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EMBEDDING PROPERTIES OF ENDOMORPHISM

SEMIGROUPS

JOÃO ARAÚJO AND FRIEDRICH WEHRUNG

Abstract. Denote by PSelf Ω (resp., Self Ω) the partial (resp., full) transfor-
mation monoid over a set Ω, and by Sub V (resp., End V ) the collection of

all subspaces (resp., endomorphisms) of a vector space V . We prove various
results that imply the following:

(1) If card Ω > 2, then Self Ω has a semigroup embedding into the dual
of Self Γ iff card Γ > 2card Ω. In particular, if Ω has at least two ele-
ments, then there exists no semigroup embedding from Self Ω into the
dual of PSelf Ω.

(2) If V is infinite-dimensional, then there are no embedding from (Sub V, +)
into (Sub V,∩) and no embedding from (End V, ◦) into its dual semigroup.

(3) Let F be an algebra freely generated by an infinite subset Ω. If F has
less than 2card Ω operations, then End F has no semigroup embedding
into its dual. The cardinality bound 2card Ω is optimal.

(4) Let F be a free left module over a left ℵ1-nœtherian ring (i.e., a ring
without strictly increasing chains, of length ℵ1, of left ideals). Then
End F has no semigroup embedding into its dual.

(1) and (2) above solve questions proposed by B. M. Schein and G. M. Bergman.
We also formalize our results in the settings of algebras endowed with a notion
of independence (in particular independence algebras).

1. Introduction

We denote by PSelf Ω the partial transformation monoid of a set Ω to itself under
composition (e.g., (g ◦ f)(x) = g(f(x))), and by Self Ω the submonoid of PSelf Ω
consisting of all endomaps of Ω. The dual Sop of a semigroup (resp., monoid) S
with multiplication · is defined as the semigroup (resp., monoid) with the same
underlying set as S and the multiplication ∗ defined by the rule x ∗ y = y · x for all
x, y ∈ S.

In the present paper, we solve the following three questions:

Question 1. Suppose that Ω is infinite. Is it possible to embed Self Ω into its dual?

Question 2. Suppose that Ω is infinite. Is it possible to embed PSelf Ω into its
dual?

Question 3. Is it possible to embed the endomorphism monoid of an infinite-
dimensional vector space into its dual?

Question 1 originates in an earlier version of a preprint by George Bergman [3]
and Questions 1 and 2 were proposed by Boris Schein in September 2006 when he
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gave a course on semigroups in the Center of Algebra of the University of Lisbon.
After learning that Question 1 was solved in the negative, Bergman changed [3]
and subsequently asked Question 3.

In the present note we settle all three problems above in the negative. Denote
by SubV (resp., EndV ) the collection of all subspaces (resp., endomorphisms) of
a vector space V . Our results imply the following:

• (cf. Corollary 3.8) Let Ω and Γ be sets with cardΩ > 2. Then Self Ω has
a semigroup embedding into (Self Γ)op iff cardΓ > 2cardΩ.

• (cf. Theorems 4.4 and 5.1) Let V and W be right vector spaces over division
rings K and F , respectively, with V infinite-dimensional. If there exists
an embedding either from (SubV, +) into (SubW,∩) or from (EndV, ◦) to
(EndW, ◦)op, then dimW > (card K)dim V .

• (cf. Theorems 6.1 and 6.2) Let V be a variety of algebras, not all reduced
to a singleton, in a similarity type Σ, and let Ω be an infinite set. If
cardΣ < 2cardΩ, then the endomorphism semigroup of the free algebra
on Ω in V cannot be embedded into its dual. The cardinality bound 2cardΩ

is optimal, even for M -acts for a suitably chosen monoid M .
• (cf. Theorem 10.7) Let F be a free left module over a ring in which there

is no strictly increasing ℵ1-sequence of left ideals. Then EndF has no
semigroup embedding into its dual.

We formalize some of our results in the general settings of algebras endowed
with a notion of independence (in particular independence algebras or v∗-algebras)
from Section 7 on. In Section 8 we isolate the properties of sets and vector spaces
needed for the above-mentioned results, yielding the notion of a SC-ranked algebra.
In Section 9 we focus on M -acts (for monoids M) while in Section 10 we focus on
modules. In Section 11, we formulate a few concluding remarks and open problems.

2. Basic concepts

For a nonzero cardinal κ, we put κ − 1 = card(Ω \ {p}), for any set Ω of cardi-
nality κ and any p ∈ Ω (so κ− 1 = κ in case κ is infinite). We denote by P(Ω) the
powerset of a set Ω, and by [Ω]<ω the set of all finite subsets of Ω. We put

Ker f = {(x, y) ∈ Ω × Ω | f(x) = f(y)} , for any function f with domain Ω.

We also denote by rng f the range of f . We denote the partial operation of disjoint
union by ⊔.

We denote by EqΩ the lattice of all equivalence relations on Ω under inclusion,
and we denote by [x]θ the θ-block of any element x ∈ Ω, for each θ ∈ EqΩ. We put

Eq62 Ω = {θ ∈ EqΩ | card(Ω/θ) 6 2},

Eq2 Ω = {θ ∈ EqΩ | card(Ω/θ) = 2},

Eqfin Ω = {θ ∈ EqΩ | Ω/θ is finite}.
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The monoid Self Ω has the following subsets, the first three of which are also sub-
semigroups:

SymΩ = {f ∈ Self Ω | f is bijective},

Self62 Ω = {f ∈ Self Ω | card(rng f) 6 2},

Selffin Ω = {f ∈ Self Ω | rng f is finite},

Self2 Ω = {f ∈ Self Ω | card(rng f) = 2}.

We put ker f = f−1{0} (the usual kernel of f), for any homomorphism f of abelian
groups. For a right vector space V over a division ring K, we denote by Subfin V
(resp., Subfin V ) the sublattice of SubV consisting of all finite-dimensional (resp.,
finite-codimensional) subspaces of V . Furthermore, we denote by Endfin V the
semigroup of all endomorphisms with finite-dimensional range of V . In particular,
the elements of Subfin V are exactly the kernels of the elements of Endfin V .

3. Embeddings between semigroups of endomaps

For any f ∈ Self Ω, denote by f [−1] the endomap of the powerset P(Ω) that sends
every subset of Ω to its inverse image under f . The assignment Self Ω → Self P(Ω),
f 7→ f [−1] defines a monoid embedding from Self Ω into (Self P(Ω))op. Moreover,
both Self 1 and Self ∅ are the one-element monoid, which is self-dual. For larger
sets the following theorem says that the assignment f 7→ f [−1] described above is
optimal in terms of size.

