Embedding properties of endomorphism semigroups

Joao Araujo, Friedrich Wehrung

To cite this version:

Joao Araujo, Friedrich Wehrung. Embedding properties of endomorphism semigroups. 2008. hal00206738v1

HAL Id: hal-00206738
 https://hal.science/hal-00206738v1

Preprint submitted on 17 Jan 2008 (v1), last revised 15 Oct 2008 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

EMBEDDING PROPERTIES OF ENDOMORPHISM SEMIGROUPS

JOÃO ARAÚJO AND FRIEDRICH WEHRUNG

Abstract

Denote by PSelf Ω (resp., Self Ω) the partial (resp., full) transformation monoid over a set Ω, and by Sub V (resp., End V) the collection of all subspaces (resp., endomorphisms) of a vector space V. We prove various results that imply the following: (1) If card $\Omega \geqslant 2$, then $\operatorname{Self} \Omega$ has a semigroup embedding into the dual of Self Γ iff card $\Gamma \geqslant 2^{\text {card } \Omega}$. In particular, if Ω has at least two elements, then there exists no semigroup embedding from Self Ω into the dual of PSelf Ω. (2) If V is infinite-dimensional, then there are no embedding from (Sub $V,+$) into (Sub V, \cap) and no embedding from (End V, \circ) into its dual semigroup. (3) Let F be an algebra freely generated by an infinite subset Ω. If F has less than $2^{\text {card } \Omega}$ operations, then End F has no semigroup embedding into its dual. The cardinality bound $2^{\text {card } \Omega}$ is optimal. (4) Let F be a free left module over a left \aleph_{1}-nœetherian ring (i.e., a ring without strictly increasing chains, of length \aleph_{1}, of left ideals). Then End F has no semigroup embedding into its dual. (1) and (2) above solve questions proposed by B. M. Schein and G. M. Bergman. We also formalize our results in the settings of algebras endowed with a notion of independence (in particular independence algebras).

1. Introduction

We denote by PSelf Ω the partial transformation monoid of a set Ω to itself under composition (e.g., $(g \circ f)(x)=g(f(x)))$, and by Self Ω the submonoid of PSelf Ω consisting of all endomaps of Ω. The dual $S^{\text {op }}$ of a semigroup (resp., monoid) S with multiplication • is defined as the semigroup (resp., monoid) with the same underlying set as S and the multiplication $*$ defined by the rule $x * y=y \cdot x$ for all $x, y \in S$.

In the present paper, we solve the following three questions:
Question 1. Suppose that Ω is infinite. Is it possible to embed Self Ω into its dual?
Question 2. Suppose that Ω is infinite. Is it possible to embed PSelf Ω into its dual?

Question 3. Is it possible to embed the endomorphism monoid of an infinitedimensional vector space into its dual?

Question 1 originates in an earlier version of a preprint by George Bergman [3] and Questions 11 and 2 were proposed by Boris Schein in September 2006 when he

[^0]gave a course on semigroups in the Center of Algebra of the University of Lisbon. After learning that Question 11 was solved in the negative, Bergman changed (3) and subsequently asked Question 3 .

In the present note we settle all three problems above in the negative. Denote by Sub V (resp., End V) the collection of all subspaces (resp., endomorphisms) of a vector space V. Our results imply the following:

- (cf. Corollary 3.8) Let Ω and Γ be sets with $\operatorname{card} \Omega \geqslant 2$. Then $\operatorname{Self} \Omega$ has a semigroup embedding into (Self Γ) ${ }^{\text {op }}$ iff card $\Gamma \geqslant 2^{\text {card } \Omega \text {. }}$
- (cf. Theorems 4.4 and 5.1) Let V and W be right vector spaces over division rings K and F, respectively, with V infinite-dimensional. If there exists an embedding either from (Sub $V,+$) into (Sub W, \cap) or from (End V, \circ) to (End $W, \circ)^{\mathrm{op}}$, then $\operatorname{dim} W \geqslant(\operatorname{card} K)^{\operatorname{dim} V}$.
- (cf. Theorems 6.1 and 6.2) Let \mathcal{V} be a variety of algebras, not all reduced to a singleton, in a similarity type Σ, and let Ω be an infinite set. If $\operatorname{card} \Sigma<2^{\mathrm{card} \Omega}$, then the endomorphism semigroup of the free algebra on Ω in \mathcal{V} cannot be embedded into its dual. The cardinality bound $2^{\text {card } \Omega}$ is optimal, even for M-acts for a suitably chosen monoid M.
- (cf. Theorem 10.7) Let F be a free left module over a ring in which there is no strictly increasing \aleph_{1}-sequence of left ideals. Then End F has no semigroup embedding into its dual.

We formalize some of our results in the general settings of algebras endowed with a notion of independence (in particular independence algebras or v^{*}-algebras) from Section 7 on. In Section 8 we isolate the properties of sets and vector spaces needed for the above-mentioned results, yielding the notion of a SC-ranked algebra. In Section 9 we focus on M-acts (for monoids M) while in Section 10 we focus on modules. In Section 11, we formulate a few concluding remarks and open problems.

2. Basic concepts

For a nonzero cardinal κ, we put $\kappa-1=\operatorname{card}(\Omega \backslash\{p\})$, for any set Ω of cardinality κ and any $p \in \Omega$ (so $\kappa-1=\kappa$ in case κ is infinite). We denote by $\mathfrak{P}(\Omega)$ the powerset of a set Ω, and by $[\Omega]^{<\omega}$ the set of all finite subsets of Ω. We put

Ker $f=\{(x, y) \in \Omega \times \Omega \mid f(x)=f(y)\}, \quad$ for any function f with domain Ω.

We also denote by $\operatorname{rng} f$ the range of f. We denote the partial operation of disjoint union by \sqcup.

We denote by $\mathrm{Eq} \Omega$ the lattice of all equivalence relations on Ω under inclusion, and we denote by $[x]_{\theta}$ the θ-block of any element $x \in \Omega$, for each $\theta \in \mathrm{Eq} \Omega$. We put

$$
\begin{aligned}
\operatorname{Eq}^{\leqslant 2} \Omega & =\{\theta \in \operatorname{Eq} \Omega \mid \operatorname{card}(\Omega / \theta) \leqslant 2\}, \\
\operatorname{Eq}^{2} \Omega & =\{\theta \in \operatorname{Eq} \Omega \mid \operatorname{card}(\Omega / \theta)=2\}, \\
\operatorname{Eq}^{\text {fin }} \Omega & =\{\theta \in \operatorname{Eq} \Omega \mid \Omega / \theta \text { is finite }\} .
\end{aligned}
$$

The monoid Self Ω has the following subsets, the first three of which are also subsemigroups:

$$
\begin{aligned}
\operatorname{Sym} \Omega & =\{f \in \operatorname{Self} \Omega \mid f \text { is bijective }\} \\
\operatorname{Self}_{\leqslant 2} \Omega & =\{f \in \operatorname{Self} \Omega \mid \operatorname{card}(\operatorname{rng} f) \leqslant 2\} \\
\operatorname{Self}_{\text {fin }} \Omega & =\{f \in \operatorname{Self} \Omega \mid \operatorname{rng} f \text { is finite }\} \\
\operatorname{Self}_{2} \Omega & =\{f \in \operatorname{Self} \Omega \mid \operatorname{card}(\operatorname{rng} f)=2\}
\end{aligned}
$$

We put ker $f=f^{-1}\{0\}$ (the usual kernel of f), for any homomorphism f of abelian groups. For a right vector space V over a division ring K, we denote by $\operatorname{Sub}_{\text {fin }} V$ (resp., Sub ${ }^{\text {fin }} V$) the sublattice of Sub V consisting of all finite-dimensional (resp., finite-codimensional) subspaces of V. Furthermore, we denote by $\operatorname{End}_{\text {fin }} V$ the semigroup of all endomorphisms with finite-dimensional range of V. In particular, the elements of $\operatorname{Sub}^{\text {fin }} V$ are exactly the kernels of the elements of $\operatorname{End}_{\mathrm{fin}} V$.

3. Embeddings between semigroups of endomaps

For any $f \in \operatorname{Self} \Omega$, denote by $f^{[-1]}$ the endomap of the powerset $\mathfrak{P}(\Omega)$ that sends every subset of Ω to its inverse image under f. The assignment $\operatorname{Self} \Omega \rightarrow \operatorname{Self} \mathfrak{P}(\Omega)$, $f \mapsto f^{[-1]}$ defines a monoid embedding from Self Ω into (Self $\left.\mathfrak{P}(\Omega)\right)^{\text {op }}$. Moreover, both Self 1 and Self \varnothing are the one-element monoid, which is self-dual. For larger sets the following theorem says that the assignment $f \mapsto f^{[-1]}$ described above is optimal in terms of size.
Theorem 3.1. Let Ω and Γ be sets with $\operatorname{card} \Omega \geqslant 2$. If there exists a semigroup embedding from $\operatorname{Self}_{\leqslant 2} \Omega$ into (Self $\left.\Gamma\right)^{\mathrm{op}}$, then $\operatorname{card} \Gamma \geqslant 2^{\text {card } \Omega}$.

