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Abstract

In this paper, we study the Stokes system in the half-space RY, with N > 2.
We give existence and uniqueness results in weighted Sobolev spaces. After the
central case of the generalized solutions, we are interested in strong solutions and
symmetricaly in very weak solutions by means of a duality argument.
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1 Introduction

The purpose of this paper is the resolution of the Stokes system
—Au+Vr=f inRY,
(ST) diva =h in RY,
u=g onl =RN"1
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with data and solutions which live in weighted Sobolev spaces, expressing at
the same time their regularity and their behavior at infinity. We will naturally
base on the previously established results on the harmonic and biharmonic
operators (see [5], [6], [7], [8]). We will also concentrate on the basic weights
because they are the most usual and they avoid the question of the kernel for
this operator and symmetricaly the compatibility condition for the data. In a
forthcoming work, we will complete these results for the other types of weights
in this class of spaces.

Among the first works on the Stokes problem in the half-space, we can cite
Cattabriga. In [11], he appeals to the potential theory to explicitly get the
velocity and pressure fields. For the homogeneous problem (f = 0 and h = 0),
for instance, he shows that if g € LP(I") and the semi-norm |g|W(1)71/p,p(F) < 00,

then Vu € LP(RY) and 7 € LP(RY).

Similar results are given by Farwig-Sohr (see [12]) and Galdi (see [14]), who
also have chosen the setting of homogeneous Sobolev spaces. On the other
hand, Maz'ya-Plamenevskii-Stupyalis (see [18]), work within the suitable set-
ting of weighted Sobolev spaces and consider different sorts of boundary condi-
tions. However, their results are limited to the dimension 3 and to the Hilber-
tian framework in which they give generalized and strong solutions. This is
also the case of Boulmezaoud (see [10]), who only gives strong solutions. Oth-
erwise, always in dimension 3, by Fourier analysis techniques, Tanaka consid-
ers the case of very regular data, corresponding to velocities which belong to
W 2(R3), with m > 0 (see [19]).

Let us also quote, for the evolution Stokes or Navier-Stokes problems, Fujigaki-
Miyakawa (see [13]), who are interested in the behaviour in ¢ — +o00; Bochers-
Miyakawa (see |9]) and Kozono (see [17]), for the L¥-Decay property; Ukai
(see [20]), for the LP-L9 estimates and Giga (see [15]), for the estimates in
Hardy spaces.

This paper is organized as follows. Section 2 is devoted to the notations,
functional setting and recalls about the Stokes system in the whole space.
In Section 3, we give some results on homogeneous problems with singular
boundary conditions and we complete them by Theorem 3.5 with a detailed
proof, which is a model for analogous results. In Section 4, we start our study
of the Stokes system in the half-space by the central case of generalized so-
lutions which is the pivot of this work. In Section 5, we consider the strong
solutions and give regularity results according to the data. In Section 6, we
find very weak solutions to the homogeneous problem with singular boundary
conditions. The main results of this paper are Theorem 4.2 for the generalized
solutions, Theorems 5.2 and 5.6 for the strong solutions, Theorems 6.7 and
6.9 for the very weak solutions.



2 Notations, functional framework and known results

2.1 Notations

For any real number p > 1, we always take p’ to be the Holder conjugate of
D, i.€.

1 1

p p
Let © be an open set of RN, N > 2. Writing a typical point z € RV as
= (2,2y), where 2’/ = (z1,...,2y_1) € RVt and xy € R, we will especially

look on the upper half-space RY = {z € RY; zy > 0}. We let RY denote
the closure of RY in RY and let ' = {z € RY; zy = 0} = RY™! denote its
boundary. Let |z| = (22 + -+ + 2%)'/? denote the Euclidean norm of x, we
will use two basic weights

o= (1+|z[»)Y? and lgo=1n(2 + |z]?).

2
i, similarly 0? = 9; 0 0; = 0

We denote by 0; the partial derivative Wor
Ox; 0x;

32
3% = 0;00; = rdn; More generally, if A = (A\y,...,\y) € NV is a
multi-index, then
N BIA
D=0 O = ———— ,where |\ = A+ + Ay

~ o AN
Oxit - 0y

In the sequel, for any integer ¢, we will use the following polynomial spaces:
— P, is the space of polynomials of degree smaller than or equal to g;
— qu is the subspace of harmonic polynomials of P;

— PqAQ is the subspace of biharmonic polynomials of P;

— AqA is the subspace of polynomials of PqA, odd with respect to xy, or
equivalently, which satisfy the condition ¢(z’,0) = 0;

— ./\qu is the subspace of polynomials of PqA, even with respect to xy, or
equivalently, which satisfy the condition dyp(z’,0) = 0;

with the convention that these spaces are reduced to {0} if ¢ < 0.

For any real number s, we denote by [s]| the integer part of s.

Given a Banach space B, with dual space B’ and a closed subspace X of B,
we denote by B’ 1. X the subspace of B’ orthogonal to X, i.e.

B LX={feB;YweX, (fv)=0}=(B/X).

Lastly, if & € Z, we will constantly use the notation {1,...,k} for the set of
the first k positive integers, with the convention that this set is empty if & is
nonpositive.



2.2 Weighted Sobolev spaces

For any nonnegative integer m, real numbers p > 1, o and (3, we define the
following space:

Was' () Z{u eD(Q); 0< N <k, o™ (1g )1 0Mu € LP(); o)
2.1
k+1<|A <m, o™ (1g0)’d*u e LP(Q)},

where
-1 if ¥ +ad{l,.. . ,m}
k= N
m——-—a ifY+ae{l,...;m}
D p
Note that W,"5(€) is a reflexive Banach space equipped with its natural norm:

a—m — p
||u||ngv;(ﬂ) = <0<%|:<k lo A (lg Q)ﬂ ' a/\UHLp(Q)

1/p
a—m p
X e e Dl )
k+1<A|<m

We also define the semi-norm:
N 1/p
bz = (3 e Og0)" 0 ullpey)
|Al=

The weights in the definition (2.1) are chosen so that the corresponding space
satisfies two fundamental properties. On the one hand, D(RN ) is dense in

wr ( ). On the other hand, the following Poincaré-type inequality holds
in W (RN) (see |5], Theorem 1.1): if

Z—}—a%{l,...,m} or (f—1)p# —1, (2.2)

then the semi-norm |- |Wm,BP(RN) defines on W,/ (RY)/Py= a norm which is
a, +
equivalent to the quotient norm,

Vu € W (RN) HUHWZ’;(RN)/P . C |U|Wm P(RN) (23)

with ¢* = inf(¢,m — 1), where ¢ is the highest degree of the polynomials

contained in W,/ (RY). Now, we define the space

° —————lllym.p
WA RY) = DRY) A

which will be characterized in Lemma 2.2 as the subspace of functlons with null
traces in W," (RY). From that, we can introduce the space W_7" P 5(RY) as the



dual space of Wm 5(RY). In addition, under the assumption (2.2), | - ‘Wm,ﬁP(Rf)

is a norm on Wm 5 (RY) which is equivalent to the full norm || - me PRY): We

will now recall some properties of the weighted Sobolev spaces Wm P (RN ). We
have the algebraic and topological imbeddings:

m, m . N
WIP(RY) = WEHPRY) — o Wk J(RY) if > +ad¢{l,...,m}.
N )
When — +a =75 € {1,...,m}, then we have:
p
Wmvp [ N m_.]+17p (SN m_.]vp (SN W

a, B a—j+1,8 a—j,8-1 a—m,B3-1"

N

Note that in the first case, for any v € R such that —+a —~v ¢ {1,...,m}
p

and m € N, the mapping

e Wi (RY) — o"u € WBP 5(RY)

is an isomorphism. In both cases and for any multi-index A € NV, the mapping
u € WIP(RY) — 9 € WM P(RY)

is continuous. Finally, it can be readily checked that the highest degree ¢ of
the polynomials contained in W, (RY) is given by

or
Ytae{jez j<0} and fp> -1,

N .
[m — ( + oz)] ,  otherwise.
p

Remark 2.1. In the case § = 0, we simply denote the space W7 (€2) by
Wrmr(Q). In [16], Hanouzet introduced a class of weighted Sobolev spaces
without logarithmic factors, with the same notation. We recall his definition
under the notation H"P((2):

N . %+Og€{17,m} and (ﬁ_l)pz_]-’
m—|— +« _17 lf
p

(2.4)

Hi P () = {u eD'(Q); 0< |\ <m, o> ™Mo ue LP(Q)}.

