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In the spectral analysis of few one dimensional quantum particles interacting through delta potentials it is well known that one can recast the problem into the spectral analysis of an integral operator (the skeleton) living on the submanifold which supports the delta interactions. We shall present several tools which allow direct insight into the spectral structure of this skeleton. We shall illustrate the method on a model of a two dimensional quantum particle interacting with two infinitely long straight wires which cross one another at angle θ: the quantum scissor.

Introduction

Let us consider the following one dimensional model of N quantum particles interacting through delta potentials. In suitable units, the corresponding Hamiltonian reads as (1.1)

- N i=1 ∆ i 2m i + 1≤i<j≤N Z i Z j δ(x i -x j ), acting in L 2 (R N ),
where m i and Z i denote respectively the mass and the charge of the i'th particle. When the particles are identical (i.e. all the m i 's and Z i 's are equal), it is a well known fact that this model is indeed exactly solvable [LL, McG]; for a quick and fairly complete review, see [vD]; see also the introduction of [AlGH-KH-E]. However, it is not known whether the model is exactly solvable if the particles are distinct, and we strongly suspect that it is not. We have shown in [START_REF] Cornean | Three quantum charged particles interacting through delta potentials[END_REF] that one can nevertheless expect partial exact results, at least. To explore this eventual solvability we have developed a mathematical tool, that we call the skeleton method, which requires to work with a system of integral operators.

The main issue of this article is to give a thorough exposition of this skeleton method, see sections 2 and 3. Finally we shall demonstrate the power of this tool by the spectral analysis of bound states in a model of leaky wires that we call a quantum scissor, see [BEPS] for this terminology. 1.1. Leaky wires. We shall consider the problem (1.1) only in the case N = 3, and

(1.2) m 1 = m 2 > 0, Z 1 = Z 2 < 0 and Z 3 > 0 with the center of mass removed. Then the Hamiltonian expressed in the relative Jacobi coordinates acts in L 2 (R 2 ). After rescaling ( see [START_REF] Cornean | Three quantum charged particles interacting through delta potentials[END_REF] for more details) we have

(1.3) H := - 1 2 ∆ x - 1 2 ∆ y -δ(A ⊥ 1 • (x, y)) -δ(A ⊥ 2 • (x, y)) + λδ(A ⊥ 3 • (x, y))
where A i , i = 1, 2, 3 are three normalized vectors as shown in Figure 1 where the angles θ i,j 's and λ ≥ 0 depend on the original parameters m i 's and Z i 's. Here A ⊥ i denotes A i rotated clockwise by π/2 and the dot in A ⊥ i • (x, y) stands for the scalar product in R 2 . Thus H in (1.3) may be interpreted as the Hamiltonian of a quantum particle confined to a two dimensional plane, which interacts with three straight and infinitely long leaky wires directed by the vectors A i . The "leaky wire" expression appears probably for the first time in [EI] . Another suitable expression for such a quantum model is "leaky graph" which appears in [EN].

1.2. Physical applications. Hamiltonians of the type (1.1) are not only convenient mathematical models, but they do also describe physical systems when some physical parameters are pushed to a limit. It has been recognized long time ago, see e.g. [Spr], that atoms in a strong homogenous magnetic field can be modelled by (1.1), see [BaSoY, BD] for a recent mathematical treatment of this problem. Quasiparticles on carbon nanotubes like excitons can be modelled by a system of charged quantum particles living at the surface of an infinitely long cylinder, see [P]. When the radius of the cylinder tends to zero, it has been shown in [START_REF] Cornean | One dimensional models of excitons in carbon nanotubes[END_REF][START_REF] Cornean | Effective models for excitons in carbon nanotubes[END_REF] that a model of the type (1.1) is a good effective Hamiltonian for these quasiparticles. Not only does the quantum world provide us with such models. For example, in classical optics, photonic crystals with a high contrast in the dielectric constant between the (thin) crystal and air, can also be modelled by such a Hamiltonian, see [START_REF] Kuchment | Differential operators on graphs and photonic crystals. Modeling and computation in optics and electromagnetics[END_REF]§2] for more details.

