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Abstract Sparse regression often uses ℓp norm priors (with p < 2). This paper demon-

strates that the introduction of mixed-norms in such contexts allows one to go one step

beyond in signal models, and promote some different, structured, forms of sparsity. It

is shown that the particular case of ℓ1,2 and ℓ2,1 norms lead to new group shrinkage

operators. Two different problems are considered, that illustrate the relevance of the

proposed approach, in the context of audio signals. Mixed norm priors are shown to

be particularly efficient for multichannel audio denoising, in a generalized basis pursuit

denoising approach. Mixed norm priors are also used in a context of morphological com-

ponent analysis of time-frequency sound representations, for which an adapted version

of Block Coordinate Relaxation algorithm is derived. This yields a new approach for

sparse regression in time-frequency dictionaries.

Keywords Mixed-norms · Time-frequency decompositions · Sparse representations

1 Introduction

Sparse approximation approaches have enjoyed considerable popularity in recent signal

processing applications. Sparsity seems to be a particularly efficient guiding principle

in view of a number of tasks such as signal compression, denoising, image de-blurring,

blind source separation,. . . The guiding principle may be summarized as follows: for

most signal classes, it is possible to find a basis or a dictionary of elementary build-

ing blocks (or atoms) with respect to which all (or most) signals in the class may be

expanded, so that when the expansion is truncated in a suitable way, high precision
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approximations are obtained even when a small number of terms are retained. A large

number of signal and image processing “success stories” may be described in such a way,

including image compression and denoising using wavelets, curvelets, or more sophis-

ticated *-lets, audio coding using MDCT bases, and so forth. Several efficient sparse

expansion algorithms have been proposed, including among others simple expansion

with respect to a fixed basis followed by soft or hard coefficient thresholding, itera-

tive thresholding strategies in redundant dictionaries, greedy (pursuit) algorithms, or

more elaborate approaches such as sparse regression in Bayesian frameworks. Thresh-

olding and iterative thresholding strategies are particularly interesting, mainly because

thresholding automatically generates sparsity, and corresponding algorithms are easy

to implement and generally exhibit fast convergence properties.

A main strength of these thresholding approaches is that they process the signal

representation coefficientwise, which results in low complexity algorithms. However,

this may become a weakness when it comes to applications to real signals. Indeed, the

assumption of independence of coefficients is generally not realistic. For example, when

using wavelet or local cosine bases for expanding 1D signals, abrupt changes manifest

themselves by groups of time-localized large coefficients, and frequency modulated

signals exhibit ridges of frequency localized large coefficients. The same remark applies

to edges and regular textures in wavelet or local cosine representations of images.

Several different approaches have been considered to handle such dependencies between

coefficients, including structured versions of matching pursuit (for example, harmonic or

molecular versions of matching pursuit), coefficient domain modelling, or construction

of suitable bases. We propose here to keep the coefficient modeling approach. However,

rather than introducing explicit models for coefficients, we follow the thresholding

and iterative thresholding approaches and design new group thresholding methods,

associated with mixed norms in the coefficient domain.

More precisely, we consider here with the following problem. Let y ∈ R
M be a noisy

observation of a signal s ∈ R
M . Let D denote a fixed dictionary for R

M , and denote

by A ∈ R
M×N be the matrix whose columns are the vectors from the dictionary D.

We assume that s has a sparse expansion in D, and we want to estimate s from y. A

classical estimate is given by the basis pursuit denoising [1] introduced by Donoho and

coworkers, also known as the lasso estimate [2] of Tibshirani, and is obtained by the

following optimization:

x̂ = argmin
x∈RN

‖y − Ax‖2
2 + λ‖x‖1 (1)

where λ ∈ R is a fixed parameter, so that, Ax̂ is the estimate of s. The ℓ1 norm directly

leads to soft thresholding strategies. Similar algorithms may be derived using more

general ℓp norms, i.e. replacing ‖x‖1 with ‖x‖p
p. That estimate treats all coefficients

independently. Dependencies between selected subsets of coefficients may be introduced

as soon as the latter may be labelled using a double index (for example, a time-

frequency index), say x = {xab, a = 1, . . . Na, b = 1, . . . Nb}. Then a new estimate is

obtained via

x̂ = argmin
x∈RN

‖y − Ax‖2
2 + λ‖x‖q

p,q , (2)

where ‖x‖p,q is the mixed norm defined by

‖x‖p,q =

0

B

@

Na
X

a=1

0

@

Nb
X

b=1

|xab|
p

1

A

q/p
1

C

A

1/q

. (3)
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Here, the roles of indices a and b is purely conventional, and a and b can be interchanged,

which corresponds to a different problem.