We prove Theorem 3.1 in a series of lemmas.
Lemma 3.2. Let α and β be distinct elements in $\mathrm{Eq}^{2} \Omega$. Then there are idempotent $f, g \in \operatorname{Self}_{2} \Omega$ such that $\operatorname{Ker} f=\alpha$, $\operatorname{Ker} g=\beta$, and $f \circ g$ is constant.
Proof. As $\alpha \neq \beta$, we can write $\Omega / \alpha=\left\{A_{0}, A_{1}\right\}$ and $\Omega / \beta=\left\{B_{0}, B_{1}\right\}$ with both $A_{0} \cap B_{0}$ and $A_{0} \cap B_{1}$ nonempty. Pick $b_{i} \in A_{0} \cap B_{i}$, for $i<2$, and pick $a \in A_{1}$. Define endomaps f and g of Ω by the rule

$$
f(x)=\left\{\begin{array}{ll}
b_{0} & \left(x \in A_{0}\right), \\
a & \left(x \in A_{1}\right),
\end{array} \quad g(x)=\left\{\begin{array}{ll}
b_{0} & \left(x \in B_{0}\right), \\
b_{1} & \left(x \in B_{1}\right),
\end{array} \quad \text { for all } x \in \Omega\right.\right.
$$

Then $\operatorname{Ker} f=\alpha$, $\operatorname{Ker} g=\beta$, and $f \circ g$ is the constant function with value b_{0}.
Now let ε : Self $_{\leqslant 2} \Omega \hookrightarrow(\text { Self } \Gamma)^{\text {op }}$ be a semigroup embedding.
Lemma 3.3. Ker $f \subseteq \operatorname{Ker} g$ implies that $\operatorname{rng} \varepsilon(g) \subseteq \operatorname{rng} \varepsilon(f)$, for all $f, g \in \operatorname{Self}_{\leqslant 2} \Omega$.
Proof. There exists $h \in \operatorname{Self}_{\leqslant 2} \Omega$ such that $g=h \circ f$. Thus $\varepsilon(g)=\varepsilon(f) \circ \varepsilon(h)$ and the conclusion follows.

Lemma 3.3 makes it possible to define an antitone map

$$
\mu: \mathrm{Eq}^{\leqslant 2} \Omega \rightarrow \mathfrak{P}(\Gamma) \backslash\{\varnothing\}
$$

by the rule $\mu(\operatorname{Ker} f)=\operatorname{rng} \varepsilon(f)$, for each $f \in \operatorname{Self}_{\leqslant 2} \Omega$.
Lemma 3.4. $\alpha \subseteq \beta$ iff $\mu(\beta) \subseteq \mu(\alpha)$, for all $\alpha, \beta \in \mathrm{Eq}^{\leqslant 2} \Omega$.

Proof. The direction from the left to the right follows from Lemma 3.3. Now assume that $\mu(\beta) \subseteq \mu(\alpha)$. There are idempotent $f, g \in \operatorname{Self}_{\leqslant 2} \Omega$ such that $\alpha=\operatorname{Ker} f$ and $\beta=\operatorname{Ker} g$. As $\operatorname{rng} \varepsilon(g) \subseteq \operatorname{rng} \varepsilon(f)$ and $\varepsilon(f)$ is idempotent, $\varepsilon(f) \circ \varepsilon(g)=\varepsilon(g)$, that is, $\varepsilon(g \circ f)=\varepsilon(g)$, and thus, as ε is one-to-one, $g \circ f=g$, and therefore $\operatorname{Ker} f \subseteq \operatorname{Ker} g$.

Let $\mathbf{1}=\Omega \times \Omega$ denote the coarse equivalence relation on Ω.
Lemma 3.5. $\mu(\alpha) \cap \mu(\beta)=\mu(\mathbf{1})$, for all distinct $\alpha, \beta \in \mathrm{Eq}^{2} \Omega$.
Proof. It follows from Lemma 3.2 that there are idempotent $f, g \in \operatorname{Self} \Omega$ such that $\operatorname{Ker} f=\alpha$, $\operatorname{Ker} g=\beta$, and $f \circ g$ is constant.

Let $x \in \mu(\alpha) \cap \mu(\beta)$. This means that x belongs to both $\operatorname{rng} \varepsilon(f)$ and $\operatorname{rng} \varepsilon(g)$, hence, as both $\varepsilon(f)$ and $\varepsilon(g)$ are idempotent, that it is fixed by both these maps, hence that it is fixed by their composite, $\varepsilon(g) \circ \varepsilon(f)=\varepsilon(f \circ g)$, hence it lies in the range of that composite, which, as $f \circ g$ is a constant function, is $\mu(\mathbf{1})$.

So we have proved that $\mu(\alpha) \cap \mu(\beta)$ is contained in $\mu(\mathbf{1})$. As the converse inequality follows from Lemma 3.3, the conclusion follows.

Denote by k_{x} the constant function on Ω with value x, for each $x \in \Omega$. Hence $\mu(\mathbf{1})=\operatorname{rng} \varepsilon\left(k_{x}\right)$.
Lemma 3.6. The set $\mu(\mathbf{1})$ has at least two elements.
Proof. Otherwise, $\mu(\mathbf{1})=\{z\}$ for some $z \in \Gamma$, and so $\varepsilon\left(k_{x}\right)$ is the constant function on Γ with value z, for each $x \in \Omega$. As ε is one-to-one, this implies that Ω has at most one element, a contradiction.
Lemma 3.7. The set $\operatorname{rng} \varepsilon(e) \backslash \mu(\mathbf{1})$ has at least two elements, for each idempotent $e \in \operatorname{Self}_{2} \Omega$.

Proof. Let rng $e=\{x, y\}$. It follows from Lemmas 3.3 and 3.4 that $\operatorname{rng} \varepsilon(e)$ properly contains $\mu(\mathbf{1})$. Suppose that $\operatorname{rng} \varepsilon(e) \backslash \mu(\mathbf{1})=\{t\}$, for some $t \in \Gamma$.

For elements a and b in a semigroup S, let $a \sim b$ hold, if there are elements $x_{1}, x_{2}, y_{1}, y_{2} \in S$ such that $a=x_{1} b=b x_{2}$ and $b=y_{1} a=a y_{2}$. It is obvious that if S is a subsemigroup of Self Ω, then $a \sim b$ implies that a and b have same kernel and same range. Furthermore, in case $S=\operatorname{Self}_{\leqslant 2} \Omega$, it is easy to verify that the converse holds. In addition, $a \sim b$ in $\operatorname{Self}_{\leqslant 2} \Omega$ implies that $\varepsilon(a) \sim \varepsilon(b)$ in Self Γ.

We shall apply this to the maps e and $f=\left(\begin{array}{ll}x & y\end{array}\right) \circ e$ (where, as said above, $\{x, y\}=\operatorname{rng} e)$. Observe that $f^{2}=e$ and $e \sim f$; hence $\varepsilon(f)^{2}=\varepsilon(e)$ and $\varepsilon(e) \sim \varepsilon(f)$, so $\operatorname{Ker} \varepsilon(e)=\operatorname{Ker} \varepsilon(f)$ and $\operatorname{rng} \varepsilon(e)=\operatorname{rng} \varepsilon(f)$. We shall evaluate the map $\varepsilon(f)$ on each $\operatorname{Ker} \varepsilon(e)$-block, that is, on each block of the decomposition

$$
\begin{equation*}
\Gamma=\bigsqcup_{v \in \operatorname{rng} \varepsilon(e)}[v]_{\operatorname{Ker} \varepsilon(e)}=\bigsqcup_{v \in \mu(\mathbf{1})}[v]_{\operatorname{Ker} \varepsilon(e)} \sqcup[t]_{\operatorname{Ker} \varepsilon(e)} . \tag{3.1}
\end{equation*}
$$

From $\mu(\mathbf{1})=\operatorname{rng} \varepsilon\left(k_{x}\right)$ and $k_{x} \circ f=k_{x}$ it follows that $\varepsilon(f) \circ \varepsilon\left(k_{x}\right)=\varepsilon\left(k_{x}\right)$, thus $\varepsilon(f)$ fixes all the elements of $\mu(\mathbf{1})$. As $[v]_{\operatorname{Ker} \varepsilon(e)}=[v]_{\operatorname{Ker} \varepsilon(f)}$ for each $v \in \mu(\mathbf{1})$, it follows that $\varepsilon(e)$ and $\varepsilon(f)$ agree on $\bigsqcup_{v \in \mu(\mathbf{1})}[v]_{\operatorname{Ker} \varepsilon(e)}$. As the maps $\varepsilon(e)$ and $\varepsilon(f)$ have same kernel and same range, they also agree on $[t]_{\operatorname{Ker} \varepsilon(e)}$. Therefore, $\varepsilon(e)=\varepsilon(f)$, and thus $e=f$, a contradiction.

Pick an element $\infty \in \Omega$ and set $\Omega^{*}=\Omega \backslash\{\infty\}$. We put

$$
\begin{equation*}
\theta_{Z}=\{(x, y) \in \Omega \times \Omega \mid x \in Z \Leftrightarrow y \in Z\}, \quad \text { for each } Z \subseteq \Omega \tag{3.2}
\end{equation*}
$$

If Z belongs to $\mathfrak{P}(\Omega) \backslash\{\varnothing, \Omega\}$, then the equivalence relation θ_{Z} has exactly the two classes Z and $\Omega \backslash Z$. This holds, in particular, for each nonempty subset Z of Ω^{*}. In addition, θ_{X} and θ_{Y} are distinct elements in $\mathrm{Eq}^{2} \Omega$, for all distinct nonempty subsets X and Y of Ω^{*}, so, by Lemma 3.5, we get $\mu\left(\theta_{X}\right) \cap \mu\left(\theta_{Y}\right)=\mu(\mathbf{1})$. Furthermore, it follows from Lemma 3.4 that $\mu\left(\theta_{X}\right)$ properly contains $\mu(\mathbf{1})$, and so the family $\left(\mu\left(\theta_{X}\right) \backslash \mu(\mathbf{1}) \mid X \in \mathfrak{P}\left(\Omega^{*}\right) \backslash\{\varnothing\}\right)$ is a partition of some subset of Γ. In particular, by using Lemmas 3.6 and 3.7, we obtain

$$
\operatorname{card} \Gamma \geqslant \operatorname{card} \mu(\mathbf{1})+2 \cdot \operatorname{card}\left(\mathfrak{P}\left(\Omega^{*}\right) \backslash\{\varnothing\}\right) \geqslant 2+2 \cdot\left(2^{\operatorname{card} \Omega-1}-1\right)=2^{\operatorname{card} \Omega}
$$

This concludes the proof of Theorem 3.1.
Corollary 3.8. Let Ω and Γ be sets with $\operatorname{card} \Omega \geqslant 2$. Then the following are equivalent:
(i) There exists a semigroup embedding from $\operatorname{Self}_{\leqslant 2} \Omega$ into (Self Γ) ${ }^{\mathrm{op}}$.
(ii) There exists a monoid embedding from $\operatorname{Self} \Omega$ into $(\operatorname{Self} \Gamma)^{\mathrm{op}}$.
(iii) $\operatorname{card} \Gamma \geqslant 2^{\operatorname{card} \Omega}$.