The skeleton

Most of the content of this section could be obtained as a by-product of [BEKS]. However we think it is worth to make public this more "operator theoretical" version. For any normalized vector A in R 2 we introduce τ A :

H 1 (R 2 ) → L 2 (R) as the continuous restriction map (2.1) H 1 (R 2 ) ∋ ψ → τ A ψ ∈ L 2 (R), τ A ψ(s) := ψ(sA).
Let g be a diagonal 3 × 3 matrix with the diagonal entries {g i } 3 i=1 := (-1, -1, λ). The Hamiltonian H in (1.3) is properly defined as the unique self-adjoint operator associated to the closed and bounded from below quadratic form:

(2.2) H 1 (R 2 ) ∋ u → 1 2 ∇u 2 + 3 i=1 g i τ Ai u 2 ∈ R, Let us set τ i := τ Ai and τ := (τ 1 , τ 2 , τ 3 ) : H 1 (R 2 ) → ⊕ 3 i=1 L 2 (R)
. Then H may be rewritten as

(2.3) H = H 0 + τ ⋆ gτ, H 0 := - 1 2 ∆, dom H 0 := H 2 (R 2 ).
Notice that the above sum defining H must be understood in the sense of quadratic forms, and as a matter of fact dom H = dom H 0 . Thanks to the particular values of the coupling constant g i 's and by an application of the HVZ theorem one gets Lemma 2.1. For all λ ≥ -1, the essential spectrum of H is [-1 2 , ∞). We want to show that the eigenvalue problem HΨ = EΨ for E < -1 2 , i.e. below the essential spectrum can be reduced to a one-dimensional eigenvalue problem involving integral operators. Using Krein's formula with R(z) := (H -z) -1 , R 0 (z) := (H 0 -z) -1 we get at once:

(2.4) R(z) = R 0 (z) -R 0 (z)τ ⋆ (g -1 + τ R 0 (z)τ ⋆ ) -1 τ R 0 (z), z ∈ ρ(H 0 ) ∩ ρ(H).
By classical Sobolev trace theorems the following operators are continuous:

τ R 0 (z) : L 2 (R 2 ) → 3 i=1 H 3 2 (R), τ R 0 (z)τ ⋆ : 3 i=1 H s (R) → 3 i=1 H s+1 (R) for all z /
∈ spect H 0 and all s ∈ R. This allows to consider g -1 + τ R 0 (z)τ ⋆ as a bounded operator on S := ⊕ 3 i=1 L 2 (R) when z / ∈ R + .

Definition 2.2. We shall call S(k)

:= g -1 + τ R 0 (-k 2 )τ ⋆ the skeleton of H at energy -k 2 . Theorem 2.3. E < -1 2 is an eigenvalue of H iff ker(g -1 + τ R 0 (E)τ ⋆ ) = {0}.
If P is the orthogonal projector on this kernel, then the multiplicity of E is equal to the dimension of P . In addition, the operator P τ R 2 0 (E)τ ⋆ P is invertible on the range of P , and the eigenprojector of H associated to E is given by

R 0 (E)τ ⋆ P τ R 2 0 (E)τ ⋆ P -1 τ R 0 (E).
Proof. 1. We start by showing that ∀E := k 2 < -1 2 the essential spectrum of S(k) obeys: for all λ ≥ 0 0

/ ∈ spect ess S(k) = spect ac S(k) = [-1, -1 + 1 √ 2k ] ∪ [λ -1 , λ -1 + 1 √ 2k ]. Indeed if one sets T θi,j := τ i R 0 (z)τ ⋆ j then (2.5) S(k) =   -1 + T 0 0 0 0 -1 + T 0 0 0 0 λ -1 + T 0   +   0 T θ1,2 T θ2,3 T θ1,2 0 T θ2,3 T θ2,3 T θ2,3 0  
Since the diagonal of the first matrix consists of multiplication operators (in the Fourier representation see (3.2)) and the entries of the second matrix are all trace class operators (see Theorem 3.3), we are done. That 0 / ∈ spect ess S(k) is now obvious. 2. Assume that E < -1 2 is an eigenvalue of H, but 0 is not an eigenvalue of S(k). Then S(k) has a bounded inverse (after an easy application of the Fredholm alternative). Since R 0 (E) and τ R 0 (E) are bounded operators, it means that R(z) is also bounded at z = E. This contradicts the fact that E is an eigenvalue of H. We conclude that S(k) cannot be invertible (injective) if -k 2 coincides with an eigenvalue of H. 3. Now let us prove that all singularities of S(k) -1 correspond to eigenvalues of H. One has the identity

(2.6) (g -1 + τ R 0 (z)τ ⋆ ) -1 = g -gτ R(z)τ ⋆ g
valid for z where at least one and therefore two members of this identity exists. Now assume that for some E < -1/2, the operator

g -1 + τ R 0 (E)τ ⋆ is not invertible (i.e.
not injective in our case). Assume also that E is not in the (discrete) spectrum of H. Then (2.6) implies that in a small disc around E we have that (g

