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The stationary three-dimensional Navier-Stokes Equationswith a non-zero 
onstant velo
ity at in�nityChérif AMROUCHE⋆ and Huy Hoang NGUYEN†Laboratoire de Mathématiques AppliquéesCNRS UMR 5142Université de Pau et des Pays de l'AdourIPRA - Avenue de l'Université 64013 Pau, Fran
e
⋆
herif.amrou
he�univ-pau.fr

†huy-hoang.nguyen�etud.univ-pau.frAbstra
t - This paper is devoted to some mathemati
al questions relatedto the 3-dimensional stationary Navier-Stokes. Our approa
h is based on a 
om-bination of properties of Oseen problems in R
3.Keywords : Navier-Stokes equations; Oseen equations; weighted Sobolev spa
es;�uid me
hani
s.AMS 
lass: 35Q30, 76D03, 76D05, 76D071 Introdu
tionLet Ω′ be a bounded open region of R

3, not ne
essarily 
onne
ted, with aLips
hitz-
ontinuous boundary and let Ω be the 
omplement of Ω′. We sup-pose that Ω′ has a �nite number of 
onne
ted 
omponents and ea
h 
onne
ted
omponent has a 
onne
ted boundary, so that Ω is 
onne
ted. The problem 
on-sists then in �nding a velo
ity �eld u = (u1, u2, u3) and the pressure π satisfythe Navier-Stokes system:
(NS)





−ν∆u+ u.∇u+ ∇π = f in Ω,

div u = 0 in Ω,u = 0 on ∂Ω,u → u∞ at infinity,where ν > 0, f and u∞ ∈ R
3 are respe
tively the vis
osity of the �uid, theexternal for
e �eld a
ting on the �uid and a given 
onstant ve
tor. The thirdequation of the system states that the �uid adheres at the surfa
e of the body,whi
h is the 
ommon no-slip 
ondition. For the last equation, we have twodi�erent 
ases 
on
erning the behavior of u at in�nity. If u∞ = 0, the �ow is atrest at in�nity and in the remaining 
ase, if u∞ 6= 0, the �ow is past at in�nity.In this paper, we are interested in 
onsidering the 
ase Ω = R

3 and u∞ 6= 0.Our purpose is to study some regularity properties of the weak solutions to theproblem (NS). 1



This paper is organised as follows: In this se
tion, we re
all well-know resultsabout weak solutions, weighted Sobolev spa
es and some results of Oseen systemin weghted Sobolev spa
es. In Se
tion 2, a result about existen
e of weaksolutions for the problem (NS) will be presented. In next se
tions, we shallobtain some regularity properties of the weak solution u and the asso
iatedpressure π. We shall also 
onsider the identity energy in the last se
tion. Inthis paper, we use bold type 
hara
ters to denote ve
tor distributions or spa
esof ve
tor distributions with 3 
omponents and C > 0 usually denotes a generi

onstant the value of whi
h may 
hange from line to line.Now we re
all the main notations and results , 
on
erning the weighted Sobolevspa
es, whi
h we shall use later on.We de�ne D(Ω) to be the linear spa
e of in�nite di�erentiable fun
tions with
ompa
t support on Ω. Now, let D′(Ω) denote the dual spa
e of D(Ω), often
alled the spa
e of distributions on Ω. We denote by 〈., .〉 the duality pairingbetween D(Ω)′ and D(Ω). Remark that when f is a lo
ally integrable fun
tion,then f 
an be identi�ed with a distribution by
〈f,ϕ〉 =

∫

Ω

f (x) .ϕ(x) dx.Given a Bana
h spa
e B, with dual spa
e B′ and a 
losed subspa
e X of B,we denote by B′ ⊥ X (or more simply X⊥, if there is no ambiguity as to theduality produ
t) the subspa
e of B′ orthogonal to X , i.e.
B′ ⊥ X = X⊥ = {f ∈ B′|∀ v ∈ X,< f, v >= 0} = (B/X)′.The spa
e X⊥ is also 
alled the polar spa
e of X in B′. In 1933, Jean Leray[13℄ who introdu
ed the 
on
ept of the weak solution:De�nition 1.1. A weak solution to the problem (NS) is a �eld u ∈ H

1
loc(Ω)vanishing on ∂Ω, with ∇u ∈ L

2(Ω), div u = 0 in Ω and lim
|x|→∞

∫

S

|u(x−u∞)| =

|u(x) − u∞| = 0 where S is the unit sphere of R
3 su
h that for all ϕ ∈ V(Ω) =

{v ∈ D(Ω), div v = 0}:
ν

∫

Ω

∇u.∇ϕ dx+

∫

Ω

u.∇u.ϕ dx = 〈f,ϕ〉 .A typi
al point in R
3 is denoted by x = (x1, x2, x3) and its norm is given by

|x| = (x2
1 + x2

2 + x2
3)

1
2 . We de�ne the weight fun
tion ρ(x) = (1+ | x |2)

1
2 . Forea
h p ∈ R and 1 < p < ∞, the 
onjugate exponent p′ is given by the relation

1

p
+

1

p′
= 1. With α ∈ R and m ∈ N , we set

k = k(m, p, α) =





−1, if
3

p
+ α 6∈ {1, ...,m},

m−
3

p
− α, if

3

p
+ α ∈ {1, ...,m},and we introdu
e the de�nition of the weighted Sobolev spa
es.De�nition 1.2. Let Ω be either an exterior domain or Ω = R

3. Then,
Wm,p

α (Ω) = {u ∈ D′(Ω); ∀λ ∈ N
3,

0 ≤ |λ| ≤ k, ρα−m+|λ|(ln(1 + ρ))−1∂λu ∈ Lp(Ω),

k + 1 ≤ |λ| ≤ m, ρα−m+|λ|∂λu ∈ Lp(Ω)}.2



This spa
e is a re�exive Bana
h spa
e when endowed with the norm:
‖ u ‖W m,p

α (Ω)= (
∑

0≤|λ|≤k

||ρα−m+|λ|(ln(1 + ρ))−1∂λu||pLp(Ω) +

+
∑

k+1≤|λ|≤m

||ρα−m+|λ|∂λu||pLp(Ω))
1/p.We also de�ne the semi-norm:

|u|W m,p
α

(Ω) =


 ∑

|λ|=m

||ρα∂λu||pLp(Ω)




1/p

.We note that the logarithmi
 weight only appears for the 
ase 3/p + α ∈
{1, ...,m} and all the lo
al properties ofWm,p

α (Ω) 
oin
ide with those of the 
las-si
al Sobolev spa
e Wm,p(Ω). We set ◦

W m, p
α (Ω) = D(Ω)

W m, p
α (Ω) and we denotethe dual spa
e of ◦

W m, p
α (Ω) by W−m,p′

−α (Ω), whi
h is the spa
e of distributions.When Ω = R
3, we have Wm,p

α (R3) =
◦

W m, p
α (R3). If 3/p + α 6∈ {1, ...,m}, wehave the algebrai
 and topologi
al imbeddings

Wm,p
α (Ω) →֒Wm−1,p

α−1 (Ω) →֒ ... →֒W 0,p
α−m(Ω).For all λ ∈ N

n with |λ| ≥ 0, the mapping
u ∈ Wm,p

α,β (Ω) → ∂λu ∈W
m−|λ|,p
α,β (Ω)is 
ontinuous. Moreover, if 3

p
+ α 6∈ {1, ...,m}, then for any γ in R su
h that

3

p
+ α − γ 6∈ {1, ...,m} the mapping u → ργu is an isomorphism of Wm,p

α (Ω)onto Wm,p
α−γ(Ω). Note that if we only suppose 3

p
+ α 6∈ {1, ...,m}, the mappingis 
ontinuous.We denote by [q] the integer part of q. For any k ∈ N, Pk (respe
tively,

P∆
k ) stands for the spa
e of polynomials (respe
tively, harmoni
 polynomials)of degree ≤ k. If k is stri
tly negative integer, we set by 
onvention Pk = {0}.Let k be an integer, then Pk is in
luded in Wm,p

α (Ω) with
k =





[
m−

3

p
+ α

]
, if

3

p
+ α 6∈ Z

−,

m−
3

p
− α− 1, otherwise.We introdu
e the spa
e

W̃ 1,p
0 (Ω) =

{
u ∈W 1,p

0 (Ω),
∂u

∂x1
∈ W−1,p

0 (Ω)

}whi
h is a Bana
h spa
e equipped with the following norm
||u||fW 1,p

0 (Ω)
= ||u||W 0,p

−1 (Ω) +
3∑

i=1

||
∂u

∂xi
||Lp(Ω) + ||

∂u

∂x1
||W−1,p

0 (Ω), if p 6= 3,3



||u||fW 1,3
0 (Ω)

= ||(ln(1 + ρ))−1u||W 0,3
−1 (Ω) +

3∑

i=1

||
∂u

∂xi
||L3(Ω) + ||

∂u

∂x1
||W−1,3

0 (Ω),and W̃−1,p′

0 (R3) is its dual spa
e. The previous norm is equivalent to the naturalone and it allows to prove the density of D(Ω) in W̃ 1,p
0 (Ω). This result isannoun
ed in [7℄. We introdu
e also the spa
eV(Ω) =