N
It is clear that it — +a ¢ {1,...,m}, we have W»P(Q}) = H?(Q2). The

fundamental difference between these two families of spaces is that the as-
sumption (2.2) and thus the Poincaré-type inequality (2.3), hold for any value

N
of (N, p, @) in WP(Q), but not in HI"?(Q) if " +ae{l,...,m}. O



2.3 The spaces of traces

In order to define the traces of functions of W P(RY) (here we don’t consider
the case § # 0), for any o € |0, 1[, we introduce the space:

WoP(RY) = {u € D'(RY); w™u € LP(RY) and

[ e, oo},

|z —y|Vtor

(2.5)

where w = o if N/p # ¢ and w = 0(Igo)"/? if N/p = 0. It is a reflexive
Banach space equipped with its natural norm:

/D
p u(z) — ul(y)l? '
)—i—/RNXRNdxdy .

L@V |z — y|[NFor

u
bz e = (|

Similarly, for any real number a € R, we define the space:

WoP(RY) = {u € D'(RY); w* 7u € LP(RY),

/ |0%(x) u(z) = o*(y) u(y)”

o — y|Nro dxdy<oo},

where w = ¢ if N/p+a # o and w = o(1g0)"“=* if N/p + a = o. For any
s € RT, we set

WaP(RY) = {u e D'(RY); 0< | <k, 0" (Igo)~"' 0*u € LP(RY);
Fr1S I <[ -1, @ Pue DR A = [s], 9 € Wen(RY)

where k = s — N/p—a if Np+a € {o,...,0+[s]}, with 0 = s — [s] and
k = —1 otherwise. It is a reflexive Banach space equipped with the norm:

a—s - p
by rery = (3 Nle™ > (g o) Pl ey

0<|A <k
a—s+[A X, 1P e A
+ Z o 9 UHLP(]RN) + Z 10 UHWg’P(RN)'
E+1<|A|<[s]-1 |Al=[s]

We can similarly define, for any real number 3, the space:
WanRY) = {oe DRY); (o)’ v e Wer(®Y)],

We can prove some properties of the weighted Sobolev spaces Wszg(RN ). We

«

have the algebraic and topological imbeddings in the case where N/p + a ¢



{o,...,0+[s] —1}:
WoB(RY) = WaTPBRY) — - = WE ) S(RY),
WabRY) = Wi, s(RY) = o W (RY).

«, CYJr[S]*S,B

When N/p+a=j€{o,...,0+[s] — 1}, then we have:

S, P S_J+17p s_.j7p a,p
ap = Woliils = Wajsr = 2 Wl s
5P [s],p L [s]—j+1,p [s]-d.p . 0,p
Wals = Wallgsp = = Walosibip = Wasoljp1 = = Wols 50

If u is a function on ]Rf, we denote its trace of order 5 on the hyperplane I'
by:
VieN, yu:a € RV — du(r,0).

Let’s recall the following trace lemma due to Hanouzet (see [16]) and extended
by Amrouche-Necasova (see [5]) to this class of weighted Sobolev spaces:

Lemma 2.2. For any integer m > 1 and real number «, the mapping

_ m—1
Y= (V0,715 Y1) : D(Rf) N H 'D(RN—l)’
§=0
can be extended to a linear continuous mapping, still denoted by ~,

m—1
o WIP(RY) — [ Wi Uee @),

J=0

Moreover v is surjective and Kery = IX/Z‘”’(R{X).
2.4 The Stokes system in the whole space

On the Stokes problem in RY
(S): ~Au+Vr=f and divu=h in R,

let’s recall the fundamental result on which we are based in the sequel. First,
for any k € Z, we introduce the space

Sp = {(A, 1) € Prx PEy divA=0, —AX+ Vpu = 0} '
Theorem 2.3 (Alliot-Amrouche [1]). Let ¢ € Z and assume that

N/p' ¢ {1,....4} and N/pé¢{1,...,—(}.



For any (f, g) € (Wzl’p(RN) X Wgo’p(RN)) L Sjte—nyp), problem (S) ad-
mits a solution (u, 7) € WyP(RN) x WP(RYN), unique up to an element of
S[i—t—nN/p), with the estimate

(A’N)G‘iSI[llffefN/p] (HU + /\”W}”’(RN) + ||7T + MHWZO‘IJ(RN))

< C (I lwsrgan + lgllworm)) -

We also have the following result for more regular data:

Theorem 2.4 (Alliot-Amrouche [1]). Let £ € Z and m > 1 be two integers
and assume that

N/p¢{1,....0+1} and N/p¢{l,...,—C—m}.

For any (f, g) € (Wz;é’p(]RN) X W;ﬁfé(RN)) L Spse—nyp, problem (S)
admits a solution (u, 7) € Wit P(RN)x W E(RN), unique up to an element

of Si—e—nyp), with the estimate
A u)e}SI[llf_e_N/z)J (Hu * )\szﬁ’p(RN) I+ MHW,’,T;’;(RNO

< (Il czmm + lglhgizem )

Note that if we suppose £ = 0, then Sy_n/py) = Pp-nyp) X {0} and the
orthogonality condition (f, g) L Sp—nyp is equivalent to f L Pp_nyp-

3 Homogeneous problems with singular boundary conditions

The way we will take to solve the Stokes system is based on the existence of
very weak solutions to homogeneous problems with singular boundary condi-
tions. The first one is the biharmonic problem: find u € W;_”{(Rf ) solution to
the problem

(P): A’u=0 inRY, u=gy and dyu=g; onT,

where go € W, }/PP(T") and g, € W,_/”?(T) are given. We begin to define for
any integer ¢, the polynomial space B, as follows:

B, = {ue P

q Y

u:é?Nu:OonF}.



Theorem 3.1 (Amrouche-Raudin [8]). Let ¢ € Z and assume that

N/p¢{l,....4—1} and N/pe¢{l,...,—(+1}. (3.1)

For any gy € Wél__ll/p’p(f‘) and g, € W[_ll/p’p(l“) satisfying the compatibility
condition

Vo € B[2+Z—N/p’] g1, A‘P)r — (9o, aNA90>r =0, (3.2)

problem (P) admits a solution u € W, 5 (RY), unique up to an element of
Bio—i—nyp), with the estimate

inf Hu =+ qHW;;zl)(Riz) S C (HgoHW;_ll/p,p(F) + HngWé_ll/pm(F)) .