-1 + τ R 0 (z)τ ⋆ ) -1 is uniformly bounded, which means that g -1 + τ R 0 (E)τ ⋆ is invertible by Neumann series, contradiction.
4. Now let us investigate the dimension of the spectral subspace associated to an eigenvalue. Assume that 0 is an eigenvalue of g -1 +τ R 0 (E)τ ⋆ and let P be the finite dimensional associated eigenprojector. We have shown that E is also an eigenvalue of H, and denote by P (E) its finite dimensional projection. We want to prove here that dim(P ) = dim(P (E)). Since (g -1 + τ R 0 (E)τ ⋆ )P = 0 and using the resolvent identity:

(2.7) (g -1 + τ R 0 (z)τ ⋆ )P = (z -E)τ R 0 (z)R 0 (E)τ ⋆ P.
Using (2.6), and knowing that near E we have

(2.8) (z -E)R(z) = -P (E) + O((z -E)),
it follows that

P = (z -E)(g -1 + τ R 0 (z)τ ⋆ ) -1 τ R 0 (z)R 0 (E)τ ⋆ P (2.9) = gτ P (E)τ ⋆ gτ R 0 (z)R 0 (E)τ ⋆ P + O((z -E)).
Taking the limit z → E we obtain (2.10)

P = gτ P (E)τ ⋆ gτ R 0 (E) 2 τ ⋆ P.
If Ran(P (E)) is spanned by the eigenvectors {ψ j } dim(P (E)) j=1

, then (2.10) says that Ran(P ) is spanned by {gτ ψ j } dim(P (E)) j=1

, therefore dim(P ) ≤ dim(P (E)).

We now want to prove the reverse inequality. Denote by Q := id -P , so that in matrix notation (use (2.7) and its adjoint)

g -1 +τ R 0 (z)τ ⋆ = (z-E) P τ R 0 (z)R 0 (E)τ ⋆ P P τ R 0 (z)R 0 (E)τ ⋆ Q Qτ R 0 (z)R 0 (E)τ ⋆ P (z -E) -1 Q(g -1 + τ R 0 (z)τ ⋆ )Q
.

To invert this matrix we use the Feshbach method. One has (i) the operator 

Q(g -1 + τ R 0 (E)τ ⋆ )Q has a bounded inverse on the range of Q, thus (z -E) -1 Q(g -1 + τ R 0 (z)τ ⋆ )Q is bounded invertible for z in a neighbourhood of E,
:= P τ R 0 (z)R 0 (E)τ ⋆ P -P τ R 0 (z)R 0 (E)τ ⋆ Q(z -E) •(Q(g -1 + τ R 0 (z)τ ⋆ )Q) -1 Qτ R 0 (z)R 0 (E)τ ⋆ P.
Notice that this operator is nothing but a finite dimensional matrix, acting in Ran (P ). The Feshbach formula says that the above operator A(z) is invertible if and only if (g -1 +τ R 0 (z)τ ⋆ )/(z-E) is invertible. Moreover, for z in a neighborhood of E this formula gives:

(z -E)P (g -1 + τ R 0 (z)τ ⋆ ) -1 P = A(z) -1 , z = E.
Using again (2.6) and (2.8), we obtain

A(z) -1 = P gτ P (E)τ ⋆ gP + O(z -E), z = E.
This inverse is bounded near E, and A(z) is continuous at z = E, hence A(E) is invertible and

(2.11)

A(E) -1 = P τ R 0 (E) 2 τ ⋆ P -1 = P gτ P (E)τ ⋆ gP.
Summarizing, via the Feshbach formula, we obtain that

(2.12) (z -E)(g -1 + τ R 0 (z)τ ⋆ ) -1 = A(z) -1 + O((z -E)).
Multiply (2.6) with (z -E), use (2.8), (2.12), and take the limit z → E. This gives:

(2.13)

P (E) = R 0 (E)τ ⋆ A(E) -1 τ R 0 (E) = R 0 (E)τ ⋆ P gτ P (E)τ ⋆ gP τ R 0 (E). Now assume that {φ j } dim(P ) j=1
are eigenvectors spanning the range of P . Then (2.13) says that the range of

P (E) is spanned by {R 0 (E)τ ⋆ φ j } dim(P ) j=1
, which implies dim(P (E)) ≤ dim (P ) and we are done.