{v ∈
◦

W
1,2
0 (Ω), div v = 0 in Ω

}
.In order to understand better the the 
ondition u → u∞ at in�nity of theNavier-Stokes system, we introdu
e a following lemma (
f [8℄ ) :Lemma 1.3. Assume 1 < p < 3 and u ∈ D′(R3) su
h that ∇u ∈ L

p(R3). Thenthere exists a unique 
onstant u∞ ∈ R su
h that u− u∞ ∈W 1,p
0 (R3), where u∞is de�ned by

u∞ = lim|x|→∞
1

ω

∫

S

u(σ(|x|)) dσwhere S is the unit sphere of R
3 and ω is the area of S. Moreover, we have

u− u∞ ∈ L
3p

3−p (R3) with the estimate
||u− u∞||

L
3p

3−p (R3)
≤ C||∇u||Lp(R3), (1.1)

lim|x|→∞

∫

S

|u(σ|x|) − u∞|dσ = lim|x|→∞

∫

S

|u(σ|x|) − u∞|pdσ = 0 (1.2)and ∫

S

|u(rσ) − u∞|pdσ ≤ Crp−3

∫

{x∈R3,|x|>r}

|∇u|pdx. (1.3)Re
all also the following Sobolev embeddings
W 1,p

0 (R3) →֒ Lp∗(R3) where p∗ =
3p

3 − p
and 1 < p < 3,

W 1,3
0 (R3) →֒ VMO(R3) where VMO(R3) = D(R3)

||.||BMO
.Here, BMO is the spa
e of lo
ally integrable fun
tions in R

3 and su
h that, onall 
ubes Q,
|| f ||BMO = sup

Q

1

|Q|

∫

Q

|f(x) − f(Q)|dx <∞.Note also that if ∇u ∈ L
p with p > 3 and u ∈ Lr(R3) for some r ≥ 1, then wehave u ∈ L∞(R3).If Ω is an exterior domain, we have a 
orollary as follows:Corollary 1.4. Let Ω ⊂ R

3 be an exterior domain. Assume 1 < p < 3 and
u ∈ D′(Ω) su
h that ∇u ∈ L

p(Ω). Then there exists a unique 
onstant u∞ ∈ Rsu
h that u− u∞ ∈ W 1,p
0 (Ω) and we have the properties (1.1)-(1.3).Proof. Let u ∈ D′(Ω) su
h that ∇u ∈ L

p(Ω). Then, the restri
tion of u to ΩRwith a su�
iently large R satisfy u ∈ D′(ΩR) and ∇u ∈ L
p(ΩR). Therefore,we have u ∈ W 1,p(ΩR) and u|∂BR ∈ W 1−1/p,p(∂ΩR) (see Proposition 2.10 [4℄).4



Then there exists u0 ∈ W 1,p(ΩR) su
h that u0 = u on Γ and u0 = 0 on ∂BR.Weextend u0 by zero outside BR and denote ∼
u0 the extended fun
tion that belongsto the 
lassi
al Sobolev spa
e W 1,p(Ω) and has 
ompa
t support in ΩR. Notethat v = u−

∼
u0, then ∇v ∈ L

p(Ω) and v = 0 on Γ. We set that ∼
v= v in Ω and

∼
v= 0 outside Ω. Then we 
an dedu
e that ∇ ∼

v∈ L
p(R3). Therefore there existsa unique 
onstant u∞ su
h that ∼

v −v∞ ∈W 1,p
0 (R3), or u− ∼

u0 −v∞ ∈W 1,p
0 (R3).Then u− v∞ ∈ W 1,p

0 (Ω).Now we shall introdu
e the following lemma by 
ombining a result of Babenko(1973, Proposition 3) with Theorem II.5.1 [11℄. The proof of this lemma 
an befound in [11℄.Lemma 1.5. Let Ω ⊂ R
3 be a Lips
hitz exterior domain or Ω = R

3. Assumethat
u ∈W 1,2

0 (Ω) and
∂u

∂x1
∈ Lq(Ω) where 1 < q < 2.Then u ∈ L3q(Ω) and the following inequality holds:

||u||L3q(Ω) ≤ C(||
∂u

∂x1
||Lq(Ω) + ||∇u||L2(Ω)).The next lemma gives an another version of this result.Lemma 1.6. Let 1 < p < 3. Assume that u ∈ W̃ 1,p

0 (R3). Then u ∈ L
4p

4−p (R3)∩

L
3p

3−p (R3) and following inequality holds:
||u||

L
4p

4−p (R3)
+ ||u||

L
3p

3−p (R3)
≤ C||u||fW 1,p

0 (R3). (1.4)Proof. We already showed that if u ∈ W 1,p
0 (R3) with 1 < p < 3, then u ∈

L
3p

3−p (R3) satisfying
||u||

L
3p

3−p (R3)
≤ C||∇u||Lp(R3).We know thatD(R3) is dense inW 1,p

0 (R3), then there exists a sequen
e (ϕk)k∈N ∈

D(R3) whi
h 
onverges towards 1 in W 1,p′

0 (R3). By hypothesis, we dedu
e
∆u ∈W−1,p

0 (R3). Then, we have
〈∆u, 1〉

W−1,p
0 (R3)×W 1,p′

0 (R3)
= lim

k→+∞
〈∆u, ϕk〉W−1,p

0 (R3)×W 1,p′

0 (R3)

= − lim
k→+∞

〈∇u,∇ϕk〉Lp(R3)×Lp′(R3) = 0.Analogously, sin
e D(R3) is dense in W̃ 1,p
0 (R3) (see [7℄), then we 
an dedu
ethat 〈

∂u

∂x1
, 1

〉

W−1,p
0 (R3)×W 1,p′

0 (R3)

= 0.We set
−∆u+

∂u

∂x1
= f. (1.5)Then by hypothesis and [5℄, we have f ∈ W−1,p

0 (R3) satisfying the 
ompatibility
ondition as follows
〈f, 1〉W−1,p

0 (R3)×W 1,p
0 (R3) = 0.5



Then, from [8℄, the equation as follows
−∆w +

∂w

∂x1
= f in R

3 (1.6)has a unique solution w ∈ L
3p

3−p (R3) ∩ L
4p

4−p (R3) su
h that ∇w ∈ L
p(R3),

∂w

∂x1
∈ W−1,p

0 (R3) also satisfying
||w||

L
3p

3−p (R3)
+ ||w||

L
4p

4−p (R3)
+ ||∇w||Lp(R3) +

∣∣∣∣
∣∣∣∣
∂w

∂x1

∣∣∣∣
∣∣∣∣
W−1,p

0 (R3)

≤ C|| f ||W−1,p
0 (R3). (1.7)We set z = u−w. Subtra
ting (1.5) to (1.6), we get −∆z+

∂z

∂x1
= 0 in R

3. Sin
e
z ∈ L3p/(3−p)(R3), then, from Lemma 4.1 [8℄, we dedu
e that z is a polynomialand then z = 0. From (1.7), we have (1.4). The proof is 
omplete.Analogously as in Lemma 1.6, it is easy to dedu
e the following.Lemma 1.7. Let 1 < p < 2. Assume that u ∈ W 2,p

0 (R3) and ∂u

∂x1
∈ Lp(R3).Then we have u ∈ L

2p
2−p (R3) ∩ L

3p
3−2p (R3) if 1 < p < 3/2 and u ∈ Ls(R3) forall s ≥

2p

2 − p
if 3/2 ≤ p < 2.De�nition 1.8. Let 1 < p < ∞. Let γ, δ ∈ R be su
h that γ ∈ [3, 4], γ > p,

δ ∈ [ 32 , 2], δ > p. We de�ne two reals r = r(p, γ) and s = s(p, δ) as follow
1

r
=

1

p
−

1

γ
and

1

s
=

1

p
−

1

δ
.Remark 1.9. From De�nition 1.8, we 
an dedu
e thati) If 1 < p < 3, then 4p

4 − p
≤ r ≤

3p

3 − p
,ii) If 3 ≤ p < 4, then 4p

4 − p
≤ r <∞,iii) If 1 < p < 3/2, then 2p

2 − p
≤ s ≤

3p

3 − 2p
,iv) If 3/2 ≤ p < 2, then 2p

2 − p
≤ s <∞.Finally, we introdu
e the properties 
on
erning the Oseen equations whi
hwill be useful in the next parts. We 
onsider the non homogeneous Oseenproblem : given a ve
tor �eld f and a fun
tion g, we look for a solution (u, π)to the system

(OS)




−∆u+

∂u
∂x1

+ ∇π = f in R
3,

div u = g in R
3.Theorem 1.10. [7℄ Let r and s be the numbers given in De�nition 1.8. Assume

(f, g) ∈ L
p(R3) × W̃ 1,p

0 (R3).(i) If 1 < p < 2, then Problem (OS) has a unique solution (u, π) ∈ L
s(R3) ×6



W 1,p
0 (R3) su
h that ∇u ∈ L

r(R3), ∇2u ∈ L
p(R3) and ∂u

∂x1
∈ L

p(R3). More-over, the following estimate holds
||u||Ls(R3) + ||∇u||Lr(R3) + ||∇2u||Lp(R3) + ||

