), a belongs to ϕ(∅).

In any case, a ∈ ϕ(X ∩ Y ), and so ϕ is a meet-homomorphism.

(ii). Let ϕ : ([I]<ω,∩) →֒ (Sub A,∩) be an embedding, and pick ei ∈

ϕ({i}) \ ϕ(∅), for any i ∈ I. If i, i0, . . . , in−1 are distinct indices in I and

ei belongs to
〈

ei0 , . . . , ein−1

〉

, then it belongs to ϕ({i})∩ϕ({i0, . . . , in−1}) =

ϕ(∅), a contradiction. Therefore, the family (ei | i ∈ I) is C-independent.

�

On the other hand, by mimicking the arguments used in the proofs of

earlier results, we obtain the following set of results.

Proposition 7.3. Let A be an algebra, let Ω be an infinite set, and let V

be an infinite-dimensional right vector space over a division ring K. Put

κ = (card K)dimV and λ = 2card Ω. Then the following statements hold:

(i) If Endfin V has a semigroup embedding into (End A)op, then (Subfin V, +)

embeds into (Sub A,∩).

(ii) If (Subfin V, +) embeds into (Sub A,∩), then ([κ]<ω,∩) embeds into

(Sub A,∩).

(iii) If Selffin Ω has a semigroup embedding into (End A)op, then ([λ]<ω,∩)

embeds into (Sub A,∩).

Proof. (i). Let ε : Endfin V →֒ (End A)op be a semigroup embedding. As

in the proof of Theorem 5.1, we can construct a map µ : Subfin V → Sub A

by the rule µ(ker f) = rng ε(f), for each f ∈ Endfin V . As in the proof of

Theorem 5.1, µ is an embedding from (Subfin V, +) into (Sub A,∩).

(ii). It follows from Proposition 4.3 that ([κ]<ω,∩) embeds into (Subfin V, +),

thus into (Sub A,∩).

(iii). As in the proof of Corollary 5.6, there exists a semigroup embedding

from Endfin

(

(F2)
(Ω)

)

into Selffin Ω, and hence into (End A)op. The conclu-

sion follows then from (i) and (ii) above. �

8. Embedding endomorphism semigroups of SC-ranked

algebras

In the present section we shall indicate how certain results of Sections 4

and 5 can be extended to more general objects, which we shall call SC-

ranked algebras.

We start by recalling the following result.

Lemma 8.1 ([14], p. 50, Exercise 6). For an algebra A, the following con-

ditions are equivalent:
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(1) for every subset X of A and all elements u, v of A, if u ∈ 〈X ∪ {v}〉

and u /∈ 〈X〉, then v ∈ 〈X ∪ {u}〉;

(2) for every subset X of A and every element u ∈ A, if X is C-

independent and u /∈ 〈X〉, then X ∪ {u} is C-independent;

(3) for every subset X of A, if Y is a maximal C-independent subset of

X, then 〈X〉 = 〈Y 〉;

(4) for all subsets X, Y of A with Y ⊆ X, if Y is C-independent, then

there is a C-independent set Z with Y ⊆ Z ⊆ X and 〈Z〉 = 〈X〉.

An algebra A is said to be a matroid algebra if it satisfies one (and hence

all) of the equivalent conditions of Lemma 8.1.

Definition 8.2. For T ∈ {M, S, C}, a T-basis of an algebra A is a T-

independent generating subset of A. We say that A is a T-algebra if it has

a T-basis.

Clearly every free algebra is an M-algebra, thus an S-algebra.

Definition 8.3. For T, Q ∈ {M, S, C}, a TQ-algebra is an algebra where

the notions of T-independence and Q-independence coincide.

The MC-algebras appear in the literature as v∗∗-algebras (see [21, 26]).

Every absolutely free algebra is an MC-algebra (see [26] for this and many

other examples).

A matroid MC-algebra is said to be an independence algebra. These

algebras attracted the attention of experts in Universal Algebra (they were

originally called v∗-algebras; see [1, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26]

and [10] for hundreds of references on the topic), Logic (e.g. [8, 9, 28, 29])

and Semigroup Theory (e.g. [6, 7, 11]). Familiar examples of independence

algebras are sets, free G-sets (for a group G) and vector spaces (see [5, 26]).

Observe that independence algebras are MC-algebras and the latter are

SC-algebras.

Definition 8.4. An algebra A is said to be SC-ranked, if it has an S-basis Ω

such that card X 6 card Ω for each C-independent subset X of A. The

cardinality of this set Ω is said to be the rank of A, and denoted by RankA.