The T θ operators

In this section we shall establish various properties of the T θi,j operators.

3.1. Generalities. Let A and B be two normalized vectors of R 2 . We shall consider τ A R 0 (-k 2 )τ ⋆ B where τ A , τ B are defined by (2.1). We can obtain explicit formulas for their integral kernels using the Fourier transform that we denote by a hat. We summarize the results in the following technical lemma:

Lemma 3.1. The operator τ A R 0 (-k 2 )τ ⋆
B depends only on the angle θ between the vectors A and B. When det(A, B) = 0, the Fourier transform of τ A R 0 (-k 2 )τ ⋆ B is an integral operator with kernel

(3.1) Tθ (t, s; k) = 1 2π| sin(θ)| 1 t 2 -2 cos(θ)ts+s 2 2 sin 2 (θ) + k 2 .
When A = B, the Fourier transform of τ A R 0 (-k 2 )τ ⋆ A is the multiplication operator given by the function

(3.2) T0 (s; k) := 1 √ s 2 + 2k 2 .
The proof of this lemma is elementary and left to the reader.

Remark 3.2. (a) One has:

∀θ ∈ (-π, π), T θ (k) ≤ 1 √ 2k .
This is clear for the case θ = 0 since then T0 (k) is an explicit multiplication operator.

For θ = 0 we use

τ A R 0 τ ⋆ B 2 ≤ τ A R 1 2 0 2 R 1 2 0 τ ⋆ B 2 = τ A R 0 τ ⋆ A τ B R 0 τ ⋆ B = T 0 2 .
One can also compute explicitly the Hilbert-Schmidt norm of T θ : (c) Let Π : L 2 (R) → L 2 (R) denote the parity operator Πϕ(s) = ϕ(-s). Then [Π, Tθ ] = 0 so that one can decompose

T θ (k) 2 HS = 1 2π sin(θ)k 2 , θ = 0 mod π.
Tθ = T + θ ⊕ T - θ , with T ± θ := 1 ± Π 2 Tθ .
(d) By a simple inspection of (3.1) we have the reflection properties:

∀θ ∈ (0, π), T ± π-θ = ±T ± θ 3.2.
Rank one operator decomposition of Tθ . Let us first consider T π 2 ; we have the formula

(3.3) T π 2 (p, q) = 1 π 1 p 2 + q 2 + 2 = 1 π ∞ 0
e -2s e -sp 2 e -sq 2 ds which shows that T π 2 is a "sum" of positive rank one operators so that T π 2 ≥ 0. Since (p, q) → T π 2 (p, q) is continuous and

R T π 2 (p, p)dp = 1 2 < ∞
this shows in view of [START_REF] Simon | Trace ideals and their applications[END_REF]th 2.12], that T π 2 is trace class and that its trace and therefore its trace norm are 1/2. We are indebted to R. Brummelhuis who showed us the trick (3.3). The above derivation can be generalized to any angle 0 < θ < π as follows.

Theorem 3.3. For all θ ∈ (0, π) one has in the trace norm ( • 1 ) topology

Tθ = 2 -1 2 sin(θ) π n∈N Γ(n + 1 2 ) Γ(n + 1) cos n (θ) ∞ 0 ds s -1 2 e -2 sin 2 (θ)s P n,s (3.4) T + θ = 2 -1 2 sin(θ) π ∞ n=0 Γ(2n + 1 2 ) Γ(2n + 1) cos 2n (θ) ∞ 0 ds s -1 2 e -2 sin 2 (θ)s P 2n,s T - θ = 2 -1 2 sin(θ) π ∞ n=0 Γ(2n + 3 2 ) Γ(2n + 2) cos 2n+1 (θ) ∞ 0 dss -1 2 e -2 sin 2 (θ)s P 2n+1,s
where P n,s denotes the rank one orthogonal projector on the vector g n,s defined by

(3.5) g n,s (p) := (2s) n+ 1 2 Γ(n + 1 2 )
p n e -p 2 s .