It is worth noticing that like the lasso method and ℓp generalizations, the mixed

norm approach admits a simple Bayesian interpretation, assuming Gaussian white noise

(which justifies the choice of ℓ2 norm for the data fidelity term), and a coefficient prior

of the form

f(x) ∝ exp
˘

−λ‖x‖q
p,q

¯

,

which explicitely introduces couplings between coefficients.

As a simple application of this approach, we will consider the case of multichan-

nel audio signal denoising in a MDCT (Modified Discrete Cosine Transform) basis.

We show that multichannel denoising based upon an appropriate ℓ2,1 norm, that im-

plements across-channel persistence, and within-channel sparsity, significantly outper-

forms multichannel basis pursuit denoising.

Mixed norms can also be implemented into multilayered type signal expansions,

such as the ones used in [3–5] for audio signals, or in the Morphological Component

Analysis (MCA for short) for images [6]. The goal of MCA is to minimize functionals

of the type

Φ(x1, x2) = ‖x1‖1 + ‖x2‖1 + λ‖y − A1x1 − A2x2‖
2
2 (4)

where A1 and A2 are the matrices corresponding to two dictionaries, chosen to be able

to describe sparsely edges and textures respectively. A similar approach may be taken

to separate transient and tonal layers in audio signals. According to the discussion

above, we shall show that the two ℓ1 norms in the latter expression can be conve-

niently replaced with suitable mixed norms, to enforce relevant dependencies between

coefficients.

We show in this paper that multilayered signal and image expansions can be com-

bined with coefficient dependencies thanks to adequate mixed norms. For the sake of

simplicity, we stick to variational formulations, and derive a corresponding extension

of the MCA algorithm. These mixed norms are used in a block coordinate relaxation

algorithm to minimize an appropriate functional in section 3, and some illustrations of

the obtained results to show the relevance of mixed norms are described in section 4.

Audio signals and time-frequency representation are so natural illustrations and

applications of mixed norms and will be the breadcum trail of this paper.

2 Mixed norms

We give in this section the definition of the mixed norms we shall be interested in. For

the sake of simplicity, we shall stick to the case of two indices, even though extensions

are clearly possible.

The reader may think of these two indices as the indices of a time-frequency signal

expansion, as follows. Let x ∈ R
N be a time-frequency representation of a given signal

y. We suppose that x = (x1, . . . ,xk, . . . ,xK), where for all k ∈ {1, . . . , K}, xk =
`

xk,1, . . . , xk,ν , . . . , xk,F

´

. So that, (k, ν) denote a time-frequency index, and N =

K × F . With these notations, xk,ν denote the coefficient at time k and frequency ν,

the vector xk represent all the frequency coefficients at time k. We will denote by x.,ν

the vector which contain all the time coefficients at frequency ν.
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However, let us stress that the developments below are not specific at all to time-

frequency signal representations, and apply to any situation where signals are expanded

with respect to a dictionary with two indices. Another simple example of that is mul-

tichannel signals, where a first index labels (scalar) dictionary elements and a second

one labels channels. In an even more general situation, any discrete signal expansion

may be re-labelled so as to be processed by our approach.

Now that the notations are introduced, we are ready to define the mixed norms.

Definition 1 Let x ∈ R
N , labelled by a double index (k, ν) . Let p ≥ 1 and q ≥ 1,

then one can define two mixed norms ℓ1;p,q and ℓ2;p,q on x

‖x‖1;p,q =

0

@

K
X

k=1

 

F
X

ν=1

|xk,ν |
p

!q/p
1

A

1/q

, (5)

‖x‖2;p,q =

0

@

F
X

ν=1

 

ν
X

k=1

|xk,ν |
p

!q/p
1

A

1/q

. (6)

The cases p = +∞ and q = +∞ are obtained by replacing the corresponding norm by

the supremum.