By Lemma 8.1(4), every matroid S-algebra A is an SC-ranked algebra.

Observe that RankA is then the cardinality of any C-basis of A.

It should be observed that not every SC-algebra contains a C-independent

generating set (see the example following the proof of Theorem 4 in [12,

Section 32]).

Theorem 8.5. Let A and B be SC-ranked algebras with RankA infinite.

If there exists a semigroup embedding from End A into (End B)op, then

RankB > 2Rank A.
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Proof. Let X be an S-basis of A. Then Selffin X embeds into Self X, which

(as X is an S-basis) embeds into End A, which embeds into (End B)op.

Therefore, by Proposition 7.3(iii) combined with Proposition 7.2(ii), there

exists a C-independent set Y ⊆ B with card Y > 2card X . As B is SC-ranked,

card Y 6 RankB and the result follows. �

Corollary 8.6. For SC-ranked algebras A, B such that RankA > RankB >

ℵ0, there is no semigroup embedding from End A into (End B)op. In partic-

ular, the semigroup End A has no dual embedding.

In particular, Corollary 8.6 applies to independence algebras.

The classification problem of all MC-algebras is open since the mid six-

ties. As Grätzer says “There are some results on [the classification of MC-

algebras, that is] v∗∗-algebras; but the problem is far from settled” [12, p.

205]. Likewise, SC-ranked algebras are not classified; in fact, the require-

ment to be SC-ranked seems so weak that it seems unlikely that this could

ever be done. For example, Theorems 9.1 and 10.6 give us, respectively,

a characterization of SC-ranked free M-acts (for monoids M) and a suffi-

cient condition for a free module to be SC-ranked, in terms of an antichain

condition of the left divisibility relation on the monoid, and a nœtherianity

condition on the ring, respectively. The corresponding classes of monoids,

or rings, are so large that they are certainly beyond the reach of any clas-

sification.

Another point is that in order to obtain results such as Theorem 8.5,

the statement, for an algebra A, to be SC-ranked, is a compromise between

conciseness and generality. In particular, it can be further weakened (e.g., by

using meet-embeddings of semilattices [I]<ω into subuniverse lattices), and

it seems likely that more algebras would satisfy the possible weakenings of

SC-rankedness, although it is unclear whether there would be any ‘natural’

such example.

In Sections 9 and 10, we shall illustrate the notion of SC-rankedness on

M-acts and modules.

9. SC-ranked free M-acts

In the present section, we shall characterize SC-ranked free M-acts (cf.

Section 6).

In any monoid M , we define preorderings Eleft and Eright by the rule

u Eleft v ⇔ (∃t)(v = tu) , u Eright v ⇔ (∃t)(v = ut) , for all u, v ∈ M.

We say that M is left uniserial, if Eleft is a total preordering, that is, for any

elements u, v ∈ M , either u Eleft v or v Eleft u. This occurs, in particular,

in the somehow degenerate case where M is a group.
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Theorem 9.1. Let M be a monoid and let Ω be a nonempty set. Then

FM(Ω) is SC-ranked iff either Ω is finite and M is left uniserial, or Ω is

infinite and every Eleft-antichain of M has at most card Ω elements.

Proof. We shall repeatedly use the easily verified fact that the C-independent

subsets of FM(Ω) are exactly the subsets Y such that Y · p−1 = {u ∈ M |

u · p ∈ Y } is a Eleft-antichain for every p ∈ Ω. Observe also that Ω is an

M-basis, thus an S-basis, of FM(Ω).

Suppose first that M has a Eleft-antichain U such that card Ω < card U .

Pick p ∈ Ω. Observe that U · p = {u · p | u ∈ U} is a C-independent subset

of FM(Ω) of cardinality greater than card Ω. As Ω is an S-basis of FM(Ω),

it follows that FM(Ω) is not SC-ranked.

Now suppose that M is not left uniserial and Ω is finite. Let u, v ∈ M

be Eleft-incomparable. Then the subset {u · p | p ∈ Ω} ∪ {v · p | p ∈ Ω} is a

C-independent subset of FM(Ω) with cardinality 2 · card Ω, so again FM(Ω)

is not SC-ranked.

If M is left uniserial, then the C-independent subsets of FM(Ω) are exactly

the subsets of the form {f(p) · p | p ∈ X}, for a subset X of Ω and a

map f : X → M . Hence every C-independent subset has at most card Ω

elements, and so FM(Ω) is SC-ranked.

