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Abstract - This paper is devoted to some mathematical questions related
to the 3-dimensional stationary Navier-Stokes. Qur approach is based on a com-
bination of properties of Oseen problems in R3.
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1 Introduction

Let Q' be a bounded open region of R3, not necessarily connected, with a
Lipschitz-continuous boundary and let € be the complement of Q/. We sup-
pose that Q' has a finite number of connected components and each connected
component has a connected boundary, so that 2 is connected. The problem con-
sists then in finding a velocity field u = (u1, u2, us) and the pressure 7 satisfy
the Navier-Stokes system:

—vAu+ uVu+Vr=f inQ,

divu=20 in
NS ’
N§) u=20 on 01},

U — U at infinity,

where v > 0, f and us, € R? are respectively the viscosity of the fluid, the
external force field acting on the fluid and a given constant vector. The third
equation of the system states that the fluid adheres at the surface of the body,
which is the common no-slip condition. For the last equation, we have two
different cases concerning the behavior of w at infinity. If u,, = 0, the flow is at
rest at infinity and in the remaining case, if u, # 0, the flow is past at infinity.
In this paper, we are interested in considering the case 2 = R?® and u,, # 0.
Our purpose is to study some regularity properties of the weak solutions to the
problem (NS).



This paper is organised as follows: In this section, we recall well-know results
about weak solutions, weighted Sobolev spaces and some results of Oseen system
in weghted Sobolev spaces. In Section 2, a result about existence of weak
solutions for the problem (NS) will be presented. In next sections, we shall
obtain some regularity properties of the weak solution u and the associated
pressure w. We shall also consider the identity energy in the last section. In
this paper, we use bold type characters to denote vector distributions or spaces
of vector distributions with 3 components and C' > 0 usually denotes a generic
constant the value of which may change from line to line.

Now we recall the main notations and results , concerning the weighted Sobolev
spaces, which we shall use later on.

We define D(Q) to be the linear space of infinite differentiable functions with
compact support on Q. Now, let D'(2) denote the dual space of D(Q), often
called the space of distributions on . We denote by (.,.) the duality pairing
between D(Q)" and D(Q2). Remark that when f is a locally integrable function,
then f can be identified with a distribution by

(fip) = /Qf(-’ll) p(x) d.

Given a Banach space B, with dual space B’ and a closed subspace X of B,
we denote by B’ L X (or more simply X, if there is no ambiguity as to the
duality product) the subspace of B’ orthogonal to X, i.e.

B 1lX=X'={feBNveX,<fv>=0}=(B/X).

The space X is also called the polar space of X in B’. In 1933, Jean Leray
[13] who introduced the concept of the weak solution:

Definition 1.1. A weak solution to the problem (NS) is a field u € H} ()

loc

||
|u(x) — us| = 0 where S is the unit sphere of R? such that for all ¢ € V(Q2) =
{veD(Q),div v=0}:

vanishing on 9Q, with Vu € L%(Q), div u=0in Q and lim / |u(z— 1 )| =

1//Vu.Vgadm+/u.Vu.<pdw:<f,<p>.
Q Q

A typical point in R3 is denoted by & = (21, z2, 23) and its norm is given by
1

|z = (22 + 22 4 22)2. We define the weight function p(z) = (14 |  |?)z. For

each p € R and 1 < p < oo, the conjugate exponent p’ is given by the relation

1 1
-+ — = 1. Witha € R and m € N, we set
p P

3
-1, if —4+adé¢{l,..,m},

k=k(m,p,a)= 3 by
m——-—a, if —4ae{l,..,m},

p p

and we introduce the definition of the weighted Sobolev spaces.
Definition 1.2. Let  be either an exterior domain or = R3. Then,
wWmP(Q) =  {ueD(Q);V\e N3,
0 <A <k, p* ™ (In(1 + p)) 10 u € LP(Q),
E+1<|\<m, po™tNory e LP(Q)}.



This space is a reflexive Banach space when endowed with the norm:

| ullwmr@y= ( Z ||Pa*m+w(1n(1+P))715AU|I’ZP(Q)+
0<|AI<k

S ML, o).

k+1<|A|<m

We also define the semi-norm:

1/p

|ulwz» (€2) Z 1% ull} 5

IAl=

We note that the logarithmic weight only appears for the case 3/p + a €

{1,...,m} and all the local properties of W™?(Q) coincide with those of the clas-
o m,p

sical Sobolev space W™P?(Q). We set W P(§2) = D(Q)Wﬂ @

the dual space of I/?/;”p(Q) by W:Of”’p,(Q), which is the space of distributions.

When Q = R3, we have WP(R3) = I/?/'Z“p(R?’). If3/p+ad{l,..,m}, we

have the algebraic and topological imbeddings

and we denote

WP (Q) e WITP(Q) o WP (Q).
For all A € N” with |[A\| > 0, the mapping
ue WP Q) — 0 u e W'y NP ()
is continuous. Moreover, if g + a & {1,...,m}, then for any v in R such that
]% +a—v ¢ {1,..,m} the mapping u — p”u is an isomorphism of WP (Q)

3
onto W% (). Note that if we only suppose — 4+ a & {1,...,m}, the mapping
p

is continuous.

We denote by [¢] the integer part of q. For any k € N, 92 (respectively,
gzkA) stands for the space of polynomials (respectively, harmonic polynomials)
of degree < k. If k is strictly negative integer, we set by convention &7, = {0}.
Let k be an integer, then # is included in W"P(2) with

3 3
{m———i—a} ,if—4+adgZ™,
k= p p
m— — —a— 1, otherwise.
We introduce the space
1i7l,p 1,p ou 1,p
W () = que Wy’ (9)77 €Wy ()

which is a Banach space equipped with the following norm

lullgn —||u||Ww<Q)+Z|| |Lp<m+|| g oy D # 3,



3
_ ou ou
lullg oy = 002+ ) ullwnian + 3oy + 1 i

and ’Wofl’p, (R3) is its dual space. The previous norm is equivalent to the natural

one and it allows to prove the density of D() in Wol’p(ﬂ). This result is
announced in [7]. We introduce also the space

V(Q) = {v e WL2(Q), divo=0in Q}
In order to understand better the the condition u — u., at infinity of the
Navier-Stokes system, we introduce a following lemma (cf [8] ) :

Lemma 1.3. Assume 1 < p < 3 and u € D'(R?) such that Vu € LP(R?). Then
there exists a unique constant us, € R such that u — uy € Wol’p(R?’), where U
is defined by

1
Uso :lim‘m‘_,ooz/su(aﬂﬂ)) do

where S is the unit sphere of R® and w is the area of S. Moreover, we have
3p_ 3 . .
U — Uoo € L3-7(R?) with the estimate

= uoell e, < ClIVulloges), (1)

P (R9)

nmmm[owm(mp ~ unldo = nmlgﬂlm/sm(mp CunPdo =0 (12)

and
/ |u(ro) — uso|Pdo < Crp_g/ |VulPdz. (1.3)
s {w€R3 [z[>r}

Recall also the following Sobolev embeddings

WyP(R?) < LP*(R®) where px = 33p

and 1 <p < 3,

WS (R?) — VMO(R?) where VMO(R?) = D(R3) " *°
Here, BMO is the space of locally integrable functions in R? and such that, on
all cubes @

| fllBmo ZSSpﬁ/QU(x) — f(Q)]dr < .