Theorem 3.1. Let Ω and Γ be sets with cardΩ > 2. If there exists a semigroup
embedding from Self62 Ω into (Self Γ)op, then cardΓ > 2card Ω.

We prove Theorem 3.1 in a series of lemmas.

Lemma 3.2. Let α and β be distinct elements in Eq2 Ω. Then there are idempotent
f, g ∈ Self2 Ω such that Ker f = α, Ker g = β, and f ◦ g is constant.

Proof. As α 6= β, we can write Ω/α = {A0, A1} and Ω/β = {B0, B1} with both
A0 ∩ B0 and A0 ∩ B1 nonempty. Pick bi ∈ A0 ∩ Bi, for i < 2, and pick a ∈ A1.
Define endomaps f and g of Ω by the rule

f(x) =

{

b0 (x ∈ A0),

a (x ∈ A1),
g(x) =

{

b0 (x ∈ B0),

b1 (x ∈ B1),
for all x ∈ Ω.

Then Ker f = α, Ker g = β, and f ◦ g is the constant function with value b0. �

Now let ε : Self62 Ω →֒ (Self Γ)op be a semigroup embedding.

Lemma 3.3. Ker f ⊆ Ker g implies that rng ε(g) ⊆ rng ε(f), for all f, g ∈ Self62 Ω.

Proof. There exists h ∈ Self62 Ω such that g = h ◦ f . Thus ε(g) = ε(f) ◦ ε(h) and
the conclusion follows. �

Lemma 3.3 makes it possible to define an antitone map

µ : Eq62 Ω → P(Γ) \ {∅}

by the rule µ(Ker f) = rng ε(f), for each f ∈ Self62 Ω.

Lemma 3.4. α ⊆ β iff µ(β) ⊆ µ(α), for all α, β ∈ Eq62 Ω.
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Proof. The direction from the left to the right follows from Lemma 3.3. Now assume
that µ(β) ⊆ µ(α). There are idempotent f, g ∈ Self62 Ω such that α = Ker f and
β = Ker g. As rng ε(g) ⊆ rng ε(f) and ε(f) is idempotent, ε(f) ◦ ε(g) = ε(g),
that is, ε(g ◦ f) = ε(g), and thus, as ε is one-to-one, g ◦ f = g, and therefore
Ker f ⊆ Ker g. �

Let 1 = Ω × Ω denote the coarse equivalence relation on Ω.

Lemma 3.5. µ(α) ∩ µ(β) = µ(1), for all distinct α, β ∈ Eq2 Ω.

Proof. It follows from Lemma 3.2 that there are idempotent f, g ∈ Self Ω such that
Ker f = α, Ker g = β, and f ◦ g is constant.

Let x ∈ µ(α) ∩ µ(β). This means that x belongs to both rng ε(f) and rng ε(g),
hence, as both ε(f) and ε(g) are idempotent, that it is fixed by both these maps,
hence that it is fixed by their composite, ε(g) ◦ ε(f) = ε(f ◦ g), hence it lies in the
range of that composite, which, as f ◦ g is a constant function, is µ(1).

So we have proved that µ(α) ∩ µ(β) is contained in µ(1). As the converse
inequality follows from Lemma 3.3, the conclusion follows. �

Denote by kx the constant function on Ω with value x, for each x ∈ Ω. Hence
µ(1) = rng ε(kx).

Lemma 3.6. The set µ(1) has at least two elements.

Proof. Otherwise, µ(1) = {z} for some z ∈ Γ, and so ε(kx) is the constant function
on Γ with value z, for each x ∈ Ω. As ε is one-to-one, this implies that Ω has at
most one element, a contradiction. �

Lemma 3.7. The set rng ε(e) \ µ(1) has at least two elements, for each idempo-
tent e ∈ Self2 Ω.

Proof. Let rng e = {x, y}. It follows from Lemmas 3.3 and 3.4 that rng ε(e) properly
contains µ(1). Suppose that rng ε(e) \ µ(1) = {t}, for some t ∈ Γ.

For elements a and b in a semigroup S, let a ∼ b hold, if there are elements
x1, x2, y1, y2 ∈ S such that a = x1b = bx2 and b = y1a = ay2. It is obvious that
if S is a subsemigroup of Self Ω, then a ∼ b implies that a and b have same kernel
and same range. Furthermore, in case S = Self62 Ω, it is easy to verify that the
converse holds. In addition, a ∼ b in Self62 Ω implies that ε(a) ∼ ε(b) in Self Γ.

We shall apply this to the maps e and f =
(
x y

)
◦ e (where, as said above,

{x, y} = rng e). Observe that f2 = e and e ∼ f ; hence ε(f)2 = ε(e) and ε(e) ∼ ε(f),
so Ker ε(e) = Ker ε(f) and rng ε(e) = rng ε(f). We shall evaluate the map ε(f) on
each Ker ε(e)-block, that is, on each block of the decomposition

Γ =
⊔

v∈rng ε(e)

[v]Ker ε(e) =
⊔

v∈µ(1)

[v]Ker ε(e) ⊔ [t]Ker ε(e) . (3.1)

From µ(1) = rng ε(kx) and kx◦f = kx it follows that ε(f)◦ε(kx) = ε(kx), thus ε(f)
fixes all the elements of µ(1). As [v]Ker ε(e) = [v]Ker ε(f) for each v ∈ µ(1), it follows
that ε(e) and ε(f) agree on

⊔

v∈µ(1)[v]Ker ε(e). As the maps ε(e) and ε(f) have same

kernel and same range, they also agree on [t]Ker ε(e). Therefore, ε(e) = ε(f), and
thus e = f , a contradiction. �

Pick an element ∞ ∈ Ω and set Ω∗ = Ω \ {∞}. We put

θZ = {(x, y) ∈ Ω × Ω | x ∈ Z ⇔ y ∈ Z}, for each Z ⊆ Ω. (3.2)
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If Z belongs to P(Ω) \ {∅, Ω}, then the equivalence relation θZ has exactly the
two classes Z and Ω \ Z. This holds, in particular, for each nonempty subset Z
of Ω∗. In addition, θX and θY are distinct elements in Eq2 Ω, for all distinct
nonempty subsets X and Y of Ω∗, so, by Lemma 3.5, we get µ(θX)∩µ(θY ) = µ(1).
Furthermore, it follows from Lemma 3.4 that µ(θX) properly contains µ(1), and so
the family

(
µ(θX) \ µ(1) | X ∈ P(Ω∗) \ {∅}

)
is a partition of some subset of Γ. In

particular, by using Lemmas 3.6 and 3.7, we obtain

cardΓ > cardµ(1) + 2 · card
(
P(Ω∗) \ {∅}

)
> 2 + 2 · (2cardΩ−1 − 1) = 2cardΩ .