∂u
∂x1

||Lp(R3) + ||π||W 1,p
0 (R3)

≤ C(||f ||Lp(R3) + ||g||fW 1,p
0 (R3)).(ii) If 2 ≤ p < 3, then Problem (OS) has a solution (u, π) ∈ W

1,r
0 (R3) ×

W 1,p
0 (R3), unique up to an element of N 0, su
h that ∇2u ∈ L

p(R3) and ∂u
∂x1

∈

L
p(R3) also satisfying

inf
K∈R3

||u + K||
W

1,r
0 (R3) + ||∇2u||Lp(R3) + ||

∂u
∂x1

||Lp(R3) + ||π||W 1,p
0 (R3)

≤ C(||f ||Lp(R3) + ||g||fW 1,p
0 (R3)

).(iii) If p ≥ 3, then Problem (OS) has a solution (u, π) ∈ W
2,r
0 (R3)×W 1,p

0 (R3),unique up to an element of N 1, su
h that ∂u
∂x1

∈ L
p(R3). Moreover, we have

inf
(λ,µ)∈N 1

(||u+ λ||
W

2,p
0 (R3) + ||π + µ||W 1,p

0 (R3)) + ||
∂u
∂x1

||Lp(R3)

≤ C(||f ||Lp(R3) + ||g||fW 1,p
0 (R3)

).Theorem 1.11. [7℄ Let r be the number given in De�nition 1.8. Assume thatf ∈ W
−1,p
0 (R3) and satis�es the 
ompatibility 
ondition

∀λ ∈ P [1−3/p′], 〈f,λ〉
W

−1,p
0 (R3)×W

1,p′

0 (R3)
= 0.Let g ∈ Lp(R3) su
h that ∂g

∂x1
∈ W−2,p

0 (R3), satis�es the 
ompatibility 
ondition
∀λ ∈ P[2−3/p′],

〈
∂g

∂x1
, λ

〉

W−2,p
0 (R3)×W 2,p′

0 (R3)

= 0.(i) If 1 < p < 4, then the Oseen system (OS) has a unique solution (u, π) ∈

L
r(R3)×Lp(R3) su
h that ∇u ∈ L

p(R3) and ∂u
∂x1

∈ W
−1,p
0 (R3). Moreover, thefollowing estimate holds

||u||Lr(R3) + ||∇u||Lp(R3) + ||
∂u
∂x1

||
W

−1,p
0 (R3) + ||π||Lp(R3)

≤ C(||f ||
W

−1,p
0 (R3) + ||g||Lp(R3) + ||

∂g

∂x1
||W−2,p

0 (R3)).(ii) If p ≥ 4, then the Oseen system (OS) has a unique solution (u, π) ∈

W̃
1,p
0 (R3) × Lp(R3), unique up to an element of N 0. Moreover, the followingestimate holds

inf
K∈R3

||u+ K||fW
1,p
0 (R3)

+ ||π||Lp(R3)

≤ C(||f ||
W

−1,p
0 (R3) + ||g||Lp(R3) + ||

∂g

∂x1
||W−2,p

0 (R3)).7



2 Existen
e of weak solutions in weighted Sobolevspa
esWe shall 
onsider the Navier-Stokes problem in R
3:

(NS)





−ν∆u+ u.∇u + ∇π = f in R
3,

div u = 0 in R
3,u −→ u∞ if |x| → ∞,where u∞ is a 
onstant ve
tor in R

3. Without loss of generality, we 
an setu∞ = λe1 with e1 = (1, 0, 0) and λ ≥ 0. From now on, we 
onsider the 
aseof a �xed λ > 0. First, we prove the existen
e of weak solutions and then, weshall the regularity of these solutions in dimention 3. We 
onsider the followinglemma.Lemma 2.1. If f ∈ W−1,2
0 (R3), then there exists F ∈ L

2(R3) su
h that f =
divF in R

3 with the estimate
||F ||L2(R3) ≤ C||f ||W−1,2

0 (R3). (2.1)Additionally suppose that f ∈W−1,p
0 (R3), and furthermore assume that 〈f, 1〉 =

0 if p ≤ 3

2
, then F ∈ L

p(R3) and we have the estimate
||F ||Lp(R3) ≤ C′||f ||W−1,p

0 (R3). (2.2)Proof. If f ∈ W−1,2
0 (R3), from Theorem 9.5 [5℄, there exists a unique z ∈

W 1,2
0 (R3) su
h that ∆z = f in R

3 and
||z||W 1,2

0 (R3) ≤ C||f ||W−1,2
0 (R3).We set that F = ∇z, but z ∈ W 1,2

0 (R3), from Proposition 9.2 [5℄, we haveF ∈ L
2(R3) and (2.1). Moreover, if f ∈ W−1,p

0 (R3) then there exists a unique
h ∈W 1,p

0 (R3)/P[1− 3
p ] su
h that f = ∆h in R

3 and
||h||W 1,p

0 (R3)/P
[1− 3

p
]
≤ C′||f ||W−1,p

0 (R3).Then ∇(z− h) is harmoni
 in L
2(R3)+L

p(R3)and 
onsequently, ∇z = ∇h andF ∈ L
2(R3) ∩ L

p(R3) with the estimate (2.2).We now return to the question of the existen
e of weak solutions of theNavier-Stokes Equations in R
3. The next theorem is well known, then we givehere a sket
h of the proof.Theorem 2.2. Given a for
e f ∈ W

−1,2
0 (R3), the problem (NS) has a weak so-lution u satisfying u−u∞ ∈ W

1,2
0 (R3) and there exists a fun
tion π ∈ L2

loc(R
3),unique up to a 
onstant, su
h that (u, π) solves the problem (NS) in the senseof distributions and we have the following estimation

||u− u∞||
W

1,2
0 (R3) ≤ C|| f ||

W
−1,2
0 (R3). (2.3)8



Proof. Thanks to Lemma 2.1, for ea
h i = 1, 2, 3, we know that there existsFi ∈ L2(R3)3 su
h that fi = divFi ∈W−1,2
0 (R3) with the estimation (2.1). We
onsider the following approximating problems (for ea
h m ∈ N

∗):
−ν∆um + um.∇um + ∇πm = divF in BRm = Bm,

div um = 0 in Bm,um = u∞ on ∂Bm

(2.4)where Bm is the open ball of radiusRm > 0 
entered at the origin. We know thatthere exists a weak solution (um, πm) ∈ H
1(Bm) × L2(Bm) of (2.4) satisfyingthe following estimation:

ν||∇um||L2(Bm) ≤ ||F ||L2(Bm) ≤ || f ||
W

−1,2
0 (R3).We extend um by u∞ outside Bm and we denote the extended fun
tion by ∼um.We set ∼vm =

∼um −u∞. Sin
e ∼vm ∈ W
1,2
0 (R3), then we dedu
e from Lemma 1.3that

||
∼um −u∞||L6(R3) + ||∇

∼um ||L2(R3) ≤ C|| f ||
W

−1,2
0 (R3).Thus there exists a subsequen
e of (

∼um) and u su
h that u− u∞ ∈ W
1,2
0 (R3)and su
h that ∼vm =

∼um −u∞ ⇀ u − u∞ = v in L
6(R3) and ∇

∼um⇀ ∇u in
L

2(R3). Moreover, we have
ν||∇u||L2(R3) ≤ lim inf ν||∇

∼um ||L2(R3) ≤ || f ||
W

−1,2
0 (R3)

(2.5)and (2.3) is satis�ed.Let us now 
he
k that u is a weak solution. Let ϕ ∈ V(R3) and N > 0 bean integer su
h that suppϕ ⊂ BN . Then, for all m ≥ N , we dedu
e from (2.4)that
ν

∫

R3

∇
∼um .∇ϕ dx +

∫

R3

∼um .∇
∼um .ϕ dx = 〈f,ϕ〉 . (2.6)In view of (2.5), we 
an pass to limit in the �rst integral. We know that theimbedding H

1(BN ) ⊂ L
2(BN ) is 
ompa
t, then ∼um 
onverges strongly to u in

L
2(BN ). Then, this 
onvergen
e together with (2.5) ensures the 
onvergen
e ofthe se
ond integral of (2.6), then we have u is a weak solution of (NS).Finally, the existen
e of a pressure π ∈ D′(R3) su
h that (u, π) satis�es(NS) in the sense of distributions follows from the De�nition 1.1 and from awell-known 
onsequen
e of a very general theorem of G.de Rham. It is easy tothat f− u.∇u+ ν∆u ∈ H

−1
loc(R

3) whi
h implies that π ∈ L2
loc(R

3).In Theorem 2.2, we see that a pressure π lo
ally belongs to L2. At thebeginning, we shall establish, without additional assumption, of the propertiesof integrability at in�nity of the pressure.Proposition 2.3. Let f ∈ W
−1,2
0 (R3). The pressure π obtained in Theorem2.2 has a representative su
h that

π = τ1 + τ2 with τ1 ∈ L2(R3) and τ2 ∈W
1,3/2
0 (R3).9



Proof. Let R1 and R2 be reals su
h that R2 > R1 > 0 and 
hoose some fun
tions
ψ1 and ψ2 su
h that

