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Abstract. In this paper, we are interested in some aspects of the biharmonic
equation in the half-space R

N
+ , with N ≥ 2. We study the regularity of gener-

alized solutions in weighted Sobolev spaces, then we consider the question of
singular boundary conditions. To finish, we envisage other sorts of boundary
conditions.

1. Introduction. The purpose of this paper is the resolution of the biharmonic
problem with nonhomogeneous boundary conditions

(P)











∆2u = f in R
N
+ ,

u = g0 on Γ = R
N−1,

∂Nu = g1 on Γ.

Since this problem is posed in the half-space, it is important to specify the behaviour
at infinity for the data and solutions. We have chosen to impose such conditions by
setting our problem in weighted Sobolev spaces, where the growth or decay of func-
tions at infinity are expressed by means of weights. These weighted Sobolev spaces
provide a correct functional setting for unbounded domains, in particular because
the functions in these spaces satisfy an optimal weighted Poincaré-type inequality.
Our analysis is based on the isomorphism properties of the biharmonic operator
in the whole space and the resolution of the Dirichlet and Neumann problems for
the Laplacian in the half-space. This last one is itself based on the isomorphism
properties of the Laplace operator in the whole space and also on the reflection
principle inherent in the half-space. Note here the double difficulty arising from the
unboundedness of the domain in any direction and from the unboundedness of the
boundary itself.

In a previous work (see [7]), we established the existence of generalized solutions
to problem (P), i.e. solutions which belong to weighted Sobolev spaces of type

W 2, p
l (RN

+ ). For the sake of convenience, we shall recall the necessary results of this
paper in Section 2.4. Here, we are interested both in the existence of more regular
solutions, as for instance strong solutions which belong to spaces of type W 4, p

l+2(RN
+ ),

and singular solutions which belong to W 0, p
l−2(RN

+ ) in the case f = 0 with singular
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2 CHÉRIF AMROUCHE, YVES RAUDIN

boundary conditions. We also establish the existence of solutions which belong to
intermediate spaces as for example W 3, p

l+1(RN
+ ).

As we saw (see [7]), it turns out that the use of classical Sobolev spaces is
inadequate in this case, contrary to the study of elliptic problems of type:

(Q) u+ ∆2u = f in R
N
+ , u = g0 and ∂Nu = g1 on Γ,

where it is more reasonable to consider data and solutions in standard Sobolev
spaces. For example, if f ∈ L2(RN

+ ), g0 ∈ H7/2(RN−1) and g1 ∈ H5/2(RN−1),

problem (Q) admits an unique solution u ∈ H4(RN
+ ). In the case of problem (P),

if we assume that f ∈ L2(RN
+ ), the solution u can not be better than in W 4, 2

0 (RN
+ )

and its traces u|Γ and ∂Nu|Γ respectively in W
7/2, 2
0 (RN−1) and W

5/2, 2
0 (RN−1).

Moreover, we can observe that H4(RN
+ ) is a subspace of W 4, 2

0 (RN
+ ) and the same

remark holds for the traces spaces.
On the one hand, we can find in the literature an approach via homogeneous

spaces. For instance, when f ∈ L2(RN
+ ), that consists in finding solutions to (P)

satisfying ∇4u ∈ L2(RN
+ )

N4

, but that gives no information on the other derivatives,
nor specifes the behavior at infinity for the data and solutions.

On the other hand, Boulmezaoud has established (see [9]) in a Hilbertian frame-

work, the existence of solutions u ∈ H3, 2
l+1(R

N
+ ) for data f ∈ H−1, 2

l+1 (RN
+ ) and the

corresponding regularity result. However, owing to some critical cases, this frame-
work excludes in particular the dimensions 2 and 4 (see Section 3.3).

To reduce the set of critical values, we have used a special class of weighted
Sobolev spaces with logarithmic factors (see Section 2.2 and Remark 2.1). We shall
show the part of these logarithmic factors in the weights particularly in the question
of singular boundary conditions.

This paper is organized as follows. Section 2 is devoted to the notations, func-
tional setting and main results of our previous paper on the biharmonic operator,
which is the source of the present work. In Section 3, we study the regularity of the
solutions to problem (P) according to the data. After that, we give a panorama of
basic cases and we recall the Boulmezaoud theorem to throw light on our contribu-
tion in this study. In Section 4, we come back to the homogeneous problem (f = 0)
with singular boundary conditions. Lastly, in Section 5, we shall consider the bihar-
monic equation, but with different types of boundary conditions. The main results
of this paper are Theorem 3.1 for the regularity and Theorem 4.4 for the singular
boundary conditions. In a forthcoming work, we shall use these results to solve the
Stokes system.

2. Notations, functional framework and useful results.

2.1. Notations. For any real number p > 1, we always take p′ to be the Hölder
conjugate of p, i.e.

1

p
+

1

p′
= 1.

Let Ω be an open set of R
N , N ≥ 2. Writing a typical point x ∈ R

N as x = (x′, xN ),
where x′ = (x1, . . . , xN−1) ∈ R

N−1 and xN ∈ R, we will especially look on the upper

half-space R
N
+ = {x ∈ R

N ; xN > 0}. We let RN
+ denote the closure of R

N
+ in R

N and

let Γ = {x ∈ R
N ; xN = 0} ≡ R

N−1 denote its boundary. Let |x| = (x2
1+· · ·+x2

N )1/2
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denote the Euclidean norm of x, we will use two basic weights

̺ = (1 + |x|2)1/2 and lg ̺ = ln(2 + |x|2).

We denote by ∂i the partial derivative
∂

∂xi
, similarly ∂2

i = ∂i ◦ ∂i =
∂2

∂x2
i

, ∂2
ij =

∂i ◦ ∂j =
∂2

∂xi∂xj
, . . . More generally, if λ = (λ1, . . . , λN ) ∈ N

N is a multi-index,

then

∂λ = ∂λ1
1 · · · ∂λN

N =
∂|λ|

∂xλ1
1 · · · ∂xλN

N

, where |λ| = λ1 + · · · + λN .

In the sequel, for any integer q, we shall use the following polynomial spaces:
— Pq is the space of polynomials of degree smaller than or equal to q;
— P∆

q is the subspace of harmonic polynomials of Pq;

— P∆2

q is the subspace of biharmonic polynomials of Pq;

— A ∆
q is the subspace of polynomials of P∆

q , odd with respect to xN , or equiva-
lently, which satisfy the condition ϕ(x′, 0) = 0;
— N ∆

q is the subspace of polynomials of P∆
q , even with respect to xN , or equiva-

lently, which satisfy the condition ∂Nϕ(x′, 0) = 0;
with the convention that these spaces are reduced to {0} if q < 0.
For any real number s, we denote by [s] the integer part of s.
Given a Banach space B, with dual space B′ and a closed subspace X of B, we
denote by B′ ⊥ X the subspace of B′ orthogonal to X, i.e.

B′ ⊥ X = {f ∈ B′; ∀v ∈ X, 〈f, v〉 = 0} = (B/X)′.

Lastly, if k ∈ Z, we shall constantly use the notation {1, . . . , k} for the set of the first
k positive integers, with the convention that this set is empty if k is nonpositive.

2.2. Weighted Sobolev spaces. For any nonnegative integer m, real numbers
p > 1, α and β, we define the following space (see [3], Section 7):

Wm, p
α, β (Ω) =

{

u ∈ D
′(Ω); 0 ≤ |λ| ≤ k, ̺α−m+|λ| (lg ̺)β−1 ∂λu ∈ Lp(Ω);

k + 1 ≤ |λ| ≤ m, ̺α−m+|λ| (lg ̺)β ∂λu ∈ Lp(Ω)
}

,
(1)

where

k =







−1 if N
p + α /∈ {1, . . . ,m},

m−
N

p
− α if N

p + α ∈ {1, . . . ,m}.

Note that Wm, p
α, β (Ω) is a reflexive Banach space equipped with its natural norm:

‖u‖W m, p
α, β (Ω) =

(

∑

0≤|λ|≤k

‖̺α−m+|λ| (lg ̺)β−1 ∂λu‖
p

Lp(Ω)

+
∑

k+1≤|λ|≤m

‖̺α−m+|λ| (lg ̺)β ∂λu‖
p

Lp(Ω)

)1/p

.

We also define the semi-norm:

|u|W m, p
α, β (Ω) =

(

∑

|λ|=m

‖̺α (lg ̺)β ∂λu‖
p

Lp(Ω)

)1/p

.
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The weights in the definition (1) are chosen so that the corresponding space satisfies

two fundamental properties. On the one hand, D
(

RN
+

)

is dense in Wm, p
α, β (RN

+ ). On

the other hand, the following Poincaré-type inequality holds in Wm, p
α, β (RN

+ ) (see [5],

Theorem 1.1): if

N

p
+ α /∈ {1, . . . ,m} or (β − 1)p 6= −1, (2)

then the semi-norm | · |W m, p
α, β (RN

+ ) defines on Wm, p
α, β (RN

+ )/Pq′ a norm which is equiv-

alent to the quotient norm,

∀u ∈Wm, p
α, β (RN

+ ), ‖u‖W m, p
α, β (RN

+ )/Pq′
≤ C |u|W m, p

α, β (RN
+ ), (3)

with q′ = inf(q,m− 1), where q is the highest degree of the polynomials contained
in Wm, p

α, β (RN
+ ). Now, we define the space

◦

W
m, p
α, β (RN

+ ) = D(RN
+ )

‖·‖
W

m, p
α, β

(R
N
+

)
;

which will be characterized in Lemma 2.2 as the subspace of functions with null

traces in Wm, p
α, β (RN

+ ). From that, we can introduce the space W−m, p′

−α,−β(RN
+ ) as the

dual space of
◦

W
m, p
α, β (RN

+ ). In addition, under the assumption (2), | · |W m, p
α, β (RN

+ ) is a

norm on
◦

W
m, p
α, β (RN

+ ) which is equivalent to the full norm ‖ · ‖W m, p
α, β (RN

+ ).

We will still recall some properties of the weighted Sobolev spaces Wm, p
α, β (RN

+ ). We
have the algebraic and topological imbeddings:

Wm, p
α, β (RN

+ ) →֒Wm−1, p
α−1, β (RN

+ ) →֒ · · · →֒W 0, p
α−m, β(RN

+ ) if
N

p
+ α /∈ {1, . . . ,m}.

When
N

p
+ α = j ∈ {1, . . . ,m}, then we have:

Wm, p
α, β →֒ · · · →֒Wm−j+1, p

α−j+1, β →֒Wm−j, p
α−j, β−1 →֒ · · · →֒W 0, p

α−m, β−1.