Accordingly one has

(3.6) ∀θ ∈ (0, π 2 ], T ± θ ≥ 0 and ∀θ ∈ [ π 2 , π), ± T ± θ ≥ 0.
It follows that T θ and T ± θ are trace class and

tr T + θ = T + θ 1 = cos θ 2 + sin θ 2 2 √ 2 sin(θ) tr T - θ = cos θ 2 -sin θ 2 2 √ 2 sin(θ) , T - θ 1 = cos θ 2 -sin θ 2 2 √ 2 sin(θ) tr T θ = 1 2 √ 2 sin θ 2 , T θ 1 = max cos θ 2 , sin θ 2 √ 2 sin(θ)
Proof. To find the rank one operator decomposition of Tθ we simply expand its kernel as follows. Let A := p 2 + q 2 + 2 sin 2 θ and B := 2pq cos(θ), one can easily check that A > 0 and |B/A| < 1 for all 0 < θ < π. Thus one has 1 2π sin(θ)

1 p 2 -2 cos(θ)pq+q 2 2 sin 2 (θ) + 1 = sin θ π 1 A -B = sin(θ) π ∞ n=0 A -1 B A n = sin(θ) π ∞ n=0 B n ∞ 0 ds s n e -sA n! = sin(θ) π ∞ n=0 2 n cos n (θ) n! ∞ 0 ds e -2s sin 2 (θ)
s n e -s(p 2 +q 2 ) (pq) n .

To arrive at (3.4) one needs to normalize in L 2 (R) the vector p → p n e -sp 2 which gives the vector g n,s in (3.5). Since P n,s = P n,s 1 the convergence in the trace norm topology of the r.h.s. of (3.4) is true since the terms in the following sum are all positive and one has explicitly:

2 -1 2 sin(θ) π n∈N Γ(n + 1 2 ) Γ(n + 1) | cos n (θ)| ∞ 0 ds s -1 2 e -2 sin 2 (θ)s = 1 2 1 -| cos(θ)| .
This shows that Tθ is trace class and that (3.4) is valid in the trace norm topology. Since g n,s has the parity of n, one gets T ± θ by selecting the even and odd values of n in (3.4) resp.. The rest is now obvious up to some tedious explicit computations of sums.

We shall draw some other useful properties from the above theorem. (ii) If one labels the eigenvalues of T + θ by descending order:

E + 1 (θ) ≥ E + 2 (θ) ≥ . . . ≥ E + n (θ) ≥ . . . then each function (0, π) ∋ θ → E + n (θ)
is continuous and decreasing on (0, π 2 ] and increasing on [ π 2 , π).

If one labels the eigenvalues of T -

θ by descending order on (0, π 2 ) and ascending order on ( π 2 , π), then each function (0, π) ∋ θ → E - n (θ) is continuous and decreasing on (0, π).

Proof. (i) is a direct consequence of the convergence of the r.h.s. of (3.4) on D. To prove (ii) we shall consider another s.a. family of operators which is the image of {T θ } θ under the scaling p → sin(θ)p, 0 < θ < π:

(3.7) ♯ T θ (p, q) = 1 π 1 p 2 + q 2 -2pq cos(θ) + 2 .
Then proceeding as in the previous theorem we get

♯ T + θ = 1 π n∈N (2 cos θ) 2n B 2n ♯ T - θ = 1 π n∈N (2 cos θ) 2n+1 B 2n+1
where B n denotes the positive operator with kernel

B n (p, q) := (pq) n (p 2 + q 2 + 2) n+1 = ∞ 0 s n n!
e -2s (pq) n e -sp 2 e -sq 2 .

If we label the eigenvalues of T + θ , i.e. the eigenvalues of ♯ T + θ in descending order they are all continuous in θ and in view of the elementary dependence of ♯ T + θ on θ, they are decreasing on (0, π/2] and increasing on [π/2, π). We skip the analogous reasoning for T - θ .

3.3. T ± θ are ergodic. The reader can find the definition of an ergodic operator in [START_REF] Reed | Methods of modern mathematical physics IV. Analysis of operators[END_REF]§XIII.12].

Proposition 3.5. (i) For all θ ∈ (0, π), T + θ is ergodic and sup T + θ is a simple eigenvalue of T + θ .

(ii) For all θ ∈ (0, π/2) ∪ (π/2, π), sign(π/2 -θ)T - θ is ergodic and sup sign(π/2θ)T - θ is a simple eigenvalue of T - θ . Proof. We have previously seen that T + θ ≥ 0. Also T + θ is self adjoint and compact, thus

T + θ = sup T +
θ is an eigenvalue of T + θ . Clearly since T + θ (p, q) > 0 for all p and q, one has (T + θ f, g) > 0 whenever f and g are positive. Thus T + θ is ergodic. By applying [START_REF] Reed | Methods of modern mathematical physics IV. Analysis of operators[END_REF]Th. XIII.43] we get that sup T + θ is a simple eigenvalue of T + θ . The proof for T - θ is analogous.