ψ1 ∈ C∞(R3), ψ1(x) = 0 if |x| ≤ R1, ψ1(x) = 1 if |x| ≥ R2,

∀x ∈ R
3, ψ1(x) + ψ2(x) = 1.Let v = u−u∞ where u is a solution given by Theorem 2.2 and let π ∈ L2

loc(R
3)be the asso
iated pressure. We de�ne (v1, π1) as follows

(v1, π1) = (vψ1, πψ1) in R
3, (v1, π1) = (0, 0) in B1,where B1 is the open ball of radius R1 and set (v2, π2) = (vψ2, πψ2) in R

3.Then (vi, πi) (i = 1, 2), satis�es
−ν∆vi + λ

∂vi

∂x1
+ ∇πi = f i and div vi = gi in R

3, (2.7)where f i = [fψi − νv∆ψi − 2ν∇v∇ψi + π∇ψi] + [λv∂ψi

∂x1
− (v.∇v)ψi] := ki + hiand gi = −v.∇ψi. We have π = π1 + π2 and from Theorem 2.2, we obtain

π2 ∈ L2(R3). Thus, the main of the proof deals with the properties of π1 andtherefore of (f 1, g1). We 
onsider
−ν∆a1 + λ

∂a1

∂x1
+ ∇b1 = k1 and div a1 = −v∇ψ1 in R

3. (2.8)Sin
e ψ1 is bounded and has bounded derivatives with 
ompa
t support, it iseasy to 
he
k that the term fψ1, v∆ψ1, ∇v∇ψ1 and π∇ψ1 belong to W
−1,2
0 (R3)and be
ause W

1,2
0 (R3) ⊂ L

6(R3) then we have v.∂ψ1

∂x1
∈ L

q(R3) for all q ∈ [1, 6].Even simple is to prove that g1 = −v.∇ψ1 ∈ L2(R3)∩W−1,2
0 (R3) and therefore

∂g1

∂x1
∈ W−2,2

0 (R3) satisfying the following 
ompatibility 
ondition
〈
∂g1

∂x1
, 1

〉

W−2,2
0 (R3)×W 2,2

0 (R3)

= 0.Applying Theorem 1.11, there exists a unique solution (a1, b1) ∈ (W̃1,2
0 (R3) ×

L2(R3)) of (2.8) su
h that a1 ∈ L
r1(R3) where 4 ≤ r1 ≤ 6. Thanks to Hölderinequality, we dedu
e that (v.∇v)ψ1 ∈ L

3/2(R3) and, in parti
ular, we havev.∂ψ1

∂x1
∈ L

3/2(R3). Therefore, from Theorem 1.10, the system as follows
−ν∆a2 + λ

∂a2

∂x1
+ ∇b2 = h1 and div a2 = 0 in R

3, (2.9)has a unique solution (a2, b2) ∈ L
s1(R3)×W

1,3/2
0 (R3) su
h that ∇a2 ∈ L

r2(R3),
∇2a2 ∈ L

3/2(R3) and ∂a2

∂x1
∈ L

3/2(R3) for all s1 ∈ [6,∞) and r2 ∈ [12/5, 3].We set z = v1 − a1 − a2 and θ = π1 − b1 − b2. Subtra
ting (2.7) to (2.8) and(2.9), we get
−ν∆z+ λ

∂z
∂x1

+ ∇θ = 0 and div z = 0 in R
3.10



Pro
eeding as in the proof of Theorem 3.1 part a) in the next se
tion, we 
andedu
e that z = 0, then ∇θ = 0, and by the way the existen
e of a 
onstant
c su
h that π1 = b1 + b2 + c. Therefore, the proposition is proved setting
τ1 = π2 + b1, τ2 = b2.3 Regularity of the weak solutionsLet v = u − u∞ where u is the weak solution of the Navier-Stokes problem
(NS) given by Theorem 2.2. Then we rewrite the Navier-Stokes problem (NS)as follows:

(NS)





−ν∆v + λ
∂v
∂x1

+ ∇π = f− v.∇v in R
3,

div v = 0 in R
3,v −→ 0 if |x| → ∞.

(3.1)Remark that the Navier-Stokes problem is redu
ed to the Oseen problem orthe Stokes one, a

ording to whether u∞ is di�erent from or equal to zero.However, if u∞ = 0, several fundamental questions remain open. For instan
e,we 
annot do when u∞ = 0 is to show that v ∈ L
q(R3) for some q < 6 or

∇v ∈ L
r(R3) for some r < 2 ex
epting the 
ase where the for
es are small insuitable norm (see Galdi [11℄, Farwig [10℄ for example). When u∞ 6= 0, thesituation is di�erent. Thanks to the results obtained on the Oseen system, weshall see here that the weak solutions satisfy the regularity properties a

ordingto f. We start our studies by adding assumptions on the for
e �eld f. First, weassume additionally that f ∈ W

−1,3
0 (R3), and then, we will 
onsider the 
asemore generally f ∈ W

−1,2
0 (R3)∩W

−1,p
0 (R3) with p ≥ 3. Following this idea, westate and prove theTheorem 3.1. Given p ≥ 3 and f ∈ W

−1,2
0 (R3)∩W

−1,p
0 (R3). Then, ea
h weaksolution u to the problem (NS) satis�esv ∈ W

1,2
0 (R3) ∩ W

1,p
0 (R3) ∩ L

r1(R3) and
∂v
∂x1

∈ W
−1,r2

0 (R3) (3.2)for any r1 ≥ 6 and any r2 ≥ 3. Besides, the asso
iated pressure has a represen-tative
π ∈ L3(R3) ∩ Lp(R3), (3.3)and if p > 3, then we have v ∈ L

∞(R3).Proof. We �rst prove the 
ase p = 3 and then 
onsider the 
ase p > 3.a) The 
ase p = 3: f ∈ W
−1,2
0 (R3) ∩ W

−1,3
0 (R3). Let u be a weak solu-tion of (NS) given by Theorem 2.2 and v = u − u∞. Sin
e v ∈ L

6(R3) andv.∇v = div (v⊗v), we have that v.∇v ∈ W
−1,3
0 (R3) and f−v.∇v ∈ W

−1,3
0 (R3).Therefore, from Theorem 1.11, the following Oseen system

−ν∆w+ λ
∂w
∂x1

+ ∇q = f− v.∇v and div w = 0 in R
3 (3.4)11



has a unique solution (w, q) ∈ (W̃1,3
0 (R3) × L3(R3)) su
h that w ∈ L

r(R3) forany r ≥ 12. We set z = v−w and θ = π − q. Subtra
ting (3.1) to (3.4), we get
−ν∆z+ λ

∂z
∂x1

+ ∇θ = 0 and div z = 0 in R
3.Therefore, we have

−ν∆curl z+ λ
∂(curl z)
∂x1

= 0 in R
3,and we get Ψ = curl z, then for ea
h i = 1, 2, 3,

−ν∆Ψi + λ
∂Ψi

∂x1
= 0 in R

3,where Ψi ∈ L2(R3) + L3(R3) →֒ S′(R3). Then, from Lemma 4.1 [8℄, Ψ is apolynomial whi
h belongs to L
2(R3) + L

3(R3). Consequently, Ψ = 0 = curl zand div z = 0. Therefore,
−∆z = curl curl z + ∇div z = 0 in R

3.Sin
e z belongs to W
1,2
0 (R3) + W

1,3
0 (R3), then z must be a 
onstant 
 and

∇v = ∇w. As z ∈ L
6(R3) + L

12(R3), then c = 0, i.e. v = w and v ∈

W
1,2
0 (R3) ∩ W

1,3
0 (R3). Moreover, we have v ∈ L

r1(R3) and ∂v
∂x1

∈ W
−1,r2

0 (R3)for any r1 ≥ 6 and any r2 ≥ 3. Sin
e z = 0, we dedu
e that ∇θ = 0, then θmust be a 
onstant, i.e, q = π + a with a ∈ R, q ∈ L3(R3). This ends the proofof the 
ase p = 3.b) The 
ase 3 < p < 4: Let f ∈ W
−1,2
0 (R3) ∩ W

−1,p
0 (R3). It is 
lear thatf ∈ W

−1,3
0 (R3) and sin
e we have proved the theorem for p = 3, we know thatv ∈ W
1,2
0 (R3) ∩ W

1,3
0 (R3) ∩ L

r1(R3) for any r1 ≥ 6, and π ∈ L3(R3). Sin
e
div (v⊗ v) ∈ W

−1,r
0 (R3) for all r ≥ 3, by Theorem 1.11, we 
an dedu
e as pre-viously that v ∈ W

1,2
0 (R3) ∩ W

1,p
0 (R3) with ∂v

∂x1
∈ W

−1,r2

0 (R3) for all r2 ≥ 3.Moreover, we 
an 
he
k that π ∈ L3(R3) ∩ Lp(R3). This ends the proof of the
ase 3 < p < 4.
) The 
ase p ≥ 4: From the 
ase a) and b), we have v ∈ W
1,k
0 (R3), v ∈ L

r1(R3),
∂v
∂x1

∈ W
−1,r2

0 (R3) and π ∈ Ls(R3) for all q ∈ [2, 4), k ∈ [2, 4), r1 ∈ [6,∞),
r2 ∈ [3,∞) and s ∈ [3, 4). We use the same method of pre
edent 
ases, byapplying Theorem 1.11, we 
an remark that ∇w = ∇v even if w ∈ W