This concludes the proof of Theorem 3.1.

Corollary 3.8. Let Ω and Γ be sets with cardΩ > 2. Then the following are
equivalent:

(i) There exists a semigroup embedding from Self62 Ω into (Self Γ)op.
(ii) There exists a monoid embedding from Self Ω into (Self Γ)op.
(iii) cardΓ > 2cardΩ.

Proof. (ii)⇒(i) is trivial, and (i)⇒(iii) follows from Theorem 3.1. Finally, we ob-
served (iii)⇒(ii) at the beginning of Section 3. �

As PSelf Ω embeds into Self(Ω∪ {∞}) (for any ∞ /∈ Ω) and, in case cardΩ > 2,
the inequality 2cardΩ > cardΩ + 1 holds, the following corollary answers simulta-
neously Questions 1 and 2 in the negative.

Corollary 3.9. There is no semigroup embedding from Self Ω into (PSelf Ω)op, for
any set Ω with at least two elements.

4. Subspace lattices of vector spaces

The central idea of the present section is to study how large can be a set I such
that the semilattice ([I]<ω ,∩) embeds into various semilattices obtained from a
vector space, and then to apply this to embeddability problems of subspace posets.

We start with an easy result.

Proposition 4.1. For a set I and a right vector space V over a division ring K,
the following are equivalent:

(i) ([I]<ω ,∪,∩, ∅) embeds into (Subfin V, +,∩, {0});
(ii) ([I]<ω ,∩) embeds into (SubV,∩);
(iii) card I 6 dimV .

Proof. (i)⇒(ii) is trivial.
Suppose that (ii) holds, via an embedding ϕ : ([I]<ω ,∩) →֒ (SubV,∩), and pick

ei ∈ ϕ({i}) \ ϕ(∅), for any i ∈ I. If J is a finite subset of I, i ∈ I \ J , and ei is
a linear combination of {ej | j ∈ J}, then ei belongs to ϕ({i}) ∩ ϕ(J) = ϕ(∅), a
contradiction; hence (ei | i ∈ I) is linearly independent, and so card I 6 dimV .

Finally suppose that (iii) holds. There exists a linearly independent family
(ei | i ∈ I) of elements in V . Define ϕ(X) as the span of {ei | i ∈ X}, for every
X ∈ [I]<ω. Then ϕ is an embedding from ([I]<ω ,∪,∩, ∅) into (Subfin V, +,∩, {0}).

�

For embeddability of [I]<ω into (SubV, +), we will need further results about the
dimension of dual spaces. It is an old but nontrivial result that the dual V ∗ (i.e.,
the space of all linear functionals) of an infinite-dimensional vector space V is never
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isomorphic to V . This follows immediately from the following sharp estimate of the
dimension of the dual space (which is a left vector space) given in the Proposition
on Page 19 in [2, Section II.2].

Theorem 4.2 (R. Baer, 1952). Let V be a right vector space over a division ring K.

(i) If V is finite-dimensional, then dimV ∗ = dimV .
(ii) If V is infinite-dimensional, then dimV ∗ = (cardK)dim V .

Strictly speaking, the result above is stated in [2] for a vector space over a field,
but the proof presented there does not make any use of the commutativity of K
so we state the result for division rings. Also, we emphasize that this proof is non-
constructive, in particular it uses Zorn’s Lemma. Of course, replacing ‘right’ by
‘left’ in the statement of Theorem 4.2 gives an equivalent result.

By using Baer’s result together with some elementary linear algebra, we obtain
the following result.

Proposition 4.3. For a set I and an infinite-dimensional right vector space V
over a division ring K, the following are equivalent:

(i) ([I]<ω ,∪,∩, ∅) embeds into (Subfin V,∩, +, V );
(ii) ([I]<ω ,∩) embeds into (SubV, +);
(iii) card I 6 (cardK)dim V .

Proof. (i)⇒(ii) is trivial.
Suppose that (ii) holds. To every subspace X of V we can associate its or-

thogonal X⊥ = {f ∈ V ∗ | (∀x ∈ X)(f(x) = 0)}, and the assignment X 7→ X⊥ de-
fines an embedding from (Sub V, +) into (Sub V ∗,∩). It follows that ([I]<ω ,∩) em-
beds into (Sub V ∗,∩). Therefore, by applying Proposition 4.1 to the left K-vector
space V ∗, we obtain, using Theorem 4.2, that card I 6 dimV ∗ = (cardK)dim V .

Finally suppose that (iii) holds. By Theorem 4.2, there exists a linearly inde-
pendent family (ℓi | i ∈ I) of V ∗ (indexed by I). We put ϕ(X) =

⋂

i∈X ker ℓi, for
every X ∈ [I]<ω (with the convention that ϕ(∅) = V ). It is obvious that ϕ is a

homomorphism from ([I]<ω ,∪, ∅) to (Subfin V,∩, V ).
For every finite subset X of I, if the linear map ℓX : V → KX , v 7→ (ℓi(v) | i ∈ X)

were not surjective, then its image would be contained in the kernel of a nonzero
linear functional on KX , which would contradict the linear independence of the ℓis;
whence ℓX is surjective. As ker ℓX = ϕ(X), it follows that

codimϕ(X) = dim KX = cardX. (4.1)

Therefore, ϕ embeds ([I]<ω,⊆) into (Subfin V,⊇).
Finally let X and Y be finite subsets of I. We apply the codimension formula

to the subspaces ϕ(X) and ϕ(Y ), so

codim(ϕ(X) + ϕ(Y )) + codim(ϕ(X) ∩ ϕ(Y )) = codimϕ(X) + codimϕ(Y ).

As ϕ(X) ∩ ϕ(Y ) = ϕ(X ∪ Y ), an application of (4.1) yields

codim(ϕ(X)+ϕ(Y )) = cardX+cardY −card(X∪Y ) = card(X∩Y ) = codimϕ(X∩Y ).

As ϕ(X ∩ Y ) is finite-codimensional and contains ϕ(X) + ϕ(Y ), it follows that
ϕ(X) + ϕ(Y ) = ϕ(X ∩ Y ). Therefore, ϕ is as desired. �

We obtain the following theorem.
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Theorem 4.4. Let V and W be right vector spaces over respective division rings K
and F , with V infinite-dimensional. If there exists an embedding from (Subfin V, +)
into (Sub W,∩), then dim W > (cardK)dim V .

Of course, taking W = V ∗ and sending every subspace X of V to its orthogo-
nal X⊥, we see that the bound (cardK)dim V is optimal.