3.4. T θ is injective. This question was brought to us by T. Dorlas.

Lemma 3.6. For all 0 < θ < π, one has ker T θ = {0}.

Proof. We find it more convenient to work with ♯ T θ , see (3.7), which is unitarily equivalent to T θ . We recall that Π denotes the parity operator, see Remark 3.2(c). Using the formula derived in the proof of Corollary 3.4, we get with

ϕ ∈ Ran Π + , that ♯ T + θ ϕ = 0 implies ( ♯ T + θ ϕ, ϕ) = 0 ⇒ 1 π ∞ n=0 (2 cos(θ)) 2n (2n)! ∞ 0 s 2n e -2s (C 2n,s ϕ, ϕ)ds = 0
where C n,s with kernel C n,s (p, q) := (pq) n e -sp 2 e -sq 2 is a positive rank one operator. If θ = π 2 it follows that: ∀n ∈ N, ∀s > 0, (C 2n,s ϕ, ϕ) = 0 since (2 cos(θ)) 2n and s 2n e -s are strictly positive. But

(C 2n,s ϕ, ϕ) = 0 ⇐⇒ R |p 2n e -sp 2 ϕ(p)| 2 dp = 0
which shows that ϕ ⊥ p 2n e -p 2 2 for all n ∈ N by choosing s = 1/2. Clearly {p 2n e -p 2 2 , n ∈ N} is total in Ran Π + since they generate the even Hermite functions. Thus ϕ = 0. A similar argument shows that if ϕ ∈ Ran Π -and ♯ T θ ϕ = 0 then ϕ = 0; notice that it is understood here that θ = π 2 since otherwise ♯ T θ = 0. Finally we consider the case θ = π/2 and ϕ ∈ Ran Π + . Here we get as above ∀s > 0, (ϕ, e -sp 2 ) = 0 and by differentiating indefinitely this identity with respect to s in s = 1 2 we find ϕ ⊥ p 2n e -p 2 2 , ∀n ∈ N, which implies as above that ϕ = 0.

3.5. Some properties of (2

-1 2 -T0 ) -1/2 T - θ (2 -1 2 -T0 ) -1/2
. From the rank one operator decomposition of T - θ , see Theorem 3.3, one gets

T - θ := (2 -1 2 -T0 ) -1/2 T - θ (2 -1 2 -T0 ) -1/2 = 2 -1 2 sin(θ) π ∞ n=0 Γ(2n + 3 2 ) Γ(2n + 2) cos 2n+1 (θ) ∞ 0 dss -1 2 e -2 sin 2 (θ)s P 2n+1,s (3.8) where P 2n+1,s := (•, g 2n+1,s ) g 2n+1,s with g 2n+1,s := (2 -1 2 -T0 ) -1/2 g 2n+1,s .
It turns out that g 2n+1,s belongs to L 2 (R) and the r.h.s. (3.8) is convergent in the trace norm. More precisely

P 2n+1,s 1 = g 2n+1,s 2 = √ 2 4n + 8s + 4 √ s U -1 2 , -2n, 4s + 1 4n + 1 ≤ 8n √ s Γ(2n) + (4n + 16s + 1)Γ 2n + 1 2 √ 2 Γ 2n + 3 2
where U denotes the confluent hypergeometric function, see [AS,13.1.3]. The last estimate is obtained by integration of the r.h.s. of the bound

|g(2n + 1, s)(p)| 2 ≤ (2s) 2n+ 3 2 Γ(2n + 3 2 ) p 4n e -2sp 2 ( √ 2p 2 + 2|p| + 4 √ 2).
which is more convenient in view of the summations over s and n. Then the integration over s gives sin(θ)

∞ 0 e -2s sin 2 (θ) √ s Γ(2n + 3 2 ) Γ(2n + 2) g(2n + 1, s) 2 ds ≤ √ πΓ 2n + 1 2 2Γ(2n + 2) + 2n √ πΓ 2n + 1 2 Γ(2n + 2) + 2 √ πΓ 2n + 1 2 sin 2 (θ) Γ(2n + 2) + √ 2Γ(2n + 1) sin(θ) Γ(2n + 2) =: a 1 + a 2 + a 3 + a 4 .
In the summation over n of these four terms, only the second one causes problems to arrive at a convenient final formula: ( the sums are computed with 0 < θ < π/2)