Proof. (ii) \Rightarrow (i) is trivial, and (i) \Rightarrow (iii) follows from Theorem 3.1. Finally, we observed $($ iii $) \Rightarrow$ (ii) at the beginning of Section 3 .

As PSelf Ω embeds into $\operatorname{Self}(\Omega \cup\{\infty\})$ (for any $\infty \notin \Omega)$ and, in case card $\Omega \geqslant 2$, the inequality $2^{\operatorname{card} \Omega}>\operatorname{card} \Omega+1$ holds, the following corollary answers simultaneously Questions 1 and 2 in the negative.

Corollary 3.9. There is no semigroup embedding from $\operatorname{Self} \Omega$ into $(\operatorname{PSelf} \Omega)^{\mathrm{op}}$, for any set Ω with at least two elements.

4. Subspace lattices of vector spaces

The central idea of the present section is to study how large can be a set I such that the semilattice $\left([I]^{<\omega}, \cap\right)$ embeds into various semilattices obtained from a vector space, and then to apply this to embeddability problems of subspace posets.

We start with an easy result.
Proposition 4.1. For a set I and a right vector space V over a division ring K, the following are equivalent:
(i) $\left([I]^{<\omega}, \cup, \cap, \varnothing\right)$ embeds into $\left(\operatorname{Sub}_{\text {fin }} V,+, \cap,\{0\}\right)$;
(ii) $\left([I]^{<\omega}, \cap\right)$ embeds into (Sub $\left.V, \cap\right)$;
(iii) $\operatorname{card} I \leqslant \operatorname{dim} V$.

Proof. (i) \Rightarrow (ii) is trivial.
Suppose that (ii) holds, via an embedding $\varphi:\left([I]^{<\omega}, \cap\right) \hookrightarrow(\operatorname{Sub} V, \cap)$, and pick $e_{i} \in \varphi(\{i\}) \backslash \varphi(\varnothing)$, for any $i \in I$. If J is a finite subset of $I, i \in I \backslash J$, and e_{i} is a linear combination of $\left\{e_{j} \mid j \in J\right\}$, then e_{i} belongs to $\varphi(\{i\}) \cap \varphi(J)=\varphi(\varnothing)$, a contradiction; hence ($e_{i} \mid i \in I$) is linearly independent, and so card $I \leqslant \operatorname{dim} V$.

Finally suppose that (iii) holds. There exists a linearly independent family ($e_{i} \mid i \in I$) of elements in V. Define $\varphi(X)$ as the span of $\left\{e_{i} \mid i \in X\right\}$, for every $X \in[I]^{<\omega}$. Then φ is an embedding from $\left([I]^{<\omega}, \cup, \cap, \varnothing\right)$ into (Sub $\left.\operatorname{Sin}_{\text {fin }} V,+, \cap,\{0\}\right)$.

For embeddability of $[I]^{<\omega}$ into (Sub $V,+$), we will need further results about the dimension of dual spaces. It is an old but nontrivial result that the dual V^{*} (i.e., the space of all linear functionals) of an infinite-dimensional vector space V is never
isomorphic to V. This follows immediately from the following sharp estimate of the dimension of the dual space (which is a left vector space) given in the Proposition on Page 19 in [2, Section II.2].

Theorem 4.2 (R. Baer, 1952). Let V be a right vector space over a division ring K.
(i) If V is finite-dimensional, then $\operatorname{dim} V^{*}=\operatorname{dim} V$.
(ii) If V is infinite-dimensional, then $\operatorname{dim} V^{*}=(\operatorname{card} K)^{\operatorname{dim} V}$.

Strictly speaking, the result above is stated in [2] for a vector space over a field, but the proof presented there does not make any use of the commutativity of K so we state the result for division rings. Also, we emphasize that this proof is nonconstructive, in particular it uses Zorn's Lemma. Of course, replacing 'right' by 'left' in the statement of Theorem 4.2 gives an equivalent result.

By using Baer's result together with some elementary linear algebra, we obtain the following result.

Proposition 4.3. For a set I and an infinite-dimensional right vector space V over a division ring K, the following are equivalent:
(i) $\left([I]^{<\omega}, \cup, \cap, \varnothing\right)$ embeds into (Sub $\left.{ }^{\text {fin }} V, \cap,+, V\right)$;
(ii) $\left([I]^{<\omega}, \cap\right)$ embeds into (Sub $\left.V,+\right)$;
(iii) $\operatorname{card} I \leqslant(\operatorname{card} K)^{\operatorname{dim} V}$.

Proof. (i) \Rightarrow (ii) is trivial.
Suppose that (ii) holds. To every subspace X of V we can associate its orthogonal $X^{\perp}=\left\{f \in V^{*} \mid(\forall x \in X)(f(x)=0)\right\}$, and the assignment $X \mapsto X^{\perp}$ defines an embedding from (Sub $V,+$) into (Sub V^{*}, \cap). It follows that $\left([I]^{<\omega}, \cap\right)$ embeds into (Sub V^{*}, \cap). Therefore, by applying Proposition 4.1 to the left K-vector space V^{*}, we obtain, using Theorem 4.2, that card $I \leqslant \operatorname{dim} V^{*}=(\operatorname{card} K)^{\operatorname{dim} V}$.

Finally suppose that (iii) holds. By Theorem 4.2, there exists a linearly independent family $\left(\ell_{i} \mid i \in I\right)$ of V^{*} (indexed by I). We put $\varphi(X)=\bigcap_{i \in X}$ ker ℓ_{i}, for every $X \in[I]^{<\omega}$ (with the convention that $\varphi(\varnothing)=V$). It is obvious that φ is a homomorphism from $\left([I]^{<\omega}, \cup, \varnothing\right)$ to (Sub $\left.{ }^{\text {fin }} V, \cap, V\right)$.

For every finite subset X of I, if the linear map $\ell_{X}: V \rightarrow K^{X}, v \mapsto\left(\ell_{i}(v) \mid i \in X\right)$ were not surjective, then its image would be contained in the kernel of a nonzero linear functional on K^{X}, which would contradict the linear independence of the $\ell_{i} \mathrm{~s}$; whence ℓ_{X} is surjective. As $\operatorname{ker} \ell_{X}=\varphi(X)$, it follows that

$$
\begin{equation*}
\operatorname{codim} \varphi(X)=\operatorname{dim} K^{X}=\operatorname{card} X \tag{4.1}
\end{equation*}
$$

Therefore, φ embeds $\left([I]^{<\omega}, \subseteq\right)$ into (Sub $\left.{ }^{\text {fin }} V, \supseteq\right)$.
Finally let X and Y be finite subsets of I. We apply the codimension formula to the subspaces $\varphi(X)$ and $\varphi(Y)$, so

$$
\operatorname{codim}(\varphi(X)+\varphi(Y))+\operatorname{codim}(\varphi(X) \cap \varphi(Y))=\operatorname{codim} \varphi(X)+\operatorname{codim} \varphi(Y)
$$

As $\varphi(X) \cap \varphi(Y)=\varphi(X \cup Y)$, an application of (4.1) yields
$\operatorname{codim}(\varphi(X)+\varphi(Y))=\operatorname{card} X+\operatorname{card} Y-\operatorname{card}(X \cup Y)=\operatorname{card}(X \cap Y)=\operatorname{codim} \varphi(X \cap Y)$.
As $\varphi(X \cap Y)$ is finite-codimensional and contains $\varphi(X)+\varphi(Y)$, it follows that $\varphi(X)+\varphi(Y)=\varphi(X \cap Y)$. Therefore, φ is as desired.

We obtain the following theorem.

Theorem 4.4. Let V and W be right vector spaces over respective division rings K and F, with V infinite-dimensional. If there exists an embedding from ($\operatorname{Sub}^{\text {fin }} V,+$) into (Sub $W, \cap)$, then $\operatorname{dim} W \geqslant(\operatorname{card} K)^{\operatorname{dim} V}$.

Of course, taking $W=V^{*}$ and sending every subspace X of V to its orthogonal X^{\perp}, we see that the bound $(\operatorname{card} K)^{\operatorname{dim} V}$ is optimal.

Proof. Put $\kappa=(\operatorname{card} K)^{\operatorname{dim} V}$. It follows from Proposition 4.3 that $\left([\kappa]^{<\omega}, \cap\right)$ embeds into (Sub ${ }^{\text {fin }} V,+$). Hence, by assumption, $\left([\kappa]^{<\omega}, \cap\right)$ embeds into (Sub W, \cap), which, by Proposition 4.1, implies that $\kappa \leqslant \operatorname{dim} W$.

Corollary 4.5. Let V be an infinite-dimensional vector space over any division ring. Then there is no embedding from ($\operatorname{Sub}^{\mathrm{fin}} V,+$) into (Sub $\left.V, \cap\right)$.

5. Endomorphism monoids of Vector spaces

The largest part of Section will be devoted to the proof of the following result.
Theorem 5.1. Let V and W be infinite-dimensional vector spaces over division rings K and F, respectively. If there exists a semigroup embedding from $\operatorname{End}_{\mathrm{fin}} V$ into $(\text { End } W)^{\mathrm{op}}$, then $\operatorname{dim} W \geqslant(\operatorname{card} K)^{\operatorname{dim} V}$.

Of course, taking $W=V^{*}$ and sending every endomorphism to its transpose, we see that the bound ($\operatorname{card} K)^{\operatorname{dim} V}$ is optimal.