9€B[2—¢—N/p)

Remark 3.2. i) In the case where ¢ =1, if 1 — N/p’ < 0, then Bjs_n/,; = {0}
and if 1 — N/p’ > 0, then Bjs_n/y) = By = Ra3,.

i) We also established a result for the lower case, with u € W,>5(RY), but we
do not use it in this paper. O

We will also need a result of this type about the Neumann problem for the
Laplacian: find u € Wf;’;(R{X ) satisfying the problem

(Q): Au=0 inRY and Odyu=g onT,
where g € W,_, (I).
Theorem 3.3 (Amrouche [6]). Let £ € Z and assume that
N/p'¢{l,....4—2} and N/p¢{l,...,—0+2}. (3.3)
For any g € W[_IQ_I/p’p(F) satisfying the compatibility condition
A _
Vo €Ny A9 Py w1y = 0 (3-4)

problem (Q) admits a solution u € W 5(RY), unique up to an element of
/\/'[ﬁ_g_ Nyp)» With the estimate

ot dllwo gy < Cllgllyomn gy
[2—¢—N/p]

With the same arguments as for Theorem 3.3, we can prove an intermediate
result for this problem:

Theorem 3.4. Let { € 7. Under hypothesis (3.1), for any g € W[_ll/p’p(l“)
satisfying the compatibility condition (3.4), problem (Q) admits a solution
u € WP (RY), unique up to an element of/\/'@_g_N/p], with the estimate

inf u + , < C o .
ol S Clllyyong,



Now, we will establish a similar result about the Dirichlet problem for the
Laplacian with very singular boundary conditions: find u € W, %;? (RY) satis-
fying the problem

(R) : Au=0 inRY and wu=g onT,
where g € W, 5 /PP(ID).

Theorem 3.5. Let { € Z. Under hypothesis (3.3), for any g € W, 5 /"P(T)
satisfying the compatibility condition

A
v<)0 < A[1+57N/p/]7 <g7 aN()0> —1 1/p, P(p )Xsziép’,P’(F) = 07 (35)

problem (R) admits a solution u € W,_ 5 sP(RY), unique up to an element of
A[AI_Z_N/M, with the estimate

inf HU‘FQHW[_leP(Rf) < CHgHW[_l;l/p,p(F)-

A
1€AL o n/p)

Firstly, we must give a meaning to traces for a special class of distributions.
We introduce the spaces

Yo(RY) = {v e W5P(RY); Ave WHE(RY)],
Yer(RY) = {v e WP (RY); Ave Wik (RY)}.

They are reflexive Banach spaces equipped with their natural norms:

[vllveey) = M0llw, e @y + 1AV[wop @y,

ol sy = 0l rey + 1A0lyer my

Lemma 3.6. Let ¢ € Z. Under hypothesis (3.3), the space D(@) is dense
in Yo(RY) and in Yo 1 (RY).

!/
Proof. For every continuous linear form 7" € (Yg(Rf )) , there exists a unique

pair (f, g) € I/i)/l_fJ/rQ(Rf) x WO (RY), such that

Vo € Vi(RY), (T,0) = (£,0).:, +/RNgAvdm. (3.6)

1,+2(]R )x W, 5P (RY)

Thanks to the Hahn-Banach theorem, it suffices to show that any 7" which
vanishes on D(Rf) is actually zero on Yg(Rf) Let’s suppose that 7" = 0 on

D(@), thus on D(RY). Then we can deduce from (3.6) that

f+Ag=0 inRY,

10



hence we have Ag € " PL(RY). Let f e WHEL(RY) and § € W (RN)
be respectlvely the extensions by 0 of f and g to RY. Thanks to (3.6), it is
clear that f 4+ Ag =0 in RY, and thus Ag e W! HQ(RN). Now, thanks to the
isomorphism results for the Laplace operator in RY (see [4]), we can deduce
that g € W3542(RN) under hypothesis (3.3). Since § is an extension by 0, it
follows that g € W3£+2(RN) Then, by density of D(RY) in W HQ(Rf), there

exists a sequence (pg)reny C D(RY) such that ¢, — ¢ in W 52, (RY). Thus,
for any v € Y,(RY), we have

<T7 U) = <—A9, >V?/1 ep+2(RN)X (RN) <ga AU)ﬁ/L}gﬂQ(Rf)XWﬁSﬁp(Rf)
= khg)n';.lo {<_A90k?’v>w Z_‘_z(RN)XW_l p(RN) + <(pk7 AU>W Z+2(]RN)><W_3 P(RN)}
= lim —/ Avdax —i—/ Avdzx
k—o0 { RY Pk RY vk }

=0,
i.e. T is identically zero.

For the density of D(@) in Y7 1(RY), the only difference in the proof concerns
the logarithmic factors in the weights, with g € WE;{1771(Rf). O

Thanks to this density lemma, we can prove the following result of traces:

Lemma 3.7. Let ¢ € Z. Under hypothesis (5.3), the trace mapping vo :
D(Rf) — D(RNY), can be extended to a linear continuous mapping

0 Ve(RY) — Wy PTG N {1 6 01,
(resp Yo : Y1 (RY) — W, PPy N/ e {—1,0 0+ 1})

Moreover, we have the following Green formula
Vo € Y,(RY), Vp € W?’HQ(RN) such that p = Ap =0 on T,
(B0 Phwosmmant w ~ APy gy @ (37)

<v ang> 1 1/p, P(F)XWQIiéplapl(l—‘)

(resp. the Green formula forv € Y&l(Rf), where the first term of the left-hand

side is replaced by (Awv, (‘0>Wf+"{,I(Rf)xWE’f_/L_l(Rf)>'

Proof. Firstly, let’s remark that for any ¢ € W3€+2(Rf), the boundary con-
dition ¢ = Ap = 0 on I is equivalent to ¢ = 9% = 0 on I'. Moreover, if

11



N/p' ¢ {€ =1, 0, £+ 1}, we have the imbedding W*2,(RY) — W7 (RY).
So we can write the following Green formula:
Yu ED(@), Vo € Wf’e’iQ(Rf) such that ¢ = Ap=0on T,
/ o Avdx —/ vApdr = / vOypda.
RY RY

N r

(3.8)

Since Ap = 0 on I', we have the identity

Apdr = (v, A
/Mv pdo=(v.A¢), .,

o 17 / .
R xW 2 f,(RY)

This implies

<U7aNSD>W£:12*1/P7P(F)XWE;J%P/»P/(F) S ||UHY4(R1) ||SO||WEQ112(R4]Y)

By Lemma 2.2, for any i € Wfﬁép/’p’ (T'), there exists a lifting function ¢ €

Wfﬁz(Rf) such that o =0, Oy = p and 9% = 0 on T, satisfying

<C

where C'is a constant not depending on ¢ and p. Then we can deduce that

”’VOUHWZ—_lQ—l/I”P(p) <C HU”YZ(RQ’)'

Thus the linear mapping v : v — v| defined on D(@) is continuous for
the norm of Y;(RY). Since D(@) is dense in Y;(R%Y), 7o can be extended by
continuity to a mapping still called 7o € E(Yg(Rf); ngg*l/p’p(r)). Moreover,
we also can deduce the formula (3.7) from (3.8) by density of D(@) in
Vy(RY). To finish, note that if N/p' € {¢ — 1, ¢, ¢ + 1}, we only have the
imbedding WEﬁz(Rf) — WEvg’”_’lv_l(Rf), hence the necessity to introduce

the space Y, 1(RY) and the corresponding Green formula with logarithmic
factors for these three critical values. O

Proof of Theorem 3.5. We can observe that solve problem (R) is equivalent
to find u € Yo(RY) if N/p' ¢ {€—1, ¢, €+ 1} (resp. u € Yy 1(RY) if N/p' €
{6—1,¢0, 0+ 1}), satisfying

Y € WEﬁQ(Rf) such that v = Av =0 on T,

u, Av . — g O o
< ) >WZ__12’p(R£)XW1_f_¢/.2(R$) <g7 N >W£712 Upm@)XWEeiépm (T)

(3.9)

12



Indeed the direct implication is straightforward. Conversely, if u satisfies (3.9)
then we have for any ¢ € D(RY),

<Au> (10> - = <U, A@) 4 =0,

WP RY ) x W ), (RY) WL PRY ) x W (RY)
thus Au = 0 in RY. Moreover, by the Green formula (3.7), we have

Yo € Wfﬁz(Rf) such that v = Av =0 on I,

<gu 8NU>WZ:12—1/17-,p(r)xwfziép’,p'(r) = <U, aNU)W[J;l/p'p(F)XWE;iép/’p/(F) .

