Loss of Trim24 (Tif1alpha) gene function confers oncogenic activity to retinoic acid receptor alpha.
Abstract
Hepatocellular carcinoma (HCC) is a major cause of death worldwide. Here, we provide evidence that the ligand-dependent nuclear receptor co-regulator Trim24 (also known as Tif1alpha) functions in mice as a liver-specific tumor suppressor. In Trim24-null mice, hepatocytes fail to execute proper cell cycle withdrawal during the neonatal-to-adult transition and continue to cycle in adult livers, becoming prone to a continuum of cellular alterations that progress toward metastatic HCC. Using pharmacological approaches, we show that inhibition of retinoic acid signaling markedly reduces hepatocyte proliferation in Trim24-/- mice. We further show that deletion of a single retinoic acid receptor alpha (Rara) allele in a Trim24-null background suppresses HCC development and restores wild-type expression of retinoic acid-responsive genes in the liver, thus demonstrating that in this genetic background Rara expresses an oncogenic activity correlating with a dysregulation of the retinoic acid signaling pathway. Our results not only provide genetic evidence that Trim24 and Rara co-regulate hepatocarcinogenesis in an antagonistic manner but also suggest that aberrant activation of Rara is deleterious to liver homeostasis.