Denote our semigroup embedding by $\varepsilon: \operatorname{End}_{\text {fin }} V \hookrightarrow(\operatorname{End} W)^{\text {op }}$. We start as in the proof of Theorem 3.1.

Lemma 5.2. $\operatorname{ker} f \subseteq \operatorname{ker} g$ implies that $\operatorname{rng} \varepsilon(g) \subseteq \operatorname{rng} \varepsilon(f)$, for all $f, g \in \operatorname{End}_{\text {fin }} V$.
Proof. There exists $h \in \operatorname{End}_{\text {fin }} V$ such that $g=h \circ f$. Thus $\varepsilon(g)=\varepsilon(f) \circ \varepsilon(h)$ and the conclusion follows.

Lemma 5.2 makes it possible to define an antitone (i.e., order-reversing) map $\mu: \operatorname{Sub}^{\text {fin }} V \rightarrow \operatorname{Sub} W$ by the rule $\mu(\operatorname{ker} f)=\operatorname{rng} \varepsilon(f)$, for each $f \in \operatorname{End}_{\text {fin }} V$.

Lemma 5.3. $X \subseteq Y$ iff $\mu(Y) \subseteq \mu(X)$, for all $X, Y \in \operatorname{Sub}^{\text {fin }} V$.
Proof. The direction from the left to the right follows from Lemma 5.2. Now assume that $\mu(Y) \subseteq \mu(X)$. There are idempotent $f, g \in \operatorname{End}_{\text {fin }} V$ such that $X=\operatorname{ker} f$ and $Y=\operatorname{ker} g$. As $\operatorname{rng} \varepsilon(g) \subseteq \operatorname{rng} \varepsilon(f)$ and $\varepsilon(f)$ is idempotent, $\varepsilon(f) \circ \varepsilon(g)=\varepsilon(g)$, that is, $\varepsilon(g \circ f)=\varepsilon(g)$, and thus, as ε is one-to-one, $g \circ f=g$, and therefore $\operatorname{ker} f \subseteq \operatorname{ker} g$.
Lemma 5.4. $\mu(X+Y)=\mu(X) \cap \mu(Y)$, for all $X, Y \in \operatorname{Sub}^{\text {fin }} V$.
Proof. Put $Z=X \cap Y$ and let $X^{\prime}, Y^{\prime}, T$ be subspaces of V such that $X=Z \oplus X^{\prime}$, $Y=Z \oplus Y^{\prime}$, and $(X+Y) \oplus T=V$. It follows that $V=Z \oplus X^{\prime} \oplus Y^{\prime} \oplus T$. Let f and g denote the projections of V onto $Y^{\prime} \oplus T$ and $X^{\prime} \oplus T$, respectively, with kernels X and Y, respectively. Then $g \circ f$ is the projection of V onto T with kernel $X+Y$.

Let $x \in \mu(X) \cap \mu(Y)$. This means that x belongs to both $\operatorname{rng} \varepsilon(f)$ and $\operatorname{rng} \varepsilon(g)$, hence, as both $\varepsilon(f)$ and $\varepsilon(g)$ are idempotent, that it is fixed by both these maps, hence that it is fixed by their composite, $\varepsilon(f) \circ \varepsilon(g)=\varepsilon(g \circ f)$, hence it lies in the range of that composite, which, as $\operatorname{ker}(g \circ f)=X+Y$, is $\mu(X+Y)$.

So we have proved that $\mu(X) \cap \mu(Y)$ is contained in $\mu(X+Y)$. As the converse inequality follows from Lemma 5.2, the conclusion follows.

Now Theorem 5.1 follows immediately from Theorem 4.4.
Observe the contrast with the case where V is finite-dimensional and K is commutative: in this case, V is isomorphic to its dual vector space V^{*}, and transposition defines an isomorphism from End V onto End V^{*}.

Corollary 5.5. Let V be an infinite-dimensional vector space over any division ring. Then there is no semigroup embedding from $\operatorname{End}_{\mathrm{fin}} V$ into (End $\left.V\right)^{\mathrm{op}}$.
Corollary 5.6. Let Ω be an infinite set and let V be a vector space over a division ring. If $\operatorname{Self}_{\text {fin }} \Omega$ has a semigroup embedding into (End $\left.V\right)^{\mathrm{op}}$, then $\operatorname{dim} V \geqslant 2^{\mathrm{card} \Omega}$.
Proof. Denote by \mathbb{F}_{2} the two-element field. Apply Theorem 5.1 to the \mathbb{F}_{2}-vector space $\left(\mathbb{F}_{2}\right)^{(\Omega)}$ with basis Ω instead of V, and V instead of W. We obtain that if there exists a semigroup embedding from $\operatorname{End}_{\mathrm{fin}}\left(\left(\mathbb{F}_{2}\right)^{(\Omega)}\right)$ into (End $\left.V\right)^{\mathrm{op}}$, then $\operatorname{dim} V \geqslant 2^{\text {card } \Omega}$. Now observe that as \mathbb{F}_{2} is finite, $\operatorname{End}_{\mathrm{fin}}\left(\left(\mathbb{F}_{2}\right)^{(\Omega)}\right)$ is a subsemigroup of $\operatorname{Self}_{\text {fin }}\left(\left(\mathbb{F}_{2}\right)^{(\Omega)}\right)$. As Ω and $\left(\mathbb{F}_{2}\right)^{(\Omega)}$ have the same cardinality, our result follows.

6. Endomorphism monoids of free algebras

Most popular varieties of algebras have a finite similarity type (i.e., set of fundamental operations). Our next result deals with the embeddability problem for such varieties (and some more). For a variety \mathcal{V} of algebras, we shall denote by $\mathrm{F}_{\mathcal{V}}(X)$ the free algebra in \mathcal{V} on X. We say that \mathcal{V} is trivial if the universe of any member of \mathcal{V} is a singleton.
Theorem 6.1. Let \mathcal{V} be a nontrivial variety of algebras with similarity type Σ. Then there is no semigroup embedding from $\operatorname{End} \mathrm{F}_{\mathcal{V}}(\Omega)$ into $\left(\operatorname{End} \mathrm{F}_{\mathcal{V}}(\Omega)\right)^{\mathrm{op}}$, for every infinite set Ω such that card $\Sigma<2^{\operatorname{card} \Omega}$.
Proof. Suppose that there is a semigroup embedding from $\operatorname{End} \mathrm{F}_{\mathcal{V}}(\Omega)$ into (End $\left.\mathrm{F}_{\mathcal{V}}(\Omega)\right)^{\text {op }}$. As \mathcal{V} is nontrivial and every endomap of Ω extends to a unique endomorphism of $\mathrm{F}_{\mathcal{V}}(\Omega)$, Self Ω embeds into $\operatorname{End} \mathrm{F}_{\mathcal{V}}(\Omega)$. As the latter is a submonoid of Self $\mathrm{F}_{\mathcal{V}}(\Omega)$, we obtain that Self Ω embeds into (Self $\left.\mathrm{F}_{\mathcal{V}}(\Omega)\right)^{\mathrm{op}}$, so, by Theorem3.1, we obtain that $\operatorname{card} \mathrm{F}_{\mathcal{V}}(\Omega) \geqslant 2^{\operatorname{card} \Omega}$. However, $\operatorname{card} \mathrm{F}_{\mathcal{V}}(\Omega) \leqslant \operatorname{card} \Omega+\operatorname{card} \Sigma+\aleph_{0}<$ $2^{\operatorname{card} \Omega}$, a contradiction.

Observe that the context of Theorem 6.1 covers most examples of algebras provided in [月, Section 2.1].

Our next result will show that the cardinality bound $\operatorname{card} \Sigma<2^{\operatorname{card} \Omega}$ in Theorem 6.1 is optimal. For a monoid M, an M-act is a nonempty set X endowed with a map $(M \times X \rightarrow X,(\alpha, x) \mapsto \alpha \cdot x)$ such that $1 \cdot x=x$ and $\alpha \cdot(\beta \cdot x)=(\alpha \beta) \cdot x$ for all $\alpha, \beta \in M$ and all $x \in X$. Hence the similarity type of M-acts consists of a collection, indexed by M, of unary operation symbols. Furthermore, the free M-act on a set Ω, denoted by $\mathrm{F}_{M}(\Omega)$, can be identified with $M \times \Omega$, endowed with the 'inclusion' map $(\Omega \hookrightarrow M \times \Omega, p \mapsto(1, p)$), and the multiplication defined by $\alpha \cdot(\beta, p)=(\alpha \beta, p)$.

For any set Ω, we shall consider the monoid $\operatorname{Rel} \Omega$ of all binary relations on Ω, endowed with the composition operation defined by

$$
\begin{equation*}
\alpha \circ \beta=\{(x, y) \in \Omega \times \Omega \mid(\exists z \in \Omega)((x, z) \in \beta \text { and }(z, y) \in \alpha)\}, \tag{6.1}
\end{equation*}
$$

for all $\alpha, \beta \in \operatorname{Rel} \Omega$. The right hand side of (6.1) is denoted in many references by $\beta \circ \alpha$, however this conflicts with the notation $g \circ f$ for composition of functions,
where every function is identified with its graph; as both composition operations will be needed in the proof, we choose to identify them. This should not cause much confusion as the monoid $\operatorname{Rel} \Omega$ is self-dual, that is, it has an anti-automorphism. The latter is the transposition map $\alpha \mapsto \alpha^{-1}$, where

$$
\alpha^{-1}=\{(x, y) \in \Omega \times \Omega \mid(y, x) \in \alpha\}, \text { for any } \alpha \in \operatorname{Rel} \Omega
$$

Theorem 6.2. Let Ω be an infinite set and put $M=\operatorname{Rel} \Omega$. Then the monoid End $\mathrm{F}_{M}(\Omega)$ can be embedded into its dual.