By Lemma 2.2, for any u € ngjé”"”/(r), there exists v € W%, (RY) such
that v =0, dyv = pu, 0%v = 0 on I'. Consequently,

<u - g7 /’L>W[_1271/p,p(F)XWE;iéplypl(F) = O?

i.e. w — g =0 on I'. Thus u satisfies (R).

Furthermore, for any f € I/f/i’fé(ﬂ%ﬁ), we know that (see [5]) there exists a
unique v € Wf’fiz/AﬁM_N/p,] such that

Av=f in]Rf, v=0 onl,
with the estimate

: < C
WEEL RN AL If ”W};i;(M )’

o]

where C' denotes a generic constant not depending on v and f. Now, let’s
consider the linear form T : [ +—— — (g, 6NU>WZ:1271/1J,p(F)XWEziépr,p/(F) defined

on vffl_giQ(]Rf) Thanks to (3.5), we have for any g € A[A1+£_N/pq=

Tf]= [{g9,0n(v+ q»W[_l;l/P’”(F)fo;jép/‘p/(F)

IN

¢ ||g||WZ:12*1/P=P(p) ||U + q||WEi]i2(R$)

IN

C HgHWZ__lZ_l/"’p(F) HU”WE’Z;Q(Rf)/A[Ag_N/p/]

IN

C ||g||WZ—712—1/P7P(p) Hf”Wi’[i;(Rf)'
Thus we have shown that T is continuous on I/f/if;Q(Rf ) and then, according
to Riesz representation theorem, there exists a unique u € W, 5”(RY) such
th t T - o ’ . h . d 1 th 1

at Tf = (u, f>W,_7_12’”(R$)xW1_f+2(R$) So we have (3.9) and wu is the unique

solution to problem (R). O

Similarly to the Neumann problem, we can give an intermediate result:
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Theorem 3.8. Let { € Z. Under hypothesis (3.1), for any g € W, /(I
satisfying the compatibility condition (3.5), problem (R) admits a solution
u € Weo_”{(Rf), unique up to an element of A[AI_K_N/p], with the estimate

Inf \|U+QHW;[’1’(M) < CHQHW*{“’(F)'

€A n/p) -

4 Generalized solutions to the Stokes system in RY

We will establish a first result about the generalized solutions to (ST) in the
homogeneous case. The following proposition is quite natural and we can find
similar results in the literature although not expressed in weighted Sobolev
spaces (see e.g. Farwig-Sohr |12], Galdi |14], Cattabriga |11]). Moreover, we
take up some ideas in [12] and we considerably simplify the proof.

Proposition 4.1. For any g € W[lfl/p’p(f‘), the Stokes problem

—Au+Vr=0 in RY, (4.1)
diveu =0 in RY, (4.2)
u=g on I (4.3)

has a unique solution (u, ) € WyP(RY) x L?(RY), with the estimate

lullwyres) + 7l < C lgllga-simsg, (4.4)

Proof. 1) Firstly, we will show that system (4.1)—(4.3) can be reduced to three
problems on the fundamental operators A? and A.

Applying the operator div to the first equation (4.1), we obtain
Ar=0 inRY. (4.5)
Now, applying the operator A to the same equation (4.1), we deduce
A’u=0 inRY. (4.6)
From the boundary condition (4.3), we take out

uy =gy onlT, (4.7)

N-1
and moreover div'u’ = div' g’ on T', where div' v’ = ) du;.
=1

Since divu = 0 in Rﬂf, we also have divu = 0 on I', then we can write
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Onuy +div'u’ = 0 on T, hence
Iyuy = —div'g’"  onT. (4.8)
Combining (4.6), (4.7) and (4.8), we obtain the following biharmonic problem
(P) : A%uy =0 in ]Rf, uy = gy and Oyuy = —div'g’ on I

Then, combining (4.5) with the trace on I' of the Nth component in the
equations (4.1), we obtain the following Neumann problem

(Q) : Ar=0 in RY and Oy7=Auy onT.

Lastly, if we consider the N — 1 first components of the equations (4.1) and
(4.3), we can write the following Dirichlet problem

(R) : Au'=V'r nRY and u' =g onT.

2) Now, we will solve these three problems.

Step 1: Problem (P). Since g € Wy /PP(), we have gy € Wy /PP(T)
and div' g’ € W, /P?(T'). So (P) is an homogeneous biharmonic problem with
singular boundary conditions, and we can apply Theorem 3.1 provided the
compatibility condition (3.2) is fulfilled. If 1 — N/p" < 0, then Bp_n/py = {0}
and the condition vanishes. If 1 — N/p’ > 0, then Bjz_yyy) = Rz} and this
condition is equivalent to

L _
<d1V g ) ]‘>W0_1/P7P(F)XW01/P7P/(F) - 0 (49)

Since D(RN-1) is dense in Wo/”* (I'), we know that there exists a sequence
(or)ken € DRV 1) such that ¢j, — 1 in Wy/"” (), hence we can deduce

<diV/ g/, 1>Wo_l/p’p(F)XW01/p’p/(F) = — kh_)]g(} N1 g/ VQOk dLU/ = 0.

Thus the orthogonality condition is fulfilled and problem (P) has a unique
solution uy € Wy P(RY), satisfying

fuslgoy, < € (lawlyrmng + 145 g lyvmr )
< C Hg||W(1)—1/p7p(F)- (410)

Step 2: Problem (Q). Since A?uy = 0 in RY, we have Auy € Y5(RY) and
also Auy € Ys 1(RY), hence Auy|r € Wofl*l/p’p(lﬂ) by Lemma 3.7. Then we
can apply Theorem 3.3, provided the compatibility condition (3.4) is fulfilled,
1.€.
A _
VSD € 'A/-[Q—N/p’}u <AUN7 90>W07171/p’p(F)XW(?il/p/’p/(F) =0.
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Knowing that ./\f[ZA_ ~/p] € Pr, an argument similar to that of the condition
(4.9) in step 1 gives us this relation. We can conclude that problem (Q) has
a unique solution = € LF(RY), satisfying

||7THLP(RJ+V) < C HA“NHWO—l—l/p,p(F)
<C HAUNHYQ(M) = C ||AUN||W(;1=P(M)
< O llunlygrgy, < Cllglyimoe, — (311)

Step 3: Problem (R). By step 2, we have V'm € I/VO_I’I’(IR{f)]\F1 and more-
N-1
over g’ € Wol_l/p’p(F) . Since A[AI_N/p,] = {0}, we know that problem (R)

has an unique solution u’ € Wol’p(Rf)N_l (see [5], Theorem 3.1), satisfying

IN

/ / /
el ryy < € <||v Tl onry - + 19 ”wg—l/m(m“>

IN

C (Imllsocasy + 19/l s ey
< Clgllwi-vmrry: (4.12)

3) In order, we have found uy, 7 and «’, which satisfy (4.3) and partially
satisfy (4.1), i.e.