1,p
0 (R3) isunique up to an element of N 0 and we still have (3.2) and (3.3).If p > 3, we have ∇v ∈ L

p(R3) and v ∈ L
r1(R3) for any r1 ≥ 6. Hen
e,we dedu
e v ∈ L

∞(R3). The proof is 
omplete.From Sobolev inje
tions theorem and the properties of the duality, we knowthat L
3/2(R3) →֒ W

−1,3
0 (R3). Then, if we reinfor
e the assumptions of Theorem3.1, f belongs to L

3/2(R3) instead of W
−1,3
0 (R3), we 
an prove the following.12



Theorem 3.2. i) Assume that f ∈ W
−1,2
0 (R3) ∩ L

3/2(R3). Then ea
h weaksolution u to the problem (NS) satis�esv ∈ W
1,2
0 (R3) ∩ W

1,3
0 (R3) ∩ L

r1(R3), (3.5)
∂v
∂x1

∈ L
3/2(R3) ∩ L

3(R3) ∩ W
−1,r2

0 (R3) and ∇2v ∈ L
3/2(R3) (3.6)for any r1 ≥ 9

2 , r2 ≥ 3. Besides, the asso
iated pressure π has a representativein W 1,3/2
0 (R3).ii) Let 3

2
< p < 3. Assume that f ∈ W

−1,2
0 (R3)∩L

p(R3). Then ea
h solution uto the problem (NS) satis�esv ∈ W
1,2
0 (R3) ∩ W

1,p∗
0 (R3) ∩ L

r1(R3) and
∂v
∂x1

∈ W
−1,r2

0 (R3) (3.7)for any r1 ∈ [3p,∞] if 3
2 < p < 2, for any r1 ∈ [6,∞] if 2 ≤ p < 3 and for any

r2 ≥ 3. Besides, the asso
iated pressure has a representative
π ∈ L3(R3) ∩ Lp∗(R3) (3.8)where p∗ =

3p

3 − p
. Moreover, we have

∇2v ∈ L
p(R3),

∂v
∂x1

∈ L
p(R3) and π ∈W 1,p

0 (R3). (3.9)Proof. i) Note that L
3/2(R3) →֒ W

−1,3
0 (R3) and let u be a weak solution of

(NS). Thanks to Theorem 3.1, we know that u and π satisfy (3.2) and (3.3)for the 
ase p = 3. Besides, we have f − v.∇v belongs to L
3/2(R3). Then, byapplying Theorem 1.10, the following Oseen system

−ν∆w+ λ
∂w
∂x1

+ ∇µ = f− v.∇v and div w = 0 in R
3, (3.10)has a solution w ∈ L

s(R3) su
h that, ∇w ∈ L
r(R3), ∇2w ∈ L

3/2(R3), ∂w
∂x1

∈

L
3/2(R3) and the pressure µ ∈ W

1,3/2
0 (R3) for all s ∈ [6,∞) and r ∈ [12/5, 3].We set z = v−w and θ = π − µ. Subtra
ting (3.1) to (3.10), we get

−ν∆z+ λ
∂z
∂x1

+ ∇θ = 0 and div z = 0 in R
3.By the analogous te
hniques as in the proof of Theorem 3.1, we 
on
lude v = wand π = µ ∈ W

1,3/2
0 (R3). Then, ∂v

∂x1
∈ L

3/2(R3)∩L
3(R3) and ∇2v ∈ L

3/2(R3).Thanks to Lemma 1.5 with q =
3

2
, we 
an dedu
e v ∈ L

9/2(R3). Combiningthese results with (3.2) and (3.3), we obtain (3.5) and (3.6).ii) Thanks to the Sobolev embedding theorem, sin
e f ∈ L
p(R3) where 3

2
<

p < 3, we 
an dedu
e that f ∈ W
−1,p∗
0 (R3) and p∗ > 3. From Theorem 3.1, we13



have v ∈ W
1,2
0 (R3)∩W

1,p∗
0 (R3)∩L

∞(R3). In parti
ular, we have ∇v ∈ L
q1(R3)for all 2 ≤ q1 ≤ 3. Then, from Hölder's inequality, we obtain v.∇v ∈ L
q2(R3)for all 3

2
≤ q2 < 3. Therefore, we dedu
e that f − v.∇v ∈ L

p(R3). By us-ing the methods as in the proof of Theorem 3.1 (part a) and from Theo-rem 1.10 for the 
ase 3

2
≤ p < 2, we have v ∈ L

s(R3) where s ≥
2p

2 − p
,

π ∈ W 1,p
0 (R3), ∇v ∈ L

r(R3) where 4p

4 − p
≤ r ≤

3p

3 − p
, ∇2v ∈ L

p(R3) and
∂v
∂x1

∈ L
p(R3). We note that 6 ≤

2p

2 − p
and 4 ≤

4p

4 − p
< 6 ≤

3p

3 − p
. Sin
ev ∈ W

1,2
0 (R3) ∩ W

1,p∗
0 (R3) ∩ L

r1(R3) for any r1 ∈ [6,∞], we don't obtainmore results for v. But by applying Lemma 1.5, we have v ∈ L
3p(R3). Pro-
eeding analogously for the 
ase 2 ≤ p < 3, we have v ∈ W

1,r
0 (R3) where

4p

4 − p
≤ r ≤

3p

3 − p
, π ∈ W 1,p

0 (R3), ∇2v ∈ L
p(R3) and ∂v

∂x1
∈ L

p(R3). Remarkthat 2 <
4p

4 − p
<

3p

3 − p
= p∗, then v and π 
an not be improved on and weshall keep all results in (3.7), (3.8) and (3.9) for any r1 ∈ [6,∞] and r2 ≥ 3.The theorem is 
ompletely proved.4 More regularityFor our studies, we shall introdu
e the following problem. Let a �xed z ∈ L

3(R3)su
h that div z = 0 in R
3, we sear
h a solution (w, θ) to the following problem

−ν∆w+ λ
∂w
∂x1

+ z.∇w+ ∇θ = f in R
3,

div w = 0 in R
3.

(4.1)This problem is here linear, we limit ourselves to the 
ondition w → 0 at in�nity.This 
ondition is satis�ed if p < 3 and w ∈ W
1,p
0 (R3) or w ∈ L

q(R3) for some
q ≥ 1 and w ∈ W

1,p
0 (R3) if p ≥ 3 (see [7℄).We now prove theLemma 4.1. Assume that z ∈ L

3(R3) with div z = 0 and let f ∈ W
−1,2
0 (R3).Then Problem (4.1) has a unique solution (w, θ) ∈ W

1,2
0 (R3) × L2(R3). More-over, we have w ∈ L

4(R3), ∂w
∂x1

∈ W
−1,2
0 (R3) and w satis�es the energy equality

ν

∫

R3

|∇w|2dx = < f ,w >
W

−1,2
0 (R3)×W

1,2
0 (R3) . (4.2)Proof. Let (Rm)m≥0 be an in
reasing sequen
e of reals with a �xed R0 > 0 andsu
h that lim

m→+∞
Rm = +∞. Sin
e f ∈ W

−1,2
0 (R3), then its restri
tion to theopen ball of radius Rm>0 belongs to H

−1(Bm). Now pro
eeding as in Theorem2.2, we 
an dedu
e that the following approximating problem
−ν∆wm + λ

∂wm

∂x1
+ z.∇wm + ∇θm = f in Bm,

div wm = 0 in Bm,wm = 0 on ∂Bm.