Proof. The strategy of the proof will be the following:
(i) prove that for every monoid M and every infinite set Ω, the monoid $M^{\text {op }}$ embeds in End $\mathrm{F}_{M}(\Omega)$; therefore $M \hookrightarrow\left(\operatorname{End~}_{M}(\Omega)\right)^{\mathrm{op}}$;
(ii) in case $M=\operatorname{Rel} \Omega$, prove that $\operatorname{End}^{M}(\Omega) \hookrightarrow M$;
(iii) items (i) and (ii) put together imply that End $\mathrm{F}_{M}(\Omega) \hookrightarrow\left(\operatorname{End} \mathrm{F}_{M}(\Omega)\right)^{\text {op }}$.

We start with any monoid M. We put $x \cdot y=(x(p) \cdot y(p) \mid p \in \Omega)$ for any $x, y \in M^{\Omega}$, and we endow $\mathrm{E}(M)=(\operatorname{Self} \Omega) \times M^{\Omega}$ with the multiplication given by

$$
(\alpha, x) \cdot(\beta, y)=(\alpha \beta, y \cdot(x \circ \beta)), \text { for all }(\alpha, x),(\beta, y) \in \mathrm{E}(M)
$$

Each $(\alpha, x) \in \mathrm{E}(M)$ defines an endomorphism $f_{(\alpha, x)}$ of $\mathrm{F}_{M}(\Omega)=M \times \Omega$ by the rule

$$
f_{(\alpha, x)}(t, p)=(t \cdot x(p), \alpha(p)), \text { for each }(t, p) \in M \times \Omega .
$$

It is straightforward to verify that the assignment $(\alpha, x) \mapsto f_{(\alpha, x)}$ defines an isomorphism from $(\mathrm{E}(M), \cdot)$ onto ($\left.\operatorname{End} \mathrm{F}_{M}(\Omega), \circ\right)$. Furthermore,

$$
\begin{equation*}
M^{\mathrm{op}} \text { has a monoid embedding into } \operatorname{End} \mathrm{F}_{M}(\Omega) \tag{6.2}
\end{equation*}
$$

namely the assignment $x \mapsto\left(\mathrm{id}_{\Omega}, k_{x}\right)$, where k_{x} denotes the constant function on Ω with value x (as in Section 3).

Now we specialize to $M=\operatorname{Rel} \Omega$. Let ∞ be an object outside Ω and put $\bar{\Omega}=$ $\Omega \cup\{\infty\}$. With every $\alpha \in \operatorname{Rel} \Omega$ we associate the binary relation $\bar{\alpha}=\alpha \cup\{(\infty, \infty)\}$. It is obvious that the assignment $\alpha \mapsto \bar{\alpha}$ defines a monoid embedding from $\operatorname{Rel} \Omega$ into $\operatorname{Rel} \bar{\Omega}$.

For each $(\alpha, x) \in \mathrm{E}(M)$, we define the binary relation $\eta(\alpha, x)$ on $\Omega \times \bar{\Omega}$ by

$$
\eta(\alpha, x)=\left\{\left(\left(p_{0}, q_{0}\right),\left(p_{1}, q_{1}\right)\right) \in(\Omega \times \bar{\Omega})^{2} \mid p_{1}=\alpha\left(p_{0}\right) \text { and }\left(q_{1}, q_{0}\right) \in \overline{x\left(p_{0}\right)}\right\}
$$

It is straightforward to verify that the map η defines a monoid embedding from $\mathrm{E}(M)$ into $\operatorname{Rel}(\Omega \times \bar{\Omega})$. (That η is one-to-one follows from our precaution of having replaced Ω by $\bar{\Omega}$ in the definition of the map η; indeed, as the binary relation $\overline{x\left(p_{0}\right)}$ always contains the pair $(\infty, \infty), \eta(\alpha, x)$ determines the pair (α, x).) As $\operatorname{Rel}(\Omega \times \bar{\Omega})$ is isomorphic to $\operatorname{Rel} \Omega$ (use any bijection from $\Omega \times \bar{\Omega}$ onto Ω) and by (6.2), it follows from the self-duality of $\operatorname{Rel} \Omega$ that the monoids $\operatorname{Rel} \Omega$ and $\operatorname{End} \mathrm{F}_{M}(\Omega)$ embed into each other. As $M=\operatorname{Rel} \Omega$ is self-dual, the conclusion follows.

As shows the coming Corollary 9.4, Theorem 6.2 cannot be extended to G-sets (i.e., G-acts), for groups G. See also Problem 3 .

7. C-, S-, and M-independent subsets in algebras

We first recall some general notation and terminology. For an algebra A (that is, a nonempty set endowed with a collection of finitary operations), we denote by $\operatorname{Sub} A$ (resp., End A) the collection of all subuniverses (resp., endomorphisms) of A. We also denote by $\langle X\rangle$ the subuniverse of A generated by a subset X of A; in case $X=\left\{x_{1}, \ldots, x_{n}\right\}$, we shall write $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ instead of $\left\langle\left\{x_{1}, \ldots, x_{n}\right\}\right\rangle$. We shall also put $X \vee Y=\langle X \cup Y\rangle$, for all $X, Y \in \operatorname{Sub} A$. A subset I of A is said to be

- C-independent, if $x \notin\langle I \backslash\{x\}\rangle$, for all $x \in I$;
- M-independent, if every map from I to A can be extended to some homomorphism from $\langle I\rangle$ to A.
- S-independent, if every map from I to I can be extended to some homomorphism from $\langle I\rangle$ to A.
In these definitions, C stands for closure, as the definition of C-independence relies upon a closure operator; M stands for Marczewski who introduced M-independence in 15]; S stands for Świerczkowski who introduced this notion in [27.

Say that a subset I of A is non-degenerate, if $I \cap\langle\varnothing\rangle=\varnothing$. The following result, with straightforward proof, shows that aside from degenerate cases, Mindependence implies S-independence implies C-independence. (None of the converses hold as a rule (8]).

Proposition 7.1. Let I be a subset in an algebra A. The following assertions hold:
(i) I is S-independent degenerate iff I is a singleton contained in $\langle\varnothing\rangle$.
(ii) I is M-independent degenerate iff $I=A=\langle\varnothing\rangle$ is a singleton.
(iii) If I is M-independent, then I is S-independent.
(iv) If I is S-independent non-degenerate, then I is C-independent.

The following result generalizes the main part of Proposition 4.1. It relates the existence of large either S-independent or C-independent subsets of an algebra A and the existence of meet-embeddings of large $[I]^{<\omega}$ into the subuniverse lattice of A.

Proposition 7.2. The following statements hold, for every algebra A and every set I:
(i) If I is a non-degenerate S-independent subset of A, then $\left([I]^{<\omega}, \cup, \cap\right)$ embeds into $(\operatorname{Sub} A, \vee, \cap)$.
(ii) If $\left([I]^{<\omega}, \cap\right)$ embeds into (Sub $\left.A, \cap\right)$, then A has a C-independent subset X such that $\operatorname{card} I \leqslant \operatorname{card} X$.

Proof. (i). Let I be a non-degenerate S-independent subset of A, we shall prove that $\left([I]^{<\omega}, \cup, \cap\right)$ embeds into (Sub $\left.A, \vee, \cap\right)$. If $I=\varnothing$ then the result is trivial. Suppose that $I=\{p\}$. As I is non-degenerate, $p \notin\langle\varnothing\rangle$, thus $\langle\varnothing\rangle$ is strictly contained in $\langle p\rangle$, and the result follows.

Suppose from now on that I has at least two elements. We define a map $\varphi:[I]^{<\omega} \rightarrow \operatorname{Sub} A$ by setting

$$
\begin{equation*}
\varphi(\varnothing)=\bigcap(\langle p\rangle \mid p \in I), \tag{7.1}
\end{equation*}
$$

while $\varphi(X)=\langle X\rangle$ for any nonempty $X \in[I]^{<\omega}$. It is obvious that φ is a join-homomorphism from $[I]^{<\omega}$ to $\operatorname{Sub} A$. Suppose that $\varphi(X) \subseteq \varphi(Y)$, for $X, Y \in[I]^{<\omega}$, and let $p \in X \backslash Y$. Suppose first that $Y=\varnothing$. As $X \subseteq \varphi(X) \subseteq \varphi(Y)=\varphi(\varnothing)$
and by (7.1), we obtain that $p \in\langle q\rangle$ for each $q \in I$, thus, as I is C-independent (cf. Proposition 7.1), $I=\{p\}$, a contradiction. Suppose now that Y is nonempty. Let $q \in I$. As I is S-independent, there exists an endomorphism f of $\langle I\rangle$ such that $f(p)=q$ and $f \upharpoonright_{Y}=\operatorname{id}_{Y}$. From $X \subseteq \varphi(X) \subseteq \varphi(Y)=\langle Y\rangle$ it follows that $p \in\langle Y\rangle$, hence $q=f(p)=p$, so $I=\{p\}$, a contradiction.

Therefore, φ is a join-embedding.
Now let $X, Y \in[I]^{<\omega}$, we shall prove that $\varphi(X) \cap \varphi(Y)$ is contained in $\varphi(X \cap Y)$. So let $a \in \varphi(X) \cap \varphi(Y)$. Fix one-to-one enumerations

$$
\begin{aligned}
& X \backslash Y=\left\{x_{0}, \ldots, x_{k-1}\right\} \\
& Y \backslash X=\left\{y_{0}, \ldots, y_{l-1}\right\} \\
& X \cap Y=\left\{z_{0}, \ldots, z_{n-1}\right\}
\end{aligned}
$$

There are terms s and t such that

$$
\begin{equation*}
a=s\left(x_{0}, \ldots, x_{k-1}, z_{0}, \ldots, z_{n-1}\right)=t\left(y_{0}, \ldots, y_{l-1}, z_{0}, \ldots, z_{n-1}\right) \tag{7.2}
\end{equation*}
$$

Suppose first that $X \cap Y \neq \varnothing$, so $n>0$. As I is S-independent, there exists an endomorphism f of $\langle I\rangle$ that fixes all $y_{i} \mathrm{~S}$ and all $z_{i} \mathrm{~s}$ such that $f\left(x_{i}\right)=z_{0}$ for each $i<k$. From the second equation in (7.2) it follows that $f(a)=a$, hence, by the first equation in (7.2),

$$
a=f(a)=s(\underbrace{z_{0}, \ldots, z_{0}}_{k \text { times }}, z_{0}, \ldots, z_{n-1}) \in \varphi(X \cap Y) .
$$

Now assume that $X \cap Y=\varnothing$. By applying the case above to $X \cup\{p\}$ and $Y \cup\{p\}$, we obtain that $a \in \varphi(\{p\})=\langle p\rangle$, for each $p \in I$. Hence, by (7.1), a belongs to $\varphi(\varnothing)$.