Proof. Put κ = (cardK)dim V . It follows from Proposition 4.3 that ([κ]<ω ,∩) em-

beds into (Subfin V, +). Hence, by assumption, ([κ]<ω ,∩) embeds into (Sub W,∩),
which, by Proposition 4.1, implies that κ 6 dim W . �

Corollary 4.5. Let V be an infinite-dimensional vector space over any division
ring. Then there is no embedding from (Subfin V, +) into (Sub V,∩).

5. Endomorphism monoids of vector spaces

The largest part of Section 5 will be devoted to the proof of the following result.

Theorem 5.1. Let V and W be infinite-dimensional vector spaces over division
rings K and F , respectively. If there exists a semigroup embedding from Endfin V
into (EndW )op, then dimW > (cardK)dim V .

Of course, taking W = V ∗ and sending every endomorphism to its transpose, we
see that the bound (cardK)dim V is optimal.

Denote our semigroup embedding by ε : Endfin V →֒ (EndW )op. We start as in
the proof of Theorem 3.1.

Lemma 5.2. ker f ⊆ ker g implies that rng ε(g) ⊆ rng ε(f), for all f, g ∈ Endfin V .

Proof. There exists h ∈ Endfin V such that g = h ◦ f . Thus ε(g) = ε(f) ◦ ε(h) and
the conclusion follows. �

Lemma 5.2 makes it possible to define an antitone (i.e., order-reversing) map

µ : Subfin V → SubW by the rule µ(ker f) = rng ε(f), for each f ∈ Endfin V .

Lemma 5.3. X ⊆ Y iff µ(Y ) ⊆ µ(X), for all X, Y ∈ Subfin V .

Proof. The direction from the left to the right follows from Lemma 5.2. Now assume
that µ(Y ) ⊆ µ(X). There are idempotent f, g ∈ Endfin V such that X = ker f and
Y = ker g. As rng ε(g) ⊆ rng ε(f) and ε(f) is idempotent, ε(f)◦ε(g) = ε(g), that is,
ε(g◦f) = ε(g), and thus, as ε is one-to-one, g◦f = g, and therefore ker f ⊆ ker g. �

Lemma 5.4. µ(X + Y ) = µ(X) ∩ µ(Y ), for all X, Y ∈ Subfin V .

Proof. Put Z = X ∩Y and let X ′, Y ′, T be subspaces of V such that X = Z ⊕X ′,
Y = Z⊕Y ′, and (X+Y )⊕T = V . It follows that V = Z⊕X ′⊕Y ′⊕T . Let f and g
denote the projections of V onto Y ′ ⊕ T and X ′ ⊕ T , respectively, with kernels X
and Y , respectively. Then g ◦ f is the projection of V onto T with kernel X + Y .

Let x ∈ µ(X) ∩ µ(Y ). This means that x belongs to both rng ε(f) and rng ε(g),
hence, as both ε(f) and ε(g) are idempotent, that it is fixed by both these maps,
hence that it is fixed by their composite, ε(f) ◦ ε(g) = ε(g ◦ f), hence it lies in the
range of that composite, which, as ker(g ◦ f) = X + Y , is µ(X + Y ).

So we have proved that µ(X)∩ µ(Y ) is contained in µ(X + Y ). As the converse
inequality follows from Lemma 5.2, the conclusion follows. �
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Now Theorem 5.1 follows immediately from Theorem 4.4.
Observe the contrast with the case where V is finite-dimensional and K is com-

mutative: in this case, V is isomorphic to its dual vector space V ∗, and transposition
defines an isomorphism from EndV onto EndV ∗.

Corollary 5.5. Let V be an infinite-dimensional vector space over any division
ring. Then there is no semigroup embedding from Endfin V into (EndV )op.

Corollary 5.6. Let Ω be an infinite set and let V be a vector space over a division
ring. If Selffin Ω has a semigroup embedding into (EndV )op, then dimV > 2cardΩ.

Proof. Denote by F2 the two-element field. Apply Theorem 5.1 to the F2-vector
space (F2)

(Ω) with basis Ω instead of V , and V instead of W . We obtain that
if there exists a semigroup embedding from Endfin

(
(F2)

(Ω)
)

into (EndV )op, then

dimV > 2cardΩ. Now observe that as F2 is finite, Endfin((F2)
(Ω)

)
is a subsemigroup

of Selffin((F2)
(Ω)

)
. As Ω and (F2)

(Ω) have the same cardinality, our result follows.
�

6. Endomorphism monoids of free algebras

Most popular varieties of algebras have a finite similarity type (i.e., set of funda-
mental operations). Our next result deals with the embeddability problem for such
varieties (and some more). For a variety V of algebras, we shall denote by FV(X)
the free algebra in V on X . We say that V is trivial if the universe of any member
of V is a singleton.

Theorem 6.1. Let V be a nontrivial variety of algebras with similarity type Σ.
Then there is no semigroup embedding from EndFV(Ω) into (End FV(Ω))op, for
every infinite set Ω such that cardΣ < 2cardΩ.

Proof. Suppose that there is a semigroup embedding from End FV(Ω) into
(EndFV(Ω))op. As V is nontrivial and every endomap of Ω extends to a unique en-
domorphism of FV(Ω), Self Ω embeds into End FV(Ω). As the latter is a submonoid
of Self FV(Ω), we obtain that Self Ω embeds into (Self FV(Ω))op, so, by Theorem 3.1,
we obtain that cardFV(Ω) > 2cardΩ. However, cardFV(Ω) 6 cardΩ+cardΣ+ℵ0 <
2cardΩ, a contradiction. �

Observe that the context of Theorem 6.1 covers most examples of algebras pro-
vided in [4, Section 2.1].

Our next result will show that the cardinality bound cardΣ < 2cardΩ in Theo-
rem 6.1 is optimal. For a monoid M , an M -act is a nonempty set X endowed with
a map (M × X → X , (α, x) 7→ α · x) such that 1 · x = x and α · (β · x) = (αβ) · x
for all α, β ∈ M and all x ∈ X . Hence the similarity type of M -acts consists of
a collection, indexed by M , of unary operation symbols. Furthermore, the free
M -act on a set Ω, denoted by FM (Ω), can be identified with M ×Ω, endowed with
the ‘inclusion’ map (Ω →֒ M × Ω, p 7→ (1, p)), and the multiplication defined by
α · (β, p) = (αβ, p).

For any set Ω, we shall consider the monoid Rel Ω of all binary relations on Ω,
endowed with the composition operation defined by

α ◦ β = {(x, y) ∈ Ω × Ω | (∃z ∈ Ω)((x, z) ∈ β and (z, y) ∈ α)}, (6.1)

for all α, β ∈ Rel Ω. The right hand side of (6.1) is denoted in many references by
β ◦ α, however this conflicts with the notation g ◦ f for composition of functions,
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where every function is identified with its graph; as both composition operations
will be needed in the proof, we choose to identify them. This should not cause much
confusion as the monoid Rel Ω is self-dual, that is, it has an anti-automorphism.
The latter is the transposition map α 7→ α−1, where

α−1 = {(x, y) ∈ Ω × Ω | (y, x) ∈ α}, for any α ∈ Rel Ω.