Finally assume that Ω is infinite and that every Eleft-antichain of M has

cardinality at most card Ω. For every C-independent subset Y of FM(Ω)

and every p ∈ Ω, the subset Y · p−1 is a Eleft-antichain of M , thus it has

cardinality below card Ω; hence, as Ω is infinite, cardY 6 cardΩ. Therefore,

FM(Ω) is SC-ranked. �

As an immediate consequence of Corollary 8.6 and Theorem 9.1, we ob-

serve the following.

Corollary 9.2. Let M be a monoid and let Ω be an infinite set. If ev-

ery Eleft-antichain of M has at most card Ω elements, then the semigroup

End FM(Ω) has no dual embedding.

Observe that FM(Ω) is almost never a matroid algebra:

Proposition 9.3. Let M be a monoid and let Ω be a nonempty set. Then

FM(Ω) is a matroid algebra iff M is a group.

Proof. If M is a group, then it is straightforward to verify that FM(Ω)

satisfies Condition (1) of Lemma 8.1, so it is a matroid algebra.

Conversely, suppose that FM(Ω) is a matroid algebra. Let u ∈ M and

pick p ∈ Ω. From u · p ∈ 〈1 · p〉 \ 〈∅〉 and the matroid condition it follows

that 1 · p ∈ 〈u · p〉, that is, u is left invertible in M . As this holds for all

u ∈ M , M is a group. �
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The following result gives us a wide range of MC-algebras that are usually

not SC-ranked. Denote by X∗ the free monoid on X, for any set X.

Proposition 9.4. Let Ω and X be sets, with Ω nonempty. Then FX∗(Ω) is

both an M-algebra and an MC-algebra.

Proof. As Ω is an M-basis of FX∗(Ω), the latter is an M-algebra.

Now let Y be a C-independent subset of FX∗(Ω). This means that Y ·p−1

is a Eleft-antichain of X∗ for each p ∈ Ω. Now let f : Y → FX∗(Ω) be any

mapping. Consider pairs (t0, y0) and (t1, y1) of X∗×Y such that t0y0 = t1y1.

This means that there are p ∈ Ω and u0, u1 ∈ X∗ such that y0 = u0 · p,

y1 = u1·p, and t0u0 = t1u1. As X∗ is the free monoid on X, either t1 Eright t0

or t0 Eright t1; suppose, for example, that the first case holds, so t0 = t1w

for some w ∈ X∗. From t1wu0 = t0u0 = t1u1 it follows that wu0 = u1, thus

u0 Eleft u1, hence, as Y · p−1 is a Eleft-antichain, u0 = u1, and hence y0 = y1

and t0 = t1. Therefore, there exists a unique map f : 〈Y 〉 → FX∗(Ω) such

that f(t · y) = t · f(y) for each (t, y) ∈ X∗ × Y . Clearly, f is a morphism,

and so FX∗(Ω) is an MC-algebra. �

Observe that X is a Eleft-antichain of X∗. Hence, by Theorem 9.1, if

card X > card Ω, then FX∗(Ω) is not SC-ranked, although, by Proposi-

tion 9.4, it is both an M-algebra and an MC-algebra.

As a particular case of Corollary 9.2, we obtain

Corollary 9.5. Let Ω be an infinite set and let G be a group. Then

End FG(Ω) has no dual embedding.

Corollary 9.5 does not extend to M-acts (for a monoid M), see Theo-

rem 6.2.

10. SC-ranked free modules and κ-nœtherianity

In this section, all modules will be left modules over (unital, associative)

rings.

Definition 10.1. Let κ be a regular cardinal. A module M is κ-nœtherian,

if every increasing κ-sequence of submodules of M is eventually constant.

In particular, M is nœtherian iff it is ℵ0-nœtherian. For a regular cardi-

nal κ, M is κ-nœtherian iff there is no strictly increasing κ-sequence of sub-

modules of M . Hence, if κ < λ are regular cardinals and M is κ-nœtherian,

then M is also λ-nœtherian.

C-independent subsets and κ-nœtherian modules are related as follows.

Lemma 10.2. Let κ be a regular cardinal. If a module M is κ-nœtherian,

then every C-independent subset of M has cardinality smaller than κ.
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Proof. Suppose that there exists a C-independent subset {xξ | ξ < κ} of M ,

where ξ 7→ xξ is one-to-one. The family (Xα | α < κ), where Xα is the

submodule generated by {xξ | ξ < α}, is a strictly increasing κ-sequence of

submodules of M , a contradiction. �

Lemma 10.3. Let κ be a regular cardinal and let M be a module. Then

any finite sum of κ-nœtherian submodules of M is κ-nœtherian.