Note that in the first case, for any γ ∈ R such that
N

p
+ α − γ /∈ {1, . . . ,m} and

m ∈ N, the mapping

u ∈Wm, p
α, β (RN

+ ) 7−→ ̺γu ∈Wm, p
α−γ, β(RN

+ )

is an isomorphism. In both cases and for any multi-index λ ∈ N
N , the mapping

u ∈Wm, p
α, β (RN

+ ) 7−→ ∂λu ∈W
m−|λ|, p
α, β (RN

+ )

is continuous. Finally, it can be readily checked that the highest degree q of the
polynomials contained in Wm, p

α, β (RN
+ ) is given by

q =























m−

(

N

p
+ α

)

− 1, if







N
p + α ∈ {1, . . . ,m} and (β − 1)p ≥ −1,

or
N
p + α ∈ {j ∈ Z; j ≤ 0} and βp ≥ −1,

[

m−

(

N

p
+ α

)]

, otherwise.

(4)
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Remark 2.1. In the case β = 0, we simply denote the spaceWm, p
α, 0 (Ω) byWm, p

α (Ω).

In [11], Hanouzet introduced a class of weighted Sobolev spaces without logarith-
mic factors, with the same notation Wm, p

α (Ω). We recall his definition under the
notation Hm, p

α (Ω):

Hm, p
α (Ω) =

{

u ∈ D
′(Ω); 0 ≤ |λ| ≤ m, ̺α−m+|λ| ∂λu ∈ Lp(Ω)

}

.

It is clear that if
N

p
+ α /∈ {1, . . . ,m}, we have Wm, p

α (Ω) = Hm, p
α (Ω). The fun-

damental difference between these two families of spaces is that the assumption
(2) and thus the Poincaré-type inequality (3), hold for any value of (N, p, α) in

Wm, p
α (Ω), but not in Hm, p

α (Ω) if
N

p
+ α ∈ {1, . . . ,m}. �

2.3. The spaces of traces. In order to define the traces of functions of Wm, p
α (RN

+ )
(here we don’t consider the case β 6= 0), for any σ ∈ ]0, 1[, we introduce the space:

W σ, p
0 (RN ) =

{

u ∈ D
′(RN ); w−σu ∈ Lp(RN ) and ∀i = 1, . . . , N,

∫ +∞

0

t−1−σp dt

∫

RN

|u(x+ tei) − u(x)|
p
dx <∞

}

,

(5)

where w = ̺ if N/p 6= σ and w = ̺ (lg ̺)1/σ if N/p = σ, and e1, . . . , eN is the
canonical basis of R

N . It is a reflexive Banach space equipped with its natural
norm:

‖u‖W σ, p
0 (RN ) =

(

∥

∥

∥

u

wσ

∥

∥

∥

p

Lp(RN )
+

N
∑

i=1

∫ +∞

0

t−1−σp dt

∫

RN

|u(x+ tei)− u(x)|p dx

)1/p

which is equivalent to the norm

(

∥

∥

∥

u

wσ

∥

∥

∥

p

Lp(RN )
+

∫

RN×RN

|u(x) − u(y)|p

|x− y|N+σp
dxdy

)1/p

.

Similarly, for any real number α ∈ R, we define the space:

W σ, p
α (RN ) =

{

u ∈ D
′(RN ); wα−σu ∈ Lp(RN ),

∫

RN×RN

|̺α(x)u(x) − ̺α(y)u(y)|p

|x− y|N+σp
dxdy <∞

}

,

where w = ̺ if N/p + α 6= σ and w = ̺ (lg ̺)1/(σ−α) if N/p + α = σ. For any
s ∈ R

+, we set

W s, p
α (RN ) =

{

u ∈ D
′(RN ); 0 ≤ |λ| ≤ k, ̺α−s+|λ| (lg ̺)−1 ∂λu ∈ Lp(RN );

k + 1 ≤ |λ| ≤ [s] − 1, ̺α−s+|λ| ∂λu ∈ Lp(RN ); |λ| = [s], ∂λu ∈W σ, p
α (RN )

}

,
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where k = s−N/p− α if N/p+ α ∈ {σ, . . . , σ + [s]}, with σ = s− [s] and k = −1
otherwise. It is a reflexive Banach space equipped with the norm:

‖u‖W s, p
α (RN ) =

(

∑

0≤|λ|≤k

‖̺α−s+|λ| (lg ̺)−1 ∂λu‖
p

Lp(RN )

+
∑

k+1≤|λ|≤[s]−1

‖̺α−s+|λ| ∂λu‖
p

Lp(RN )

)1/p

+
∑

|λ|=[s]

‖∂λu‖W σ, p
α (RN ).

We can similarly define, for any real number β, the space:

W s, p
α, β(RN ) =

{

v ∈ D
′(RN ); (lg ̺)β v ∈W s, p

α (RN )
}

.

We can prove some properties of the weighted Sobolev spaces W s, p
α, β(RN ). We have

the algebraic and topological imbeddings if N/p+ α /∈ {σ, . . . , σ + [s] − 1}:

W s, p
α, β(RN ) →֒W s−1, p

α−1, β(RN ) →֒ · · · →֒W σ, p
α−[s], β(RN ),

W s, p
α, β(RN ) →֒W

[s], p
α+[s]−s, β(RN ) →֒ · · · →֒W 0, p

α−s, β(RN ).

When N/p+ α = j ∈ {σ, . . . , σ + [s] − 1}, then we have:

W s, p
α, β →֒ · · · →֒W s−j+1, p

α−j+1, β →֒W s−j, p
α−j, β−1 →֒ · · · →֒W σ, p

α−[s], β−1,

W s, p
α, β →֒W

[s], p
α+[s]−s, β →֒ · · · →֒W

[s]−j+1, p
α−σ−j+1, β →֒W

[s]−j, p
α−σ−j, β−1 →֒ · · · →֒W 0, p

α−s, β−1.

If u is a function on R
N
+ , we denote its trace of order j on the hyperplane Γ by:

∀j ∈ N, γju : x′ ∈ R
N−1 7−→ ∂j

Nu(x
′, 0).

Let’s recall the following trace lemma due to Hanouzet (see [11]) for the functions of
Hm, p

α (RN
+ ) and extended by Amrouche-Nečasová (see [5]) to the class of weighted

Sobolev spaces Wm, p
α (RN

+ ):

Lemma 2.2. For any integer m ≥ 1 and real number α, the mapping

γ = (γ0, γ1, . . . , γm−1) : D
(

RN
+

)

−→
m−1
∏

j=0

D(RN−1),

can be extended to a linear continuous mapping, still denoted by γ,

γ : Wm, p
α (RN

+ ) −→

m−1
∏

j=0

Wm−j−1/p, p
α (RN−1).

Moreover γ is surjective and Kerγ =
◦

Wm, p
α (RN

+ ).

2.4. Previous results on ∆2. First note that if we replace R
N
+ by a bounded open

set Ω of R
N in problem (P), the natural functional framework in which we find the

solution u is the one of classical Sobolev spaces. But as the things are well made,
in this case the weighted spaces coincide with the classical spaces. Concerning
the regularity results on bounded domains, we can refer to Luckhaus (see [12]) for
Dirichlet boundary conditions and to the Appendix B in the paper by R. van der
Vorst (see [15]) for boundary conditions on (u, ∆u) that we shall see in Section 5.

In unbounded domains, we must recall the mains results of our previous paper
on the biharmonic equation (see [7]), which are the start point of this study. First,
let’s give the global result for the biharmonic operator in the whole space:
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Theorem 2.3 (Amrouche-Raudin [7]). Let l ∈ Z and m ∈ N and assume that

N

p′
/∈ {1, . . . , l + min{m, 2}} and

N

p
/∈ {1, . . . ,−l −m}, (6)

then the biharmonic operator

∆2 : Wm+2, p
m+l (RN )/P∆2

[2−l−N/p] −→Wm−2, p
m+l (RN ) ⊥ P

∆2

[2+l−N/p′]

is an isomorphism.

About the half-space, the first point concerns the kernel K m of the operator
(∆2, γ0, γ1) in Wm+2, p

m+l (RN
+ ). For any q ∈ Z, we introduce the space Bq as a

subspace of P∆2

q :

Bq =
{

u ∈ P
∆2

q ; u = ∂Nu = 0 on Γ
}

.

Then we define the two operators ΠD and ΠN by:

∀r ∈ A
∆
k , ΠDr =

1

2

∫ xN

0

t r(x′, t) dt,

∀s ∈ N
∆

k , ΠNs =
1

2
xN

∫ xN

0

s(x′, t) dt,

satisfying the following properties:

∀r ∈ A
∆
k , ∆ΠDr = r in R

N
+ , ΠDr = ∂NΠDr = 0 on Γ,

∀s ∈ N
∆

k , ∆ΠNs = s in R
N
+ , ΠNs = ∂NΠNs = 0 on Γ.

So we have the following characterizations for this kernel (see [7], Lemma 4.4): let
l ∈ Z and m ∈ N and assume that

N

p
/∈ {1, . . . ,−l −m}, (7)

then
K

m = B[2−l−N/p] = ΠDA
∆
[−l−N/p] ⊕ ΠNN

∆
[−l−N/p]. (8)

Everywhere in the sequel, we shall denote this kernel by B[2−l−N/p]. Now, the
fundamental result that we showed and which is the pivot of the present work,
concerns the generalized solutions to problem (P):

Theorem 2.4 (Amrouche-Raudin [7]). Let l ∈ Z and assume that

N

p′
/∈ {1, . . . , l} and

N

p
/∈ {1, . . . ,−l}. (9)

For any f ∈ W−2, p
l (RN

+ ), g0 ∈ W
2−1/p, p
l (Γ) and g1 ∈ W

1−1/p, p
l (Γ) satisfying the

compatibility condition

∀ϕ ∈ B[2+l−N/p′],

〈f, ϕ〉
W−2, p

l (RN
+ )×

◦

W
2, p′

−l (RN
+ )

+ 〈g1,∆ϕ〉Γ − 〈g0, ∂N∆ϕ〉Γ = 0, (10)

problem (P) has a solution u ∈W 2, p
l (RN

+ ), unique up to an element of B[2−l−N/p],
with the estimate

inf
q∈B[2−l−N/p]

‖u+ q‖W 2, p
l (RN

+ ) ≤

C
(

‖f‖W−2, p
l (RN

+ ) + ‖g0‖W
2−1/p, p
l (Γ)

+ ‖g1‖W
1−1/p, p
l (Γ)

)

.
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We also established a global result for the homogeneous problem in the half-space:

(P0)











∆2u = 0 in R
N
+ ,

u = g0 on Γ,

∂Nu = g1 on Γ.

Proposition 2.5 (Amrouche-Raudin [7]). Let l ∈ Z and m ∈ N and assume that

N

p′
/∈ {1, . . . , l} and

N

p
/∈ {1, . . . ,−l −m}. (11)

For any g0 ∈W
m+2−1/p, p
m+l (Γ) and g1 ∈W

m+1−1/p, p
m+l (Γ), satisfying the compatibility

condition
∀ϕ ∈ B[2+l−N/p′] , 〈g1,∆ϕ〉Γ − 〈g0, ∂N∆ϕ〉Γ = 0, (12)

problem (P0) admits a solution u ∈ Wm+2, p
m+l (RN

+ ), unique up to an element of
B[2−l−N/p], with the estimate

inf
q∈B[2−l−N/p]

‖u+ q‖W m+2, p
m+l (RN

+ ) ≤ C
(

‖g0‖W
m+2−1/p, p
m+l (Γ)

+ ‖g1‖W
m+1−1/p, p
m+l (Γ)

)

.