—Au' 4+ V'r=0 in RY.
It remains to show they satisfy (4.2) and the Nth component of (4.1), i.e.

—Auy +0ym =0 in Rf
Thanks to (4.5) and (4.6), we obtain
A(Auy — Oym) = A?uy =0 in ]Rf.

With the boundary condition of (Q), we can deduce that the distribution
Auy — Oym € Wy "P(RY) satisfies the following Dirichlet problem

A(Auy —Iym) =0 in ]Riv, Auy — Oyt =0 onI.

Thanks to Theorem 3.5, we necessarily have Auy — Oym = 0. Thus (u, 7)
completely satisfies (4.1).

Now, applying the operator div to (4.1), we have —Adivu + A7 = 0 in RY,
and by the main equation of (Q), i.e. (4.5), we obtain Adive = 0 in RY.
Moreover, from the boundary condition in (R), we get div'u’ = div'g’ on T.
Then, with the boundary condition in (P), we can write

divu = div'u’ + Oyuy = div'g' —div'g’=0 onT.

So, we have
Adivu =0 ian, divu=0 onT,
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with divu € LP(RY) and then by Theorem 3.8, we can deduce that divu =0
in RY, i.e. (4.2) is satisfied.

4) Finally, let’s remark that the uniqueness of (u, 7) is a consequence of the
uniqueness of the solutions to problems (P), (Q) and (R). Moreover, the
estimate (4.4) is a consequence of the estimates (4.10), (4.11) and (4.12). O

Now, we can solve the complete problem (ST). For this, we will show that it
can be reduced to an homogeneous problem, solved by Proposition 4.1.

Theorem 4.2. For any f € Wy "P(RY), h € LP(RY) and g € WP,
problem (ST) admits a unique solution (u, 1) € WyP(RY) x LP(RY), and
there exists a constant C' such that

||U’HW(1)’1’(R$) + 17l oy <
C (W lhws oy + Wlleyy + s ) - (413
Proof. Firstly, let’s write f = divF, where F = (F;)1<;<n € LP(R]}:)N
the estimate

, with

HFHLP(JM)N <C ||f||w51’P(Rg);

and let’s respectively denote by F = (F;)1<i<y € LP(RM)" and h € LP(RY)
the extensions by 0 of F and h to RY. By Theorem 2.3, we know that there
exists (@, 7) € WP (RY) x LP(RN) solution to the problem

(S) : ~A@+ V7 =divF and diva=h in RY,

provided the condition divF L Pu-nyp is fulfilled. If 1 — N/p" < 0, we
obviously have Pp_n/y; = {0}, thus the condition vanishes. If 1 — N/p’ > 0,
then we have Pp_n/y = RY and this condition is equivalent to

Vi=1,...,N, <div1~7‘i,1>w_1’p =0.
0

(BN)x Wy (BY)
This is exactly the same argument as for the condition (4.9) in the previous
proof. Thus the orthogonality condition is fulfilled, hence the existence of
(@, 7) € WP (RY) x LP(RY) solution to problem (S), satisfying
ey + 7oy < C (14 Bl sy + [l
< C (I lwpormy) + Ml - (419

Consequently, we can reduce the system (S™) to the homogeneous problem

(S%) ~Av+VY9=0 and divv=0 inRY, v=g" onT,
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where we have set g* = g — @t|r € W /"?(T"). Now, thanks to Proposition
4.1, we know that (S*) admits a unique solution (v, ) € W P(RY) x LP(RY),
satisfying

HUHW(l)yp(Rﬁ)-i—Hﬁ“Lp(Rf) <C HgﬁHWéA/p,p(F)

< C (Iflhwy oy + [liocayy + gl ) - (415)

Then, (u, 7) = (v + @lgy, § + Flay) € WyP(RY) x L(RY) is solution to
(ST) and the estimate (4.13) is a consequence of the estimates (4.14) and
(4.15). Finally, the uniqueness of the solution to (S*) is a straightforward
consequence of Proposition 4.1. O

Remark 4.3. In a forthcoming work, we will show that under hypothe-
ses of Theorem 4.2 and if moreover f € W YRY), h € LYRY) and

g € W), for any real number ¢ > 1, then the solution (u, 7) given
by Theorem 4.2 verifies, besides, (u, 7) € W 4(RY) x LI(RY). O

5 Strong solutions and regularity for the Stokes system in RY

In this section, we are interested in the existence of strong solutions (and then
to regular solutions, see Corollaries 5.5 and 5.7), i.e. of solutions (u, m) €
WA (RY) x W,5E(RY). Here, we limit ourselves to the two cases £ = 0 or
¢ = —1. Note that in the case £ = 0, we have W}P(RY) — W, P(RY) and
W P(RY) < LP(RY). The proposition and theorem which follow show that
the generalized solution of Theorem 4.2, with a stronger hypothesis on the
data, is in fact a strong solution.

N _
Proposition 5.1. Assume that — # 1. For any g € W YPP(D) | the Stokes
p

problem (4.1)-(4.3) has a unique solution (u, 1) € WP(RY) x W"P(RY),
with the estimate

lullw ey, + 7oy, < C gl g,

Proof. The arguments for the estimate are unchanged with respect to the
proof of Proposition 4.1. For the surjectivity and the uniqueness, note that we
always have the imbedding W7 "/7?(I") — W, "/"?(I). By Proposition 4.1,
we can deduce that problem (4.1)—(4.3) admits a unique solution (u, 7) €
WP(RY) x LP(RY), satisfying the estimate (4.4). Then, it suffices to go back
to the proof of Proposition 4.1 and to use the established results about prob-
lems (P), (Q) and (R), to show that in fact (u, 7) € WTP(RY) x WP(RY).
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In order, for problem (P), we find uy € Wf’p(Rﬂ\:) (see |7], Lemma 4.9); for
problem (Q), thanks to Theorem 3.4, we find 7 € Wll’p(]Rf); for problem (R),

we find v’ € Wf’p(Rf)N_l (see [5], Theorem 3.3). Note that for these three
results, the condition N/p’ # 1 is always necessary. O]

Now, we can study the strong solutions for the complete problem (S*). As for
the generalized solutions, we will show that it is equivalent to an homogeneous
problem, solved by Proposition 5.1. The following theorem was established in
the case N = 3, p = 2, by Maz’ya-Plamenevskii-Stupyalis (see [18]).