Note also that if Vu € L? with p > 3 and u € L"(R3) for some 7 > 1, then we
have u € L>(R3).
If Q is an exterior domain, we have a corollary as follows:

Corollary 1.4. Let Q C R3 be an exterior domain. Assume 1 < p < 3 and
u € D'(Q) such that Vu € LP(Q). Then there exists a unique constant us € R
such that u — us € Wy'P() and we have the properties (1.1)-(1.3).

Proof. Let u € D'(Q) such that Vu € LP(Q). Then, the restriction of u to Qg
with a sufficiently large R satisfy u € D'(Qr) and Vu € LP(Qpg). Therefore,
we have u € WHP(Qr) and ulpp, € W'1/PP(9QR) (see Proposition 2.10 [4]).



Then there exists ug € WP (Qg) such that ug = v on I' and ug = 0 on dBr. We

extend wug by zero outside By and denote g the extended function that belongs
to the classical Sobolev space W1P(Q) and has compact support in Qz. Note

that v = u— 1, then Vo € L?(Q2) and v = 0 on I'. We set that v= v in Q and
v= 0 outside Q. Then we can deduce that V ve L?(R3). Therefore there exists
a unique constant u., such that v —vs, € WyP(R?), or u— 1y —vee € Wy P (R3).
Then u — v € Wy P(9). O

Now we shall introduce the following lemma by combining a result of Babenko
(1973, Proposition 3) with Theorem I1.5.1 [11]. The proof of this lemma can be
found in [11].

Lemma 1.5. Let Q C R? be a Lipschitz exterior domain or Q = R3. Assume
that

u e Wy?(Q) and 887“ € LY(Q) where 1 < ¢ < 2.
1

Then u € L31(2) and the following inequality holds:

Ju
[[ul[z3a(a) < C(||—8 l|za() + |[VullL2(q))-
L1
The next lemma gives an another version of this result.

Lemma 1.6. Let 1 < p < 3. Assume that u € Wol’p(]Rg). Then u € L%(Rg)ﬂ
L35 (R?) and following inequality holds:

lell o, o + Il g <l (14)

4p
(w9
Proof. We already showed that if u € Wol’p(R?’) with 1 < p < 3, then u €
Lﬁ‘%(R3) satisfying

ol g, < IV
We know that D(R?) is dense in W, (R?), then there exists a sequence (g )ren €

D(R3) which converges towards 1 in Wol’p,(]R:}). By hypothesis, we deduce
Au € Wy "P(R3). Then, we have

(A Dyyoro oy’ ey = I (AW @k)yyoto gay o’ ms)

= — lm (Vu, Vor) pogms) 1o w3y = 0-

k—4o00

Analogously, since D(R?) is dense in W&’p(R?’) (see [7]), then we can deduce

that 5
<—u, 1> - 0.
8x1 W(fl‘p(R3)XW[)1‘pl(R3)
We set, 5
U
—A — = f. 1.5
ut g = (15)

Then by hypothesis and [5], we have f € Wofl’p(R?’) satisfying the compatibility
condition as follows

U Dwtor oy swr ey = O



Then, from [8], the equation as follows
—Aw + v f in R3 (1.6)
z

has a unique solution w € L3-7 (R3) N L35 (R?) such that Vw € LP(R?),
0 _

T ¢ Wy P(R?) also satisfying

83?1

loll g 4l e+ Ve + || o
w P w p w P
L33Lp (R3) szip(ﬂ@) LP(R3) 0z WP (R?)

< CH f||WO*1vP(]R3)- (1-7)

0
We set z = u—w. Subtracting (1.5) to (1.6), we get —Az—i—a—z = 0in R3. Since
T

z € LPP/B=P)(R?), then, from Lemma 4.1 [8], we deduce that z is a polynomial
and then z = 0. From (1.7), we have (1.4). The proof is complete. O

Analogously as in Lemma 1.6, it is easy to deduce the following.

Lemma 1.7. Let 1 < p < 2. Assume that u € WP (R?) and 88—“ € LP(R3).
1
Then we have u € L;TPP(R?’) NL5% (R?) if 1<p<3/2anduc L*(R3) for

P
all s>-L i 3/2<p<2.
2—p

Definition 1.8. Let 1 < p < oo. Let 7,8 € R be such that v € [3,4], v > p,
0 € [%, 2], § > p. We define two reals r» = r(p,~) and s = s(p, d) as follow

Remark 1.9. From Definition 1.8, we can deduce that
4 3
i) If1<p<3,then4p P

<r<o—,
Ip 3—p
ﬁ)H3§p<4JMH4p

iii) If 1 < p < 3/2, then <s<
p

2
iv) T 3/2 < p < 2, then P

< s < 00.

Finally, we introduce the properties concerning the Oseen equations which
will be useful in the next parts. We consider the non homogeneous Oseen
problem : given a vector field f and a function g, we look for a solution (u,7)
to the system

—A @ Vr=Ff i R3
(0s) { AT gy TV MR
divu=g in R3.

Theorem 1.10. [7] Let r and s be the numbers given in Definition 1.8. Assume
(f.9) € LP(R?) x Wy P (RY).
(i) If 1< p <2, then Problem (OS) has a unique solution (u,m) € L*(R3) x



Wy (R®) such that Vu € L"(R3), V2u € LP(R?) and 88_11 € LP(R3). More-
1

over, the following estimate holds

«®3) + |[VullLr@s) + |Vl rs) + || ||LP ®) + 17l lywr sy
< C(||f ||LP(]R3) + 119l r gay)-

(ii) If 2 < p < 3, then Problem (OS) has a solution (u,7) € Wy (R3) x

0
Wol’p(R3), unique up to an element of No, such that V?u € LP(R?) and a_u €
T

L?(R3) also satisfying
. 2 8'11,
Knelnf@ |Ju+ K||wévr(u§3) + VUl |re @e) + ||8_x1||Lp(R3) + ||7T||W01'p(]R3)
< C(IF o) + l9lliao s
(iti) If p > 3, then Problem (OS) has a solution (u,7) € W5 (R3) x Wy (R?),
unique up to an element of N'v, such that a_u € LP(R3). Moreover, we have
x
B (1 Al ey + 17+ il esy) + g )
< C(If lluoes) + ||9||W01~I)(R3))~

Theorem 1.11. [7] Let r be the number given in Definition 1.8. Assume that
fe Wal’p(Rg) and satisfies the compatibility condition

VA € y[lfg/pl], <f, >\> =0.