Mixed norms have been used extensively by mathematicians in functional analy-

sis (see for example [7] and references therein). We limit ourselves here to the finite

dimensional case, and focuss on the particular cases ℓ•;1,2 and ℓ•;2,1. For the sake of

simplicity, we will use the ℓ1;p,q norm for the theoretical study, and then denote it

simply by ℓp,q. The second case is obtained by simply switching the roles of k and ν. In

the numerical applications described in section 4 the choices will be specified precisely.

It is interesting to stress that a ℓp,q mixed norm can be seen as a “composition” of

ℓp and ℓq norms. With the above notations,

‖x‖p,q =

 

K
X

k=1

‖xk‖
q
p

!1/q

= ‖(‖x1‖p, . . . , ‖xK‖p)‖q . (7)

For p < 2, ℓp norms are often used as diversity measures, and minimizing the ℓp

norm of a coefficient sequence of a signal generally aims at promoting sparsity for the

expansion. The case p = 1 has a particular status, since the ℓ1 norm promotes sparsity

and remains convex. The situation with mixed norms is a bit more tricky, since two

exponents have to be taken into account. However, we shall see below that values of p

(or q) smaller than 2 still yield some form of sparsity, in a somewhat structured way.

More precisely, depending on the choice of p and q, sparsity will be promoted on each

indivual variable xk,ν if p is close to 1, and on an entire group of variables if q is close

to 1.

3 Regression with mixed norm

To show the relevance of mixed-norms in signal processing contexts, we consider a

couple of examples borrowed from audio signal processing. The first one concerns mul-

tichannel audio denoising, and the second one is the multilayer audio signal decompo-

sition. Let us stress that the application range of this approach is not at all restricted

to audio signals, and that numerous other domains can be addressed.
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We first introduce generalized shrinkage operators, extending lasso and group lasso

estimators, before turning to extensions to the multilayered case.

3.1 Introduction of new group-shrinkage operators

Our aim in this subsection is to solve the following optimisation problem, in the par-

ticular case where A is an orthogonal matrix:

min
x∈RN

1

2
‖y − Ax‖2

2 +
λ

q
‖x‖q

p,q (8)

which can also be written

min
x∈RN

1

2
‖ȳ − x‖2

2 +
λ

q

K
X

k=1

 

F
X

ν=1

|xk,ν |
p

!q/p

(9)

where ȳ = AT y. The solution in the cases where the mixed norm are ℓ1,2 or ℓ2,1 is

given by the following proposition.

Proposition 1 Let A be an orthogonal matrix. Then, the minimimum x̂ of

(a) 1
2‖y − Ax‖2

2 + λ
2

PK
k=1

“

PF
ν=1 |xk,ν |

1
”2

is given by, for all k, ν

x̂k,ν =

8

>

<

>

:

ȳk,ν −
λ‖ȳk‖1

1+Fλ if ȳk,ν >
λ‖ȳk‖1

1+Fλ

ȳk,ν +
λ‖ȳk‖1

1+Fλ if − ȳk,ν < −
λ‖ȳk‖1

1+Fλ

0 if |ȳk,ν | <
λ‖ȳk‖1

1+Fλ

(b) 1
2‖y − Ax‖2

2 + λ
PK

k=1

“

PF
ν=1 |xk,ν |

2
”1/2

is given by, for all k, ν

x̂k,ν = ȳk,ν

„

1 −
λ

‖ȳk‖2

«+

.

Remark 1 The ℓ2,1 case is known in the statistical community as the group-lasso esti-

mate, and the result was given in [8]. The ℓ1,2 result is proven in [9] as a part of a more

general result. Notice that in both cases, the result is a generalized soft thresholding,

or shrinkage, that is applied to a group of coefficients rather than single coefficients.

Hence, coefficients are not processed independently any more.

Remark 2 It is interesting to notice the striking difference between the two new shrink-

age operators. In the second case (the group-lasso case), a 1D group of coefficients is

either globally retained or discarded. In the first case, each coefficient is shrunk individ-

ually, but the corresponding threshold depends on its 1D neighborhood. The difference

between these two situations will appear clearly in the numerical results below.