N
Theorem 5.2. Assume that o # 1. For any f € WYP(RY), h e W P(RY)

and g € W3 VPP(T), problem (S*) admits a unique solution (w, 7) which
belongs to W P(RY) x WP(RY), with the estimate

||u||vaP(Rf) + ||7T”W11*P(Rf) <

¢ <Hf”w$v”(m§) + HhHWf*”(M) T “gHWfl/“’(F)> '

Proof. Here again, the arguments for the estimate are unchanged with respect
to the proof of Theorem 4.2. For the surjectivity and the uniqueness, note
that the imbedding W7"?(RY) — Wy "?(RY) holds if N/p' # 1. Moreover, we
have W"P(RY) — LP(RY) and W™ /PP(T") — W, "/P?(T). Thus, thanks to
Theorem 4.2, we know that problem (S*) admits a unique solution (u, ) €
WP(RY) x LP(RY), satisfying the estimate (4.13). To show that (u, 7) €
WEP(RY) x W P(RY), we want to find an extension f of f to R, such that
the orthogonality condition for the extended problem to the whole space (S)
holds. To this end, we still can write f = divF. Indeed, if N/p" # 1, for any
f € WPP(RY), the Dirichlet problem

Aw=f ian, w=0 in I,

admits a unique solution w € WTP(RY) (see [5], Theorem 3.3). So, if we

consider F = Vw € W%’p(Rf)N, we have f = divF. Now, it suffices to go

back to the proof of Theorem 4.2. Here again, we know that there exists a

continuous linear extension operator from W"”(RY) to W,"*(RY), so we get

f = divF € WOYP(RY) and h € W}P(RN), hence the extended problem
(S), which has, by Theorem 2.4, a solution (@, 7) € WP (RN) x W"P(RN).
Then, we obtain the equivalent problem (5%) with g € W2 "/»?(T') and this
problem is solved by Proposition 5.1. O

Remark 5.3. To give a variant to this proof, we also can consider the exten-
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sion f € WOP(RN) of f to RY defined by:

f(x/, oy) = f(, zn) if xy >0,

—f@', —zn) ifzy <O,

and h € W P(RY) an extension of h to RY. Then by Theorem 2.4, there exists
(@, 7) solution to the problem

(S): —Au+Vi=f and diva=~h in R",

provided the orthogonality condition f L Pu_nyp is fulfilled. Here again, if
1 — N/p' <0 this condition vanishes and if 1 — N/p’ > 0, we have

Vi = , N, / (', xN) = 0.
Thus the orthogonality condition holds. The rest of the proof is identical. [J

Remark 5.4. Similarly to Remark 4.3, we could show that under hypotheses
of Theorem 5.2 and if moreover f € WP4RY), h € W %RY) and g €

W?il/q’q(F), with an arbitrary real number ¢ > 1, then the solution (u, 7)
given by Theorem 4.2 verify, besides, (u, 7) € WTI(RY) x WP4RY). O

We will now establish a global regularity result of solutions to the Stokes
system (ST), which includes the case of strong solutions and which rests on
Theorem 4.2 and a regularity argument.

N
Corollary 5.5. Let m € N and assume that — # 1 if m > 1. For any
p

fewrbrRY) he WmP(RY) and g € WmH=YPP(TY | problem (ST)
admits a unique solution (u, ) € WIHHP(RY)x WmP(RY), with the estimate

[ellwmerr @y + 17l @y <

C (HfHWm_l’p(Rf) + HhHW:nn’p(Rﬁ) + HgHWerll/P,P(F)> .

Proof. Since we have W/~ LP(RY) < Wy " P(RY), WmP(RY) — LP(RY) and
WmH1=1/p.2(T) — Wy~ Y/P?(T"), thanks to Theorem 4.2, we know that problem
(S*) admits a unique solution (u, 7) € Wy ?(RY) x LP(RY). We will show
by induction that

(f, h,g) € szl’p(Rf) X WnT’p(]Rf) x WmHi=1l/pp(T)

5.1
= (u, 7) € WIHLP(RY) x WmP(RY). (1)

For m = 0, (5.1) is true. Assume that (5.1) is true for 0,1, ..., m and suppose
that (f, h, g) € WIE(RY) x WIHEP(RY) x WIEVPP(D), Let’s prove

m

20



WEEP(RY) < Wmp(RY) and W2 YPP(T) o Wmt=1/ep(T), we know
that (u, ) € WITLP(RY) x W p(RN) thanks to the induction hypothesis.
Now, for any i € {1,..., N — 1}, we have

that (u, m) € WP (RY) x Wit P (RY). Since Wit (RY) < Wi=br(RY),

—Aediu) + V(e dim)

2 N -1 1 1
= Q@lf—i—xvalu—i—( +3> &u—i—fxé)ﬂr.
0 0 o o

Thus, —A(0du) + V(o d;im) € Wi HP(RY). Moreover,
1
div(pdiu) = Exaiu + 00;h.

Thus, div(pdu) € WP(RY). We also have vo(0diu) = o diyou = ¢/ 9,9 €
WmH=1/pp(1), So, by induction hypothesis, we can deduce that
Vie{l,...,N—1}, (O, dir) € WitpP(RY) x Wk (RY).

It remains to prove that (Iyu, dym) € Wit PP(RY) x Wik (RY). For that,
let’s observe that for any ¢ € {1,..., N — 1}, we have

0,0y = Ondhu e W h(RY),
Ry = —Awu;+ 0 — fi W,Z‘fi (RY),
dun = Onh — Oy div' Wi (RY),
ONT = fnv + Auy Wk (RY).

Hence, V(Onu) € W' (]RN) and knowing that dyu € W»P(RY), we can
deduce that dyu € Wity p(]RN) according to definition (2.1). Consequently,
we have Vu € Wiip p(]RN) Likewise, we have Vr € WP (RY). Finally,

we can conclude that (u, 7) € Wiy p(RN) Wi P(RY). O
Now, we examine the basic case ¢ = —1, corresponding to f € LP(RY). More

precisely, we have the following result, corresponding to Theorem 5.2:

Theorem 5.6. For any f € LP(RY), h € WyP(RY) and g € Wi /PP (T0),
problem (S*) admits a solution (u, 7) € Wi P(RY) x Wy P(RY), unique if
N > p, unique up to an element of (Ray)V "1 x {0} x R if N < p, with the
following estimate if N < p (eliminate (X, u) if N > p):

(A,M)E(Rmz%zlglffflx{o}xR (”u + Mllwz @y + 7+ “”W&”’M)) =
¢ (Hf”LP(M) + 1 Allwpr @y + ”gng_l/p’p(F)) :
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Proof. The idea is to go back to the proof of Theorem 4.2 and we will throw
light on the modifications. In contrast to Theorem 5.2, the extension f of
J is of no importance because there is no orthogonality condition for the
extended problem (S) (see Theorem 2.4). Then, we get the reduced problem
(S%). Now, to solve (S*), this is the proof of Proposition 4.1. Problem (P)
yields a unique uy € Wg'?(RY), problem (Q) gives 7 € W, ?(RY) unique up
to an element of N y,; and (R) yields u’ € WOQ’p(]Rﬂf)N_l unique up to an
element of (.AéfN/p])N_l. The point 3) of the proof is identical for all N and
p (the kernels of the two Dirichlet problems are always reduced to zero). The

last point concerns the kernel of the operator associated to this problem. If
N > p, it is clearly reduced to zero and if N < p, we have A[%_N/p] = Ray

and '/\[[lAfN/p} = P[I—N/p} =R. ]

Thanks to the corresponding imbeddings, we can give a regularity result with
the same proof as Corollary 5.5.

Corollary 5.7. Let m € N. For any f € W'P(RY), h € Wrthe(RY) and
g € W 2=n(T) problem (S*) admits a solution (u, ) € WIHTP(RY) x
WmHLp(RY), unique if N > p, unique up to an element of (Ran )V 1 x {0} xR
if N < p, with the following estimate if N < p (eliminate (X, p) if N > p):

(A’“)G(Rm]ivf)l]fvflx{o}m (HUJF)\Hw;;#?vP(M)WL||7T+M|’w::+1vp(my)) <

C (Il rcay + Il sy + N9 lss-sin g ) -

6 Very weak solutions for the Stokes system

The aim of this section is to study the Stokes problem with singular data
on the boundary. At first, we must give a meaning to singular data for the
Stokes problem in the half-space. More precisely, we want to show that a
boundary condition of the form g € W, '/»”(T') is meaningful. In mind of
this paper, we limit ourselves to the two cases £ = 0 or ¢ = 1, i.e. to g €
WZ/PP(T) corresponding to a solution (u, 7) € WEP(RY) x WZ"P(RY), or
g € Wi PP(T') corresponding to (u, 7) € LP(RY) x Wy "P(RY). In that way,
for every ¢ € 7Z, we introduce the space

M (RY) = {u e W37, (RY); w=0 and divu=0 onT}.
Lemma 6.1. For any { € Z, we have the identity

M(RY) = {ue W/ ,(RY); u=0 and dyuy =0 onT}  (6.1)
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and the range space of the normal derivative i : M(RY) — Wl_/fff,(l“) is

Z,T) = {w € Wl,/fﬁ/(f‘); wy =0 on F}‘ (6.2)
Proof. Let u € Wg_fjrl(Rf) such that w = 0 on I'. Then divu = dyux on I’
and the identity (6.1) holds.