(4.3)14



has a unique solution (wm, θm) ∈ H
1(Bm)×(L2(Bm)/R). Extendingwm and θmby zero outsideBm and whenm→ +∞, we 
an prove analogously as in Theorem2.2 that Problem (4.1) has a weak solution (w, χ) ∈ W

1,2
0 (R3) × L2

loc(R
3). It iseasy to 
he
k that ∆w and z.∇w = div (z ⊗ w) belong to W

−1,2
0 (R3). Thenfrom (4.1), we have ∇χ ∈ L

2(R3) + W
−1,2
0 (R3). In addition, sin
e z ⊗ w ∈

L
2(R3), we have

∆χ = div f− div div (z⊗w). (4.4)The right-hand side of (4.4) being a element of W
−2,2
0 (R3) ⊥ R, then thereexists a unique θ ∈ L2(R3) su
h that ∆θ = ∆χ. Thus, ∇(θ − χ) is a harmoni
distribution belonging to W

−1,2
0 (R3)+L

2(R3), i.e, ∇χ = ∇θ. Then, there exists
k ∈ R su
h that θ = χ + k ∈ L2(R3). Moreover, we have ∂w

∂x1
∈ W

−1,2
0 (R3)be
ause ∆w, z.∇w, ∇θ and f belong to W

−1,2
0 (R3). Thanks to Lemma 1.6, wededu
e w ∈ L

4(R3). It is easy to 
he
k as in the proof of Lemma 1.6 that
〈
∂w
∂x1

,w〉
= 〈∇θ,w〉 = 〈div (z⊗w),w〉 = 0, (4.5)where the bra
kets denote the duality W

−1,2
0 (R3) × W

1,2
0 (R3). Therefore, weobtain the energy equality (4.2).We now introdu
e the following results whi
h we shall need in the future.Lemma 4.2. Let z ∈ L

4(R3) su
h that div z = 0. Then, for all ε > 0, thereexist ρ = ρ(ε, z) > 0 and a sequen
e (zk)k∈N ∈ L
3(R3) ∩ L

4(R3), su
h that
div zk = 0, satisfying zk → z in L

4(R3). (4.6)Moreover, there exist sequen
es (ak) and (bk) in L
3(R3)∩L

4(R3) satisfying forea
h k ∈ Nzk = ak + bk with ||ak||L4(R3) ≤ ε and supp bk ⊂ B(0, ρ). (4.7)Proof. Let ϕ ∈ C∞(R+) su
h that 0 ≤ ϕ ≤ 1 satisfying ϕ(t) = 1 if 0 ≤ t ≤ 1and ϕ(t) = 0 if t ≥ 2. For a > 0, we set
ϕa(x) = ϕ

(
|x|

a

)
, x ∈ R

3.Let ε > 0, then there exists ρ = ρ(ε, z) > 0 su
h that
||z− ϕρz||L4(R3) ≤

ε

2
.Let (Rk)k∈N be an in
reasing unbounded sequen
e of positive numbers with

R0 > 2ρ. Sin
e the support of ϕRk
is 
ompa
t for all k ∈ N, then div (ϕRk

z) =z.∇ϕRk
belongs to L

4(R3) and has a 
ompa
t support. In parti
ular, div (ϕRk
z)belongs to L

3/2(R3) ∩ L
12/7(R3), and from [5℄, we dedu
e that there exists yk

∈ W
1,3/2
0 (R3) ∩ W

1,12/7
0 (R3) su
h that div yk = −div (ϕRk

z) satisfying thefollowing estimation
||yk||L4(R3) ≤ C||z.∇ϕRk

||L12/7(R3)

≤ C||z||
L4(B

2Rk
Rk

)
||∇ϕRk

||
L3(B

2Rk
Rk

)

≤ C||z||
L4(B

2Rk
Rk

)
. (4.8)15



Here, BRk
is a open ball of radius Rk > 0 
entered at the origin and B2Rk

Rk
=

B2Rk
\BRk

. Note that W
1,12/7
0 (R3) →֒ L

4(R3) and W
1,3/2
0 (R3) →֒ L

3(R3). Wede�ne zk = ϕRk
z+ yk. Then, from (4.8), we have (4.6). We set thatzk = ϕRk
z+ yk = [ϕRk

(1 − ϕρ)z+ yk] + (ϕRk
ϕρz) =: ak + bk.Note that supp bk ⊂ B(0, ρ) and bk ∈ L

3(R3). Furthermore, for all k ≥ k̄(ε) ∈
N, we have

||ak||L4(R3) ≤ ||ϕRk
(1 − ϕρ)z||L4(R3) + ||yk||L4(R3)

≤
ε

2
+ C||z||

L4(B
2Rk
Rk

)
≤
ε

2
+
ε

2
= εand we obtain (4.7). Moreover, sin
e yk ∈ L

3(R3) ∩ L
4(R3), we have alsoak ∈ L

3(R3) ∩ L
4(R3).In Theorem 3.2 (i), we proved v ∈ L

r1(R3) for any r1 ≥ 9/2. To obtainv ∈ L
r1(R3) with r1 < 9/2, we have to assume additionally a 
ondition for f.We 
an state theTheorem 4.3. Assume that f ∈ W

−1,2
0 (R3) ∩ L

3/2(R3) ∩ L
4/3(R3). Then ea
hweak solution u and the asso
iate pressure π to the problem (NS) satisfy theresults in Theorem 3.2 i). Moreover, for any r1 ≥ 4v ∈ L

r1(R3), ∇2v ∈ L
4/3(R3),

∂v
∂x1

∈ L
4/3(R3) and π ∈ W

1,4/3
0 (R3).Proof. From the 
ase i) of Theorem 3.2, sin
e v ∈ L

r1(R3) for any r1 ≥ 9/2 and
∇v ∈ L

2(R3)∩L
3(R3), then we have f−v.∇v ∈ L

p(R3) for any p ∈ [18/13, 3/2].From Theorem 1.10 and pro
eeding as in the proof of Theorem 3.1 with p =
18

13
, we obtain ∂v

∂x1
∈ L

18/13(R3), ∇2v ∈ L
18/13(R3) and π ∈ W

1,18/13
0 (R3).Moreover, we have

λ||
∂v
∂x1

||L18/13(R3) ≤ C|| f− v.∇v ||L18/13(R3)

≤ C(|| f ||L18/13(R3) + || v ||L9/2(R3)||∇v ||L2(R3))
≤ C(|| f ||L18/13(R3) + || v ||L9/2(R3)||f ||W−1,2

0 (R3)).

(4.9)Applying Lemma 1.5, we have v ∈ L
54/13(R3) and

||v||L54/13(R3) ≤ C(||
∂v
∂x1

||L18/13(R3) + ||∇v||L2(R3)). (4.10)From (4.9) and (4.10), we dedu
e that
||v||L54/13(R3) + λ||

∂v
∂x1

||L18/13(R3) ≤ C(|| f ||L18/13(R3) + || v ||L9/2(R3) + 1).Therefore, repeating the reasoning previously employed, we dedu
e for 1 < q <
18/13 that

||v||L3q(R3) + λ||
∂v
∂x1

||Lq(R3) ≤ C(|| f ||Lq(R3) + || v ||L2q/(2−q)(R3) + 1).16



We de�ne the sequen
e {qk} as follows
2qk+1

2 − qk+1
= 3qk, k ∈ N (4.11)with q0 = 18/13. Repeating the same te
hniques, we thus �nd, for any k ∈ N,

||v||L3qk (R3) + ||
∂v
∂x1

||Lqk (R3) ≤Mfor a 
onstant M independent of k. Clearly, the sequen
e {qk} is stri
tly de-
reasing and is bounded from below by 4/3. Therefore, there exists a number
Q ≥ 4/3 su
h that

lim
k→∞

qk = Q.We shall pass to limit in (4.11), we obtain Q = 4/3. Sin
e v ∈ L
4(R3) and

∇v ∈ L
2(R3), we obtain f − v.∇v ∈ L

4/3(R3). Hen
e, by applying Theorem1.10, we 
an dedu
e that ∇2v ∈ L
4/3(R3) and π ∈ W

1,4/3
0 (R3). The Theoremis 
ompletely proved.Note that L

6/5(R3) →֒ W
−1,2
0 (R3) and L

3/2(R3) →֒ W
−1,3
0 (R3), and withthe previous results in hand, we 
an now prove the following theorem.Theorem 4.4. Let f ∈ L

6/5(R3)∩L
3/2(R3). Then ea
h weak solution (u, π) tothe problem (NS), satis�esv ∈ L

q(R3) for all q ∈ [3,∞), π ∈W
1,6/5
0 (R3) ∩ W

1,3/2
0 (R3),

∇v ∈ L
12/7(R3) ∩ L

3(R3), ∇2v ∈ L
6/5(R3) ∩ L

3/2(R3),
∂v
∂x1

∈ L
6/5(R3) ∩ L

3(R3).

(4.12)Proof. Let u be a weak solution of (NS). As f satis�es the hypothesis ofTheorem 4.3, then v ∈ L
4(R3) and ∂v

∂x1
∈ L

4/3(R3). Let ε > 0, ρ > 0 and vk bea sequen
e as zk in Lemma 4.2. Sin
e vk ∈ L
3(R3) and div vk = 0, from Lemma4.1, there exists a unique solution (wk, θk) ∈ W̃

1,2
0 (R3) × L2(R3) satisfying

−ν∆wk + λ
∂wk

∂x1
+ vk.∇wk + ∇θk = f and div wk = 0 in R

3. (4.13)Sin
e f − vk.∇wk ∈ L
6/5(R3), thanks to Theorem 1.10, there exists a unique

(yk, µk) su
h that
−ν∆yk + λ

∂yk

∂x1
+ ∇µk = f− vk.∇wk and div yk = 0 in R

3, (4.14)satisfying ∇2yk ∈ L
6/5(R3), ∇yk ∈ L

12/7(R3) ∩ L
2(R3), yk ∈ L

3(R3) ∩ L
6(R3),

∂yk

∂x1
∈ L

6/5(R3) and µk ∈ W
1,6/5
0 (R3). Using the method in the proof of Theo-rem 3.1 (part a), we have yk = wk and µk = θk. Moreover, we have

(λν)1/2 ||wk||L3(R3) + λ1/4ν3/4||∇wk||L12/7(R3)

+ λ

∣∣∣∣
∣∣∣∣
∂wk

∂x1

∣∣∣∣
∣∣∣∣
L6/5(R3)

+ ν||∇2wk||L6/5(R3) + ||θk||W 1,6/5
0 (R3)

≤ C
(
||f ||

L6/5(R3) + ||vk.∇wk||L6/5(R3)

)
. (4.15)17



Note now that
||vk.∇wk||L6/5(R3)

≤ ||ak||L4(R3)||∇wk||L12/7(R3) + ||bk||L6(Bρ)||∇wk||L3/2(Bρ)

≤ ε||∇wk||L12/7(R3) + ||v||L6(R3)||∇wk||L3/2(Bρ). (4.16)But there exists C1 ∈ R su
h that
∀k ∈ N

∗, ||∇wk||L3/2(Bρ) ≤ C1||f ||L6/5(R3). (4.17)Contradi
ting (4.17) means that there exists a sequen
e (km)m∈N∗ su
h that,for all m ∈ N
∗,

||∇wkm ||L3/2(Bρ) = 1,

|| − ν∆wkm + λ
∂wkm

∂x1
+ vkm .∇wkm + ∇θkm ||L6/5(R3) ≤

1

m
.