Now we are able to find the solution of the simpler problem (8) where A is an

orthogonal matrix (corresponding to an orthonormal basis), we can turn to the more

complex functional (10) in the particular case where A is a concatenation of orthogonal

matrices (corresponding to unions of orthonormal bases).
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3.2 Multichannel denoising

Let us consider multichannel signals y = {ync, n = 1, . . . N, c = 1, . . . C}, n denoting

the time index and c the channel index. Consider an orthonormal basis U = {um, m =

1, . . . N} (here, m index the atoms of the basis) for the single channel signal space. We

are interested in expansions of the form y =
P

m xmum, where multichannel vectors

are denoted with bold symbols, in cases where the observations are noisy, and the basis

U has been chosen in such a way that the coefficient sequences x are sparse in the n

direction, and persistent across channels.

Sparse approximation techniques have been extended recently to multichannel sig-

nals (see [10,11] and references therein). We address such a problem directly using a

generalized basis pursuit denoising approach, using ℓ1 norm in the n direction, and ℓ2
norm across channels. In this case, the A matrix is built as a block diagonal matrix,

the blocks being equal to the orthogonal matrix U associated with basis U, and the

optimization problem is formulated as before:

min
{ync}

“

‖y − Ax‖2
2 + λ‖x‖q

p,q

”

.

The results above may then be applied directly. Since we aim at privileging lines of

coefficients, we choose here the group-lasso norm, i.e. p = 2 and q = 1, and use the

estimator provided in Proposition 1-(b). Numerical results showing the superiority of

this approach over standard multichannel version of basis pursuit denoising, are given

in section 4.1.

3.3 Multilayered expansion: application to tonal + transients + noise separation

Our aim is to decompose an audio signal into three layers transient+tonal+noise. This

problem was already studied and some algorithm are already available. The approach

outlined here has the advantage of being extremely simple.

We start from an optimization problem similar to the one given by MCA, but,

instead of using two ℓ1 norm to estimate the tonal and transient layer, we will use

adapted mixed-norm. So that, we define the following functional we will minimize

Φ(x, x̃) = ‖y − A(x, x̃)T ‖2
2 + λ‖x‖q

p,q + µ‖x̃‖q̃
p̃,q̃ (10)

where the ℓp,q and ℓp̃,q̃ will be chosen adequately.

To decompose a signal into several layer, one chooses an adapted dictionary for

each layer. For audio signals, the transient layer is known to be sparsely represented

in wavelets dictionaries, or time-frequency dictionaries (like Gabor or MDCT) with a

narrow window. At the opposite, tonal layer is known to be sparsely represented in

time-frequency dictionaries with a wide window.

We choose here the special case where each dictionary is an orthonormal basis,

for example, two MDCT bases with two differents sizes for the windows, in order to

apply the Block Coordinate Relaxation method [12] (BCR for short) which inspired

the MCA algorithms [13]. BCR is specially adapted for the union of orthogonal bases,

and is known to converge to a minimum of the basis-pursuit objective functional.

Let us introduce the following notations. We denote by U and V the two bases

under consideration, and by U and V the corresponding matrices. In the multilayered

audio signal expansion example, U may be the basis adapted for the tonal layer, and V
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the one adapted to the transient layer. We denote by xU the coefficients corresponding

to the basis U and xV the coefficients corresponding to the basis V. So that, UxU

will correspond to the tonal layer and V xV to the transient layer.

The functional chosen to minimize and obtain an estimate of the two layers is the

following

Φ(xU, xV) =
1

2
‖y − UxU − V xV‖2

2 +
λ

q
‖xU‖q

p,q +
µ

q̃
‖xV‖q̃

p̃,q̃ (11)

The BCR algorithm is then slightly modified in order to yield a minimizer of (11):

Algorithm 1

– Let x
(0)
U

∈ R
N and x

(0)
V

∈ R
N

– Do

1. r
(m)
U

= y − V x
(m)
V

2. Find an estimate x
(m+1)
U

by solving

x
(m+1)
U

= argmin
x∈RN

1

2
‖y − Ux‖2

2 +
λ

q
‖x‖q

p,q

using proposition 1

3. r
(m)
V

= y − Ux
(m+1)
U

4. Find an estimate x
(m+1)
V

by solving

x
(m+1)
V

= argmin
x∈RN

1

2
‖y − V x‖2

2 +
µ

q̃
‖x‖q̃

p̃,q̃

using proposition 1

Until convergence

Theorem 1 Let U and V be two orthogonal matrices of R
N×N . Let y ∈ R

N and

p ≥ 1, q ≥ 1 p̃ ≥ 1, and q̃ ≥ 1. Then the algorithm 1 converges to a minimum of (11).