Moreover, it is clear that Zm v, C Z,(I"). Conversely, given w € Z,(I"), by
Lemma 2.2, there exists u € WQ_lerl(Rf) such that w = 0 and dyu = w on
I. Since wy =0 on ', we have u € M, (RY) and w € Im 7. O

For any open subset 2 of R, we also define the space
W (div; Q) = {v e WH(Q); dive € W (Q)},
which is a reflexive Banach space for the norm

= [0l + I divel,

Hv“Wi’fl(div;Q i,;il(g)j

and the following subspace of W7 (div; RY)
X(RY) = {v e WY RY); dive e WL R
Lemma 6.2. For any ( € Z, the space D(RY) is dense in X ,(RY).

Proof. Let v € X ,(RY) and v the extension by 0 of v to R, then we have
v € W&@D/(div; RM).
We begin to apply the cut off functions ¢y, defined on RY for any k € N, by

k .
Pr() = ¢<1n\x|)’ if |2 > 1,

1, otherwise,

where ¢ € C*°([0, oo[) is such that
o(t)=0,ift€[0,1]; 0<o(t)<1,ifte[l,2; o) =1, ift>2.

Note that this truncation process is adapted to the logarithmic weights (see
Lemma 7.1 in |3]). Then we have

and
div(¢y ) = o dive + - Ve, — dive in WhE L (RY).
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Now, for any real number 6 > 0 and z € RY, we set vy ¢(7) = v(z — Oey).
Then 95, 9 € W7 (div; RY) and supp ¥, p 18 compact in RY, moreover
lim @y, 0 = i in WY (div; BY).
Consequently, for any real number ¢ > 0 small enough, p. 0,9 € D(RY) and
. . . ~ o~ . 17p/ s N
21_1% élll[l) klirgopg *Vpp =0 in W[ (div; RY),

where p. is a mollifier. O

Let X (RY) be the dual space of X, (RY), we introduce the spaces:

To(RY) = {v e WEARY); Av e X|(RY)},
T o(RY) ={v € Ty(RY); divo =0 in RY},

which are reflexive Banach spaces for the norm
HU”Te(Rf) = Hv”wjafl(]gg) + HAUHXQ(Rf)?
where || - || x;(zy) denotes the dual norm of the space X (RY).

Lemma 6.3. Let { € Z. Under hypothesis (3.1), the space ’D(@) is dense

Proof. For every continuous linear form z € (Tg(Rf ))l, there exists a unique
pair (f, g) € W(}fil(Rf) x X (RY), such that

Vv € Ty(RY), (z,v)= /RN frode+ (Av, ) x,@r)ox,®Y) - (6.3)
+

Thanks to the Hahn-Banach theorem, it suffices to show that any z which
vanishes on ’D(Rf) is actually zero on Tg(Rf). Let’s suppose that z = 0 on

’D(@), thus on D(RY). Then we can deduce from (6.3) that
f+Ag=0 in Rf,

hence we have Ag € W2 (RY), g € ﬁfif/(Rf) and divg € Vf/lffil(Rf)
Let f € W22 (RY) and § € W"F (RY) be respectively the extensions by
0 of f and g to RY. From (6.3), we get f + Ag = 0 in RV, and thus Ag €
WP (RY). Now, according to the isomorphism results for A in RN (see [4]),

we can deduce that g € W%Zl(RN), under hypothesis (3.1). Since g is an
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extension by 0, it follows that g € ﬁf%é’il(Rf). Then, by density of D(RY)

in ﬁ/’i’lﬁ;l(Rf), there exists a sequence (¢;)ren C D(RY) such that ¢, — g
in W?2_(RY). Thus, for any v € T,(RY), we have

(z,v) = _/RN v - Agdr + (Av, ) x, @) x,®Y)

+

= lim {— /RN v - Appdr + (Av, 90k>D’(M)xD(M)}

k—o0
+

=0,

i.e. z is identically zero. O]

We also can show that, under hypothesis (3.1), {v S ’D(@); dive = O} is

dense in T&U(Rf). To study the traces of functions which belong to Tgyg(RJ_X),
we set

WP (div; RY) = {v € WE(RY); dive € W)P(RY)]

and their normal trace are described in the following lemma:

Lemma 6.4. Assume that { € 7 with N/p' # (. The linear mapping

ey + D(ET) — DY)

UV— UN|F7
can be extended to a linear continuous mapping
Yoy : WP (divi RY) — W 7(T),
Moreover, we have the Green formula:

Yo € W)P(div; RY), Vo e WhE (RY), 61
. 6.4
/M v Vedet /Ry P dive dz = = (0w, )y yrrmy e )

—0+1

Proof. Note that the assumption N/p’ # ¢ is necessary for the imbedding
Wlﬁl(]Rf ) — WO (RY), which is underlying in the Green formula. We will

show in remark how to do without.

Here again, we can show by truncation and regularization that ’D(@) is
dense in WP (div; RY) as in [3].

Let v € D(@) and ¢ € D(@), then formula (6.4) obviously holds. Since
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D(@) is dense in W' (RY) and the mapping

1 , /
Yo WHEL(RY) — WhEP(T)
Y SOIF

is continuous, formula (6.4) holds for every v € D(]RN) and p € W_ ZH(Rf).

By Lemma 2.2, for every u € Wléif (), there exists ¢ € W2 (RY) such

that ¢ =y on T', with ||g0|| L @) < C ||,u||WiQilpl(F). Consequently,

Thus

Jon gy < € Tolhwsogameay
We can deduce that the linear mapping 7., is continuous for the norm of
WP (div; RY). Since D(@) is dense in W{'(div; RY), 7., can be extended
by continuity to ey € E(W P(div; RY); W_l/pp(f‘)> and formula (6.4)
holds for all v € WP(div; RY) and ¢ € WhE (RY). O

Remark 6.5. If N/p' = (, the 1mbedd1ng WEEL(RY) < WP (RY) fails, but
in that case we have W2 (RY) < W% (RY). Thus, it suffices to introduce
the space W7 (div; RY) = {'v c W » (RY); dive € W) p(RN)} instead of
W?’p(div; RY). Then, with the same proof, we can show that ’D(]Rf) is dense

in the space Wg’f(div RY) and that the mapping 7., is continuous from
Wb (div; RY) to W,_{ YPP(T) with the corresponding Green formula. O

It follows that the functions v from T ,(RY) are such their normal trace

vy belongs to W,_/"?(T'). Furthermore, for any v € ’D(@) we have the
following Green formula:

Vi € M (RY), / Av - cpdx—/NU'Agod:c—i—/’v~8N<pdx’.
RY r

Let’s now observe that the dual space Z,(T") of Z,(T") can be identified with
the space

{g € W;}{p’p(f‘); gy =0 on F},

and moreover that Oy sweeps Z(I') when ¢ sweeps M, (RY). Thus, thanks
to the density of ’D(RN) in TE(RN), we can prove that the tangential trace

of functions from T’ ,(RY) belongs to W,_} YPP(T). So, their complete trace
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belongs to W, {""?(I') and we have

VQO € Mg(Rf), Vv € TE,O’(R$>7

(Av, @)y, = (0. 80) o oy + (0. ONP)yvmn, wisny

(6.5)

We now can solve the homogeneous Stokes problem with singular boundary
conditions. We will give separately the results for £ = 0 and ¢ = 1. The proofs
are quite similar and we will just detail the first case. The following proposition
and corollary yield the existence of very weak solutions when the data are
singular, so extending Proposition 4.1. Note that Wy ?(RY) — W2P(RY) and

Wy /PP(0) < WIPP(D) if N # p.