In any case, $a \in \varphi(X \cap Y)$, and so φ is a meet-homomorphism.
(ii). Let $\varphi:\left([I]^{<\omega}, \cap\right) \hookrightarrow(S u b A, \cap)$ be an embedding, and pick $e_{i} \in \varphi(\{i\}) \backslash$ $\varphi(\varnothing)$, for any $i \in I$. If $i, i_{0}, \ldots, i_{n-1}$ are distinct indices in I and e_{i} belongs to $\left\langle e_{i_{0}}, \ldots, e_{i_{n-1}}\right\rangle$, then it belongs to $\varphi(\{i\}) \cap \varphi\left(\left\{i_{0}, \ldots, i_{n-1}\right\}\right)=\varphi(\varnothing)$, a contradiction. Therefore, the family $\left(e_{i} \mid i \in I\right)$ is C-independent.

On the other hand, by mimicking the arguments used in the proofs of earlier results, we obtain the following set of results.

Proposition 7.3. Let A be an algebra, let Ω be an infinite set, and let V be an infinite-dimensional right vector space over a division ring K. Put $\kappa=(\operatorname{card} K)^{\operatorname{dim} V}$ and $\lambda=2^{\text {card } \Omega}$. Then the following statements hold:
(i) If $\operatorname{End}_{\mathrm{fin}} V$ has a semigroup embedding into $(\operatorname{End} A)^{\mathrm{op}}$, then $\left(\operatorname{Sub}^{\mathrm{fin}} V,+\right)$ embeds into (Sub A, \cap).
(ii) If $\left(\operatorname{Sub}^{\text {fin }} V,+\right)$ embeds into $(\operatorname{Sub} A, \cap)$, then $\left([\kappa]^{<\omega}, \cap\right)$ embeds into $(\operatorname{Sub} A, \cap)$.
(iii) If $\operatorname{Self}_{\text {fin }} \Omega$ has a semigroup embedding into $(\operatorname{End} A)^{\mathrm{op}}$, then $\left([\lambda]^{<\omega}, \cap\right)$ embeds into ($\operatorname{Sub} A, \cap$).

Proof. (i). Let $\varepsilon: \operatorname{End}_{\mathrm{fin}} V \hookrightarrow(\operatorname{End} A)^{\mathrm{op}}$ be a semigroup embedding. As in the proof of Theorem 5.1, we can construct an antitone map $\mu: \operatorname{Sub}^{\mathrm{fin}} V \rightarrow \operatorname{Sub} A$ by the rule $\mu(\operatorname{ker} f)=\operatorname{rng} \varepsilon(f)$, for each $f \in \operatorname{End}_{\text {fin }} V$. As in the proof of Theorem 5.1, μ is an embedding from $\left(\operatorname{Sub}^{\text {fin }} V,+\right)$ into $(\operatorname{Sub} A, \cap)$.
(ii). It follows from Proposition 4.3 that $\left([\kappa]^{<\omega}, \cap\right)$ embeds into ($\mathrm{Sub}^{\mathrm{fin}} V,+$), thus into (Sub A, \cap).
(iii). As in the proof of Corollary 5.6, there exists a semigroup embedding from $\operatorname{End}_{\text {fin }}\left(\left(\mathbb{F}_{2}\right)^{(\Omega)}\right)$ into $\operatorname{Self}_{\text {fin }} \Omega$, and hence into (End $\left.A\right)^{\mathrm{op}}$. The conclusion follows then from (i) and (ii) above.

8. Embedding endomorphism semigroups of SC-Ranked algebras

In the present section we shall indicate how certain results of Sections 4 and 5 can be extended to more general objects, which we shall call SC-ranked algebras.

We start by recalling the following result.
Lemma 8.1 ([13], p. 50, Exercise 6). For an algebra A, the following conditions are equivalent:
(1) for every subset X of A and all elements u, v of A, if $u \in\langle X \cup\{v\}\rangle$ and $u \notin\langle X\rangle$, then $v \in\langle X \cup\{u\}\rangle$;
(2) for every subset X of A and every element $u \in A$, if X is C-independent and $u \notin\langle X\rangle$, then $X \cup\{u\}$ is C-independent;
(3) for every subset X of A, if Y is a maximal C-independent subset of X, then $\langle X\rangle=\langle Y\rangle$;
(4) for all subsets X, Y of A with $Y \subseteq X$, if Y is C-independent, then there is a C-independent set Z with $Y \subseteq Z \subseteq X$ and $\langle Z\rangle=\langle X\rangle$.

An algebra A is said to be a matroid algebra if it satisfies one (and hence all) of the equivalent conditions of Lemma 8.1.

Definition 8.2. For $\mathrm{T} \in\{\mathrm{M}, \mathrm{S}, \mathrm{C}\}$, a T-basis of an algebra A is a T-independent generating subset of A. We say that A is a T-algebra if it has a T-basis.

Clearly every free algebra is an M-algebra, thus an S-algebra.
Definition 8.3. For $\mathrm{T}, \mathrm{Q} \in\{\mathrm{M}, \mathrm{S}, \mathrm{C}\}$, a $T Q$-algebra is an algebra where the notions of T-independence and Q-independence coincide.

The MC-algebras appear in the literature as $v^{* *}$-algebras (see 21, 26). Every absolutely free algebra is an MC-algebra (see [26] for this and many other examples).

A matroid MC-algebra is said to be an independence algebra. These algebras attracted the attention of experts in Universal Algebra (they were originally called v^{*}-algebras; see [1, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26] and [8] for hundreds of references on the topic), Logic (e.g. [9, 10, 28, 29]) and Semigroup Theory (e.g. [6, 7, 11]). Familiar examples of independence algebras are sets, free G-sets (for a group G) and vector spaces (see $[5,26$). Observe that independence algebras are MC -algebras and the latter are SC-algebras.

Definition 8.4. An algebra A is said to be $S C$-ranked, if it has an S-basis Ω such that $\operatorname{card} X \leqslant \operatorname{card} \Omega$ for each C-independent subset X of A. The cardinality of this set Ω is said to be the rank of A, and denoted by $\operatorname{Rank} A$.

By Lemma 8.1(4), every matroid S-algebra A is an SC-ranked algebra. Observe that $\operatorname{Rank} A$ is then the cardinality of any C-basis of A.

It should be observed that not every SC-algebra contains a C-independent generating set (see the example following the proof of Theorem 4 in [12, Section 32]).
Theorem 8.5. Let A and B be $S C$-ranked algebras with $\operatorname{Rank} A$ infinite. If there exists a semigroup embedding from End A into $(\operatorname{End} B)^{\mathrm{op}}$, then Rank $B \geqslant 2^{\operatorname{Rank} A}$.

Proof. Let X be an S-basis of A. Then $\operatorname{Self}_{\text {fin }} X$ embeds into Self X, which (as X is an S-basis) embeds into End A, which embeds into (End $B)^{\text {op }}$. Therefore, by Proposition 7.3(iii) combined with Proposition 7.2 (ii), there exists a C-independent set $Y \subseteq B$ with card $Y \geqslant 2^{\text {card } X}$. As B is SC-ranked, card $Y \leqslant \operatorname{Rank} B$ and the result follows.

Corollary 8.6. For $S C$-ranked algebras A, B such that $\operatorname{Rank} A=\operatorname{Rank} B \geqslant \aleph_{0}$, there is no semigroup embedding from End A into $(\operatorname{End} B)^{\mathrm{op}}$. In particular, End A has no semigroup embedding into its dual.

In particular, Corollary 8.6 applies to independence algebras.
The classification problem of all MC-algebras is open since the mid sixties. As Grätzer says "There are some results on [the classification of MC-algebras, that is] $v^{* *}$-algebras; but the problem is far from settled" [12, p. 205]. Likewise, SCranked algebras are not classified; in fact, the requirement to be SC-ranked seems so weak that it seems unlikely that this could ever be done. For example, Theorems 9.1 and 10.6 give us, respectively, a characterization of SC-ranked free M-acts (for monoids M) and a sufficient condition for a free module to be SC-ranked, in terms of an antichain condition of the left divisibility relation on the monoid, and a nœtherianity condition on the ring, respectively. The corresponding classes of monoids, or rings, are so large that they are certainly beyond the reach of any classification.

Another point is that in order to obtain results such as Theorem 8.5, the statement, for an algebra A, to be SC-ranked, is a compromise between conciseness and generality. In particular, it can be further weakened (e.g., by using meetembeddings of semilattices $[I]^{<\omega}$ into subuniverse lattices), and it seems likely that more algebras would satisfy the possible weakenings of SC-rankedness, although it is unclear whether there would be any 'natural' such example.

In Sections 9 and 10, we shall illustrate the notion of SC-rankedness on M-acts and modules.

9. SC-Ranked free M-acts

In the present section, we shall characterize SC-ranked free M-acts (cf. Section (6).