W, P (R3) x W' (R3)
0 -

Let g € LP(R3) such that 8—9 € Wy »P(R®), satisfies the compatibility condition
T

Jg

/\> 0.
Ox X1 W(fz‘p(R:’)XWOQ"’I(R%

VAE«@[Q 3/p']» <

(i) If 1 < p < 4, then the Oseen system (OS) has a unique solution (u,m) €
L"(R3) x LP(R3) such that Vu € LP(R3) and g—u e W "P(R®). Moreover, the
T

following estimate holds
oo + V0l + 15w IP(RS) el o ey

< O llwz v ay + lgllzogen + 115 |1y )

(ii) If p > 4, then the Oseen system (OS) has a unique solution (u,m) €

W(l)xp(ﬂ@) x LP(R?), unique up to an element of N'o. Moreover, the following
estimate holds

inf ||u—|— K||W1~P(R3) + ||7T||LP(1R3)

(||f||w—1p(R3)+||g||L”(R3)+|| ||W 2P (R3) )



2 Existence of weak solutions in weighted Sobolev
spaces

We shall consider the Navier-Stokes problem in R?:

—vAu+ uVu+Vr=f inR3,
(NS) (divu=0 in R3,

U — Uy if |z| — oo,

where ., is a constant vector in R3. Without loss of generality, we can set
Uoo = Ae; with e; = (1,0,0) and A > 0. From now on, we consider the case
of a fixed A > 0. First, we prove the existence of weak solutions and then, we
shall the regularity of these solutions in dimention 3. We consider the following
lemma.

Lemma 2.1. If f € Wy "*(R3), then there exists F € L2(R3) such that f =
div F in R3 with the estimate

||F ||L2(R3) < C||f||WO—1’2(R3)~ (2-1)

Additionally suppose that f € Wy "P(R3), and furthermore assume that (f,1) =
0ifp< g, then F € LP(R?) and we have the estimate

||F ||LP(]R3) < Cl”f”WJLP(]RS»)' (2-2)

Proof. Tt f € Wy “?(R3), from Theorem 9.5 [5], there exists a unique z €
W, (R3) such that Az = f in R3 and

||Z||W01’2(]R3) < C||f||wo—1v2(]R3)~

We set that F = Vz, but z € W, %(R?), from Proposition 9.2 [5], we have
F € L2(R?) and (2.1). Moreover, if f € W, "P(R3) then there exists a unique
h € Wy P(R3)/ 2P}y _s) such that f = Ah in R® and

P

1ol e sy o, o, < Ol llwgre o).

Then V(2 — h) is harmonic in L?(R?) 4+ L?(R%)and consequently, Vz = Vh and
F € L?(R3) N L?(R?) with the estimate (2.2). O

We now return to the question of the existence of weak solutions of the
Navier-Stokes Equations in R3. The next theorem is well known, then we give
here a sketch of the proof.

Theorem 2.2. Given a force f€ Wy "*(R3), the problem (N'S) has a weak so-
lution w satisfying u— us € Wy (R3) and there exists a function w € L? (R3),
unique up to a constant, such that (u,7) solves the problem (N'S) in the sense

of distributions and we have the following estimation

||w— u00||wé~2(]1§3) <c|lf ||W0‘1’2(R3)' (2.3)



Proof. Thanks to Lemma 2.1, for each ¢ = 1,2,3, we know that there exists
F; € I?(R®)® such that f; = div F; € W, "*(R3) with the estimation (2.1). We
consider the following approximating problems (for each m € N*):

—vAu"™ + ™. Vum + V™ =divF in Bg, = Bn,
div ™ =0 in B,,, (2.4)
U™ = uy, on 0B,

where B,, is the open ball of radius R,,, > 0 centered at the origin. We know that
there exists a weak solution (u™,7™) € HY(B,,) x L?(B,,) of (2.4) satisfying
the following estimation:

V||vum||L2(Bm) <1 F||L2(Bm) < ||f||wg1v2(R3)-

~

We extend u" by us outside B,,, and we denote the extended function by ™.

We set 9™ =u"™ —u,. Since v € W4 (R?), then we deduce from Lemma 1.3
that

|| u™ _UDO||L6(1R3) +[IVau™ ||L2(1R3) < C||f||wg1~2(R3)-

Thus there exists a subsequence of (#”) and u such that u — ., € W4 (R?)

and such that o™ =u™ — Uso — U — Uso = v in LS(R3) and V u™— Vu in
L?(R3). Moreover, we have

V||VU||L2(R3) < lim inf V||V u™ ||L2(1R3) < || f ||W0_1’2(]R3) (25)

and (2.3) is satisfied.

Let us now check that u is a weak solution. Let ¢ € V(R3) and N > 0 be
an integer such that supp ¢ C By. Then, for all m > N, we deduce from (2.4)
that

~

v Vaum NVedz —|—/ u™ Y um pdr=(f ). (2.6)

R3 R3
In view of (2.5), we can pass to limit in the first integral. We know that the

imbedding H!(Bx) C L?(By) is compact, then u™ converges strongly to u in
L?(By). Then, this convergence together with (2.5) ensures the convergence of
the second integral of (2.6), then we have u is a weak solution of (NS).

Finally, the existence of a pressure 7 € D’(R3) such that (u,7) satisfies
(NS) in the sense of distributions follows from the Definition 1.1 and from a
well-known consequence of a very general theorem of G.de Rham. It is easy to
that f— w.Vu+ vAu € H; L (R?) which implies that 7 € L? (R?).

loc

O

In Theorem 2.2, we see that a pressure 7 locally belongs to L2. At the
beginning, we shall establish, without additional assumption, of the properties
of integrability at infinity of the pressure.

Proposition 2.3. Let f € Wo_l’Q(R3). The pressure w obtained in Theorem
2.2 has a representative such that

7 =1+ 72 with 7' € L*(R?) and 7% € W(}’s/?(]Rg).



Proof. Let R; and Ry be reals such that Ry > Ry > 0 and choose some functions
11 and 1y such that

1 € CF(R?), ¢1(x) =0 if |x| < Ry, ¢1(x) = 1if |2 > Ry,
Va e R, (@) + ¢o(z) = 1.