3. Weak solutions, strong solutions and regularity. The first part of the
present work consists in the study of solutions to problem (P) for more regular
data. We shall now establish a global result which extends our previous result to
different types of data.

3.1. Extension of Theorem 2.4.

Theorem 3.1. Let l ∈ Z and m ∈ N. Under hypothesis (6), for any f ∈

Wm−2, p
m+l (RN

+ ), g0 ∈ W
m+2−1/p, p
m+l (Γ) and g1 ∈ W

m+1−1/p, p
m+l (Γ) satisfying the com-

patibility condition (10), problem (P) has a solution u ∈ Wm+2, p
m+l (RN

+ ), unique up
to an element of B[2−l−N/p], with the estimate

inf
q∈B[2−l−N/p]

‖u+ q‖W m+2, p
m+l (RN

+ )

≤ C
(

‖f‖W m−2, p
m+l (RN

+ ) + ‖g0‖W
m+2−1/p, p
m+l (Γ)

+ ‖g1‖W
m+1−1/p, p
m+l (Γ)

)

.

Proof. Note at first that ifm = 0, we find Theorem 2.4. The kernel has been globally
characterized by (8) (see [7], Lemma 4.4). Let’s recall that this kernel is reduced
to {0} if l ≥ 0 and symmetrically the compatibility condition (10) vanishes if l ≤

0. Moreover under hypothesis (6), the imbeddings Wm−2, p
m+l (RN

+ ) →֒ W−2, p
l (RN

+ ),

W
m+2−1/p, p
m+l (Γ) →֒ W

2−1/p, p
l (Γ) and W

m+1−1/p, p
m+l (Γ) →֒ W

1−1/p, p
l (Γ) hold for all

l ≥ 1, hence the necessity of (10) for any m ∈ N. So it suffices to show the existence
of a solution. By Lemma 2.2, we can consider the problem with homogeneous
boundary conditions

(P⋆)











∆2u = f in R
N
+ ,

u = 0 on Γ,

∂Nu = 0 on Γ,

with f ⊥ B[2+l−N/p′]. This orthogonality condition naturally corresponds to the
compatibility condition (10). For more details on these questions, see [7].

Let’s now give the plan of the proof of the existence for m ≥ 1:

i) If l ≤ −2, we establish globally the existence of a solution.
ii) If l ≥ −1 and m = 1, we show that by a direct construction.
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iii) If l ≥ −1 and m ≥ 1, we show that by induction on m from the previous case
(m = 1), thanks to a regularity argument.

i) Assume that l ≤ −2. Then hypothesis (6) is reduced to (7). Let f ∈

Wm−2, p
m+l (RN

+ ). Let’s first suppose m ≥ 2. We know that there exists a con-

tinuous linear extension operator from Wm−2, p
m+l (RN

+ ) to Wm−2, p
m+l (RN ) and thus

f̃ ∈ Wm−2, p
m+l (RN ) which extends f to R

N . Then we use Theorem 2.3 to obtain

z̃ ∈ Wm+2, p
m+l (RN ) such that f̃ = ∆2z̃ in R

N and thus f = ∆2z in R
N
+ , with

z = z̃|RN
+
∈ Wm+2, p

m+l (RN
+ ). Then Proposition 2.5 asserts the existence of a solution

v ∈Wm+2, p
m+l (RN

+ ) to the homogeneous problem

∆2v = 0 in R
N
+ , v = z and ∂Nv = ∂Nz on Γ,

with z|Γ ∈ W
m+2−1/p, p
m+l (Γ) and ∂Nz|Γ ∈ W

m+1−1/p, p
m+l (Γ). We remark again that

B[2+l−N/p′] = {0} because l ≤ 0, thus there is no compatibility condition. Then
the function u = z − v answer to problem (P⋆) in this case.

Let’s now consider the case m = 1, i.e. f ∈ W−1, p
l+1 (RN

+ ). As we did for the

distributions of W−2, p
l (RN

+ ) in [7], we can show that there exists F = (Fi)1≤i≤N ∈

W 0, p
l+1(RN

+ )
N

such that f = divF =

N
∑

i=1

∂iFi, with the estimate

N
∑

i=1

‖Fi‖W 0, p
l+1 (RN

+ ) ≤

C ‖f‖W−1, p
l+1 (RN

+ ). Let’s denote by F̃ ∈ W 0, p
l+1(RN )

N
the extension by 0 of F to R

N .

Since
N

p
/∈ {1, . . . ,−l−1}, by Theorem 2.3, there exists Ψ̃ ∈W 4, p

l+1(RN )
N

such that

F̃ = ∆2Ψ̃ in R
N . Setting ψ̃ = div Ψ̃ and ψ = ψ̃|RN

+
, so we have ψ ∈W 3, p

l+1(RN
+ ) and

by Proposition 2.5, there exists v ∈W 3, p
l+1(RN

+ ) such that

∆2v = 0 in R
N
+ , v = ψ and ∂Nv = ∂Nψ on Γ.

The function u = ψ − v ∈W 3, p
l+1(RN

+ ) is a solution to Problem (P⋆) in this case.

ii) Assume that l ≥ −1 and m = 1. Note that the distribution f ∈ W−1, p
l+1 (RN

+ )

defines the linear functional L on A ∆
[l+2−N/p′] by

L : r 7−→ 〈f, r〉
W−1, p

l+1 (RN
+ )×

◦

W
1, p′

−l−1(R
N
+ )
,

and introduce the inner product Φ on A ∆
[l+2−N/p′] × A ∆

[l+2−N/p′] defined by

Φ : (µ, r) 7−→

∫

Γ

̺′−2l−1−N/p+N/p′

∂Nµ∂Nr dx′.

Note that

r ∈ A
∆
[l+2−N/p′] =⇒ ̺′−l−1+1/p′

∂Nr ∈ Lp′

(Γ),

and

µ ∈ A
∆
[l+2−N/p′] = A

∆
[l+2−N/p′+N/p−N/p] =⇒ ̺′−l−1−N/p+N/p′+1/p ∂Nµ ∈ Lp(Γ).

Thus, thanks to Hölder inequality, Φ is well-defined. Then, there exists an unique
µ ∈ A ∆

[l+2−N/p′] such that

∀r ∈ A
∆
[l+2−N/p′], L(r) = Φ(µ, r),
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i.e.

∀r ∈ A
∆
[l+2−N/p′],

〈f, r〉
W−1, p

l+1 (RN
+ )×

◦

W
1, p′

−l−1(R
N
+ )

=

∫

Γ

̺′−2l−1−N/p+N/p′

∂Nµ∂Nr dx′.
(13)

Let’s set ξ0 = ̺′−2l−1−N/p+N/p′

∂Nµ, then we have ξ0 ∈ W
1−1/p, p
l+1 (Γ) and (13)

becomes

∀r ∈ A
∆
[l+2−N/p′],

〈f, r〉
W−1, p

l+1 (RN
+ )×

◦

W
1, p′

−l−1(R
N
+ )

= 〈ξ0, ∂Nr〉W 1−1/p, p
l+1 (Γ)×W

−1/p′, p′

−l−1 (Γ)
.

(14)

That is precisely the compatibility condition of the Dirichlet problem

(Q)

{

∆ξ = f in R
N
+ ,

ξ = ξ0 on Γ,

Thus (see [5], Theorem 3.1), (Q) admits a solution ξ ∈W 1, p
l+1(RN

+ ) under hypothesis
(6). Here we shall use the characterization (8):

B[2+l−N/p′] = ΠDA
∆
[l−N/p′] ⊕ ΠNN

∆
[l−N/p′].

Since f ⊥ B[2+l−N/p′], we have

∀r ∈ A
∆
[l−N/p′], 〈∆ξ,ΠDr〉

W−1, p
l+1 (RN

+ )×
◦

W
1, p′

−l−1(R
N
+ )

= 〈f,ΠDr〉 = 0.

By a Green formula, we can deduce that

∀r ∈ A
∆
[l−N/p′], 〈ξ,∆ΠDr〉

W−1, p
l−1 (RN

+ )×
◦

W
1, p′

−l+1(R
N
+ )

= 0,

becauseW 1, p
l+1(RN

+ ) →֒W−1, p
l−1 (RN

+ ) unless
N

p
= −l or

N

p′
= l. The second possibility

is excluded by (6), and since l ≥ −1, the only problematic case is l = −1. But then
[l −N/p′] < 0 and the condition vanishes. Thus, we have

∀r ∈ A
∆
[l−N/p′], 〈ξ, r〉

W−1, p
l−1 (RN

+ )×
◦

W
1, p′

−l+1(R
N
+ )

= 0,

which is the compatibility condition for the Dirichlet problem

(R⋆)

{

∆ϑ = ξ in R
N
+ ,

ϑ = 0 on Γ.

Thus (see [5], Corollary 3.4), (R⋆) admits a solution ϑ ∈W 3, p
l+1(RN

+ ) under hypoth-
esis (6). Similarly we have

∀s ∈ N
∆

[l−N/p′], 〈∆ξ,ΠNs〉
W−1, p

l+1 (RN
+ )×

◦

W
1, p′

−l−1(R
N
+ )

= 〈f,ΠNs〉 = 0,

therefore as previously, we have

∀s ∈ N
∆

[l−N/p′], 〈ξ, s〉
W−1, p

l−1 (RN
+ )×

◦

W
1, p′

−l+1(R
N
+ )

= 0,

which is the compatibility condition for Neumann problem

(S⋆)

{

∆ζ = ξ in R
N
+ ,

∂Nζ = 0 on Γ.
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As for problem (R⋆), we can show that (S⋆) admits a solution ζ ∈W 3, p
l+1(RN

+ ) under
hypothesis (6) (see [7], Theorem 2.8). Then the function defined by

u = xN ∂N (ζ − ϑ) + ϑ (15)

is a solution to (P⋆). It remains to show that u ∈W 3, p
l+1(RN

+ ).

If
N

p
6= −l, then we have the imbedding W 3, p

l+1(RN
+ ) →֒ W 2, p

l (RN
+ ) therefore

u ∈W 2, p
l (RN

+ ). Moreover u satisfies the system

(T ⋆)

{

∆u = 2 ∂2
N (ζ − ϑ) + ξ in R

N
+ ,

u = 0 on Γ,

with 2 ∂2
N (ζ − ϑ) + ξ ∈ W 1, p

l+1(RN
+ ). As for (R⋆), we know that problem (T ⋆) has a

solution y ∈ W 3, p
l+1(RN

+ ). We can deduce that u− y ∈ A ∆
[2−l−N/p] ⊂ W 3, p

l+1(RN
+ ), i.e.

u ∈W 3, p
l+1(RN

+ ).