Proof. As the proof of the (classical) result that the sum of two nœtherian

modules is nœtherian (i.e., the case where κ = ℵ0), see, for example, the

Corollary in [13, Section VI.1]. �

Lemma 10.4. Let κ be a regular cardinal, let M be a module, and let (Mi |

i ∈ I) be a family of κ-nœtherian submodules of M such that card I < κ.

Then the sum
∑

i∈I Mi is κ-nœtherian.

Proof. We put MJ =
∑

i∈J Mi, for each J ⊆ I. Let (Xξ | ξ < κ) be an

increasing κ-sequence of submodules of MI . For every J ∈ [I]<ω, it follows

from Lemma 10.3 that there exists αJ < κ such that Xξ ∩ MJ = XαJ
∩

MJ for each ξ > αJ . As κ is regular and greater than card
(

[I]<ω
)

, the

supremum α =
∨

(αJ | J ∈ [I]<ω) is smaller than κ. Observe that Xξ = Xα

for each ξ > α. �

We shall use the standard convention to denote by RR the ring R viewed

as a left module over itself, for any ring R. For a regular cardinal κ, we say

that R is left κ-nœtherian, if the module RR is κ-nœtherian.

For a module M and a set Ω, we denote by M (Ω) the module of all families

(xp | p ∈ Ω) ∈ MΩ such that {p ∈ Ω | xp 6= 0} is finite. In particular, RR(Ω)

is the free left R-module on Ω.

We denote by κ+ the successor cardinal of a cardinal κ.

Proposition 10.5. Let Ω be an infinite set and let R be a left (card Ω)+-

nœtherian ring. Then the free module RR(Ω) is SC-ranked.

This makes it possible to produce many SC-ranked modules.

Theorem 10.6. Let κ be an infinite cardinal and let R be a left κ+-

nœtherian ring. Then the free left module RR(Ω) is SC-ranked, for every

set Ω such that cardΩ > κ.

Proof. Put λ = card Ω. Of course, Ω is an S-basis of RR(Ω). As, by

Lemma 10.4, RR(Ω) is a λ+-nœtherian left module, it follows from Lemma 10.2

that every C-independent subset of RR(Ω) has cardinality at most λ. �

By using Corollary 8.6, we obtain the following result.
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Corollary 10.7. Let R be a left ℵ1-nœtherian ring. Then the free module

RR(Ω) is SC-ranked, for every infinite set Ω. Consequently, the semigroup

End
(

RR(Ω)
)

has no dual embedding.

In particular, Corollary 10.7 applies to the case where the ring R is left

nœtherian.

11. Open problems

We observed in Remark 4.6 that whenever V is an infinite-dimensional

vector space over a division ring F such that card F 6 dim V , there exists

an embedding from (Sub V,∩) into (Sub V, +). We do not know whether

the cardinality restriction is necessary.

Problem 1. Let V be an infinite-dimensional vector space over a division

ring F such that dim V < card F . Does (Sub V,∩) embed into (Sub V, +)?

In Theorem 6.2, we show that the endomorphism monoid of a free M-act,

for a monoid M , may embed into its dual. We do not know if this can also

happen for modules :

Problem 2. Are there a unital ring R and a free left module F of infinite

rank over R such that End F embeds into its dual?

Problem 3. Does there exist a nontrivial variety V of algebras such that

End FV(ω) has a dual automorphism?

By Theorem 6.1, the similarity type of any variety V solving Problem 3

should have cardinality at least 2ℵ0 . For a partial positive result, we refer

to Theorem 6.2.

K. Urbanik introduces in [25] a subclass of the class of MC-algebras, called

there v∗-algebras. He also classifies these algebras in terms of modules and

transformation semigroups.

Not every v∗-algebra has a C-basis. For example, denote by Z(2) the val-

uation ring of all rational numbers with odd denominator; then the field Q

of all rational numbers, viewed as a Z(2)-module, is a v∗-algebra (cf. [25,

Section 3]). However, for any nonzero rational numbers a and b, either a/b

or b/a belongs to Z(2), thus any C-independent subset of Q has at most one

element. Since Q is not a finitely generated Z(2)-module, it has no C-basis.

Problem 4. Let A be a v∗-algebra with an infinite S-basis. Can End A be

embedded into its dual?

By Corollary 8.6, Problem 4 would have a negative answer if we could

prove that every v∗-algebra with an infinite S-basis is also SC-ranked. How-

ever, we do not know this either.
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