In any monoid M, we define preorderings $\unlhd_{\text {left }}$ and $\unlhd_{\text {right }}$ by the rule

$$
u \unlhd_{\text {left }} v \Leftrightarrow(\exists t)(v=t u), \quad u \unlhd_{\text {right }} v \Leftrightarrow(\exists t)(v=u t), \quad \text { for all } u, v \in M
$$

We say that M is left uniserial, if $\unlhd_{\text {left }}$ is a total preordering, that is, for any elements $u, v \in M$, either $u \unlhd_{\text {left }} v$ or $v \unlhd_{\text {left }} u$. This occurs, in particular, in the somehow degenerate case where M is a group.
Theorem 9.1. Let M be a monoid and let Ω be a nonempty set. Then $\mathrm{F}_{M}(\Omega)$ is $S C$-ranked iff either Ω is finite and M is left uniserial, or Ω is infinite and every

Proof. We shall repeatedly use the easily verified fact that the C-independent subsets of $\mathrm{F}_{M}(\Omega)$ are exactly the subsets Y such that $Y \cdot p^{-1}=\{u \in M \mid u \cdot p \in Y\}$ is a $\unlhd_{\text {left-antichain for every } p \in \Omega \text {. Observe also that } \Omega \text { is an M-basis, thus an }}$ S-basis, of $\mathrm{F}_{M}(\Omega)$.

Suppose first that M has a $\unlhd_{\text {left }}$-antichain U such that $\operatorname{card} \Omega<\operatorname{card} U$. Pick $p \in \Omega$. Observe that $U \cdot p=\{u \cdot p \mid u \in U\}$ is a C-independent subset of $\mathrm{F}_{M}(\Omega)$ of
cardinality greater than card Ω. As Ω is an S-basis of $\mathrm{F}_{M}(\Omega)$, it follows that $\mathrm{F}_{M}(\Omega)$ is not SC-ranked.

Now suppose that M is not left uniserial and Ω is finite. Let $u, v \in M$ be $\unlhd_{\text {left }}{ }^{-}$ incomparable. Then the subset $\{u \cdot p \mid p \in \Omega\} \cup\{v \cdot p \mid p \in \Omega\}$ is a C-independent subset of $\mathrm{F}_{M}(\Omega)$ with cardinality $2 \cdot \operatorname{card} \Omega$, so again $\mathrm{F}_{M}(\Omega)$ is not SC-ranked.

If M is left uniserial, then the C-independent subsets of $\mathrm{F}_{M}(\Omega)$ are exactly the subsets of the form $\{f(p) \cdot p \mid p \in X\}$, for a subset X of Ω and a map $f: X \rightarrow M$. Hence every C-independent subset has at most card Ω elements, and so $\mathrm{F}_{M}(\Omega)$ is SC-ranked.

Finally assume that Ω is infinite and that every $\unlhd_{\text {left }}$-antichain of M has cardinality at most $\operatorname{card} \Omega$. For every C-independent subset Y of $\mathrm{F}_{M}(\Omega)$ and every $p \in \Omega$, the subset $Y \cdot p^{-1}$ is a $\unlhd_{\text {left }}$ antichain of M, thus it has cardinality below card Ω; hence, as Ω is infinite, card $Y \leqslant \operatorname{card} \Omega$. Therefore, $\mathrm{F}_{M}(\Omega)$ is SC-ranked.

By contrast, $\mathrm{F}_{M}(\Omega)$ is almost never a matroid algebra:
Proposition 9.2. Let M be a monoid and let Ω be a nonempty set. Then $\mathrm{F}_{M}(\Omega)$ is a matroid algebra iff M is a group.
Proof. If M is a group, then it is straightforward to verify that $\mathrm{F}_{M}(\Omega)$ satisfies Condition (1) of Lemma 8.1, so it is a matroid algebra.

Conversely, suppose that $\mathrm{F}_{M}(\Omega)$ is a matroid algebra. Let $u \in M$ and pick $p \in \Omega$. From $u \cdot p \in\langle 1 \cdot p\rangle \backslash\langle\varnothing\rangle$ and the matroid condition it follows that $1 \cdot p \in\langle u \cdot p\rangle$, that is, u is left invertible in M. As this holds for all $u \in M, M$ is a group.

The following result gives us a wide range of MC-algebras that are usually not SC-ranked. Denote by X^{*} the free monoid on X, for any set X.
Proposition 9.3. Let Ω and X be sets, with Ω nonempty. Then $\mathrm{F}_{X^{*}}(\Omega)$ is both an M-algebra and an MC-algebra.

Proof. As Ω is an M-basis of $\mathrm{F}_{X^{*}}(\Omega)$, the latter is an M-algebra.
Now let Y be a C-independent subset of $\mathrm{F}_{X^{*}}(\Omega)$. This means that $Y \cdot p^{-1}$ is a $\unlhd_{\text {left-antichain of } X^{*}}$ for each $p \in \Omega$. Now let $f: Y \rightarrow \mathrm{~F}_{X^{*}}(\Omega)$ be any mapping. Consider pairs $\left(t_{0}, y_{0}\right)$ and $\left(t_{1}, y_{1}\right)$ of $X^{*} \times Y$ such that $t_{0} y_{0}=t_{1} y_{1}$. This means that there are $p \in \Omega$ and $u_{0}, u_{1} \in X^{*}$ such that $y_{0}=u_{0} \cdot p, y_{1}=u_{1} \cdot p$, and $t_{0} u_{0}=t_{1} u_{1}$. As X^{*} is the free monoid on X, either $t_{1} \unlhd_{\text {right }} t_{0}$ or $t_{0} \unlhd_{\text {right }} t_{1}$; suppose, for example, that the first case holds, so $t_{0}=t_{1} w$ for some $w \in X^{*}$. From $t_{1} w u_{0}=t_{0} u_{0}=t_{1} u_{1}$ it follows that $w u_{0}=u_{1}$, thus $u_{0} \unlhd_{\text {left }} u_{1}$, hence, as $Y \cdot p^{-1}$ is a $\unlhd_{\text {left-antichain, }} u_{0}=u_{1}$, and hence $y_{0}=y_{1}$ and $t_{0}=t_{1}$. Therefore, there exists a unique map $\bar{f}:\langle Y\rangle \rightarrow \mathrm{F}_{X^{*}}(\Omega)$ such that $\bar{f}(t \cdot y)=t \cdot f(y)$ for each $(t, y) \in X^{*} \times Y$. Clearly, \bar{f} is a morphism, and so $\mathrm{F}_{X^{*}}(\Omega)$ is an MC-algebra.
 $\operatorname{card} \Omega$, then $\mathrm{F}_{X^{*}}(\Omega)$ is not SC-ranked, although, by Proposition 9.3, it is both an M-algebra and an MC-algebra.

As an immediate consequence of Corollary 8.6 and Theorem 9.1, we observe the following.
Corollary 9.4. Let Ω be an infinite set and let G be a group. Then $\operatorname{End} \mathrm{F}_{G}(\Omega)$ cannot be embedded into (End $\left.\mathrm{F}_{G}(\Omega)\right)^{\mathrm{op}}$.

Corollary 9.4 does not extend to M-acts (for a monoid M), see Theorem 6.2.

10. SC-RANKED FREE MODULES AND κ-NEETHERIANITY

In this section, all modules will be left modules over (unital, associative) rings.
Definition 10.1. Let κ be a regular cardinal. A module M is κ-nœetherian, if every increasing κ-sequence of submodules of M is eventually constant.

In particular, M is nœetherian iff it is \aleph_{0}-nœetherian. For a regular cardinal κ, M is κ-nœtherian iff there is no strictly increasing κ-sequence of submodules of M. Hence, if $\kappa<\lambda$ are regular cardinals and M is κ-nœtherian, then M is also λ noetherian.

C-independent subsets and κ-nœtherian modules are related as follows.
Lemma 10.2. Let κ be a regular cardinal. If a module M is κ-notherian, then every C-independent subset of M has cardinality smaller than κ.
Proof. Suppose that there exists a C-independent subset $\left\{x_{\xi} \mid \xi<\kappa\right\}$ of M, where $\xi \mapsto x_{\xi}$ is one-to-one. The family ($X_{\alpha} \mid \alpha<\kappa$), where X_{α} is the submodule generated by $\left\{x_{\xi} \mid \xi<\alpha\right\}$, is a strictly increasing κ-sequence of submodules of M, a contradiction.

Lemma 10.3. Let κ be a regular cardinal and let M be a module. Then any finite sum of κ-nœetherian submodules of M is κ-nøetherian.

Proof. As the proof of the (classical) result that the sum of two nœetherian modules is notherian (i.e., the case where $\kappa=\aleph_{0}$), see, for example, the Corollary in 14 , Section VI.1].
Lemma 10.4. Let κ be a regular cardinal, let M be a module, and let ($M_{i} \mid i \in I$) be a family of κ-nœtherian submodules of M such that $\operatorname{card} I<\kappa$. Then the sum $\sum_{i \in I} M_{i}$ is κ-nœetherian.
Proof. We put $M_{J}=\sum_{i \in J} M_{i}$, for each $J \subseteq I$. Let $\left(X_{\xi} \mid \xi<\kappa\right)$ be an increasing κ-sequence of submodules of M_{I}. For every $J \in[I]^{<\omega}$, it follows from Lemma 10.3 that there exists $\alpha_{J}<\kappa$ such that $X_{\xi} \cap M_{J}=X_{\alpha_{J}} \cap M_{J}$ for each $\xi \geqslant \alpha_{J}$. As κ is regular and greater than $\operatorname{card}\left([I]^{<\omega}\right)$, the supremum $\alpha=\bigvee\left(\alpha_{J} \mid J \in[I]^{<\omega}\right)$ is smaller than κ. Observe that $X_{\xi}=X_{\alpha}$ for each $\xi \geqslant \alpha$.

We shall use the standard convention to denote by ${ }_{R} R$ the ring R viewed as a left module over itself, for any ring R. For a regular cardinal κ, we say that R is left κ-notherian, if the module ${ }_{R} R$ is κ-nœtherian.

For a module M and a set Ω, we denote by $M^{(\Omega)}$ the module of all families $\left(x_{p} \mid p \in \Omega\right) \in M^{\Omega}$ such that $\left\{p \in \Omega \mid x_{p} \neq 0\right\}$ is finite. In particular, ${ }_{R} R^{(\Omega)}$ is the free left R-module on Ω.