If
N

p
= −l, then we have necessary l = −1 and moreover the imbedding

W 3, p
0 (RN

+ ) →֒ W 2, p
−1,−1(R

N
+ ) with l −

N

p′
= l +

N

p
− N = −N < 0, therefore no

compatibility condition for (T ⋆). So we can still deduce that u ∈W 3, p
l+1(RN

+ ).

iii) Assume that l ≥ −1 and m ≥ 1. Consider f ∈ Wm−2, p
m+l (RN

+ ) ⊥ B[2+l−N/p′].
Remark at first that we have the imbedding

Wm−2, p
m+l (RN

+ ) →֒W−1, p
l+1 (RN

+ ) if
N

p′
6= l + 2 or m = 1.

Then, thanks to the previous step, there exists a solution u ∈W 3, p
l+1(RN

+ ) to problem
(P⋆). Let’s prove by induction that, under hypothesis (6),

f ∈Wm−2, p
m+l (RN

+ ) =⇒ u ∈Wm+2, p
m+l (RN

+ ). (16)

For m = 1, (16) is true. Assume that (16) is true for 1, 2, . . . ,m and suppose that

f ∈ Wm−1, p
m+1+l (R

N
+ ). Let’s prove that u ∈ Wm+3, p

m+1+l(R
N
+ ). Let’s first observe that

Wm−1, p
m+1+l (R

N
+ ) →֒ Wm−2, p

m+l (RN
+ ), hence u belongs to Wm+2, p

m+l (RN
+ ) thanks to the

induction hypothesis. Now, for any i ∈ {1, . . . , N − 1},

∆(̺ ∂iu) = ̺∆∂iu+
2

̺
x.∇∂iu+

(

N − 1

̺
+

1

̺3

)

∂iu.

Then let’s set vi =
2

̺
x.∇∂iu +

(

N − 1

̺
+

1

̺3

)

∂iu. We can remark that vi ∈

Wm, p
m+l(R

N
+ ) and moreover we can write

∆2(̺ ∂iu) = ∆(̺∆∂iu) + ∆vi,

with ∆vi ∈Wm−2, p
m+l (RN

+ ). It remains to see the first term, i.e.

∆(̺ ∂i∆u) = ̺ ∂if +
2

̺
x.∇∂i∆u+

(

N − 1

̺
+

1

̺3

)

∂i∆u.

We can see that ∆(̺ ∂i∆u) ∈ Wm−2, p
m+l (RN

+ ), hence ∆2(̺ ∂iu) ∈ Wm−2, p
m+l (RN

+ ).

Let’s set zi = ̺ ∂iu and fi = ∆2zi ∈ Wm−2, p
m+l (RN

+ ). A priori, we only have zi ∈

Wm+1, p
m−1+l(R

N
+ ). However, we know that γ0u = γ1u = 0, then we can deduce that

γ0zi = (̺ ∂iu)|Γ = 0 and γ1zi = (∂N̺ ∂iu+ ̺ ∂2
iNu)|Γ = 0 since i 6= N.
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Therefore

∆2zi = fi in R
N
+ , zi = ∂Nzi = 0 on Γ,

with fi ∈ Wm−2, p
m+l (RN

+ ) →֒ W−2, p
l (RN

+ ) under hypothesis (6). Moreover, thanks to
the Green formula, we have for any ϕ ∈ B[2+l−N/p′]:

〈

∆2zi, ϕ
〉

W−2, p
l (RN

+ )×
◦

W
2, p′

−l (RN
+ )

=
〈

zi,∆
2ϕ

〉

◦

W
2, p
l (RN

+ )×W−2, p′

−l (RN
+ )

= 0.

So the orthogonality condition fi ⊥ B[2+l−N/p′] is satisfied for the problem

(Qi)











∆2ζi = fi in R
N
+ ,

ζi = 0 on Γ,

∂Nζi = 0 on Γ,

which admits, by the induction hypothesis, a solution ζi ∈ Wm+2, p
m+l (RN

+ ), unique
up to an element of B[2−l−N/p]. Thus zi − ζi ∈ B[2−l−N/p], hence we can deduce

that zi ∈Wm+2, p
m+l (RN

+ ). Since zi = ̺ ∂iu, that implies

∀i ∈ {1, . . . , N − 1}, ∂iu ∈Wm+2, p
m+1+l(R

N
+ ) (17)

and consequently, for any (i, j, k) ∈ {1, . . . , N}2 × {1, . . . , N − 1},

∂3
ijk(∂Nu) = ∂3

ijN (∂ku) ∈Wm−1, p
m+1+l (R

N
+ ). (18)

Furthermore, (17) gives us

∀(i, j) ∈ {1, . . . , N} × {1, . . . , N − 1}, ∂2
i ∂

2
j u ∈Wm−1, p

m+1+l (R
N
+ ),

which implies

∂4
Nu = f −

N
∑

i,j=1
(i,j) 6=(N,N)

∂2
i ∂

2
j u ∈Wm−1, p

m+1+l (R
N
+ ). (19)

Then combining (18) and (19), we obtain that ∇3(∂Nu) ∈ Wm−1, p
m+1+l (R

N
+ )

N3

and

knowing that ∂Nu ∈ Wm+1, p
m+l (RN

+ ), we can deduce that ∂Nu ∈ Wm+2, p
m+1+l(R

N
+ ), be-

cause m ≥ 1. Adding this last point to (17), we have ∇u ∈ Wm+2, p
m+1+l(R

N
+ )

N
, hence

we can conclude that u ∈Wm+3, p
m+1+l(R

N
+ ).

3.2. Panorama of basic cases. The purpose of this part is to extract the ba-
sic cases included in Theorem 3.1. We give them for the lifted problem (P⋆).
There is no orthogonality condition in these cases because l ∈ {−2,−1, 0}, hence
B[2+l−N/p′] = {0}. For m ≥ 3, we introduce the notation

⋆

W
m, p
l (RN

+ ) =
{

u ∈Wm, p
l (RN

+ ); u = ∂Nu = 0 on Γ
}

.

Corollary 3.2. The following biharmonic operators are isomorphisms:

i) For l = 0

∆2 :
◦

W
2, p
0 (RN

+ ) −→ W−2, p
0 (RN

+ ).

∆2 :
⋆

W
3, p
1 (RN

+ ) −→ W−1, p
1 (RN

+ ), if N/p′ 6= 1.

∆2 :
⋆

W
4, p
2 (RN

+ ) −→ W 0, p
2 (RN

+ ), if N/p′ /∈ {1, 2}.
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ii) For l = −1

∆2 :
◦

W
2, p
−1 (RN

+ )/B[3−N/p] −→ W−2, p
−1 (RN

+ ), if N/p 6= 1.

∆2 :
⋆

W
3, p
0 (RN

+ )/B[3−N/p] −→ W−1, p
0 (RN

+ ).

∆2 :
⋆

W
4, p
1 (RN

+ )/B[3−N/p] −→ W 0, p
1 (RN

+ ), if N/p′ 6= 1.

iii) For l = −2

∆2 :
◦

W
2, p
−2 (RN

+ )/B[4−N/p] −→ W−2, p
−2 (RN

+ ), if N/p /∈ {1, 2}.

∆2 :
⋆

W
3, p
−1 (RN

+ )/B[4−N/p] −→ W−1, p
−1 (RN

+ ), if N/p 6= 1.

∆2 :
⋆

W
4, p
0 (RN

+ )/B[4−N/p] −→ Lp(RN
+ ).

Remark 3.3. Note that we have without any critical value, the isomorphism ∆2 :
⋆

W
3, p
0 (RN

+ )/B[3−N/p] −→W−1, p
0 (RN

+ ). On the other hand, we have the isomorphism

∆2 : W 3, p
0 (RN

+ ) ∩
◦

W
2, p
−1 (RN

+ )/B[3−N/p] −→ W−1, p
0 (RN

+ ) only if N/p 6= 1, which

is necessary for the imbedding W 3, p
0 (RN

+ ) →֒ W 2, p
−1 (RN

+ ). Hence the specificity of

spaces
⋆

W
m, p
l (RN

+ ). �

3.3. What is new? Recall the Boulmezaoud theorem on the biharmonic problem
(see [9]), using the spaces Hm, p

α (RN
+ ) instead of Wm, p

α (RN
+ ) (see Remark 2.1):

Theorem (Boulmezaoud). Let l ∈ Z and m ∈ N and assume that

N

2
/∈ {1, . . . , |l| + 2}.

For any f ∈ Hm−1, 2
m+l+1(R

N
+ ), g0 ∈ H

m+5/2, 2
m+l+1 (Γ) and g1 ∈ H

m+3/2, 2
m+l+1 (Γ) satisfying the

compatibility condition (10), problem (P) has a solution u ∈ Hm+3, 2
m+l+1(R

N
+ ), unique

up to an element of B[2−l−N/2] and this solution continuously depends on the data
with respect to the quotient norm.

The most important point is about the regularity of data. In Theorem 3.1,

we can take f ∈ W−2, 2
l (RN

+ ), g0 ∈ W
3/2, 2
l (Γ) and g1 ∈ W

1/2, 2
l (Γ), whereas the

lower level in Boulmezaoud theorem is for f ∈ H−1, 2
l+1 (RN

+ ), g0 ∈ H
5/2, 2
l+1 (Γ) and

g1 ∈ H
3/2, 2
l+1 (Γ). The second point is about critical values which appear for all the

even dimensions. Particularly for the dimensions N = 2 or N = 4, the Boulmezaoud
theorem unfortunately does not give any answer to problem (P), whereas we can see

in Corollary 3.2 that Theorem 3.1 gives solutions with f inW−2, 2
0 (RN

+ ), W−1, 2
0 (RN

+ )

or L2(RN
+ ) . . . The last point concerns the underlying functional setting of our work,

which is that of Lebesgue spaces Lp(Ω), with 1 < p <∞.

4. Singular boundary conditions. The second part of this work consists now
to find some solutions to the homogeneous problem (P0) for singular boundary
conditions. Theorem 4.4 and Theorem 4.5 answer to this question.

4.1. Extension of traces. In this section, we establish the existence of traces in
special cases we shall use for the study of singular boundary conditions.

For any l ∈ Z, we introduce the spaces

Y p
l (RN

+ ) =
{

v ∈W 0, p
l−2(RN

+ ); ∆2v ∈W 0, p
l+2(RN

+ )
}

,

Y p
l, 1(R

N
+ ) =

{

v ∈W 0, p
l−2(RN

+ ); ∆2v ∈W 0, p
l+2, 1(R

N
+ )

}

.
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They are reflexive Banach spaces equipped with their natural norms:

‖v‖Y p
l (RN

+ ) = ‖v‖W 0, p
l−2 (RN

+ ) + ‖∆2v‖W 0, p
l+2 (RN

+ ),

‖v‖Y p
l, 1(R

N
+ ) = ‖v‖W 0, p

l−2 (RN
+ ) + ‖∆2v‖W 0, p

l+2, 1(R
N
+ ).