Theorem 6.2. Let Ω be an infinite set and put M = Rel Ω. Then the monoid
EndFM (Ω) can be embedded into its dual.

Proof. The strategy of the proof will be the following:

(i) prove that for every monoid M and every infinite set Ω, the monoid Mop

embeds in EndFM (Ω); therefore M →֒ (End FM (Ω))op;
(ii) in case M = Rel Ω, prove that EndFM (Ω) →֒ M ;
(iii) items (i) and (ii) put together imply that End FM (Ω) →֒ (End FM (Ω))op.

We start with any monoid M . We put x · y = (x(p) · y(p) | p ∈ Ω) for any
x, y ∈ MΩ, and we endow E(M) = (Self Ω)× MΩ with the multiplication given by

(α, x) · (β, y) = (αβ, y · (x ◦ β)), for all (α, x), (β, y) ∈ E(M).

Each (α, x) ∈ E(M) defines an endomorphism f(α,x) of FM (Ω) = M × Ω by the
rule

f(α,x)(t, p) = (t · x(p), α(p)), for each (t, p) ∈ M × Ω.

It is straightforward to verify that the assignment (α, x) 7→ f(α,x) defines an iso-
morphism from (E(M), ·) onto (End FM (Ω), ◦). Furthermore,

Mop has a monoid embedding into EndFM (Ω), (6.2)

namely the assignment x 7→ (idΩ, kx), where kx denotes the constant function on Ω
with value x (as in Section 3).

Now we specialize to M = Rel Ω. Let ∞ be an object outside Ω and put Ω =
Ω∪{∞}. With every α ∈ Rel Ω we associate the binary relation α = α∪{(∞,∞)}.
It is obvious that the assignment α 7→ α defines a monoid embedding from RelΩ
into Rel Ω.

For each (α, x) ∈ E(M), we define the binary relation η(α, x) on Ω × Ω by

η(α, x) = {((p0, q0), (p1, q1)) ∈ (Ω × Ω)2 | p1 = α(p0) and (q1, q0) ∈ x(p0)}.

It is straightforward to verify that the map η defines a monoid embedding from E(M)
into Rel(Ω × Ω). (That η is one-to-one follows from our precaution of having re-

placed Ω by Ω in the definition of the map η; indeed, as the binary relation x(p0)
always contains the pair (∞,∞), η(α, x) determines the pair (α, x).) As Rel(Ω×Ω)
is isomorphic to Rel Ω (use any bijection from Ω×Ω onto Ω) and by (6.2), it follows
from the self-duality of Rel Ω that the monoids Rel Ω and End FM (Ω) embed into
each other. As M = Rel Ω is self-dual, the conclusion follows. �

As shows the coming Corollary 9.4, Theorem 6.2 cannot be extended to G-sets
(i.e., G-acts), for groups G. See also Problem 3.
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7. C-, S-, and M-independent subsets in algebras

We first recall some general notation and terminology. For an algebra A (that
is, a nonempty set endowed with a collection of finitary operations), we denote
by SubA (resp., EndA) the collection of all subuniverses (resp., endomorphisms)
of A. We also denote by 〈X〉 the subuniverse of A generated by a subset X of A;
in case X = {x1, . . . , xn}, we shall write 〈x1, . . . , xn〉 instead of 〈{x1, . . . , xn}〉. We
shall also put X ∨Y = 〈X ∪ Y 〉, for all X, Y ∈ SubA. A subset I of A is said to be

• C-independent, if x /∈ 〈I \ {x}〉, for all x ∈ I;
• M-independent, if every map from I to A can be extended to some homo-

morphism from 〈I〉 to A.
• S-independent, if every map from I to I can be extended to some homo-

morphism from 〈I〉 to A.

In these definitions, C stands for closure, as the definition of C-independence relies
upon a closure operator; M stands for Marczewski who introduced M-independence
in [15]; S stands for Świerczkowski who introduced this notion in [27].

Say that a subset I of A is non-degenerate, if I ∩ 〈∅〉 = ∅. The following
result, with straightforward proof, shows that aside from degenerate cases, M-
independence implies S-independence implies C-independence. (None of the con-
verses hold as a rule [8]).

Proposition 7.1. Let I be a subset in an algebra A. The following assertions hold:

(i) I is S-independent degenerate iff I is a singleton contained in 〈∅〉.
(ii) I is M-independent degenerate iff I = A = 〈∅〉 is a singleton.
(iii) If I is M-independent, then I is S-independent.
(iv) If I is S-independent non-degenerate, then I is C-independent.

The following result generalizes the main part of Proposition 4.1. It relates the
existence of large either S-independent or C-independent subsets of an algebra A
and the existence of meet-embeddings of large [I]<ω into the subuniverse lattice
of A.

Proposition 7.2. The following statements hold, for every algebra A and every
set I:

(i) If I is a non-degenerate S-independent subset of A, then ([I]<ω,∪,∩) em-
beds into (Sub A,∨,∩).

(ii) If ([I]<ω,∩) embeds into (Sub A,∩), then A has a C-independent subset X
such that card I 6 cardX.

Proof. (i). Let I be a non-degenerate S-independent subset of A, we shall prove that
([I]<ω,∪,∩) embeds into (SubA,∨,∩). If I = ∅ then the result is trivial. Suppose
that I = {p}. As I is non-degenerate, p /∈ 〈∅〉, thus 〈∅〉 is strictly contained in 〈p〉,
and the result follows.

Suppose from now on that I has at least two elements. We define a map
ϕ : [I]<ω → SubA by setting

ϕ(∅) =
⋂

(〈p〉 | p ∈ I) , (7.1)

while ϕ(X) = 〈X〉 for any nonempty X ∈ [I]<ω. It is obvious that ϕ is a join-ho-
momorphism from [I]<ω to SubA. Suppose that ϕ(X) ⊆ ϕ(Y ), for X, Y ∈ [I]<ω,
and let p ∈ X \ Y . Suppose first that Y = ∅. As X ⊆ ϕ(X) ⊆ ϕ(Y ) = ϕ(∅)
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and by (7.1), we obtain that p ∈ 〈q〉 for each q ∈ I, thus, as I is C-independent
(cf. Proposition 7.1), I = {p}, a contradiction. Suppose now that Y is nonempty.
Let q ∈ I. As I is S-independent, there exists an endomorphism f of 〈I〉 such that
f(p) = q and f↾Y = idY . From X ⊆ ϕ(X) ⊆ ϕ(Y ) = 〈Y 〉 it follows that p ∈ 〈Y 〉,
hence q = f(p) = p, so I = {p}, a contradiction.