Sketch of the proof: The considered algorithm may be seen as an extension of the

MCA version of the BCR algorithm, whose convergence was proved in [13], using

arguments from [12] and [14].

The main arguments of the proof are the fact the terms in (11) are convex func-

tionals, which is still true here, and that the objective function (11) has a separable

form, which is also true in our case. Notice that now the decoupled variables are not

coefficients any more, but groups of coefficients, since the considered mixed norms only

partially decouple coefficients.

Thus, following [12], we may conclude that the convergence follows from the con-

vergence of the Dual Block Coordinate Ascent (DBCA) algorithm of [14]. �

4 Results

We illustrate here the interest of mixed norm formulations with a couple of problems,

namely denoising of multichannel signals, and multilayered signal decomposition.
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Fig. 1 SNR as a function of the number of retained coefficients; dashed curve: ℓ1 norm; full
curve: ℓ2,1 norm.

4.1 Denoising of multichannel signals

We consider here the framework of section 3.2, and illustrate it with a sound example

recorded in a running train. Let us stress that the same approach may be developed

in many other multichannel signal denoising contexts, such as color image denoising,

multispectral imaging,...

The considered signal features low frequency noise, phone ring, voice, clicks and

additional transient components. The signal is a four channels signal, recorded using

three directional and one omnidirectional microphones. Gaussian white noise was added

to the four channels, yielding input SNR equal to 5.07 dB. The signal was denoised by

applying soft thresholding (corresponding to ℓ1 norm prior on the set of coefficients,

i.e. lasso estimate), and group soft thresholding corresponding to ℓ2,1 norm prior on

coefficients (group lasso estimate). As stressed before, this choice is motivated by the

desire of using the same significance map (i.e. the set of labels of nonzero coefficients)

for all channels. Simulations were run with various values of the threshold (i.e. the

Lagrange parameter). Corresponding SNR curves are displayed in figure 1.

The mixed norms approach clearly outperforms the classical approach significantly.

Similar results (not shown here) were also obtained on different multichannel audio

signals. The improvement appears to increase with the number of channels, as may be

expected.

4.2 Multilayered audio signal expansion

This section illustrates the influence of the mixed-norm in the regression problem (11),

in comparison to the usual ℓ1 norm used in the MCA regression problem (4). For that,

we choose the difficult problem of a single sensor source separation and we consider the

mixture of two signals: a “tonal” one, namely a song of trumpet and a “transient” one

played by castanets. The two signals are then simply added up to obtain the mixture

of about 1.5s long (216 samples). The two signals and the mixture are represented in

figure 2.

One then expects to obtain an estimate V x̂V of the castanet signal, and an estimate

Ux̂U of the trumpet signal. We will compare the estimates given by choosing two ℓ1
norm (like the MCA), and several mixed norms specified below. We choose for U

a MDCT basis with a 4096 samples length window, and for V a MDCT basis with

a 128 samples length window. The representations of the MDCT coefficients of the
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Fig. 2 From top to bottom: trumpet signal, castanet signal, mixture.

Fig. 3 MDCT coefficients of the two signals. Top: the trumpet signal, bottom: the castanet
signal.
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norms ℓ1 / ℓ1 ℓ1;1,2 / ℓ2;1,2 ℓ1;1,2 / ℓ1;2,1

nbcoeff xU 18 665 17 915 17 841
nbcoeff xV 17 098 16 925 18 880
SNR xU 14.8814 15.4417 15.0803
SNR xV 3.9619 4.3732 3.7965

Table 1 Results obtained for three different choices of mixed norms: number of retained
coefficients in each layer, and corresponding SNR.

trumpet (resp. castanet) signal in U (res. V) are shown in figure 3. Then one can see

the particular structure of each layers.