Lemma 4.1. Let l ∈ Z such that

N

p′
/∈ {1, . . . , l − 2} and

N

p
/∈ {1, . . . ,−l + 2}, (20)

then the space D
(

RN
+

)

is dense in Y p
l (RN

+ ) and in Y p
l, 1(R

N
+ ).

Proof. i) We use an extension of the Riesz representation theorem to weighted

Sobolev spaces: Given T ∈
(

Y p
l (RN

+ )
)′

, there exists a unique pair (u1, u2) ∈
(

Lp′

(RN
+ )

)2

such that

∀ϕ ∈ Y p
l (RN

+ ), 〈T, ϕ〉 =

∫

RN
+

u1 ̺
l−2 ϕ dx+

∫

RN
+

u2 ̺
l+2 ∆2ϕ dx. (21)

Let’s suppose that T = 0 on D
(

RN
+

)

, thus on D(RN
+ ). Then we can deduce from

(21) that

̺l−2 u1 + ∆2
(

̺l+2 u2

)

= 0 in R
N
+ . (22)

We set v1 = ̺l−2 u1 and v2 = ̺l+2 u2, and we respectively denote by ṽ1 and ṽ2 the
extensions by 0 of v1 and v2 to R

N . We have for any ϕ ∈ D(RN ),
∫

RN

ṽ1 ϕ dx+

∫

RN

ṽ2 ∆2ϕ dx =

∫

RN
+

v1 ϕ dx+

∫

RN
+

v2 ∆2ϕ dx = 0, (23)

according to the assumption on T , since ϕ|
RN

+
∈ D

(

RN
+

)

. Therefore we can deduce

that ṽ1 + ∆2ṽ2 = 0 in R
N . We know that ṽ1 ∈ W 0, p′

−l+2(R
N ), then we also have

∆2ṽ2 ∈ W 0, p′

−l+2(R
N ). Moreover, we have the following Green formula: for any

ϕ ∈ D(RN ),
〈

∆2ṽ2, ϕ
〉

W 0, p′

−l+2(R
N )×W 0, p

l−2 (RN )
=

〈

ṽ2,∆
2ϕ

〉

W 0, p′

−l−2(R
N )×W 0, p

l+2 (RN )
, (24)

and we know that P∆2

[2−l−N/p] ⊂ W 4, p
l+2(RN ) →֒ W 0, p

l−2(RN ) under the hypothesis

N

p
/∈ {1, . . . ,−l+ 2}. Since D(RN ) is dense in W 4, p

l+2(RN ), we can deduce that (24)

holds for any ϕ ∈ P∆2

[2−l−N/p] and consequently that ∆2ṽ2 ⊥ P∆2

[2−l−N/p]. Thanks to

Theorem 2.3, with m = 2, −l instead of l and exchanging p and p′, we can deduce

that under hypothesis (20), we have ṽ2 ∈ W 4, p′

−l+2(R
N ). Since ṽ2 is an extension

by 0, it follows that v2 ∈
◦

W
4, p′

−l+2(R
N
+ ). Now, thanks to the density of D(RN

+ ) in
◦

W
4, p′

−l+2(R
N
+ ), we have the following Green formula:

∀ϕ ∈ Y p
l (RN

+ ), ∀w ∈
◦

W
4, p′

−l+2(R
N
+ ) ∩W 0, p′

−l−2(R
N
+ ),

∫

RN
+

ϕ∆2w dx =

∫

RN
+

w∆2ϕ dx.
(25)
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Then it suffices to come back to (21) and to use (25) with w = v2 which belongs to
◦

W
4, p′

−l+2(R
N
+ ) ∩W 0, p′

−l−2(R
N
+ ), to obtain for any ϕ ∈ Y p

l (RN
+ ):

〈T, ϕ〉 =

∫

RN
+

v1 ϕ dx+

∫

RN
+

v2 ∆2ϕ dx =

∫

RN
+

(

v1 + ∆2v2
)

ϕ dx = 0,

according to (22). Then we have proved that T = 0 on Y p
l (RN

+ ), and the Hahn-

Banach theorem assures us that D
(

RN
+

)

is dense in Y p
l (RN

+ ).

ii) Likewise, we can prove the density of D
(

RN
+

)

in Y p
l, 1(R

N
+ ). The differences

only concern the logarithmic factors in the weights.

Given T ∈
(

Y p
l, 1(R

N
+ )

)′
, there exists a unique pair (u1, u2) ∈

(

Lp′

(RN
+ )

)2

such

that

∀ϕ ∈ Y p
l, 1(R

N
+ ), 〈T, ϕ〉 =

∫

RN
+

u1 ̺
l−2 ϕ dx+

∫

RN
+

u2 ̺
l+2 lg ̺∆2ϕ dx. (26)

Let’s suppose that T = 0 on D
(

RN
+

)

, then we have

̺l−2 u1 + ∆2
(

̺l+2 lg ̺ u2

)

= 0 in R
N
+ . (27)

We set v1 = ̺l−2 u1 and v2 = ̺l+2 lg ̺ u2, and we respectively denote by ṽ1 and
ṽ2 the extensions by 0 of v1 and v2 to R

N . We have the analog of identity (23)
for any ϕ ∈ D(RN ). Therefore we can deduce that ṽ1 + ∆2ṽ2 = 0 in R

N . We

know that ṽ1 ∈ W 0, p′

−l+2(R
N ), then we also have ∆2ṽ2 ∈ W 0, p′

−l+2(R
N ), whence the

analog of Green formula (24) where the duality of the right side is replaced by

W 0, p′

−l−2,−1(R
N ) × W 0, p

l+2, 1(R
N ). Since P∆2

[2−l−N/p] ⊂ W 4, p
l+2, 1(R

N ) →֒ W 0, p
l−2(RN )

if
N

p
/∈ {1, . . . ,−l + 2}, we can deduce by density that this formula holds for any

ϕ ∈ P∆2

[2−l−N/p] and consequently that ∆2ṽ2 ⊥ P∆2

[2−l−N/p]. Thanks to Theorem 2.3,

we can deduce that under hypothesis (20), we have ṽ2 ∈ W 4, p′

−l+2(R
N ). It follows

that v2 ∈
◦

W
4, p′

−l+2(R
N
+ ). We also have the analog of Green formula (25) for any

w ∈
◦

W
4, p′

−l+2(R
N
+ ) ∩ W 0, p′

−l−2,−1(R
N
+ ). The end of the proof is quite similar to the

previous case.

Thanks to this density lemma, we can prove the following result of traces:

Lemma 4.2. Let l ∈ Z. Under hypothesis (20), the mapping

(γ0, γ1) : D
(

RN
+

)

−→ D(RN−1)
2
,

can be extended to a linear continuous mapping

(γ0, γ1) : Y p
l, 1(R

N
+ ) −→W

−1/p, p
l−2 (Γ) ×W

−1−1/p, p
l−2 (Γ),

and we have the following Green formula:

∀v ∈ Y p
l, 1(R

N
+ ), ∀ϕ ∈

⋆

W
4, p′

−l+2(R
N
+ ),

〈

∆2v, ϕ
〉

W 0, p
l+2, 1(R

N
+ )×W 0, p′

−l−2, −1(R
N
+ )

−
〈

v,∆2ϕ
〉

W 0, p
l−2 (RN

+ )×W 0, p′

−l+2(R
N
+ )

= 〈v, ∂N∆ϕ〉
W

−1/p, p
l−2 (Γ)×W

1/p, p′

−l+2 (Γ)
− 〈∂Nv,∆ϕ〉W−1−1/p, p

l−2 (Γ)×W
1+1/p, p′

−l+2 (Γ)
.

(28)
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Proof. Let’s first remark that for any ϕ ∈
⋆

W
4, p′

−l+2(R
N
+ ), we have

∆ϕ = ∂2
Nϕ and ∂N∆ϕ = ∂3

Nϕ on Γ.

Moreover, we always have the imbedding W 4, p′

−l+2(R
N
+ ) →֒ W 0, p′

−l−2,−1(R
N
+ ). So we

can write the following Green formula:

∀v ∈D
(

RN
+

)

, ∀ϕ ∈
⋆

W
4, p′

−l+2(R
N
+ ),

∫

RN
+

ϕ∆2v dx−

∫

RN
+

v∆2ϕ dx =

∫

Γ

v ∂N∆ϕ dx′ −

∫

Γ

∂Nv∆ϕ dx′.
(29)

In particular, if ϕ ∈W 4, p′

−l+2(R
N
+ ) and such that ϕ = ∂Nϕ = ∂2

Nϕ = 0 on Γ, we have
∣

∣

∣

∣

∫

Γ

v ∂N∆ϕ dx′
∣

∣

∣

∣

≤ ‖v‖Y p
l, 1(R

N
+ ) ‖ϕ‖

W 4, p′

−l+2(R
N
+ )
.

For all g ∈ W
1−1/p′, p′

−l+2 (Γ), thanks to Lemma 2.2, there exists a lifting function

ϕ0 ∈ W 4, p′

−l+2(R
N
+ ) such that ϕ0 = ∂Nϕ0 = ∂2

Nϕ0 = 0 on Γ and ∂3
Nϕ0 = g on Γ,

satisfying moreover

‖ϕ0‖W 4, p′

−l+2(R
N
+ )

≤ C ‖g‖
W

1−1/p′, p′

−l+2 (Γ)
,

where C is a constant not depending on ϕ0 and g. Then we have
∣

∣

∣

∣

∫

Γ

v g dx′
∣

∣

∣

∣

≤ ‖v‖Y p
l, 1(R

N
+ ) ‖ϕ0‖W 4, p′

−l+2(R
N
+ )

≤ C ‖v‖Y p
l, 1(R

N
+ ) ‖g‖

W
1−1/p′, p′

−l+2 (Γ)
.

Thus

‖γ0v‖W
−1/p, p
l−2 (Γ)

≤ C ‖v‖Y p
l, 1(R

N
+ ).

Therefore, the linear mapping γ0 : v 7−→ v|Γ defined on D
(

RN
+

)

is continuous for

the norm of Y p
l, 1(R

N
+ ). Since D

(

RN
+

)

is dense in Y p
l, 1(R

N
+ ), γ0 can be extended by

continuity to a mapping γ0 ∈ L
(

Y p
l, 1(R

N
+ ); W

−1/p, p
l−2 (Γ)

)

.

To define the trace γ1 on Y p
l, 1(R

N
+ ), we consider ϕ ∈ W 4, p′

−l+2(R
N
+ ) such that

ϕ = ∂Nϕ = ∂3
Nϕ = 0 on Γ. In this case, we have

∣

∣

∣

∣

∫

Γ

∂Nv∆ϕ dx′
∣

∣

∣

∣

≤ ‖v‖Y p
l, 1(R

N
+ ) ‖ϕ‖

W 4, p′

−l+2(R
N
+ )
.