Therefore, ϕ is a join-embedding.
Now let X, Y ∈ [I]<ω, we shall prove that ϕ(X)∩ϕ(Y ) is contained in ϕ(X∩Y ).

So let a ∈ ϕ(X) ∩ ϕ(Y ). Fix one-to-one enumerations

X \ Y = {x0, . . . , xk−1},

Y \ X = {y0, . . . , yl−1},

X ∩ Y = {z0, . . . , zn−1}.

There are terms s and t such that

a = s(x0, . . . , xk−1, z0, . . . , zn−1) = t(y0, . . . , yl−1, z0, . . . , zn−1). (7.2)

Suppose first that X ∩ Y 6= ∅, so n > 0. As I is S-independent, there exists an
endomorphism f of 〈I〉 that fixes all yis and all zis such that f(xi) = z0 for each
i < k. From the second equation in (7.2) it follows that f(a) = a, hence, by the
first equation in (7.2),

a = f(a) = s(z0, . . . , z0
︸ ︷︷ ︸

k times

, z0, . . . , zn−1) ∈ ϕ(X ∩ Y ) .

Now assume that X ∩Y = ∅. By applying the case above to X ∪{p} and Y ∪ {p},
we obtain that a ∈ ϕ({p}) = 〈p〉, for each p ∈ I. Hence, by (7.1), a belongs to ϕ(∅).

In any case, a ∈ ϕ(X ∩ Y ), and so ϕ is a meet-homomorphism.
(ii). Let ϕ : ([I]<ω,∩) →֒ (SubA,∩) be an embedding, and pick ei ∈ ϕ({i}) \

ϕ(∅), for any i ∈ I. If i, i0, . . . , in−1 are distinct indices in I and ei belongs to
〈
ei0 , . . . , ein−1

〉
, then it belongs to ϕ({i}) ∩ ϕ({i0, . . . , in−1}) = ϕ(∅), a contradic-

tion. Therefore, the family (ei | i ∈ I) is C-independent. �

On the other hand, by mimicking the arguments used in the proofs of earlier
results, we obtain the following set of results.

Proposition 7.3. Let A be an algebra, let Ω be an infinite set, and let V be an
infinite-dimensional right vector space over a division ring K. Put κ = (cardK)dim V

and λ = 2cardΩ. Then the following statements hold:

(i) If Endfin V has a semigroup embedding into (EndA)op, then (Subfin V, +)
embeds into (Sub A,∩).

(ii) If (Subfin V, +) embeds into (SubA,∩), then ([κ]<ω,∩) embeds into (SubA,∩).
(iii) If Selffin Ω has a semigroup embedding into (EndA)op, then ([λ]<ω ,∩) em-

beds into (Sub A,∩).

Proof. (i). Let ε : Endfin V →֒ (EndA)op be a semigroup embedding. As in the

proof of Theorem 5.1, we can construct an antitone map µ : Subfin V → SubA by
the rule µ(ker f) = rng ε(f), for each f ∈ Endfin V . As in the proof of Theorem 5.1,

µ is an embedding from (Subfin V, +) into (SubA,∩).

(ii). It follows from Proposition 4.3 that ([κ]<ω,∩) embeds into (Subfin V, +),
thus into (SubA,∩).
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(iii). As in the proof of Corollary 5.6, there exists a semigroup embedding from
Endfin

(
(F2)

(Ω)
)

into Selffin Ω, and hence into (EndA)op. The conclusion follows
then from (i) and (ii) above. �

8. Embedding endomorphism semigroups of SC-ranked algebras

In the present section we shall indicate how certain results of Sections 4 and 5
can be extended to more general objects, which we shall call SC-ranked algebras.

We start by recalling the following result.

Lemma 8.1 ([13], p. 50, Exercise 6). For an algebra A, the following conditions
are equivalent:

(1) for every subset X of A and all elements u, v of A, if u ∈ 〈X ∪ {v}〉 and
u /∈ 〈X〉, then v ∈ 〈X ∪ {u}〉;

(2) for every subset X of A and every element u ∈ A, if X is C-independent
and u /∈ 〈X〉, then X ∪ {u} is C-independent;

(3) for every subset X of A, if Y is a maximal C-independent subset of X,
then 〈X〉 = 〈Y 〉;

(4) for all subsets X, Y of A with Y ⊆ X, if Y is C-independent, then there
is a C-independent set Z with Y ⊆ Z ⊆ X and 〈Z〉 = 〈X〉.

An algebra A is said to be a matroid algebra if it satisfies one (and hence all) of
the equivalent conditions of Lemma 8.1.

Definition 8.2. For T ∈ {M, S, C}, a T-basis of an algebra A is a T-independent
generating subset of A. We say that A is a T-algebra if it has a T-basis.

Clearly every free algebra is an M-algebra, thus an S-algebra.

Definition 8.3. For T, Q ∈ {M, S, C}, a TQ-algebra is an algebra where the notions
of T-independence and Q-independence coincide.

The MC-algebras appear in the literature as v∗∗-algebras (see [21, 26]). Every
absolutely free algebra is an MC-algebra (see [26] for this and many other examples).

A matroid MC-algebra is said to be an independence algebra. These algebras
attracted the attention of experts in Universal Algebra (they were originally called
v∗-algebras ; see [1, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26] and [8] for hundreds
of references on the topic), Logic (e.g. [9, 10, 28, 29]) and Semigroup Theory (e.g.
[6, 7, 11]). Familiar examples of independence algebras are sets, free G-sets (for a
group G) and vector spaces (see [5, 26]). Observe that independence algebras are
MC-algebras and the latter are SC-algebras.

Definition 8.4. An algebra A is said to be SC-ranked, if it has an S-basis Ω such
that cardX 6 cardΩ for each C-independent subset X of A. The cardinality of
this set Ω is said to be the rank of A, and denoted by Rank A.

By Lemma 8.1(4), every matroid S-algebra A is an SC-ranked algebra. Observe
that Rank A is then the cardinality of any C-basis of A.

It should be observed that not every SC-algebra contains a C-independent gen-
erating set (see the example following the proof of Theorem 4 in [12, Section 32]).