(4.18)Then we dedu
e from (4.15), (4.16) and (4.18) that
(λν)

1/2 ||wkm ||L3(R3) + λ1/4ν3/4||∇wkm ||L12/7(R3) + ν||∇2wkm ||L6/5(R3)

+λ

∣∣∣∣
∣∣∣∣
∂wkm

∂x1

∣∣∣∣
∣∣∣∣
L6/5(R3)

+ ||θkm ||
W

1,6/5
0 (R3)

≤ C. (4.19)Therefore (wkm)m is bounded in W
2,6/5
0 (R3) ∩ W

1,12/7
0 (R3),

(
∂wkm

∂x1

)

m

isbounded in L
6/5(R3), (wkm)m is bounded in L

3(R3) and (θkm)m is boundedin W 1,6/5
0 (R3). Thus, there exist subsequen
es, again denoted by (wkm)m and

(θkm)m, su
h that wkm ⇀ w in W
2,6/5
0 (R3) ∩ W

1,12/7
0 (R3),

∂wkm

∂x1
⇀

∂w
∂x1

in
L

6/5(R3), wkm ⇀ w in L
3(R3), and θkm ⇀ θ in W

1,6/5
0 (R3). Moreover, sin
e

W
2,6/5(Bρ) →֒ W

1,3/2(Bρ) with 
ompa
t imbedding, we have wkm → w in
W

1,3/2(Bρ) with
||∇w ||L3/2(Bρ) = 1, (4.20)and

−ν∆w+ λ
∂w
∂x1

+ v.∇w + ∇θ = 0 in R
3. (4.21)Sin
e w ∈ W

1,2
0 (R3) and θ ∈ L2(R3), then we have ∆w and ∇θ belongingto W

−1,2
0 (R3). On the other hand, we dedu
e that v.∇w = div (v ⊗ w) ∈

W
−1,2
0 (R3) be
ause v and w belong to L

4(R3). Sin
e L
6/5(R3) →֒ W

−1,2
0 (R3)we also have ∂w

∂x1
∈ W

−1,2
0 (R3). Hen
e,

ν

∫

R3

|∇w|2 dx+

〈
λ
∂w
∂x1

+ v.∇w + ∇θ,w〉

W
−1,2
0 (R3)×W

1,2
0 (R3)

= 0. (4.22)From (4.5) and (4.22), we dedu
e ∇w = 0 and w = 0 in R
3 whi
h 
ontradi
ts(4.20). Thanks to (4.15), (4.16) and (4.17), we have the following estimation

(λν)1/2 ||wk||L3(R3) + λ1/4ν3/4||∇wk||L12/7(R3)

+λ

∣∣∣∣
∣∣∣∣
∂wk

∂x1

∣∣∣∣
∣∣∣∣
L6/5(R3)

+ ν||∇2wk||L6/5(R3) + ||θk||W 1,6/5
0 (R3)

≤ C
(
||f ||

L6/5(R3) + ||v||L6(R3)||f ||L6/5(R3)

)
.18



We 
an show that there exist a subsequen
e of (wk)k whi
h 
onverges weaklytowards w in W
2,6/5
0 (R3) ∩ W

1,12/7
0 (R3) ∩ L

3(R3) and a subsequen
e of (θk)kwhi
h 
onverges weakly towards θ in W 1,6/5
0 (R3) being a solution of the systemas follows

−ν∆w+ λ
∂w
∂x1

+ v.∇w + ∇θ = f and div w = 0 in R
3.We set y = v−w and χ = π − θ. Then we dedu
e that (y, χ) is a solution ofthe following system

−ν∆y+ λ
∂y
∂x1

+ v.∇y + ∇χ = 0 and div y = 0 in R
3.Sin
e y satis�es the energy equality (4.2) with f = 0, we dedu
e that y = 0then χ = 0. Thanks to uniqueness arguments, we show that w = v and θ = π.Theorem is 
ompletely proved.We now sear
h weak solutions of Navier-Stokes system (NS) su
h that v ∈

L
q(R3) for small values of q (q < 3) with similar properties for∇v. The followingtheorem allow us to improve the results in Theorem 4.4 by taking an additionalassumption for f.Theorem 4.5. Let 1 < p < 2. Assume that f ∈ L

6/5(R3) ∩ L
3/2(R3) ∩

W
−1,p
0 (R3) satisfying the 
ompatibility 
ondition

∀λ ∈ P[1−3/p′], < f,λ >
W

−1,p
0 (R3)×W

1,p′

0 (R3)
= 0. (4.23)Then ea
h weak solution (u, π) to the problem (NS) satis�es (4.12). Besides,we have

∂v
∂x1

∈ W
−1,s
0 (R3) for any s ≥ p and π ∈ Lp(R3). (4.24)In parti
ular, if 1 < p <

12

7
, we obtain additionallyv ∈ L

q(R3) for any q ≥ 4p

4 − p
and ∇v ∈ L

p(R3). (4.25)Proof. Let f ∈ W
−1,p
0 (R3) with 1 < p < 2. From Theorem 4.4 and if u is asolution of (NS), v satis�es (4.12) and in parti
ular, v ∈ L

3(R3) ∩ L
4(R3) and

div (v⊗ v) ∈ W
−1,3/2
0 ∩ W

−1,2
0 (R3).a) The 
ase 3/2 ≤ p < 2: We have f− v.∇v ∈ W

−1,p
0 (R3). Thanks to Theorem1.11, there exists a unique (w, θ) su
h that

−ν∆w + λ
∂w
∂x1

+ ∇θ = f− v.∇v and div w = 0 in R
3,with w ∈ L

4p
4−p (R3) ∩ L

3p
3−p (R3), ∇w ∈ L

p(R3), ∂w
∂x1

∈ W
−1,p
0 (R3) and θ ∈

Lp(R3). Sin
e v ∈ L
3(R3), by uniqueness arguments, we 
an dedu
e that w = v ,

θ = π and then, we have (4.24). 19



b) The 
ase 1 < p < 3/2: Sin
e f ∈ L
6/5(R3) →֒ W

−1,2
0 (R3), then in par-ti
ular f ∈ W

−1,3/2
0 (R3) and from the 
ase a), we have v ∈ L

12/5(R3)∩L
3(R3).Hen
e, we 
an show that v.∇v = div (v ⊗ v) ∈ W

−1,6/5
0 (R3) ∩ W

−1,3/2
0 (R3).We distinguish two following 
ases:b1) The 
ase 6

5
≤ p <

3

2
: We 
an prove that f − v.∇v ∈ W

−1,p
0 (R3) satisfyingthe 
ompatibility 
ondition (4.23). Pro
eeding as in previous 
ases, we havev ∈ L

4p
4−p (R3) ∩ L

3p
3−p (R3), π ∈ Lp(R3),

∇v ∈ L
p(R3),

∂v
∂x1

∈ W
−1,p
0 (R3).