Let v = u— us where u is a solution given by Theorem 2.2 and let m € L} (R?)
1

be the associated pressure. We define (v', 7!) as follows
(0!, 7)) = (w1, my) in R, (o', 7') = (0,0) in By,

where B; is the open ball of radius R; and set (v?,72) = (g, 7o) in R3.
Then (v*, 7%) (i = 1,2), satisfies

oV’

—UAY
v v+)\8x1

+Vri=f" and div o' = ¢' in R3, (2.7)

, o;

where £ = [fi; — vvAY; — 20V 0VY; + TV ;] + [/\vaj —(v.Vo)] = ki + hy
1

and ¢' = —v.V;. We have 7 = 7' + 72 and from Theorem 2.2, we obtain

72 € L?(R?). Thus, the main of the proof deals with the properties of 7! and

therefore of (1, g'). We consider

1
—vAa' + )\g% + Vb =k and div @' = —vVi); in R3. (2.8)
1

Since v is bounded and has bounded derivatives with compact support, it is
easy to check that the term fi)1, vAvy, VoV, and 7V, belong to Wal’z(R?’)

and because W(R3) C L(R3) then we have v.% € L4(R3) for all ¢ € [1,6].
Tl
Even simple is to prove that g' = —v.Ve; € L2(R*) NW,; “*(R3) and therefore

gt _
SCS W, %2(R3) satisfying the following compatibility condition

8%1
1
<8i, 1> = 0.
8x1 W52‘2(]R3)XW5’2(R3)

Applying Theorem 1.11, there exists a unique solution (a!,b!) € (Wé’Q(R3) X
L?(R3)) of (2.8) such that a' € L™ (R3) where 4 < r; < 6. Thanks to Holder
inequality, we deduce that (v.Vw)y; € L3/2(R%) and, in particular, we have

v.% e L3/? (R3). Therefore, from Theorem 1.10, the system as follows
T
2 da? 2 . 2 : 3
—vAa® + )\a— + Vb*=hy; and div @* =0in R°, (2.9)
Z1

has a unique solution (a?,b?) € L1 (R3) x W01’3/2(R3) such that Va? € L™ (R3),
2
V2a? € L3/2(R3) and g—a e L3/2(R3) for all s, € [6,00) and 7 € [12/5, 3).
Z1

We set z = v' — a' — a® and 0 = 7' — b' — b2, Subtracting (2.7) to (2.8) and

(2.9), we get

—qu+A§—z+v0=0 and div z=0in R3.
X1

10



Proceeding as in the proof of Theorem 3.1 part a) in the next section, we can
deduce that z = 0, then V6 = 0, and by the way the existence of a constant
c such that 7' = b' + b% + ¢. Therefore, the proposition is proved setting
!t =72 4+, 72 = b2 |

3 Regularity of the weak solutions

Let v = u — uy, where u is the weak solution of the Navier-Stokes problem
(N'S) given by Theorem 2.2. Then we rewrite the Navier-Stokes problem (N'S)
as follows:

—vAv+ /\aa—v +Vr=f—oVo inR3,
Ty
NS) {divo=0 in R?, (3.1)

v—0 if |z| — oo.

Remark that the Navier-Stokes problem is reduced to the Oseen problem or
the Stokes one, according to whether wu, is different from or equal to zero.
However, if u,, = 0, several fundamental questions remain open. For instance,
we cannot do when u., = 0 is to show that » € LI(R?) for some ¢ < 6 or
Vo € L"(R?) for some r < 2 excepting the case where the forces are small in
suitable norm (see Galdi [11], Farwig [10] for example). When wu, # 0, the
situation is different. Thanks to the results obtained on the Oseen system, we
shall see here that the weak solutions satisfy the regularity properties according
to f. We start our studies by adding assumptions on the force field f. First, we
assume additionally that f € ng’g(]R?’), and then, we will consider the case
more generally f € Wal’Q(R?’) mwgl’p (R?) with p > 3. Following this idea, we
state and prove the

Theorem 3.1. Given p > 3 and fe€ Wy "2 (R3})NW P (R3). Then, each weak
solution u to the problem (N'S) satisfies
0v

ve W2 (R N WEP(RY) NL™(R?) and 5m € W, "2 (R?) (3.2)
1

for any r1 > 6 and any ro > 3. Besides, the associated pressure has a represen-
tative
7€ L3(R®) N LP(R3), (3.3)

and if p > 3, then we have v € L™ (R3).

Proof. We first prove the case p = 3 and then consider the case p > 3.

a) The case p = 3: f e Wy (R?) N Wy *(R?). Let u be a weak solu-
tion of (NS) given by Theorem 2.2 and v = u — us. Since v € L5(R?) and
v.Vv = div (v®v), we have that v.Vv € W5 *(R?) and f—v.Vo e W, 3 (R3).
Therefore, from Theorem 1.11, the following Oseen system

—vAw+ )\g—w +Vg=f—vVo and divw=0in R? (3.4)
T
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has a unique solution (w,q) € (Wé’B(R3) x L3(R?)) such that w € L"(R?) for
any r > 12. We set z= v — w and § = 7 — ¢g. Subtracting (3.1) to (3.4), we get

—qu+A88—z+v9=0 and div z=0 in R>.
T

Therefore, we have

d(curl 2)

—vAcurl z+ A =0 inR3,
8%1
and we get ¥ = curl z, then for each i = 1,2, 3,
ov
=0 inR3
6w1 in R?,

where ¥; € L?(R3) + L3(R3) — S’(R3). Then, from Lemma 4.1 [§], ¥ is a
polynomial which belongs to L?(R3) + L3(R?). Consequently, ¥ = 0 = curl z
and div z = 0. Therefore,

—Az=curlcurl z+ Vdiv z=0 in R3.

Since z belongs to W2(R3) + W, ?(R3), then z must be a constant ¢ and
Vv = Vw. As z € L5(R3) + L'?(R3), then ¢ = 0, i.e. v = wand v €

W2 (R3) N Wi (R?). Moreover, we have v € L™ (R?) and 88— e W, (R?)

for any m > 6 and any ro > 3. Since z = 0, we deduce that V0 = 0, then 0
must be a constant, i.e, ¢ = 7 + a with a € R, ¢ € L3(R3). This ends the proof
of the case p = 3.

b) The case 3 < p < 4: Let f € Wy *(R®) N W, "P(R?). Tt is clear that
fe Wy 3(R3) and since we have proved the theorem for p = 3, we know that
ve VV1 2(R3) N W5 (R?) N L™ (R3) for any 71 > 6, and 7 € L3(R®). Since
div (v® v) € Wy'h T(]R:}) for all » > 3, by Theorem 1.11, we can deduce as pre-

viously that v € Wy *(R3) N WP (R3) with ;— e W, "2 (R?) for all 75 > 3.

Moreover, we can check that 7 € L3(R3) N LP(R3) This ends the proof of the
case 3 < p < 4.

¢) The casep > 4: From the case a) and b), we have v € W (R3), v € L7 (R3),

5}
8_1) € W, (R?) and m € L*(R?) for all ¢ € [2,4), k € [2,4), 1 € [6,00),
L1

re € [3,00) and s € [3,4). We use the same method of precedent cases, by
applying Theorem 1.11, we can remark that Vw = Vo even if w € W?(R?) is
unique up to an element of A’y and we still have (3.2) and (3.3).

If p > 3, we have Vv € LP(R3) and v € L™ (R?) for any r; > 6. Hence,
we deduce v € L>(R?). The proof is complete. O

From Sobolev injections theorem and the properties of the duality, we know
that L3/2(R3) < W "*(R3). Then, if we reinforce the assumptions of Theorem
3.1, f belongs to L3/2 (R3) instead of W, "%(R?), we can prove the following.