Theorem 8.5. Let A and B be SC-ranked algebras with RankA infinite. If there
exists a semigroup embedding from EndA into (EndB)op, then RankB > 2Rank A.
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Proof. Let X be an S-basis of A. Then Selffin X embeds into Self X , which (as X
is an S-basis) embeds into EndA, which embeds into (EndB)op. Therefore, by
Proposition 7.3(iii) combined with Proposition 7.2(ii), there exists a C-independent
set Y ⊆ B with cardY > 2cardX . As B is SC-ranked, cardY 6 Rank B and the
result follows. �

Corollary 8.6. For SC-ranked algebras A, B such that RankA = RankB > ℵ0,
there is no semigroup embedding from EndA into (EndB)op. In particular, EndA
has no semigroup embedding into its dual.

In particular, Corollary 8.6 applies to independence algebras.
The classification problem of all MC-algebras is open since the mid sixties. As

Grätzer says “There are some results on [the classification of MC-algebras, that
is] v∗∗-algebras; but the problem is far from settled” [12, p. 205]. Likewise, SC-
ranked algebras are not classified; in fact, the requirement to be SC-ranked seems
so weak that it seems unlikely that this could ever be done. For example, Theo-
rems 9.1 and 10.6 give us, respectively, a characterization of SC-ranked free M -acts
(for monoids M) and a sufficient condition for a free module to be SC-ranked, in
terms of an antichain condition of the left divisibility relation on the monoid, and
a nœtherianity condition on the ring, respectively. The corresponding classes of
monoids, or rings, are so large that they are certainly beyond the reach of any
classification.

Another point is that in order to obtain results such as Theorem 8.5, the state-
ment, for an algebra A, to be SC-ranked, is a compromise between conciseness
and generality. In particular, it can be further weakened (e.g., by using meet-
embeddings of semilattices [I]<ω into subuniverse lattices), and it seems likely that
more algebras would satisfy the possible weakenings of SC-rankedness, although it
is unclear whether there would be any ‘natural’ such example.

In Sections 9 and 10, we shall illustrate the notion of SC-rankedness on M -acts
and modules.

9. SC-ranked free M -acts

In the present section, we shall characterize SC-ranked free M -acts (cf. Sec-
tion 6).

In any monoid M , we define preorderings Eleft and Eright by the rule

u Eleft v ⇔ (∃t)(v = tu) , u Eright v ⇔ (∃t)(v = ut) , for all u, v ∈ M.

We say that M is left uniserial, if Eleft is a total preordering, that is, for any
elements u, v ∈ M , either u Eleft v or v Eleft u. This occurs, in particular, in the
somehow degenerate case where M is a group.

Theorem 9.1. Let M be a monoid and let Ω be a nonempty set. Then FM (Ω) is
SC-ranked iff either Ω is finite and M is left uniserial, or Ω is infinite and every
Eleft-antichain of M has at most cardΩ elements.

Proof. We shall repeatedly use the easily verified fact that the C-independent sub-
sets of FM (Ω) are exactly the subsets Y such that Y · p−1 = {u ∈ M | u · p ∈ Y }
is a Eleft-antichain for every p ∈ Ω. Observe also that Ω is an M-basis, thus an
S-basis, of FM (Ω).

Suppose first that M has a Eleft-antichain U such that cardΩ < cardU . Pick
p ∈ Ω. Observe that U · p = {u · p | u ∈ U} is a C-independent subset of FM (Ω) of
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cardinality greater than cardΩ. As Ω is an S-basis of FM (Ω), it follows that FM (Ω)
is not SC-ranked.

Now suppose that M is not left uniserial and Ω is finite. Let u, v ∈ M be Eleft-
incomparable. Then the subset {u · p | p ∈ Ω} ∪ {v · p | p ∈ Ω} is a C-independent
subset of FM (Ω) with cardinality 2 · cardΩ, so again FM (Ω) is not SC-ranked.

If M is left uniserial, then the C-independent subsets of FM (Ω) are exactly the
subsets of the form {f(p) · p | p ∈ X}, for a subset X of Ω and a map f : X → M .
Hence every C-independent subset has at most cardΩ elements, and so FM (Ω) is
SC-ranked.

Finally assume that Ω is infinite and that every Eleft-antichain of M has cardinal-
ity at most cardΩ. For every C-independent subset Y of FM (Ω) and every p ∈ Ω,
the subset Y · p−1 is a Eleft-antichain of M , thus it has cardinality below cardΩ;
hence, as Ω is infinite, cardY 6 cardΩ. Therefore, FM (Ω) is SC-ranked. �

By contrast, FM (Ω) is almost never a matroid algebra:

Proposition 9.2. Let M be a monoid and let Ω be a nonempty set. Then FM (Ω)
is a matroid algebra iff M is a group.

Proof. If M is a group, then it is straightforward to verify that FM (Ω) satisfies
Condition (1) of Lemma 8.1, so it is a matroid algebra.

Conversely, suppose that FM (Ω) is a matroid algebra. Let u ∈ M and pick p ∈ Ω.
From u · p ∈ 〈1 · p〉 \ 〈∅〉 and the matroid condition it follows that 1 · p ∈ 〈u · p〉,
that is, u is left invertible in M . As this holds for all u ∈ M , M is a group. �

The following result gives us a wide range of MC-algebras that are usually not
SC-ranked. Denote by X∗ the free monoid on X , for any set X .

Proposition 9.3. Let Ω and X be sets, with Ω nonempty. Then FX∗(Ω) is both
an M-algebra and an MC-algebra.

Proof. As Ω is an M-basis of FX∗(Ω), the latter is an M-algebra.
Now let Y be a C-independent subset of FX∗(Ω). This means that Y · p−1 is a

Eleft-antichain of X∗ for each p ∈ Ω. Now let f : Y → FX∗(Ω) be any mapping.
Consider pairs (t0, y0) and (t1, y1) of X∗ × Y such that t0y0 = t1y1. This means
that there are p ∈ Ω and u0, u1 ∈ X∗ such that y0 = u0 · p, y1 = u1 · p, and
t0u0 = t1u1. As X∗ is the free monoid on X , either t1 Eright t0 or t0 Eright t1;
suppose, for example, that the first case holds, so t0 = t1w for some w ∈ X∗. From
t1wu0 = t0u0 = t1u1 it follows that wu0 = u1, thus u0 Eleft u1, hence, as Y · p−1 is
a Eleft-antichain, u0 = u1, and hence y0 = y1 and t0 = t1. Therefore, there exists a
unique map f : 〈Y 〉 → FX∗(Ω) such that f(t · y) = t · f(y) for each (t, y) ∈ X∗×Y .
Clearly, f is a morphism, and so FX∗(Ω) is an MC-algebra. �

Observe that X is a Eleft-antichain of X∗. Hence, by Theorem 9.1, if cardX >
cardΩ, then FX∗(Ω) is not SC-ranked, although, by Proposition 9.3, it is both an
M-algebra and an MC-algebra.