(4.26)Hen
e, we shall gain (4.24) from (4.12). Furthermore, we have (4.25).b2) The 
ase p < 6

5
: We have that f ∈ W

−1,6/5
0 (R3) and pro
eeding as in the
ase a), we prove that v ∈ L

q(R3) for all q ≥ 12/7. Then, we dedu
e v.∇v =div (v ⊗ v) ∈ W
−1,q
0 (R3) for all q > 1 and we obtain f − v.∇v ∈ W

−1,p
0 (R3)satisfying (4.23). Analogously as in the 
ase b1), we 
an prove that v and πsatisfy (4.26). Therefore, we have (4.24) and (4.25).The proof is 
omplete by 
ombining the 
ase a) with the 
ase b).Thanks to Theorem 3.2 (part ii), Theorem 4.4, Sobolev embedding theoremand the properties of the duality, we 
an prove the following.Corollary 4.6. i) Assume that f ∈ L

p(R3) for all p ∈ [6/5, 2). Then theNavier-Stokes problem (NS) has a solution (u, π) satisfyingv ∈ L
q(R3), ∇v ∈ L

s1(R3), π ∈ W 1,s2

0 (R3),

∇2v ∈ L
s2(R3),

∂v
∂x1

∈ L
s3 (R3),

(4.27)for any q ∈ [3,∞], any s1 ∈ [12/7, 6), any s2 ∈ [6/5, 2) and any s3 ∈ [6/5, 6).ii) Assume that f ∈ L
p(R3) for all p ∈ [6/5, 3). Then we have (4.27) for any

q ∈ [3,∞], any s1 ∈ [12/7,∞), any s2 ∈ [6/5, 3) and any s3 ∈ [6/5,∞).The question 
an be raise that if we suppose additionally 
onditions for f,then what we shall re
eive more. We 
onsider the following.Theorem 4.7. Let f ∈ L
p(R3) for all p ∈ (1, 3/2]. Then ea
h weak solution

(u, π) to the problem (NS) satis�esv ∈ L
q(R3), ∇v ∈ L

s1 (R3), π ∈W 1,s2

0 (R3),

∇2v ∈ L
s2(R3),

∂v
∂x1

∈ L
s3(R3),

(4.28)for any q ∈ (2,∞), any s1 ∈ (4/3, 3], any s2 ∈ (1, 3/2] and any s3 ∈ (1, 3].Proof. Remark that if f ∈ L
6/5(R3) ∩ L

3/2(R3), from Theorem 4.4, we 
an de-du
e that f−v.∇v ∈ L
12/11(R3). From Theorem 1.10 with p =

12

11
and pro
eed-ing as in the proof of Theorem 3.1, we obtain v ∈ L

12/5(R3) ∩ L
12/7(R3), ∇v ∈20



L
4/3(R3) ∩ L

12/7(R3), ∇2v and ∂v
∂x1

belong to L
12/11(R3), π ∈ W

1,12/11
0 (R3).Combining with the results in Theorem 4.4, we have v ∈ L

q(R3) for all q ∈
[12/5,∞) and ∇v ∈ L

4/3(R3)∩L
3(R3). Hen
e, it is easy to prove that f− v.∇vbelongs to L

p(R3). Thanks to Theorem 1.10 for all p ∈ (1, 3/2], we 
an dedu
ethat v ∈ L
2p

2−p (R3) ∩ L
3p

3−p (R3), ∇v ∈ L
4p

4−p (R3) ∩ L
3p

3−p (R3), ∇2v ∈ L
p(R3),

∂v
∂x1

∈ L
p(R3) and π ∈ W 1,p

0 (R3). Clearly, we have (4.28) by 
ombining with(4.12).Thanks to Corollary 4.6 and Theorem 4.7, we obtain the following results.Corollary 4.8. i) Assume that f ∈ L
p(R3) for all 1 < p < 2. Then ea
h weaksolution (u, π) to (NS) satis�esv ∈ L

q(R3), ∇v ∈ L
s1(R3), π ∈ W 1,s2

0 (R3),

∇2v ∈ L
s2(R3),

∂v
∂x1

∈ L
s3 (R3),

(4.29)for any q ∈ (2,∞], any s1 ∈ [4/3, 6), any s2 ∈ [1, 2) and any s3 ∈ [1, 6).ii) Assume that f ∈ L
p(R3) for all 1 < p < 3. Then we have (4.29) for any

q ∈ (2,∞], any s1 ∈ (4/3,∞), any s2 ∈ (1, 3) and any s3 ∈ (1,∞).In Theorem 4.7, we know that if f ∈ L
p(R3) for all p ∈ (1, 3/2], then vsatis�es (4.28). With additional assumption for f, we shall prove that the weaksolutions given in Theorem 4.7 satisfy better properties.Theorem 4.9. Given r > 1. Assume that f ∈ L

p(R3) ∩ W
−1,r
0 (R3) for all

p ∈ (1, 3/2] satisfying the 
ompatibility 
ondition
∀λ ∈ P[1−3/r′], < f,λ >

W
−1,r
0 (R3)×W

1,r′

0 (R3)
= 0.Then ea
h weak solution (u, π) to (NS) satis�es (4.28) and ∂v
∂x1

∈ W
−1,s
0 (R3)for any s ≥ r. Moreover,if 1 < r ≤

3

2
, π ∈ Lt(R3) for all r ≤ t ≤ 3, (4.30)if 1 < r ≤

4

3
, v ∈ L

q(R3) for all q ≥
4r

4 − r
and ∇v ∈ L

r(R3). (4.31)Proof. We know that (u, π) satis�es (4.28). In addition, thanks to Theorem 4.7,we have v⊗ v ∈ L
q(R3) for all q > 1 andf− div (v⊗ v) ∈ W

−1,r
0 (R3) ⊥ P[1−3/r′].Hen
e, thanks to Theorem 1.10, it is easy to prove that v ∈ L

4r
4−r (R3)∩L

3r
3−r (R3),

∇v ∈ L
r(R3), ∂v

∂x1
∈ W

−1,r
0 (R3) and π ∈ Lr(R3). As v ∈ L

q(R3) for any q ≥ 2,we have ∂v
∂x1

∈ W
−1,s
0 (R3) for any s ≥ r. Remark that 4r

4 − r
≤ 2 if r ≤ 4

3
, thenwe obtain (4.31). For the pressure, we note that thanks to (4.28), π ∈ Lt(R3)for all 3/2 < t ≤ 3 and then, we have (4.30). The Theorem is 
ompletelyproved. 21



We now prove the following theorem.Theorem 4.10. Let 1 < p < ∞ and q0 ≥ 3. Assume that f ∈ L
q(R3) ∩

W
−1,p
0 (R3) for all q ∈ (1, q0] and satisfying the 
ompatibility 
ondition

∀λ ∈ P[1−3/p′], 〈f,λ〉
W

−1,p
0 (R3)×W

1,p′

0 (R3)
= 0.Then the problem (NS) has a solution (u, π) satisfyingv ∈ L

s0 (R3), ∇v ∈ L
s1(R3), π ∈W 1,s2

0 (R3),

∇2v ∈ L
s2(R3),

∂v
∂x1

∈ L
s3 (R3),for all s0 ∈ (2,∞], s1 ∈ (4/3,∞), s2 ∈ (1, q0], s3 ∈ (1,∞). In parti
ular, if

1 < p ≤ 3/2, we have additionally π ∈ Lk1(R3) for any k1 ≥ p. Moreover, if
1 < p ≤ 4/3, we obtain v ∈ L

k2(R3) for any k2 ∈ [ 4p
4−p ,∞] and ∇v ∈ L

k3(R3)for any k3 ≥ p.Proof. In parti
ular, we have f ∈ L
q(R3) for all 1 < q < 3. From Corollary 4.8part ii), we have v ∈ L

s0 (R3), ∇v ∈ L
s1(R3), π ∈W 1,s2

0 (R3),

∇2v ∈ L
s2(R3),

∂v
∂x1

∈ L
s3 (R3),

(4.32)for any s0 ∈ (2,∞], any s1 ∈ (4/3,∞), any s2 ∈ (1, 3) and any s3 ∈ (1,∞).Then, we dedu
e that f − v.∇v ∈ L
q(R3) for all q ∈ (1, q0] and we 
an obtainthat π ∈W 1,q

0 (R3), ∇2v ∈ L
q(R3), ∂v

∂x1
∈ L

q(R3). Combining with the previousresults, we have (4.32) for all s2 ∈ (1, q0], s3 ∈ (1,∞). As v ⊗ v ∈ L
r(R3) forany r > 1, then f− v.∇v ∈ W

−1,p
0 (R3) ⊥ P[1−3/p′].If 1 < p < 3, from Theorem 1.11, the Oseen system (3.4) has a unique solution

(w, θ) ∈ (W̃1,p
0 (R3) × Lp(R3)) su
h that w ∈ L

s(R3) for all 4p
4−p ≤ s ≤ 3p

3−p .We use the same te
hnique in the proof of Theorem 3.1, we dedu
e that w = vand θ = π. Note that π ∈ Lk1(R3) for any k1 ≥ p if 1 < p ≤ 3/2. Moreover, if
1 < p ≤ 4/3, we 
an dedu
e 4p

4−p ≤ 2, then v ∈ L
k2 (R3) for any k2 ∈ [ 4p

4−p ,∞]and ∇v ∈ L
k3 (R3) for any k3 ≥ p. The Theorem is 
ompletely proved.We now 
onsider the energy identity. The key idea to �nd the 
onditions toobtain the energy identity (4.33), is to test the Navier-Stokes problem with v.Following this idea, we 
an dedu
e the following theorem.Theorem 4.11. Let f ∈ L

6/5(R3) ∩ L
3/2(R3) and (u, π) be a weak solution of

(NS). Then we have the energy identity
ν

∫

R3

|∇v|2dx = 〈f, v〉
W

−1,2
0 (R3)×W

1,2
0 (R3) . (4.33)
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Proof. Thanks to Theorem 4.4, we have that v ∈ L
4(R3) ∩ W

1,2
0 (R3), ∂v

∂x1
∈

W
−1,2
0 (R3) and π ∈ L2(R3). As in Lemma 4.1, we show that

〈
λ
∂v
∂x1

+ v.∇v+ ∇π, v〉
W

−1,2
0 (R3)×W

1,2
0 (R3)

= 0.and we obtain the energy identity (4.33).Referen
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