12



Theorem 3.2. i) Assume that f € W5 "*(R®) N L3/2(R3). Then each weak
solution u to the problem (N'S) satisfies

ve Wi (R?) N W3 (R N L™ (R?), (3.5)
0 —1,r
TV e LRI NL3AR) AW 2 (RP) and Ve L32(R3)  (3.6)
T
for any r1 > %, ro > 3. Besides, the associated pressure m has a representative

in Wy */(R?).
ii) Let g < p < 3. Assume that f € W3 ?(R3) NLP(R3). Then each solution u
to the problem (N'S) satisfies

ve Wy (R®) N Wy (R®) NL"™ (R®) and 57” eW,(RY) (3.7)
1

for any r1 € [3p, o] if % <p <2, for any ry € [6,00] if 2 <p <3 and for any
ro > 3. Besides, the associated pressure has a representative

7 € L3(R%) N LP*(R3) (3.8)
3

p
where px = 3, Moreover, we have
-p

o

VZv e LP(R?), 5o € LP(R%) and 7w € Wy P (R?). (3.9)

Z1
Proof. i) Note that L3/2(R3) — W "?(R3) and let u be a weak solution of
(NS). Thanks to Theorem 3.1, we know that » and 7 satisfy (3.2) and (3.3)

for the case p = 3. Besides, we have f— v.Vv belongs to L3/2(R%). Then, by
applying Theorem 1.10, the following Oseen system

0
—vAw+ Aa—w +Vu=Ff—vVo and divw=0in R (3.10)
T1
has a solution w € L*(R?) such that, Vw € L"(R?), VZw € L3/?(R?), g_'w €
Z1

L%2(R?) and the pressure y € Wol’g/Q(R3) for all s € [6,00) and r € [12/5, 3].
We set z= v — w and § = 7 — u. Subtracting (3.1) to (3.10), we get

—qu+)\88—z+V9:0 and div z=0 in R3.
T

By the analogous techniques as in the proof of Theorem 3.1, we conclude v = w
0

and 7 = p € W¥?(R3). Then, 8—” € L¥2(R*)NL3(R®) and V2w € L3/2(R3).
Tl

Thanks to Lemma 1.5 with ¢ = é, we can deduce v € L%2(R?). Combining
these results with (3.2) and (3.3), we obtain (3.5) and (3.6).

3
i) Thanks to the Sobolev embedding theorem, since f € LP(R3) where 5 <
p < 3, we can deduce that fe Wy "**(R?) and p* > 3. From Theorem 3.1, we

13



have » € W*(R?) MW P*(R3)NL®(R?). In particular, we have Vo € L% (R?)
for all 2 < ¢; < 3. Then, from Hélder’s inequality, we obtain ».Vv € L% (R3)

3
for all 5 < q2 < 3. Therefore, we deduce that f— v.Vv € LP(R?). By us-
ing the methods as in the proof of Theorem 3.1 (part a) and from Theo-
3 2
rem 1.10 for the case 5 < p < 2, we have v € L*(R?) where s > 2—p,

—-p
4
T € Wy (R?), Vv € L7(R?) where ——— < r < 33—p, V20 € LP(R%) and
-p —Pp
2 4
ﬁ € LP(R3). We note that 6 < 5 P and 4 < . <6< 3P . Since

Oy —p 4—p 3-p

v € Wi2(R3) N WiP*(R3) N L™ (R?) for any r; € [6,00], we don’t obtain
more results for . But by applying Lemma 1.5, we have » € L3’(R?). Pro-
ceeding analogously for the case 2 < p < 3, we have v € Wé’r(R3) where

4
ﬁpp <r< %’ m € WEP(RY), V2u € LP(R) and g—;’l € L(R?). Remark
4 3
that 2 < P < P px, then v and 7 can not be improved on and we

4—p 3-p
shall keep all results in (3.7), (3.8) and (3.9) for any 1 € [6,00] and ro > 3.

The theorem is completely proved.
O

4 More regularity

For our studies, we shall introduce the following problem. Let a fixed z € L3(R3)
such that div z= 0 in R3, we search a solution (w, ) to the following problem

—vAw+ )\g—w +2Vw+V0=Ff inR3
1

divw=0 in R%.

(4.1)

This problem is here linear, we limit ourselves to the condition w — 0 at infinity.
This condition is satisfied if p < 3 and w € WP(R3) or w € LI(R?) for some
¢>1and we WiP(R3) if p > 3 (see [7]).

We now prove the

Lemma 4.1. Assume that z € L3(R3) with div z= 0 and let f € W *(R3).
Then Problem (4.1) has a unique solution (w,0) € W3 *(R3) x L*(R?®). More-

0 -
over, we have w € L*(R3?), 8_11) e W 2(R?) and w satisfies the energy equality
T1
I// |Vw|2dw =<f,w >W_1’2(]R3)><W1'2(]R3) . (4.2)
R3 0 0

Proof. Let (Ry,)m>0 be an increasing sequence of reals with a fixed Ry > 0 and
such that lim R, = +oo. Since f € Wy "?(R3), then its restriction to the

m——+oo
open ball of radius R,,,>0 belongs to H™1(B,,). Now proceeding as in Theorem
2.2, we can deduce that the following approximating problem

ow,,

—vAw, + A
Vw+8x1

+ zVw, + V0, =f in B,

div wy =0 in By, (4.3)

w,, =0 on dB,,.
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has a unique solution (wy,, 0,,) € H(B,,)x (L?(By,)/R). Extending w,, and 6,,
by zero outside B,, and when m — 400, we can prove analogously as in Theorem
2.2 that Problem (4.1) has a weak solution (w, x) € Wy (R3) x L7, (R?). It is
easy to check that Aw and zVw = div (2® w) belong to W "?(R3). Then
from (4.1), we have Vy € L2(R%) + W "*(R3). In addition, since z® w €
L2?(R3), we have

Ax =div f—div div (z® w). (4.4)
The right-hand side of (4.4) being a element of Wy >*(R3) L R, then there
exists a unique § € L?(R?) such that A§ = Ax. Thus, V(6 — x) is a harmonic
distribution belonging to Wal’z(R3)+L2 (R?), i.e, Vx = V0. Then, there exists

0 _
k € R such that § = y + k € L?*(R3). Moreover, we have 8_11) e W, (R?)
Tl
because Aw, z.Vw, VO and f belong to ng’Q(R3). Thanks to Lemma 1.6, we
deduce w € L*(R3). It is easy to check as in the proof of Lemma 1.6 that
0w

<8w >=<V9,w>=<div (2® w), w) = 0, (4.5)

where the brackets denote the duality Wy "?(R3) x W{?(R3). Therefore, we
obtain the energy equality (4.2). O

We now introduce the following results which we shall need in the future.