Definition 1 provides several choices for mixed-norms defined in the time-frequency

domain. The tonal layer is expected to be sparsely represented in the frequency domain,

with emergent frequencies that may evolve slowly with time. Sticking to combinations

of ℓ1 and ℓ2 norms, possible choices are then ℓ1;1,2 and ℓ2;2,1 mixed norm (we recall

that these are defined in Definition 1). In a similar spirit, the transient layer is expected

to be sparse in time, but wide in the frequency domain. The possible choices are then

ℓ2;1,2 or the ℓ1;2,1 mixed norm.

Choosing the ℓ2;2,1 mixed-norm for the tonal layer is actually not a good strategy

because of the slow evolution in time of the frequencies. So we prefer the ℓ1;1,2 for the

tonal layer. On the other hand, for the transient layer, if ℓ2;1,2 is still a good choice,

ℓ1;2,1 can also be interesting because of the particular structures of transients, which

are generally sharply time-localized.

Table 1 summarizes the different results obtained using the three possible function-

als. The λ and µ parameters were tuned to obtain approximately the same numbers

of coefficients for each functional, but we did not seek the best SNR (regard to the

size of the parameter space). The choice made give acceptable results for the source

separation, and illustrate well the behavior of the different norms. The first column

of the table contains the norms that were chosen for the tonal layer and the transient

layer, the second and the third columns contain respectively the number of retained

coefficient for xU and xV, and the last two columns contain the signal to noise ratio

of the estimates.

This table and the figures 4 and 5 clearly show the different behaviors of the norms.

The best results in term of SNR are obtained for the second functional. The choice

of the ℓ1;1,2 (resp. ℓ2;1,2) norm for the tonal (resp. transient) layer clearly promotes

time (resp. frequency) persistence. For the tonal layer, and compared to the ℓ1 norm,

less hight frequencies are catched and the persistence of a frequency during time is

supported. For the transient layer, the vertical structures are better preserved compared

to the ℓ1 norm which catches a lot of low frequency components, which would be better

represented in the tonal layer.

It is interesting to stress that the ℓ1;2,1 norm for the transient layer, despite a lower

SNR, preserves straight lines as expected, and then makes this norm a good choice if

one wants to preserve this particular structure. The price to pay is a significant increase

of the number of retained coefficients.

5 Conclusion

We have shown in this paper the relevance of mixed norm priors in the framework

of sparse regression problems. Such mixed norms have been extensively used in the
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Fig. 4 MDCT coefficients of two estimates of the trumpet signal. Top: the ℓ1 estimate, bottom:
the ℓ1;1,2 estimate.

mathematical analysis literature [7], but their use in practical situations has been quite

limited so far, except for a few particular ones (such as the group lasso algorithm). For

the sake of simplicity, the mixed norms discussed here are ℓ1,2 and ℓ2,1 norms, but

similar results may be obtained using more general ℓp,q norms, and several standard

sparse approximation algorithms may be extended to that situation. We refer to the

forthcoming paper [9] for a thorough analysis of the latter.

We have only emphasized here a couple of applications, in the domain of audio

signal processing, where the results were quite spectacular. Let us stress that in both

cases, our point was not to compare to state of the art approaches, but rather to show

what can be done using very simple techniques, that can be refined further. We would

also like to point out that this approach is not at all specific to audio signals, and may

be applied mutatis mutandis to image decomposition, for example in the framework of

the MCA approach of [6].

It is worth coming back to the behavior of mixed norms in the present context. The

rationale of our approach is to use a combination of ℓ1 and ℓ2 norms, to promote sparsity

in the direction of one of the two indices, and persistence in the direction of the other.

Now, as we have stressed at the beginning of this paper, a doubly labelled coefficient

sequences can be obtained by arbitrary relabelling of a given coefficient sequence.

Therefore, mixed norm approaches can be used to introduce models for coefficients

involving a small number of clusters of significant coefficients. Such a representation
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Fig. 5 MDCT coefficients of three estimates of the castanet signal. From top to bottom: the
ℓ1 estimate, the ℓ2;1,2 estimate, the ℓ1;2,1 estimate.

features both sparsity (in the domain of coefficient groups) and persistence (within a

group). We believe that the potential of such approaches is extremely important.
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