∞ n=0 a 1 cos 2n+1 (θ) √ 2π = 1 2 cos θ 2 -sin θ 2 ∞ n=0 a 2 cos 2n+1 (θ) √ 2π = cos 3 (θ) 2 F 1 5 4 , 7 4 ; 5 2 ; cos 2 (θ) 4 √ 2 ∞ n=0 a 3 cos 2n+1 (θ) √ 2π = 2 sin 2 (θ) cos θ 2 -sin θ 2 ∞ n=0 a 4 cos 2n+1 (θ) √ 2π = tanh -1 (cos(θ)) π(sin(θ)
One replaces a 2 by the the following bound valid for all n ∈ N:

2nΓ 2n + 1 2 Γ(2n + 2) ≤ Γ 2n + 1 2 Γ(2n + 1) = a ′ 2 which gives ∞ n=0 a ′ 2 cos 2n+1 (θ) √ 2π = 1 2 cos(θ) sin(θ) cos θ 2 + sin θ 2 .

Summing up gives

Lemma 3.7. For all θ ∈ (0, π), T - θ is trace class and for all 0 < θ < π/2 one has:

T - θ 1 ≤
4 sin(θ) tanh -1 (cos(θ)) + π 9 cos θ 2 -cos 5θ 2 -9 sin θ 2 + sin 5θ 2 4π sin(θ) .

In particular:

(3.9) In particular the lowest one is simple and monotonically decreasing and pass by -1 for θ = 2π/3 in view of (3.10).

T - 2π 3 1 = T - π 3 1 ≤ - 4 3 + 5 √ 3 + log(3) √ 3π ∼ 
3.6. Exact eigenvalues and eigenvectors. We collect here some exact results about these Tθ operators. They can be checked by direct inspection. (3.11) and (3.12) are simply obtained by translating known exact eigenfunctions in the skeleton frame work; the first one comes from the exactly solvable quantum scissor, see (4.1), with angle π/2. The second one comes from the Mc Guire bound state eigenfunction of its three particle system, see [McG, §IV.D]. The last one seems to be new. Since T0 (0) -T0 (p) ∼ 2 -5 4 |p| as p → 0, this function has a cusp at 0.

A quantum scissor

We consider the Hamiltonian (2.3) in the particular case λ = 0: (4.1)

H θ := - ∆ 2 -δ(A ⊥ 1 •) -δ(A ⊥ 2 •) = - ∆ 2 -τ 1 τ ⋆ 1 -τ 2 τ ⋆ 2
which described a two dimensional particle in a scissor-shaped waveguide, a name borrowed from [BEPS]. We assume without loss of generality that θ := θ 1,2 belongs to

(4.2) θ ∈ [ π 2 , π);
where θ denotes the angle made by the two vectors A 1 and A 2 which generate the supports of the delta interactions, see Figure 1. We note that the case θ = π is exactly solvable, and that the angles θ ∈ (0, π/2] are covered by the cases (4.2) since H θ and H π-θ are unitarily equivalent. Thanks to Lemma 2.1, the essential spectrum of H θ is [-1/2, ∞). The skeleton associated to H θ in the Fourier representation is

-1 + T0 (k) Tθ (k) Tθ (k) -1 + T0 (k) ∼ k -1 -k + T0 Tθ Tθ -k + T0
where the unitarily equivalent second expression is obtained through the scaling s → ks, see Remark 3.2(b). It acts on S := L 2 (R) ⊕ L 2 (R). Thus, according to Theorem 2.3, -k 2 < -1/2 is an eigenvalue of H θ iff k is an eigenvalue of T θ := T0 Tθ Tθ T0 .

Notice that in view of Corollary 3.4, {T θ } θ∈D is bounded selfadjoint family of analytic operators and since T θ is trace class ( see Theorem 3.3) one has

spect ess T θ = spect ac T θ = spect T 0 = [0, 2 -1 2 ].
4.1. Reduction by symmetries. We use (x, y) for the coordinates in R 2 and we recall that Π stands for the parity operator on L 2 (R), see Remark 3.2(c). Let Π y := Π ⊗ 1, Π x := 1 ⊗ Π acting in L 2 (R 2 ) denote respectively the reflection with respect to the y and x axis.