For all g ∈ W
2−1/p′, p′

−l+2 (Γ), thanks to Lemma 2.2, there exists a lifting function

ϕ0 ∈ W 4, p′

−l+2(R
N
+ ) such that ϕ0 = ∂Nϕ0 = ∂3

Nϕ0 = 0 on Γ and ∂2
Nϕ0 = g on Γ,

satisfying moreover

‖ϕ0‖W 4, p′

−l+2(R
N
+ )

≤ C ‖g‖
W

2−1/p′, p′

−l+2 (Γ)
,

where C is a constant independent of ϕ0 and g. Once again, the linear mapping

γ1 : v 7−→ ∂Nv|Γ, defined on D
(

RN
+

)

is continuous for the norm of Y p
l, 1(R

N
+ ), and it

can be extended by continuity to a mapping γ1 ∈ L
(

Y p
l, 1(R

N
+ ); W

−1−1/p, p
l−2 (Γ)

)

.

To conclude this proof, we can deduce the formula (28) from (29) by density of

D
(

RN
+

)

in Y p
l, 1(R

N
+ ).
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Remark 4.3. Note that the logarithmic factors are unnecessary in the case where
N

p′
/∈ {l − 1, l, l + 1, l + 2}, because the imbedding W 4, p′

−l+2(R
N
+ ) →֒ W 0, p′

−l−2(R
N
+ )

holds. So we can replace the space Y p
l, 1(R

N
+ ) by Y p

l (RN
+ ) in the lemma, with a

Green formula without logarithmic factors, i.e. where the first term of the left side
is replaced by

〈

∆2v, ϕ
〉

W 0, p
l+2 (RN

+ )×W 0, p′

−l−2(R
N
+ )

. �

4.2. Singular boundary conditions. We now come back to the homogeneous

problem, and we consider here singular boundary conditions. Let g0 ∈W
−1/p, p
l−2 (Γ)

and g1 ∈W
−1−1/p, p
l−2 (Γ), we search u ∈W 0, p

l−2(RN
+ ) solution to the problem

(P0)











∆2u = 0 in R
N
+ ,

u = g0 on Γ,

∂Nu = g1 on Γ.

Let’s first remark that if u ∈ W 0, p
l−2(RN

+ ) verifies (P0) under hypothesis (20), then

it belongs to Y p
l, 1(R

N
+ ) and thanks to Lemma 4.2, γ0u ∈ W

−1/p, p
l−2 (Γ) and γ1u ∈

W
−1−1/p, p
l−2 (Γ), which gives a sense to (P0).

Theorem 4.4. Let l ∈ Z. Under hypothesis (20), for any g0 ∈ W
−1/p, p
l−2 (Γ) and

g1 ∈W
−1−1/p, p
l−2 (Γ) satisfying the compatibility condition

∀ϕ ∈ B[2+l−N/p′] , 〈g1,∆ϕ〉Γ − 〈g0, ∂N∆ϕ〉Γ = 0, (30)

problem (P0) has a solution u ∈W 0, p
l−2(RN

+ ), unique up to an element of B[2−l−N/p],
with the estimate

inf
q∈B[2−l−N/p]

‖u+ q‖W 0, p
l−2 (RN

+ ) ≤ C
(

‖g0‖W
−1/p, p
l−2 (Γ)

+ ‖g1‖W
−1−1/p, p
l−2 (Γ)

)

.

Proof. Let K −2 denote the kernel of the operator associated to this problem. We
can observe that problem (P0) is equivalent to the formulation:

(Q)

{

Find u ∈ Y p
l, 1(R

N
+ )/K −2 such that for any v ∈

⋆

W
4, p′

−l+2(R
N
+ ),

〈

u,∆2v
〉

W 0, p
l−2 (RN

+ )×W 0, p′

−l+2(R
N
+ )

= 〈g1,∆v〉Γ − 〈g0, ∂N∆v〉Γ ,

where we have used the Green formula (28) of Lemma 4.2.

Now, let’s solve problem (Q). For any f ∈W 0, p′

−l+2(R
N
+ ) ⊥ B[2−l−N/p], according

to Theorem 3.1, with m = 2, −l instead of l and exchanging p and p′, the problem

(P⋆)











∆2v = f in R
N
+ ,

v = 0 on Γ,

∂Nv = 0 on Γ,

admits an unique solution v ∈ W 4, p′

−l+2(R
N
+ )/B[2+l−N/p′], under hypothesis (20).

Moreover, v satisfies the estimate

‖v‖
W 4, p′

−l+2(R
N
+ )/B[2+l−N/p′]

≤ C ‖f‖
W 0, p′

−l+2(R
N
+ )
,

where C denotes as usual a generic constant not depending on v and f . Consider the

linear form T : f 7−→ 〈g1,∆v〉Γ−〈g0, ∂N∆v〉Γ defined onW 0, p′

−l+2(R
N
+ ) ⊥ B[2−l−N/p].
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We have for any q ∈ B[2+l−N/p′],

|T (f)| =
∣

∣

∣
〈g1,∆(v + q)〉Γ − 〈g0, ∂N∆(v + q)〉Γ

∣

∣

∣

≤ C ‖v + q‖
W 4, p′

−l+2(R
N
+ )

(

‖g0‖W
−1/p, p
l−2 (Γ)

+ ‖g1‖W
−1−1/p, p
l−2 (Γ)

)

.

Thus

|T (f)| ≤ C ‖v‖
W 4, p′

−l+2(R
N
+ )/B[2+l−N/p′]

(

‖g0‖W
−1/p, p
l−2 (Γ)

+ ‖g1‖W
−1−1/p, p
l−2 (Γ)

)

≤ C ‖f‖
W 0, p′

−l+2(R
N
+ )

(

‖g0‖W
−1/p, p
l−2 (Γ)

+ ‖g1‖W
−1−1/p, p
l−2 (Γ)

)

.

Hence T is continuous on W 0, p′

−l+2(R
N
+ ) ⊥ B[2−l−N/p], and according to Riesz rep-

resentation theorem, there exists an unique u ∈ W 0, p
l−2(RN

+ )/B[2−l−N/p] such that
T (f) = 〈u, f〉

W 0, p
l−2 (RN

+ )×W 0, p′

−l+2(R
N
+ )

. This means that u is a solution to problem (Q)

and K −2 = B[2−l−N/p].

4.3. Intermediate boundary conditions. We also need for the sequel to solve

(P0) for the data g0 ∈W
1−1/p, p
l−1 (Γ) and g1 ∈W

−1/p, p
l−1 (Γ).

Theorem 4.5. Let l ∈ Z such that

N

p′
/∈ {1, . . . , l − 1} and

N

p
/∈ {1, . . . ,−l + 1}. (31)

For any g0 ∈W
1−1/p, p
l−1 (Γ) and g1 ∈W

−1/p, p
l−1 (Γ) satisfying the compatibility condi-

tion (30), problem (P0) has a solution u ∈ W 1, p
l−1(RN

+ ), unique up to an element of
B[2−l−N/p], with the estimate

inf
q∈B[2−l−N/p]

‖u+ q‖W 1, p
l−1 (RN

+ ) ≤ C
(

‖g0‖W
1−1/p, p
l−1 (Γ)

+ ‖g1‖W
−1/p, p
l−1 (Γ)

)

.

Remark 4.6. We can give a very quick proof of this result by interpolation between

the previous case and the regular case, i.e. g0 ∈W
2−1/p, p
l (Γ) and g1 ∈W

1−1/p, p
l (Γ).

But the problem with this reasoning is that we must combine the critical values of
hypotheses (9) and (20), and then we obtain two supplementary values with respect
to (31). Thus we shall give a direct proof similar to the singular case, with however
some new arguments. �

For any l ∈ Z, we introduce the space

Y 1, p
l, 1 (RN

+ ) =
{

v ∈W 1, p
l−1(RN

+ ); ∆2v ∈W 0, p
l+2, 1(R

N
+ )

}

.

It’s a reflexive Banach space equipped with it’s natural norm:

‖v‖Y 1, p
l, 1 (RN

+ ) = ‖v‖W 1, p
l−1 (RN

+ ) + ‖∆2v‖W 0, p
l+2, 1(R

N
+ ).

We also define the subspace of Y 1, p
l, 1 (RN

+ )

◦

Y
1, p
l, 1 (RN

+ ) =
{

v ∈
◦

W
1, p
l−1(R

N
+ ); ∆2v ∈W 0, p

l+2, 1(R
N
+ )

}

.

Lemma 4.7. Let l ∈ Z. Under hypothesis (31), the space D
(

RN
+

)

is dense in

Y 1, p
l, 1 (RN

+ ).
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Proof. Let P be an extension operator mapping W 1, p
l−1(RN

+ ) into W 1, p
l−1(RN ). For ev-

ery continuous linear form T ∈
(

Y 1, p
l, 1 (RN

+ )
)′

, there exists (u1, u2) ∈W−1, p′

−l+1 (RN )×

W 0, p′

−l−2,−1(R
N
+ ) such that for any v ∈ Y 1, p

l, 1 (RN
+ ),

〈T, v〉 = 〈u1, Pv〉W−1, p′

−l+1 (RN )×W 1, p
l−1 (RN )

+

∫

RN
+

u2 ∆2v dx.

Moreover, since T depends only on v and not on the restriction of Pv to R
N
− , the

support of u1 is contained in RN
+ .

Thanks to the Hahn-Banach theorem, it suffices to show that any T which van-

ishes on D
(

RN
+

)

is actually zero on Y 1, p
l, 1 (RN

+ ). Indeed for any Ψ ∈ D(RN ), we
have

〈u1,Ψ〉 +
〈

ũ2,∆
2Ψ

〉

= 〈u1, Pψ〉 +

∫

RN
+

u2 ∆2ψ dx = 0,

where ũ2 is the extension by 0 of u2 to R
N and ψ = Ψ|

RN
+

. It follows that

∆2ũ2 = −u1 in R
N .

Thus we have ∆2ũ2 ∈ W−1, p′

−l+1 (RN ). Since ũ2 ∈ W 0, p′

−l−2,−1(R
N
+ ), we also have

∆2ũ2 ⊥ P∆2

[2−l−N/p]. Now, thanks to Theorem 2.3, we can deduce that under

hypothesis (31), we have ũ2 ∈ W 3, p′

−l+1(R
N ). It follows that u2 ∈

◦

W
3, p′

−l+1(R
N
+ ). By

density of D(RN
+ ) in

◦

W
3, p′

−l+1(R
N
+ ), there exists a sequence (ϕk)k∈N ⊂ D(RN

+ ) such

that ϕk → u2 in
◦

W
3, p′

−l+1(R
N
+ ). Thus for any v ∈ Y 1, p

l, 1 (RN
+ ), we have

〈T, v〉 = lim
k→∞

{

〈

−∆2ϕ̃k, Pv
〉

+

∫

RN
+

ϕk ∆2v dx

}

= lim
k→∞

{

−

∫

RN
+

v∆2ϕk dx+

∫

RN
+

ϕk ∆2v dx

}

= 0.

Thus T is identically zero.