Lemma 4.2. Let z € L*(R3) such that div z = 0. Then, for all ¢ > 0, there
exist p = p(e,2z) > 0 and a sequence (z;)ren € L3(R?) N L4(R?), such that
div z, = 0, satisfying

2z, — z in L4(R?). (4.6)
Moreover, there exist sequences (ay) and (bg) in L*(R3) NL*(R?) satisfying for
each k € N

2z, = ai + by, with [|ay|[pars)y < e and supp by C B(0, p). (4.7

Proof. Let o € C*°(R™) such that 0 < ¢ < 1 satisfying p(t) = 1if 0 <¢t <1
and p(t) = 01if ¢ > 2. For a > 0, we set

wa(z) = ¢ (%) , ©€R>.

Let € > 0, then there exists p = p(g, z) > 0 such that
€
2= ppllLime) < 5

Let (Rg)ken be an increasing unbounded sequence of positive numbers with
Ry > 2p. Since the support of pg, is compact for all £ € N, then div (¢g, z) =
2.Vg, belongs to L*(R3) and has a compact support. In particular, div (g, 2)
belongs to L3/2(R3) N L'2/7(R3), and from [5], we deduce that there exists ¥,
e W2(R3) N WL 7(R3) such that div g, = —div (¢g, 2) satisfying the
following estimation

ypllLarsy < Cll2Ver,|lLiz/m(gs)
< C||Z||L4(BI2{R14-,)||V<PR,C||L3(B;Rk)
k k
< C||z||L4(B;RA:)~ (48)
k
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Here, Bp, is a open ball of radius Ry > 0 centered at the origin and B?{:’“ =

Bar, \Br,. Note that W% 7(R3) < L4(R?) and W¢¥/?(R3) < L3(R?). We
define z, = ¢g, 2+ y;,- Then, from (4.8), we have (4.6). We set that

zr = PR 2+ Y = (R, (1 — ¢p)z+ Y] + (PR, pp2) =: @y + by.

Note that supp by, C B(0,p) and by, € L3(R?). Furthermore, for all k > k(e) €
N, we have

llarllLaws)y < [ler (1= ¢p)2l|Lams) + | YllLaes)
g g g
< §+C||Z||L4(B;1:k)§§+§:5

and we obtain (4.7). Moreover, since y, € L*(R3) N L*(R?), we have also
aj, € L3(R3) N LA(R3). O

In Theorem 3.2 (i), we proved v € L™ (R3) for any 71 > 9/2. To obtain
v € L' (R3) with r; < 9/2, we have to assume additionally a condition for f
We can state the

Theorem 4.3. Assume that f € W5 (R3) N L3/2(R3) N L*/3(R3). Then each
weak solution uw and the associate pressure w to the problem (N'S) satisfy the
results in Theorem 3.2 i). Moreover, for any r1 > 4

ve L'(R%), V2ve LY3(R?), 887” e LY3(R%) and we WP (R?).
1

Proof. From the case i) of Theorem 3.2, since v € L" (R3) for any 71 > 9/2 and
Vo € L2(R?)NL3(R?), then we have f—v.Vv € LP(R?) for any p € [18/13,3/2].
From Theorem 1.10 and proceeding as in the proof of Theorem 3.1 with p =

1

g, we obtain 887" € L8/13(R?), V2p € LIS/B(R3) and 7 € W '¥/3(R3).
1

Moreover, we have

ov

)\Ha—leLls/m(Rs) < C|| f— v.Vv ||L18/13(1R3)
< O(|| Fllzsmsesy + 1| © Il [V lla@s)) 49
S C(| £ lleasnsms)y + |1 0 llLorze)If w2 @y )-
Applying Lemma 1.5, we have v € L>/13(R?) and
v
||'U||L54/13(]R3) < C(||8—Z‘1||L18/13(R3) + ||V’U||L2(R3)). (4.10)

From (4.9) and (4.10), we deduce that

ov
||v||L54/13(]R3) + /\H@_leLIB/lS(W) < C(H f ||L18/13(R3) + || v ||L9/2(1R3) + 1)

Therefore, repeating the reasoning previously employed, we deduce for 1 < g <
18/13 that

ov
|[v]| L3a(rs) + /\||a—x1||L‘1(R3) < O(|| flluasy + || v [lL2a/e-a @sy +1).
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We define the sequence {g;} as follows
=3qr, k€N (4.11)
with go = 18/13. Repeating the same techniques, we thus find, for any k € N,
ov
l|v]] L3ar m3) + ||8—331||qu(11§3) <M

for a constant M independent of k. Clearly, the sequence {gx} is strictly de-
creasing and is bounded from below by 4/3. Therefore, there exists a number
Q@ > 4/3 such that

lim ¢ = Q.

k—oo
We shall pass to limit in (4.11), we obtain Q = 4/3. Since v € L*(R3) and
Vv € L%(R?), we obtain f— v.Vv € L*3(R3). Hence, by applying Theorem
1.10, we can deduce that Vv € LY/3(R3) and 7 € W(}’4/3(R3). The Theorem
is completely proved. [l

Note that L6/5(R3) < Wy ?(R3) and L3/2(R3) — W, "*(R3), and with
the previous results in hand, we can now prove the following theorem.
Theorem 4.4. Let f € LS/°(R3)NL3/2(R3). Then each weak solution (u, ) to
the problem (N'S), satisfies

v e LI(R3) for all ¢ € [3,00), m € Wy’ 6/5( R3) N Wol’g/Q(R?’),
Vv e L?/7T(R3) N L3(R?), Vv e L6/5(R )N L3/2(R3), (4.12)

TY  LS/5(R3) N L3(R®).
1

Proof. Let u be a weak solution of (NS). As f satisfies the hypothesis of
Theorem 4.3, then v € L*(R?) and 88 € LY3(R3). Let € > 0, p > 0 and vy, be
Z1

a sequence as zj in Lemma 4.2. Since v, € L3(R?) and div v, = 0, from Lemma
4.1, there exists a unique solution (wy,0)) € Wy *(R?) x L?(R?) satisfying

—vAwy, + /\?9— + v, Vw, +V0, =f and div w, =0in R3. (4.13)
1

Since f— v,.Vawy € L%%(R3), thanks to Theorem 1.10, there exists a unique
(Y, pui) such that

—VvAy, + )\% +Vup =f— . Vw, and div gy, =0in R3 (4.14)
1

qaﬁquing V2y, € LS/5(R3), Vy, € L'¥/7(R?) NL3(R?), y, € L3(R3) N LS(R3),
8 o ke LY°(R3) and py € VV1 6/5(R3) Using the method in the proof of Theo-

rem 3.1 (part a), we have y, = wy, and py = 6. Moreover, we have

()2 (|| Lo eoy + A 434 [ Vg 127 s

Owy,
H 971 [|ess (rs)
< C (IIf |l o/ses) + ||vk'vwk||L6/5(]R3)) . (4.15)