As an immediate consequence of Corollary 8.6 and Theorem 9.1, we observe the
following.

Corollary 9.4. Let Ω be an infinite set and let G be a group. Then End FG(Ω)
cannot be embedded into (End FG(Ω))op.

Corollary 9.4 does not extend to M -acts (for a monoid M), see Theorem 6.2.
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10. SC-ranked free modules and κ-nœtherianity

In this section, all modules will be left modules over (unital, associative) rings.

Definition 10.1. Let κ be a regular cardinal. A module M is κ-nœtherian, if every
increasing κ-sequence of submodules of M is eventually constant.

In particular, M is nœtherian iff it is ℵ0-nœtherian. For a regular cardinal κ,
M is κ-nœtherian iff there is no strictly increasing κ-sequence of submodules of M .
Hence, if κ < λ are regular cardinals and M is κ-nœtherian, then M is also λ-
nœtherian.

C-independent subsets and κ-nœtherian modules are related as follows.

Lemma 10.2. Let κ be a regular cardinal. If a module M is κ-nœtherian, then
every C-independent subset of M has cardinality smaller than κ.

Proof. Suppose that there exists a C-independent subset {xξ | ξ < κ} of M , where
ξ 7→ xξ is one-to-one. The family (Xα | α < κ), where Xα is the submodule
generated by {xξ | ξ < α}, is a strictly increasing κ-sequence of submodules of M ,
a contradiction. �

Lemma 10.3. Let κ be a regular cardinal and let M be a module. Then any finite
sum of κ-nœtherian submodules of M is κ-nœtherian.

Proof. As the proof of the (classical) result that the sum of two nœtherian modules
is nœtherian (i.e., the case where κ = ℵ0), see, for example, the Corollary in [14,
Section VI.1]. �

Lemma 10.4. Let κ be a regular cardinal, let M be a module, and let (Mi | i ∈ I)
be a family of κ-nœtherian submodules of M such that card I < κ. Then the sum
∑

i∈I Mi is κ-nœtherian.

Proof. We put MJ =
∑

i∈J Mi, for each J ⊆ I. Let (Xξ | ξ < κ) be an increasing
κ-sequence of submodules of MI . For every J ∈ [I]<ω , it follows from Lemma 10.3
that there exists αJ < κ such that Xξ ∩ MJ = XαJ

∩ MJ for each ξ > αJ . As κ
is regular and greater than card

(
[I]<ω

)
, the supremum α =

∨
(αJ | J ∈ [I]<ω) is

smaller than κ. Observe that Xξ = Xα for each ξ > α. �

We shall use the standard convention to denote by RR the ring R viewed as a
left module over itself, for any ring R. For a regular cardinal κ, we say that R is
left κ-nœtherian, if the module RR is κ-nœtherian.

For a module M and a set Ω, we denote by M (Ω) the module of all families
(xp | p ∈ Ω) ∈ MΩ such that {p ∈ Ω | xp 6= 0} is finite. In particular, RR(Ω) is the
free left R-module on Ω.

We denote by κ+ the successor cardinal of a cardinal κ.

Proposition 10.5. Let Ω be an infinite set and let R be a left (cardΩ)+-nœtherian
ring. Then the free module RR(Ω) is SC-ranked.

This makes it possible to produce many SC-ranked modules.

Theorem 10.6. Let κ be an infinite cardinal and let R be a left κ+-nœtherian ring.
Then the free left module RR(Ω) is SC-ranked, for every set Ω such that cardΩ > κ.

Proof. Put λ = cardΩ. Of course, Ω is an S-basis of RR(Ω). As, by Lemma 10.4,

RR(Ω) is a λ+-nœtherian left module, it follows from Lemma 10.2 that every C-
independent subset of RR(Ω) has cardinality at most λ. �
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By using Corollary 8.6, we obtain the following result.

Corollary 10.7. Let R be a left ℵ1-nœtherian ring. Then the free module RR(Ω) is
SC-ranked, for every infinite set Ω. Consequently, End

(

RR(Ω)
)

has no semigroup
embedding into its dual.

In particular, Corollary 10.7 applies to the case where the ring R is left nœtherian.

11. Concluding remarks

The basic motivation for the present paper was to find large classes of algebras A
for which there exists no semigroup embedding from EndA into its dual. A brief
summary of the cases where this negative embedding property holds, for algebras
of infinite rank, runs as follows:

(1) A is SC-ranked (cf. Corollary 8.6).
(2) A = FV(Ω), the free algebra on an infinite set Ω in a variety V on a

similarity type Σ, where cardΣ < 2cardΩ (cf. Theorem 6.1). The 2cardΩ

bound is optimal, even for the variety of M -acts for a suitably chosen
monoid M (cf. Theorem 6.2).

There are a number of algebras A satisfying (1) above:

(1.1) Independence algebras of infinite rank: for example, sets, free G-sets (for
a group G), vector spaces (over a given division ring).

(1.2) Free M -acts FM (Ω) (Ω infinite), for monoids M in which every Eleft-
antichain has at most cardΩ elements.

(1.3) Free modules RR(Ω) (Ω infinite), for left (card Ω)+-nœtherian rings R.

We finally formulate a few open problems.

Problem 1. Let V be a vector space. Can (SubV,∩) be embedded into (SubV, +)?

In Theorem 6.2, we show that the endomorphism monoid of a free M -act, for a
monoid M , may embed into its dual. We do not know if this can also happen for
modules :

Problem 2. Are there a ring R and a free left module F of infinite rank over R
such that EndF embeds into its dual?

Problem 3. Does there exist a variety V of algebras such that End FV(ω) has an
anti-automorphism?

By Theorem 6.1, the similarity type of any variety V solving Problem 3 should
have cardinality at least 2ℵ0 . For a partial positive result, we refer to Theorem 6.2.

K. Urbanik introduces in [25] a subclass of the class of MC-algebras, called there
v∗-algebras. He also classifies these algebras in terms of modules and transformation
semigroups.

Not every v∗-algebra has a C-basis. For example, denote by Z(2) the valuation
ring of all rational numbers with odd denominator; then the field Q of all rational
numbers, viewed as a Z(2)-module, is a v∗-algebra (cf. [25, Section 3]). However,
for any nonzero rational numbers a and b, either a/b or b/a belongs to Z(2), thus
any C-independent subset of Q has at most one element. Since Q is not a finitely
generated Z(2)-module, it has no C-basis.

Problem 4. Let A be a v∗-algebra with an infinite S-basis. Can EndA be embedded
into its dual?
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By Corollary 8.6, Problem 4 would have a negative answer if we could prove
that every v∗-algebra with an infinite S-basis is also SC-ranked. However, we do
not know this either.
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