H θ fulfills [H θ , Π x ] = [H θ , Π y ] = 0.
This allows to reduce H θ as

H θ = α,β∈{±1} H α,β
θ , where H α,β θ := Π α x Π β y H θ and Π α x := 1 2 (id + αΠ x )), Π β y := 1 2 (id + βΠ y )) denote the eigenprojectors of Π x and Π y resp.. We also stress that H α,β θ is unitarily equivalent to the operator acting in L 2 (R + × R + ) with same symbol as H θ but with additional Dirichlet boundary conditions on x = 0 if α = -1 or on y = 0 if β = -1 and Neumann boundary condition in the opposite case, see Table 1.

Similarly T θ enjoys the following symmetries

[T θ , Π] = [T θ , E] = [Π ⊕ Π, E] = 0.
where Π := Π ⊕ Π : S → S is the parity operator and E : S → S is the exchange of components operator: E(φ 1 ⊕ φ 2 ) := φ 2 ⊕ φ 1 . Thus we may consider separately

Π α E β T θ , α = ±1, β = ±1
where Π α and E β denote the spectral projectors of Π and E resp.:

Π α := 1 2 (id + αΠ) E α := 1 2 (id + αE).
One has the following elementary result the proof of which is left to the reader: Let R(z) α,β := Π α x Π β y (H θ -z) -1 and similarly for R 0 := (H 0 -z) -1 then using (2.4) and Definition 2.2 we get since T - θ ≥ -1, see Remark 3.8(b) and (c). Thus T -,- θ ≤ 2 -1 2 which implies that it cannot have an eigenvalue larger than 2 -1 2 . To prove (ii) it is sufficient to show that there exists k > 2 -1 2 so that inf spect (k -T -,- θ ) < 0 for all θ > 2π/3. We first establish that the lowest eigenvalue E - 1 (θ) of T - θ is strictly smaller than -1 for all 2π/3 < θ < π. Let ϕ denote the normalized eigenvector of T - 
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 1 Figure 1. The three supports of the δ leaky wires.

  (b) If we perform the scaling s → ks then clearly Tθ (k) becomes k -1Tθ (1). Since in the sequel we shall use this property and work only with Tθ (1), we denote Tθ := Tθ (1).

  Corollary 3.4. (i) θ → T θ is a selfadjoint analytic family as a map from D := {θ ∈ C, | cos(θ)| < 1} with values in the ideal of trace class operators.

  1.75532 Remark 3.8. (a) If we do not replace a 2 by a ′ 2 we get a better bound: T -We shall see below that -1 is an eigenvalue of T 2π 3 , see (3.13). Since the trace norm of T - 2π 3 is less than 2, see (3.9), it follows that this eigenvalue is simple and is the lowest eigenvalue of T 2π 3 . Thus we may conclude that (3.10) inf T 2π 3 = -1. (c) The statements in Corollary 3.4(ii) and Proposition 3.5 for eigenvalues of T - θ works as well for those of T - θ .

Lemma 4. 1 .

 1 For all α, β in {±1}, Π α E β T θ is unitarily equivalent toT For all α, β in {±1}, -k 2 < -1 2 is a discrete eigenvalue of H α,β θ iff k > 2 -1 2 is a discrete eigenvalue of T αβ,β θ .Proof. Due to the chosen orientation of the two normalized vectors, see Figure1, we have the relations between mappings fromH 1 (R 2 ) to L 2 (R) τ Π y = Eτ, τ Π x = ΠEτ so that 4τ Π α x Π β y = τ (id + αΠ x )(id + βΠ y ) = (id + αΠE)τ (id + βΠ y ) = (id + αΠE)(id + βE)τ = (id + αβΠ)(id + βE) = 4Π αβ E β τ.

odd with respect to this second axis when 2π/3 < θ < π. The number of such bound states is bounded above by T - θ 1 , and therefore by the bound given in Lemma 3.7. (iii) It has at least one bound state for all 0 < θ < π which is even with respect to both axis of the scissor and unique for θ in [π/3, 2π/3]. (iv) All bound states of H θ are bounded below by -2 and monotonously decreasing with respect to θ on [π/2, π).

Concluding remarks and open problems

We are far from having found the answers to all the questions about the quantum scissor of § 4. Let us review these questions; most of them are already in [BEPS, §III]:

(1) Every bound state is even w.r.t. the scissor axis: done, see Th 4.6(i).

(2) With respect to the second axis the bound states can have both parities (done, see Th 4.6(ii) and (iii)) which are alternating if the bound states are arranged according to their energies: not done. (1) can we enlarge the list of exact spectral results, see § 3.6? (2) Are all eigenvalues of T ± θ simple? (3) Is it true that θ → T ± θ are monotonous?