+ V||v2wk||L6/5(R3) + ||9k||W01,6/5(R3)
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Note now that
||vk.Vwk||L6/5(R3)
< llawlla@e) | [Vwrl|Liz/rgs) + || bkl Lo (5,) [V w||Ls/2(5,)
< €||V’wk||L12/7(R3) + ||’U||L6(R3)||V’wk||L3/2(Bp). (4.16)
But there exists C; € R such that
Vk € N*, ||Vwk||L3/2(Bp) < Cl||f||L6/5(R3). (4.17)

Contradicting (4.17) means that there exists a sequence (k,)men+ such that,
for all m € N*,

||Vwkm||L3/2(B y =1,

4.18
Vwk + vakaLa/s (R3) < ( )

1
|| — quk —
m’

Then we deduce from (4.15), (4.16) and (4.18) that

)2 |wg, [|es sy + A 403 | Vo, |l 127 ey + VIV W, [|Lo/5 (3

8’wkm

8x1

+A H + ||9km||W01‘6/5(]R3) < C. (419)

L6/5(]R3)

Therefore (wy, )m is bounded in Wg’G/S(R3) N Wé’m/?(Rg)’ <8(;DA) is
1 m

bounded in LY°(R?), (wy,, )m is bounded in L3(R3) and (,,)m is bounded
in W()1’6/5(R3). Thus, there exist subsequences, again denoted by (wy,, )m and

(0. )m, such that wy, — w in W2S/5(R3) 0 Whi2/T(Rey, W 0w
) 8x1 8%1
L6/5(R3), wy, — w in L3(R?), and 0, — 6 in W;"%°(R3). Moreover, since
W26/5(B,) — W13/2(B,) with compact imbedding, we have w;, — w in

W13/2(B,) with
IVwllrs2(p,) =1, (4.20)
and
ow . 3
—vAw+ /\3_ +o.Vw+V0=0 in R’ (4.21)
T

Since w € W *(R?) and § € L?(R?), then we have Aw and V6 belonging
to W, ?(R?). On the other hand, we deduce that v.Vw = div (v® w) €
W, "*(R?) because v and w belong to L*(R?). Since L8/%(R3) — Wy "*(R?)

0 _
we also have 8_11) € W, "*(R?). Hence,
L1

/ |Vw|? dz + </\g— + v.Vw+ Vo, w> =0. (4.22)
R3

Wi 2 (R3) x W ? (R3)
From (4.5) and (4.22), we deduce Vw = 0 and w = 0 in R? which contradicts
(4.20). Thanks to (4.15), (4.16) and (4.17), we have the following estimation
() [ [ (roy + M40 Vwg |27 gs)
oo
0x1 L6/5(R3)
< C (If llgesse + 10l |Lo@s)|lf ||L6/5(]R3)) .

+ I/||V2wk||L6/5(R3) + ||0k||W01,6/5(]R3)
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We can show that there exist a subsequence of (wy); which converges weakly

towards w in W2 (R3) n W'/ T(R3) N L3(R?) and a subsequence of (6y)x

which converges weakly towards 6 in VVO1

as follows

’6/5(R3) being a solution of the system

—VAw—i—)\g—w—l—v.Vw—i—V@:f and div w=0in R3.
1

We set y=v— w and x =7 — 0. Then we deduce that (y, x) is a solution of
the following system

9y

+0.Vy+Vxy=0 and divy=0inR>
8%1

—vAy+ A
Since y satisfies the energy equality (4.2) with f = 0, we deduce that y = 0
then xy = 0. Thanks to uniqueness arguments, we show that w = v and 6 = 7.
Theorem is completely proved. O

We now search weak solutions of Navier-Stokes system (NS) such that v €
L4(R3) for small values of q (¢ < 3) with similar properties for Vov. The following
theorem allow us to improve the results in Theorem 4.4 by taking an additional
assumption for f.

Theorem 4.5. Let 1 < p < 2. Assume that f € LY/°(R3) N L3/2(R3) N
Wal’p(R3) satisfying the compatibility condition

VA e 32[1_3/1,/], <fA >W51.p 0. (4.23)

(R3)x WP (R2)

Then each weak solution (u,m) to the problem (N'S) satisfies (4.12). Besides,
we have

88—’0 € Wal’s(R3) for any s >p and e LP(R?). (4.24)
T1

12
In particular, if 1 <p < > we obtain additionally
3 4p 3
v € LY(R?) for any g > i3 and Vv e LP(R”). (4.25)
-D

Proof. et fe Wy '"P(R3) with 1 < p < 2. From Theorem 4.4 and if u is a
solution of (NS), v satisfies (4.12) and in particular, v € L*(R?) N L*(R?) and
div (v® v) € Wy 2 n Wi H2(R3).

a) The case 3/2 < p < 2: We have f— v.Vv € W, "P(R?). Thanks to Theorem
1.11, there exists a unique (w, ) such that

—VAw+/\g—w+V0:f— v.Vo and divw=0in R3,
1

0

with w € L7 (R%) N L3577 (R?), Vw € LP(R3), % € W, P(R3) and 0 €
1

LP(R3). Since v € L3(R?), by uniqueness arguments, we can deduce that w = v,
0 = 7w and then, we have (4.24).
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b) The case 1 < p < 3/2: Since f € LS/3(R3) < W "*(R?), then in par-
ticular f € Wal’g/Q(R3) and from the case a), we have v € L'?/5(R3) N L3(R?).
Hence, we can show that v.Vv = div (v® v) € W51’6/5(R3) N W51’3/2(R3).
We distinguish two following cases:

b1) The case g <p< g: We can prove that f— v.Vv € W "?(R?) satistying

the compatibility condition (4.23). Proceeding as in previous cases, we have

ve L5 (R NL577(R?), 7€ LP(R3),

Vo e L (RY), 6%” € WP (RY).
1

(4.26)

Hence, we shall gain (4.24) from (4.12). Furthermore, we have (4.25).
b2) The case p < 5 We have that f e Wal’G/S(]R3) and proceeding as in the

case a), we prove that v € LY(R?) for all ¢ > 12/7. Then, we deduce v.Vv =
div (v® v) € Wy "9(R?) for all ¢ > 1 and we obtain f— v.Vo € W, "?(R?)
satisfying (4.23). Analogously as in the case bl), we can prove that v and 7
satisfy (4.26). Therefore, we have (4.24) and (4.25).

The proof is complete by combining the case a) with the case b). [l

Thanks to Theorem 3.2 (part ii), Theorem 4.4, Sobolev embedding theorem
and the properties of the duality, we can prove the following.

Corollary 4.6. i) Assume that f € LP(R3?) for all p € [6/5,2). Then the
Navier-Stokes problem (N'S) has a solution (u,7) satisfying
ve LI(R3), Voe Lo (R?), 7€ W, **(R3),

Vv € L*2(R?), LLREp P (R?), (4.27)
1

Ox
for any q € [3,00], any s1 € [12/7,6), any sz € [6/5,2) and any s3 € [6/5,6).
ii) Assume that f € LP(R3) for all p € [6/5,3). Then we have (4.27) for any
q € [3,00], any s1 € [12/7,00), any s2 € [6/5,3) and any s3 € [6/5,0).