N _
Proposition 6.6. Assume that — # 1. For any g € W_/"?(T') such

p
that gy = 0, the Stokes problem (4.1)-(4.3) has a unique solution (u, 7) €
WOLRY) x WZ'P(RY), with the estimate

||U||w(}f(M)+||7THW:1“’(M) < C Hg”W:}/“’(F)’

Proof. 1) We will first show that if the pair (u, 1) € W2P(RY) x W "P(RY)
satisfies (4.1) and (4.2), then we have u € T ,(RY) and thus the boundary
condition (4.3) makes sense. With this aim, thanks to Lemma 6.2, observe
that if 7 € W2"?(RY), then we have Vr € X{(RY) and

||V7T||X5(Rf) <C ||7THW_*117P(M)’

So, we have Au € X(RY) and the trace you € Wj/p’p(l“),

2) Let’s show that the problem (4.1)—(4.3) with gy = 0 is equivalent to the
variational formulation: Find (u, 7) € W2P(RY) x W-"P(RY) such that

Yo € Mo(RY), W9 e WY (RY),

<'l.‘l,7 —A'U + VQ9>W%€(R£)XW?’#(R$)

— (m,div v)

wobr @ )i ®Yy)  (6.6)

= <g7 aN/U>W:}/p’P(F)XWi/p’p,(F) .

Indeed, let (u, m) be a solution to (4.1)—(4.3) with gy = 0; then the Green
formula (6.5) yields for all v € My(RY),

(—Au + Vr, ’U>X6><XO = — (u, AU>W0;1”(R1)><W?”’/(R$) —

- <g’8NU>W:}/’”’(F)xW}/”’p,(F) - <7T7leU>W:11’p(Rf)><V?/1’p,(Rf) = O

Moreover, using the density of the functions of D(@) with divergence zero
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in T ,(RY), we obtain for all ¥ € W,"* (RY),

(u, vﬁw‘}f(u&ﬁﬁw?“(n&% = — (divu, ﬁ)LP(Rﬁ)xLP’(Rﬁ) -

- <UN7 Q9>w:11/P7P(F)XW11/P~P/(F) = 0
So we show that (u, 7) satisfies the variational formulation (6.6). Conversely,

we can readily prove that if (u, m) € W%f’(Rf) x W2 'P(RY) satisfies the
variational formulation (6.6), then (w, 7) is a solution to problem (4.1)—(4.3).

N
3) Let’s solve problem (6.6). According to Theorem 5.2, we know that if — # 1,
p

for all f € WP (RY) and ¢ € WL (RY), there exists a unique (v, V) €
M (RY) x WP (RY) solution to

—Av+ Vi =f and divv:goin]Rf, v=0 onl,
with the estimate
19l iy + 19y < € (1l ) + Il )

Then

S C ||g||W:}/p,p(F) ||v||W12’p,(Rf)

< Cligly-yne (1 Iy + lollyzr )

<g’ aNU>W:i/P»P(F)Xwi/P» P/(F)

In other words, we can say that the linear mapping

T: (.fa ()0)'—) <g> aN”)

is continuous on W% (RY)x V[/1 24 (RY), and according to the Riesz repre-
sentation theorem, there exists a unique (u, m) € W%{’(Rﬂf) x W2 'P(RY)

which is the dual space of W' (RY) x V[/1 24 (RY), such that

V(F, @) € WY (RY)x Wi (RY),
T(fv ()0) < f> OPRN)XWOP(RN)—’—(W?_@) -1,p

WL PRY ) xwh P RY)
i.e. the pair (u, ) satisfies (6.6). O
We now can drop the hypothesis gy = 0.
N _
Theorem 6.7. Assume that — # 1. For any g € W,}/p’p(FL the Stokes
D
problem (4.1)-(4.3) has a unique solution (u, ™) € W2P(RY) x W "P(RY),
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with the estimate
HUHWO;f(M) + HWHW:f”’(Ri’) < C Hg”W:}“”p(F)'

N
Proof. We know that (see Corollary 3.6 in [6]) if — # 1, then there exists
p

¢ € WHP(RY) unique up to an element of /\/'[ﬁ_ nyp) solution to the following
Neumann problem:

AY=0 inRY, Oy =gy onT.
Let’s set w = V¢ and g* = g — yow. Then w € T ,(RY) and
J0lleyesy = Holworpery < € Iglly-sm e

Furthermore, g* satisfies the hypotheses of Proposition 6.6, hence the existence
of a unique pair (z, 7) which satisfies

—Az+Vr=0 and divz =0 in RJI, z=g" onl.
Then the pair (z + w, 7) is the required solution. The uniqueness of this

solution is a straightforward consequence of Proposition 6.6. O

Here is the corresponding results for the case ¢ = 1.

Proposition 6.8. For any g € W3 /"?(T) such that gy =0, and g’ L RN—!
if N < p/, the Stokes problem (4.1)-(4.8) has a unique solution (u, w) €
LP(RY) x Wy "P(RY), with the estimate

HUHLP(M) + HWHWO—LP(M) < C HQHWSUP»P(F)-

Proof. The two differences from the weight ¢ = 0 are the absence of critical
value (the reason is that here, the dual problem solved by Theorem 5.6 has
no critical value), and the orthogonality condition in the case N < p’ (which
corresponds by duality to the non-zero kernel in Theorem 5.6 if N < p). The
rest of the proof is similar. O

Theorem 6.9. For any g € Wy /P"(T') such that g L RN if N < p/,
the Stokes problem (4.1)-(4.3) has a unique solution (u, ) € LP(RY) x
Wy "P(RY), with the estimate

HUHLP(M) + HWHWO—LP(M) < C HgHng/P»P(p)-

Remark 6.10. Let p > 1 be a real number. If p < N and r = Np/(N — p),
then we have Wy "/P(I') — W, /""(T). Indeed, for every g € Wy~ “/7?(T),

29



there exists u € W;'P(RY) such that
Au=0 ian, Oyu=g¢g onl,

(see [6], Corollary 3.3). Since we have the imbedding W5 ?(RY) «— W, (RY),
we can deduce that v = Vu € L"(RY) and dive = 0 € W' (RY), i
v € WoP(div; RY). Moreover, as 7' # N, according to Lemma 6.4, we get
Yex¥ = Oyulr = g € Wy /""(I). Consequently, if g € Wy /PP(T) —
W, /"™ ('), Proposition 4.1 and Theorem 6.9 respectively yield the unique
solutions (u, ) € WyP(RY) x LP(RY) and (v, ¥) € L"(RY) x Wy " (RY),
which are identical thanks to the Sobolev imbeddings Wy'?(RY) — L"(RY)
and LP(RY) — Wy " (RY). O
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