We denote by κ^{+}the successor cardinal of a cardinal κ.
Proposition 10.5. Let Ω be an infinite set and let R be a left $(\operatorname{card} \Omega)^{+}$-nœtherian ring. Then the free module ${ }_{R} R^{(\Omega)}$ is $S C$-ranked.

This makes it possible to produce many SC-ranked modules.
Theorem 10.6. Let κ be an infinite cardinal and let R be a left κ^{+}-nœetherian ring. Then the free left module ${ }_{R} R^{(\Omega)}$ is SC-ranked, for every set Ω such that card $\Omega \geqslant \kappa$. Proof. Put $\lambda=\operatorname{card} \Omega$. Of course, Ω is an S-basis of ${ }_{R} R^{(\Omega)}$. As, by Lemma 10.4, ${ }_{R} R^{(\Omega)}$ is a λ^{+}-nœetherian left module, it follows from Lemma 10.2 that every Cindependent subset of ${ }_{R} R^{(\Omega)}$ has cardinality at most λ.

By using Corollary 8.6, we obtain the following result.
Corollary 10.7. Let R be a left \aleph_{1}-noetherian ring. Then the free module ${ }_{R} R^{(\Omega)}$ is $S C$-ranked, for every infinite set Ω. Consequently, $\operatorname{End}\left({ }_{R} R^{(\Omega)}\right)$ has no semigroup embedding into its dual.

In particular, Corollary 10.7 applies to the case where the ring R is left noetherian.

11. Concluding remarks

The basic motivation for the present paper was to find large classes of algebras A for which there exists no semigroup embedding from $\operatorname{End} A$ into its dual. A brief summary of the cases where this negative embedding property holds, for algebras of infinite rank, runs as follows:
(1) A is SC-ranked (cf. Corollary 8.6).
(2) $A=\mathrm{F}_{\mathcal{V}}(\Omega)$, the free algebra on an infinite set Ω in a variety \mathcal{V} on a similarity type Σ, where $\operatorname{card} \Sigma<2^{\operatorname{card} \Omega}$ (cf. Theorem 6.1). The $2^{\text {card } \Omega}$ bound is optimal, even for the variety of M-acts for a suitably chosen monoid M (cf. Theorem 6.2).
There are a number of algebras A satisfying (1) above:
(1.1) Independence algebras of infinite rank: for example, sets, free G-sets (for a group G), vector spaces (over a given division ring).
(1.2) Free M-acts $\mathrm{F}_{M}(\Omega)$ (Ω infinite), for monoids M in which every $\unlhd_{\text {left }^{-}}$ antichain has at most card Ω elements.
(1.3) Free modules ${ }_{R} R^{(\Omega)}$ (Ω infinite), for left ($\left.\operatorname{card} \Omega\right)^{+}$-nœtherian rings R.

We finally formulate a few open problems.
Problem 1. Let V be a vector space. Can (Sub $V, \cap)$ be embedded into (Sub $V,+$)?
In Theorem 6.2, we show that the endomorphism monoid of a free M-act, for a monoid M, may embed into its dual. We do not know if this can also happen for modules:

Problem 2. Are there a ring R and a free left module F of infinite rank over R such that End F embeds into its dual?
Problem 3. Does there exist a variety \mathcal{V} of algebras such that $\operatorname{End} \mathrm{F}_{\mathcal{V}}(\omega)$ has an anti-automorphism?

By Theorem 6.1, the similarity type of any variety \mathcal{V} solving Problem 3 should have cardinality at least $2^{\aleph_{0}}$. For a partial positive result, we refer to Theorem 6.2 .
K. Urbanik introduces in 25 a subclass of the class of MC-algebras, called there v_{*}-algebras. He also classifies these algebras in terms of modules and transformation semigroups.

Not every v_{*}-algebra has a C-basis. For example, denote by $\mathbb{Z}_{(2)}$ the valuation ring of all rational numbers with odd denominator; then the field \mathbb{Q} of all rational numbers, viewed as a $\mathbb{Z}_{(2)}$-module, is a v_{*}-algebra (cf. [25, Section 3]). However, for any nonzero rational numbers a and b, either a / b or b / a belongs to $\mathbb{Z}_{(2)}$, thus any C-independent subset of \mathbb{Q} has at most one element. Since \mathbb{Q} is not a finitely generated $\mathbb{Z}_{(2)}$-module, it has no C-basis.

Problem 4. Let A be a v_{*}-algebra with an infinite S-basis. Can End A be embedded into its dual?

By Corollary 8.6, Problem 4 would have a negative answer if we could prove that every v_{*}-algebra with an infinite S-basis is also SC-ranked. However, we do not know this either.

References

[1] J. Araújo and J. Fountain, The origins of independence algebras, Semigroups and Languages, 54-67, World Sci. Publ., River Edge, NJ, 2004.
[2] R. Baer, "Linear Algebra and Projective Geometry." Academic Press Inc., New York, N. Y., 1952. viii +318 p.
[3] G. M. Bergman, Some results on embeddings of algebras, after de Bruijn and McKenzie, Indag. Math. (N.S.), to appear. Available online at http://math.berkeley.edu/~gbergman/papers/ and arXiv:math.RA/0606407.
[4] S. Burris and H.P. Sankappanavar, "A Course in Universal Algebra". Graduate Texts in Mathematics 78. Springer-Verlag, New York-Berlin, 1981. xvi+276 p. ISBN: 0-387-90578-2. Out of print, available online at http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html.
[5] P. J. Cameron and C. Szabó, Independence Algebras, J. London Math. Soc. (2) 61 (2000), 321-334.
[6] J. Fountain and A. Lewin, Products of idempotent endomorphisms of an independence algebra of finite rank, Proc. Edinb. Math. Soc. (2) 35 (1992), 493-500.
[7] J. Fountain and A. Lewin, Products of idempotent endomorphisms of an independence algebra of infinite rank, Math. Proc. Cambridge Philos. Soc. 114 (1993), 303-319.
[8] K. Głazek, Some old and new problems in the independence theory, Colloq. Math. 42 (1979), 127-189.
[9] S. Givant, Horn classes categorical or free in power, Ann. Math. Logic 15 (1978), 1-53.
[10] S. Givant, A representation theorem for universal Horn classes categorical in power, Ann. Math. Logic 17 (1979), 91-116.
[11] V. A. R. Gould, Independence algebras, Algebra Universalis 33 (1995), 294-318.
[12] G. Grätzer, "Universal Algebra". D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto, Ont.London 1968. xvi +368 p.
[13] R. N. McKenzie, G. F. McNulty, and W.F. Taylor, "Algebra, Lattices, and Varieties, Vol. I". The Wadsworth \& Brooks/Cole Mathematics Series. Wadsworth \& Brooks/Cole Advanced Books \& Software, Monterey, CA, 1987. xvi+361 p. ISBN: 0-534-07651-3
[14] S. Lang, "Algebra", Addison-Wesley Publishing Co., Inc., Reading, Mass. 1965. Ninth printing 1980. xvii +526 p.
[15] E. Marczewski, A general scheme of the notions of independence in mathematics, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 6 (1958), 731-736.
[16] E. Marczewski, Independence in some abstract algebras, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 7 (1959), 611-616.
[17] E. Marczewski, Independence in algebras of sets and Boolean algebras, Fund. Math. 48 (1960), 135-145.
[18] E. Marczewski, Independence and homomorphisms in abstract algebras, Fund. Math. 50 (1961), 45-61.
[19] W. Narkiewicz, Independence in certain class of abstract algebras, Fund. Math. 50 (1962), 333-340.
[20] W. Narkiewicz, A note on v^{*}-algebras, Fund. Math. 52 (1963), 289-290.
[21] W. Narkiewicz, On a certain class of abstract algebras, Fund. Math. 54 (1964), 115-124.
[22] K. Urbanik, A representation theorem for Marczewski's algebras, Fund. Math. 48 (1960), 147-167.
[23] K. Urbanik, A representation theorem for v^{*}-algebras, Fund. Math. 52 (1963), 291-317.
[24] K. Urbanik, A representation theorem for two-dimensional v^{*}-algebras, Fund. Math. 57 (1965), 215-236.
[25] K. Urbanik, On a class of universal algebras, Fund. Math. 57 (1965), 327-350.
[26] K. Urbanik, Linear independence in abstract algebras, Colloq. Math. 14 (1966), 233-255.
[27] S. Świerczkowski, Topologies in free algebras, Proc. London Math. Soc. (3) 14 (1964), 566576.
[28] B. I. Zilber, Quasi-Urbanik structures, Model-theoretic algebra, 50-67, Kazakh. Gos. Univ., Alma Ata, 1989 (Russian).
[29] B. I. Zilber, Hereditarily transitive groups and quasi-Urbanik structures, Model theory and applications, 165-186, Amer. Math. Soc. Transl. Ser. 2, 195, Amer. Math. Soc., Providence, RI, 1999.

Universidade Aberta, Rua da Escola Politécnica, 147, 1269-001 Lisboa and Centro
de Álgebra da Universidade de Lisboa, Av. Gama Pinto, 2, 1649-003 Lisboa, Portugal
E-mail address: jaraujo@ptmat.fc.ul.pt
URL: http://caul.cii.fc.ul.pt/pt/member10.html
LMNO, CNRS UMR 6139, Université de Caen, Campus 2, Département de Mathématiques, BP 5186, 14032 Caen cedex, France

E-mail address: wehrung@math.unicaen.fr
URL: http://www.math.unicaen.fr/~wehrung

[^0]: Date: January 17, 2008.
 2000 Mathematics Subject Classification. Primary: 20M30. Secondary: 15A03, 16S50.
 Key words and phrases. Transformation; endomap; monoid; semigroup; endomorphism; vector space; subspace; lattice; C-independent; S-independent; M-independent; matroid; SC-ranked.