The question can be raise that if we suppose additionally conditions for f,
then what we shall receive more. We consider the following.

Theorem 4.7. Let f € LP(R3) for all p € (1,3/2]. Then each weak solution
(u, ) to the problem (N'S) satisfies
ve LI(R3), Voe L (R3), 7e W, (R3),

v
2p e L*2(R3), —— € L*(R?
VoeL=(R?), oo e L(RY),

(4.28)

for any q € (2,00), any s1 € (4/3,3], any s2 € (1,3/2] and any s3 € (1, 3].
Proof. Remark that if fc L/%(R3)NL3/2(R3), from Theorem 4.4, we can de-

12
duce that f—v.Vo € L'*/'(R?). From Theorem 1.10 with p = 11 and proceed-
ing as in the proof of Theorem 3.1, we obtain v € L'?/°(R3) N L'?/7(R3), Vv €
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L4/3(R3) N L1%/7(R3), V2v and aa—" belong to LIZ/1L(R3), © € W2/ (R3).
1

Combining with the results in Theorem 4.4, we have v € L4(R3) for all ¢ €

[12/5,00) and Vv € LY/3(R3) N L3(R3). Hence, it is easy to prove that f— v.Vo

belongs to LP(R?). Thanks to Theorem 1.10 for all p € (1,3/2], we can deduce

that v € L77 (R?) N L3577 (R?), Vv € L5 (R?) N L3°7(R?), V2v € LP(R3),

88—1) € LP(R®) and 7 € W, P(R®). Clearly, we have (4.28) by combining with
Z1
(4.12). 0

Thanks to Corollary 4.6 and Theorem 4.7, we obtain the following results.

Corollary 4.8. i) Assume that f € LP(R?) for all 1 < p < 2. Then each weak
solution (u, ) to (N'S) satisfies
ve LI(R?), Vue L (R?), 7 e W, **(R?),

V2v € L2 (R?), LU (R?), (4.29)
1

Ox
for any q € (2,00], any s1 € [4/3,6), any s2 € [1,2) and any s3 € [1,6).
ii) Assume that f € LP(R3) for all 1 < p < 3. Then we have (4.29) for any
q € (2,00], any s1 € (4/3,00), any sz € (1,3) and any s3 € (1,00).

In Theorem 4.7, we know that if f € LP(R3) for all p € (1,3/2], then v
satisfies (4.28). With additional assumption for f, we shall prove that the weak
solutions given in Theorem 4.7 satisfy better properties.

Theorem 4.9. Given r > 1. Assume that f € LP(R*) N W, " (R3) for all
p € (1,3/2] satisfying the compatibility condition

VA€ Pz, <A >t =0.

(R3)x W™ (R?)

Then each weak solution (u,7) to (NS) satisfies (4.28) and 88—1) e W, (R?)
T

for any s > r. Moreover,

if 1<r< ; 7€ LY(R3) for all » <t <3, (4.30)

4 4
if 1<r< 3’ v € LYR?) for all q> 1 " and Vv e L"(R3). (4.31)
—r

Proof. We know that (u, 7) satisfies (4.28). In addition, thanks to Theorem 4.7,
we have v® v € LI(R3) for all ¢ > 1 and

f— div (v@v) € Wi (R®) L P1_5),.

Hence, thanks to Theorem 1.10, it is easy to prove that v € L~ (R*)NL 525 (R3),
v —1,r

Vo e L"(R?), 5 € W, " (R?) and 7 € L"(R?). As v € LY(R?) for any ¢ > 2,
1

0 _ 4

we have 8_1) €W, 1"‘;(11%3) for any s > r. Remark that 1 <2if r< 3 then
X1 - T

we obtain (4.31). For the pressure, we note that thanks to (4.28), 7 € L*(R?)

for all 3/2 < t < 3 and then, we have (4.30). The Theorem is completely

proved. O

4r
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We now prove the following theorem.

Theorem 4.10. Let 1 < p < oo and qo > 3. Assume that f € LI(R3) N
Wal’p(R3) for all ¢ € (1, qo] and satisfying the compatibility condition

VA e gz[l_g/p/], <f, )\)W =0.

o TR X W (R?)
Then the problem (N'S) has a solution (u, ) satisfying

ve L*(R%), Voe L (R?), m e W™ (RY),
Ve Lo (RY), 22 e L (R?),
8x1

for all so € (2,00], 81 € (4/3,0), s2 € (1,q0], s3 € (1,00). In particular, if
1 < p < 3/2, we have additionally 7 € L*(R3) for any ky > p. Moreover, if
1 < p <4/3, we obtain v € L*2(R3) for any ky € [prp,oo] and Vo € L*3(R3)
for any ks > p.

Proof. In particular, we have f€ L4(R?) for all 1 < ¢ < 3. From Corollary 4.8
part ii), we have
ve Lo(R3), Vue L (R3), m € W, **(R3),

ov
2 Ls2 RB LS RB
V v 6 ( )7 81‘1 6 ( )7

(4.32)

for any sp € (2,00], any $1 € (4/3,00), any s2 € (1,3) and any s3 € (1,00).
Then, we deduce that f— v.Vv € LI(R?) for all ¢ € (1,¢o] and we can obtain

that m € Wy Y(R3), V2w € LI(R?), 8—v € LY(R?). Combining with the previous
L1

results, we have (4.32) for all sp € (1,qo], s3 € (1,00). As v® v € L"(R?) for
any r > 1, then
f—vVoe Wy P(R®) L Pz,

If 1 < p < 3, from Theorem 1.11, the Oseen system (3.4) has a unique solution

(w,0) € (WyP(R?) x LP(R%)) such that w € L*(R%) for all {2 < s < ;2.
We use the same technique in the proof of Theorem 3.1, we deduce that w= v
and 6 = 7. Note that m € L*1 (R3) for any k; > pif 1 < p < 3/2. Moreover, if
1 < p<4/3, we can deduce prp < 2, then v € L*2(R3) for any ky € [prp,oo]
and Vo € L*(R?) for any k3 > p. The Theorem is completely proved.

([l

We now consider the energy identity. The key idea to find the conditions to
obtain the energy identity (4.33), is to test the Navier-Stokes problem with v.

3

Following this idea, we can deduce the following theorem.

Theorem 4.11. Let f € LY%(R?) N L3/2(R?) and (u, ) be a weak solution of
(N'S). Then we have the energy identity

l// |V’U|2d.’1} = <f, v>ng’2(]R3)><Wé’2(]R3) B (433)
R3
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ov

Proof. Thanks to Theorem 4.4, we have that v € L*(R3) N W ?(R3), =—— €
1

W, "*(R%) and 7 € L?(R?). As in Lemma 4.1, we show that

</\ﬁ +o.Vo+ Vv =0.

1 >W01*2<R3>xwé*2<m3>

and we obtain the energy identity (4.33). O
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