Lemma 4.8. Let l ∈ Z. Under hypothesis (31), the mapping

γ1 : D
(

RN
+

)

−→ D(RN−1),

can be extended to a linear continuous mapping

γ1 : Y 1, p
l, 1 (RN

+ ) −→W
−1/p, p
l−1 (Γ),

and we have the following Green formula:

∀v ∈
◦

Y
1, p
l, 1 (RN

+ ), ∀ϕ ∈
⋆

W
3, p′

−l+1(R
N
+ ),

〈

∆2v, ϕ
〉

W 0, p
l+2, 1(R

N
+ )×W 0, p′

−l−2, −1(R
N
+ )

−
〈

v,∆2ϕ
〉

◦

W
1, p
l−1(R

N
+ )×W−1, p′

−l+1 (RN
+ )

= −〈∂Nv,∆ϕ〉W−1/p, p
l−1 (Γ)×W

1/p, p′

−l+1 (Γ)
.

(32)
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Proof. Since we always have the imbedding W 3, p′

−l+1(R
N
+ ) →֒W 0, p′

−l−2,−1(R
N
+ ), we can

write the following Green formula:

∀v ∈ D
(

RN
+

)

, ∀ϕ ∈
⋆

W
3, p′

−l+1(R
N
+ ),

∫

RN
+

ϕ∆2v dx+

∫

RN
+

∇v.∇∆ϕ dx = −

∫

Γ

∂Nv∆ϕ dx′.
(33)

This implies that
∣

∣

∣

∣

∫

Γ

∂Nv∆ϕ dx′
∣

∣

∣

∣

≤ ‖v‖Y 1, p
l, 1 (RN

+ ) ‖ϕ‖
W 3, p′

−l+1(R
N
+ )
.

For all g ∈ W
1−1/p′, p′

−l+1 (Γ), thanks to Lemma 2.2, there exists a lifting function

ϕ0 ∈ W 3, p′

−l+1(R
N
+ ) such that ϕ0 = ∂Nϕ0 = 0 on Γ and ∂2

Nϕ0 = g on Γ, satisfying
moreover

‖ϕ0‖W 3, p′

−l+1(R
N
+ )

≤ C ‖g‖
W

1−1/p′, p′

−l+1 (Γ)
,

where C is a constant not depending on ϕ0 and g. Then we have
∣

∣

∣

∣

∫

Γ

g ∂Nv dx′
∣

∣

∣

∣

≤ ‖v‖Y 1, p
l, 1 (RN

+ ) ‖ϕ0‖W 3, p′

−l+1(R
N
+ )

≤ C ‖v‖Y 1, p
l, 1 (RN

+ ) ‖g‖
W

1−1/p′, p′

−l+1 (Γ)
.

Therefore

‖γ1v‖W
−1/p, p
l−1 (Γ)

≤ C ‖v‖Y 1, p
l, 1 (RN

+ ).

Thus the linear mapping γ1 : v 7−→ ∂Nv|Γ defined on D
(

RN
+

)

is continuous for the

norm of Y 1, p
l, 1 (RN

+ ). Since D
(

RN
+

)

is dense in Y 1, p
l, 1 (RN

+ ), γ1 can be extended by

continuity to a mapping γ1 ∈ L
(

Y 1, p
l, 1 (RN

+ ); W
−1/p, p
l−1 (Γ)

)

.

By density of D
(

RN
+

)

in Y 1, p
l, 1 (RN

+ ), we can generalize the formula (33) to any

v ∈ Y 1, p
l, 1 (RN

+ ). Furthermore, thanks to the of D(RN
+ ) in

◦

W
1, p
l−1(R

N
+ ), we have for

any v ∈
◦

W
1, p
l−1(R

N
+ ) and ϕ ∈W 3, p′

−l+1(R
N
+ ),

〈∇v,∇∆ϕ〉
W 0, p

l−1 (RN
+ )×W 0, p′

−l+1(R
N
+ )

=
〈

v,∆2ϕ
〉

◦

W
1, p
l−1(R

N
+ )×W−1, p′

−l+1 (RN
+ )
.

So we obtain the Green formula (32).

Proof of Theorem 4.5. The first step is to reduce to zero the boundary condition
on u in Problem (P0). Let’s consider the problem

(R0)

{

∆w = 0 in R
N
+ ,

w = g0 on Γ.

Thanks to (8), we know that B[2+l−N/p′] = ΠDA ∆
[l−N/p′] ⊕ ΠNN ∆

[l−N/p′], thus the

compatibility condition (30) on (P0) implies

∀r ∈ A
∆
[l−N/p′], 〈g0, ∂Nr〉W 1−1/p, p

l−1 (Γ)×W
−1/p′, p′

−l+1 (Γ)
= 0,

which is the compatibility condition on (R0). Thus problem (R0) admits a solution

w ∈ W 1, p
l−1(RN

+ ) under hypothesis (31) (see [5], Theorem 3.1 & 3.2). It follows that

w ∈ Y 1, p
l, 1 (RN

+ ), and thus γ1w = h1 ∈ W
−1/p, p
l−1 (Γ). Let’s set v = u − w, then

problem (P0) is equivalent to the following

∆2v = 0 in R
N
+ , v = 0 and ∂Nv = g1 − h1 on Γ. (34)
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Let K −1 denote the kernel of the operator associated to this problem. We can
observe that Problem (34) is equivalent to the formulation:

(Q)







Find v ∈
◦

Y
1, p
l, 1 (RN

+ )/K −1 such that for any ϕ ∈
⋆

W
3, p′

−l+1(R
N
+ ),

〈

v,∆2ϕ
〉

◦

W
1, p
l−1(R

N
+ )×W−1, p′

−l+1 (RN
+ )

= 〈g1 − h1,∆ϕ〉Γ ,

where we have used the Green formula (32) of Lemma 4.8.

Now, let’s solve Problem (Q). For any f ∈W−1, p′

−l+1 (RN
+ ) ⊥ B[2−l−N/p], according

to Theorem 3.1, with m = 1, −l instead of l and exchanging p and p′, the problem

(P⋆)











∆2z = f in R
N
+ ,

z = 0 on Γ,

∂Nz = 0 on Γ,

admits an unique solution z ∈ W 3, p′

−l+1(R
N
+ )/B[2+l−N/p′], under hypothesis (31).

Moreover, v satisfies the estimate

‖z‖
W 3, p′

−l+1(R
N
+ )/B[2+l−N/p′]

≤ C ‖f‖
W−1, p′

−l+1 (RN
+ )
.

Consider the linear form T : f 7−→ 〈g1 − h1,∆z〉Γ. We can show that it is

continuous on W−1, p′

−l+1 (RN
+ ) ⊥ B[2−l−N/p]. Then, according to the Riesz repre-

sentation theorem, there exists an unique v ∈
◦

W
1, p
l−1(R

N
+ )/B[2−l−N/p] such that

T (f) = 〈v, f〉 ◦

W
1, p
l−1(R

N
+ )×W−1, p′

−l+1 (RN
+ )

. This means that v is a solution to Problem (Q)

and K −1 = B[2−l−N/p].

5. Other boundary conditions. The last part of this study is devoted to the
biharmonic equation with other kinds of boundary conditions. These results will be
useful in a forthcoming work on the Stokes problem with different types of boundary
conditions.

5.1. First case. The biharmonic equation with boundary conditions on u and ∆u

(Q)











∆2u = f in R
N
+ ,

u = g0 on Γ,

∆u = g1 on Γ.

Theorem 5.1. Let l ∈ Z. Under hypothesis (9) and for any f ∈ W−1, p
l (RN

+ ),

g0 ∈W
3−1/p, p
l (Γ) and g1 ∈W

1−1/p, p
l (Γ) satisfying the compatibility condition

∀ϕ ∈ A
∆2

[1+l−N/p′],

〈f, ϕ〉
W−1, p

l (RN
+ )×

◦

W
1, p′

−l (RN
+ )

− 〈g1, ∂Nϕ〉Γ − 〈g0, ∂N∆ϕ〉Γ = 0,
(35)

problem (Q) has a solution u ∈W 3, p
l (RN

+ ), unique up to an element of A ∆2

[3−l−N/p],

with the estimate

inf
q∈A ∆2

[3−l−N/p]

‖u+ q‖W 3, p
l (RN

+ ) ≤

C
(

‖f‖W−1, p
l (RN

+ ) + ‖g0‖W
3−1/p, p
l (Γ)

+ ‖g1‖W
1−1/p, p
l (Γ)

)

.
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5.1.1. The kernel. We must characterize the kernel of the operator

(∆2, γ0, γ0∆) : W 3, p
l (RN

+ ) −→ W−1, p
l (RN

+ ) ×W
3−1/p, p
l (Γ) ×W

1−1/p, p
l (Γ).

Since
N

p
/∈ {1, . . . ,−l}, we know that P[3−l−N/p] ⊂W 3, p

l (RN
+ ). Let u be a function

of this kernel and set

ũ(x′, xN ) =

{

u(x′, xN ) if xN ≥ 0,

−u(x′,−xN ) if xN < 0.

Thus we have ũ ∈ S ′(RN ) and we show that ∆2ũ = 0 in R
N . We can deduce

that ũ, and consequently u, is a polynomial. By identification in the half-space
xN < 0, we obtain that u is odd with respect to xN . Conversely it is clear that
any polynomial u odd with respect to xN verifies u = ∆u = 0 on Γ. Furthermore
u ∈ W 3, p

l (RN
+ ) implies that its degree is at the most [3 − l − N/p]. So we have

characterized this kernel as the space of biharmonic polynomials, odd with respect

to xN , of degree smaller than or equal to [3− l−N/p]. We denote it by A ∆2

[3−l−N/p].

5.1.2. The compatibility condition. Problem (Q) admits a solution u in W 3, p
l (RN

+ )
only if the compatibility condition (35) is satisfied, where 〈g1, ∂Nϕ〉Γ denotes the du-
ality bracket 〈g1, ∂Nϕ〉W 1−1/p, p

l (Γ)×W
−1/p′, p′

−l (Γ)
, and 〈g0, ∂N∆ϕ〉Γ the duality bracket

〈g0, ∂N∆ϕ〉
W

3−1/p, p
l (Γ)×W

−2−1/p′, p′

−l (Γ)
.

Note that if l ≤ 0, then A ∆2

[1+l−N/p′] = {0} and thus there is no compatibility

condition. Let’s now remark that if ϕ ∈ A ∆2

[1+l−N/p′], then ϕ ∈W 2, p′

−l+1(R
N
+ ) and thus

∂Nϕ|Γ ∈ W
1−1/p′, p′

−l+1 (Γ) →֒ W
−1/p′, p′

−l (Γ). But we also have ϕ ∈ W 4, p′

−l+3(R
N
+ ) and

thus ∂N∆ϕ ∈ W
1−1/p′, p′

−l+3 (Γ) →֒ W
−2−1/p′, p′

−l (Γ). This gives a sense to (35). As in
our first study of Problem (P) (see [7]), we can verify that these imbeddings hold
under hypothesis (9) for l ≥ 1 and we can prove in a similar fashion the necessity
of condition (35).

5.1.3. Proof of Theorem 5.1. Let’s first consider the Dirichlet problem

∆v = f in R
N
+ , v = g1 on Γ,

which admits a solution v ∈ W 1, p
l (RN

+ ), if the following compatibility condition is
satisfied (see [5], Theorem 3.1 and Theorem 3.2):

∀ϑ ∈ A
∆
[1+l−N/p′], 〈f, ϑ〉

W−1, p
l (RN

+ )×
◦

W
1, p′

−l (RN
+ )

− 〈g1, ∂Nϑ〉Γ = 0. (36)

Then, we must solve the second Dirichlet problem

∆u = v in R
N
+ , u = g0 on Γ,

which admits a solution u ∈ W 3, p
l (RN

+ ), if the following compatibility condition is
satisfied (see [5], Corollary 3.4):

∀ψ ∈ A
∆
[−1+l−N/p′], 〈v, ψ〉

W 1, p
l (RN

+ )×W−1, p′

−l (RN
+ )

− 〈g0, ∂Nψ〉Γ = 0. (37)

Now, let’s show that the compatibility condition (35) of problem (Q) implies the

conditions (36) and (37). Condition (35) must be satisfied for any ϕ ∈ A ∆2

[1+l−N/p′],

thus for any ϑ ∈ A ∆
[1+l−N/p′], and then it is reduced to

〈f, ϑ〉
W−1, p

l (RN
+ )×

◦

W
1, p′

−l (RN
+ )

− 〈g1, ∂Nϑ〉Γ = 0,
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i.e. precisely the condition (36). Now, note that by (35), v satisfies

∀ϕ ∈ A
∆2

[1+l−N/p′],

〈∆v, ϕ〉
W−1, p

l (RN
+ )×

◦

W
1, p′

−l (RN
+ )

− 〈v, ∂Nϕ〉Γ − 〈g0, ∂N∆ϕ〉Γ = 0.

It remains to write for such a ϕ, the Green formula

〈∆v, ϕ〉
W−1, p

l (RN
+ )×

◦

W
1, p′

−l (RN
+ )

= 〈v,∆ϕ〉
W 1, p

l (RN
+ )×W−1, p′

−l (RN
+ )

+ 〈v, ∂Nϕ〉Γ ,

to deduce the condition

∀ϕ ∈ A
∆2

[1+l−N/p′], 〈v,∆ϕ〉
W 1, p

l (RN
+ )×W−1, p′

−l (RN
+ )

− 〈g0, ∂N∆ϕ〉Γ = 0.

If we finally remark that any ψ ∈ A ∆
[−1+l−N/p′] can be written ψ = ∆ϕ with

ϕ ∈ A ∆2

[1+l−N/p′], we exactly find the condition (37).

Remark 5.2. Problem (Q) is ill-posed for f ∈W−2, p
l (RN

+ ). However, if f = 0, we
can consider less regular boundary conditions g0 and g1. �

5.1.4. Regularity of solutions to Problem (Q). To complete Theorem 5.1, we can
give a result for different types of data.

Theorem 5.3. Let l ∈ Z and m ≥ 1 be two integers and assume that

N

p′
/∈ {1, . . . , l + 1} and

N

p
/∈ {1, . . . ,−l −m}. (38)

For any f ∈Wm−1, p
m+l (RN

+ ), g0 ∈W
m+3−1/p, p
m+l (Γ) and g1 ∈W

m+1−1/p, p
m+l (Γ) satisfy-

ing the compatibility condition (35), problem (Q) has a solution u ∈Wm+3, p
m+l (RN

+ ),

unique up to an element of A ∆2

[3−l−N/p], with the estimate

inf
q∈A ∆2

[3−l−N/p]

‖u+ q‖W m+3, p
m+l (RN

+ ) ≤

C
(

‖f‖W m−1, p
m+l (RN

+ ) + ‖g0‖W
m+3−1/p, p
m+l (Γ)

+ ‖g1‖W
m+1−1/p, p
m+l (Γ)

)

.

It can be readily checked that the kernel is unchanged under the hypothesis
N

p
/∈ {1, . . . ,−l−m}. We also keep the compatibility condition (35) and the proof

of the existence of a solution is similar to that employed for Theorem 5.1 by means
of the regularity result for the two Dirichlet problems.

5.2. Second case. The biharmonic equation with boundary conditions on ∂Nu
and ∂N∆u

(R)











∆2u = f in R
N
+ ,

∂Nu = g0 on Γ,

∂N∆u = g1 on Γ.

Theorem 5.4. Let l ∈ Z and assume that
N

p′
/∈ {1, . . . , l} and

N

p
/∈ {1, . . . ,−l + 1}. (39)

For any f ∈ W 0, p
l (RN

+ ), g0 ∈ W
2−1/p, p
l−1 (Γ) and g1 ∈ W

−1/p, p
l−1 (Γ) satisfying the

compatibility condition

∀ϕ ∈ N
∆2

[l−N/p′], 〈f, ϕ〉
W 0, p

l (RN
+ )×W 0, p′

−l (RN
+ )

+ 〈g1, ϕ〉Γ + 〈g0,∆ϕ〉Γ = 0, (40)
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problem (R) has a solution u ∈W 3, p
l−1(RN

+ ), unique up to an element of N ∆2

[4−l−N/p],

with the estimate

inf
q∈N ∆2

[4−l−N/p]

‖u+ q‖W 3, p
l−1 (RN

+ ) ≤

C
(

‖f‖W 0, p
l (RN

+ ) + ‖g0‖W
2−1/p, p
l−1 (Γ)

+ ‖g1‖W
−1/p, p
l−1 (Γ)

)

.

5.2.1. The kernel. We must characterize the kernel of the operator

(∆2, γ1, γ1∆) : W 3, p
l−1(RN

+ ) −→ W−1, p
l−1 (RN

+ ) ×W
2−1/p, p
l−1 (Γ) ×W

−1/p, p
l−1 (Γ).

Let u be a function of this kernel and set

ũ(x′, xN ) =

{

u(x′, xN ) si xN ≥ 0,

u(x′,−xN ) si xN < 0.

Here again, ũ ∈ S ′(RN ) and we show that ∆2ũ = 0 in R
N . We can deduce

that ũ, and consequently u, is a polynomial. By identification in the half-space
xN < 0, we obtain that u is even with respect to xN . Conversely it is clear that any
polynomial u even with respect to xN verifies ∂Nu = ∂N∆u = 0 on Γ. Furthermore
u ∈ W 3, p

l−1(RN
+ ) implies that its degree is at the most [4 − l − N/p]. So we have

characterized this kernel as the space of biharmonic polynomials, even with respect

to xN , of degree smaller than or equal to [4− l−N/p]. We denote it by N ∆2

[4−l−N/p].

5.2.2. The compatibility condition. Problem (R) admits a solution u in W 3, p
l−1(RN

+ )
only if the compatibility condition (40) is satisfied, where 〈g1, ϕ〉Γ denotes the
duality bracket 〈g1, ϕ〉W−1/p, p

l−1 (Γ)×W
1−1/p′, p′

−l+1 (Γ)
, and 〈g0,∆ϕ〉Γ the duality bracket

〈g0,∆ϕ〉W 2−1/p, p
l−1 (Γ)×W

−1−1/p′, p′

−l+1 (Γ)
.

The arguments are exactly the same as in the other cases.

5.2.3. Proof of Theorem 5.4. We solve this case in the same way that the precedent,
but this time by two successive Neumann problems.

∆v = f in R
N
+ , ∂Nv = g1 on Γ,

which admits a solution v ∈ W 1, p
l−1(RN

+ ), if the following compatibility condition is
satisfied (see [6], Theorem 3.7):

∀ϑ ∈ N
∆

[l−N/p′], 〈f, ϑ〉
W 0, p

l (RN
+ )×W 0, p′

−l (RN
+ )

+ 〈g1, ϑ〉Γ = 0. (41)

Then
∆u = v in R

N
+ , ∂Nu = g0 on Γ,

which admits a solution u ∈ W 3, p
l−1(RN

+ ), if the following compatibility condition is
satisfied (see [7], Theorem 2.8):

∀ψ ∈ N
∆

[−2+l−N/p′], 〈v, ψ〉
W 1, p

l−1 (RN
+ )×W−1, p′

−l+1 (RN
+ )

+ 〈g0, ψ〉Γ = 0. (42)

Here again the compatibility condition (40) of problem (R) implies the conditions
(41) and (42). On the one hand condition (40) must be satisfied for any ϑ ∈
N ∆

[l−N/p′], and that gives (41).

On the other hand if we introduce the equations ∆v = f in R
N
+ and ∂Nv = g1

on Γ, in condition (40); with the Green formula

〈∆v, ϕ〉
W−1, p

l−1 (RN
+ )×W 1, p′

−l+1(R
N
+ )

= 〈v,∆ϕ〉
W 1, p

l−1 (RN
+ )×W−1, p′

−l+1 (RN
+ )

− 〈∂Nv, ϕ〉Γ ,
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and the remark that any ψ ∈ N ∆
[−2+l−N/p′] can be written ψ = ∆ϕ with ϕ ∈

N ∆2

[l−N/p′], then we obtain (42).

5.2.4. Regularity of solutions to Problem (R). To complete Theorem 5.4, we can
give a result for different types of data.

Theorem 5.5. Let l ∈ Z and m ∈ N. Under hypothesis (11), for any f ∈

Wm, p
m+l(R

N
+ ), g0 ∈ W

m+3−1/p, p
m+l (Γ) and g1 ∈ W

m+1−1/p, p
m+l (Γ) satisfying the com-

patibility condition (40), problem (R) admits a solution u ∈ Wm+4, p
m+l (RN

+ ), unique

up to an element of N ∆2

[4−l−N/p], with the estimate

inf
q∈N ∆2

[4−l−N/p]

‖u+ q‖W m+4, p
m+l (RN

+ ) ≤

C
(

‖f‖W m, p
m+l (R

N
+ ) + ‖g0‖W

m+3−1/p, p
m+l (Γ)

+ ‖g1‖W
m+1−1/p, p
m+l (Γ)

)

.

It can be readily checked that the kernel is unchanged under the hypothesis
N

p
/∈ {1, . . . ,−l − m}. We also keep the compatibility condition (40) and the

proof for the existence is similar to that employed in Theorem 5.4 by means of the
regularity result for the two Neumann problems.

5.3. Third case. Consider now the problem

∆2u = f in R
N
+ , ∆u = g0 and ∂N∆u = g1 on Γ.

Let’s first note that these boundary conditions do not satisfy the complementing
condition by Agmon-Douglis-Nirenberg (see [2]). Thus this problem is ill-posed.
Indeed, if we set v = ∆u, we obtain

∆v = f in R
N
+ , v = g0 and ∂Nv = g1 on Γ,

i.e. a Laplace equation with both Dirichlet and Neumann boundary conditions.
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