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Abstract

This paper proposes an application of the Lagrangian formalism and its Hamiltonian extension to design, model and control a
mechatronic system using Magnetic Shape Memory Alloys. In this aim, an original dynamical modelling of a Magnetic Shape
Memory Alloy based actuator is presented. Energy-based techniques are used to obtain a coherent modelling of the magnetical,
mechanical and thermodynamic phenomena. The Lagrangian formalism, well suited in such a case, is introduced and used to take
into account the dynamical effects. Hamilton equations are deduced and used for the computation of the theoretical behaviour
of this actuator. These numerical simulations are compared with some experimental measurements permitting the validation of
the proposed modelling. Beyond the work presented here, these results will be used to design an energy shaping nonlinear control
well-adapted for a strongly nonlinear active material.
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1. Introduction

In engineering fields, the current trend is to design
smaller and smaller components. The field of mechatron-
ics is not an exception and leads to the emergence of the
micro-mechatronic field. In this case sensors and actuators
design is more and more dominated by the use of active
materials. Most of these materials permit simultaneously
actuation and sensing functions in an integrated and dis-
tributed way. This integration makes the implementation
easier at the mini- and microscopic scale as compared with
the classical design of the multi-components mechatronics
systems.

Among the current offer of active materials (see [1] for a
recent review), Magnetic Shape Memory Alloys (MSMAs)
are interesting candidates because their performances are
situated between piezoelectric materials (high frequen-
cies but small strain) and classical Shape Memory Alloys
(SMAs) (large strain but low frequencies). As shown in
numerous works performed by the material research com-
munity, the strongly nonlinearity of the MSMAs behaviour
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will be undoubtedly an issue for the design and the con-
trol of innovative systems based on MSMAs. In previous
works the authors of the present paper have proposed a
quasi-static modelling for MSMAs with a reasonable pre-
diction [2]. This model is based on the thermodynamics
of irreversible processes because it can model hysteretic
and nonlinear material behaviours. In our case, this model
gives the mechanical strain of the MSMA as a function of
the mechanical stress and the magnetic field. Nevertheless,
in order to design new actuators and their efficient control
laws, this model has to be extented to the dynamic case. In
this way, a relevant approach lies in the use of an energetic
and variational point of view. In this paper, we propose to
model a complete MSMA actuator by using the Lagrangian
formalism. This formalism permits a relevant and coherent
approach to model a complete mechatronic system. Be-
yond the work presented here, this modelling will permit in
future works to explore some recent nonlinear control tech-
niques based on energy functions such as Lyapunov based
design [3], passivity based control [4], energy shaping and
damping assignment [5] and Port Hamiltonian Control [6].

A description of MSMA properties will be first reported.
Then the lagrangian and hamiltonian formalisms will be
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shortly described. Then, the modelling of an MSMA based
actuator including its mechanical load is proposed. Simu-
lations and experimental results are finally compared with
some conclusions and perspectives.

2. Magnetic Shape Memory Alloys (MSMA)

2.1. MSMA properties and characteristics

The value of the maximum reachable strain is an impor-
tant property to design actuators using active materials.
Classical SMA are one of the active materials that pro-
vide the largest strains. Nevertheless, they present a low
response time because of the energy conversion involving a
heat transfer. A new SMA sensitive to the magnetic field
was obtained in 1995/1996 by some research teams in the
USA, at the MIT for the Ni-Mn-Ga alloy [7] and at the Uni-
versity of Minnesota for the FePd alloy [8]. Since then these
materials knew some improvements concerning mainly the
working temperature range and the maximum available
strain. When actuating by magnetic fields, these materi-
als permit now to obtain a large strain (6 to 10 %) with a
response time shorter than the classical SMA. Today this
time is in the range of the millisecond. The MSMA used in
this paper is a non-stoechiometric Ni-Mn-Ga monocrystal
corresponding to the most currently used MSMA material.

In this alloy, the martensite phase can appear in three
different variants corresponding to the three possible crys-
tallographic directions in the sample (see Fig. 1 (a)).
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Fig. 1. MSMA behaviour: (a) austenite phase and the three marten-

site variants, (b) martensitic reorientation: effects of mechanical
stress, magnetic field and temperature.

The martensitic reorientation principle is presented in
Fig. 1 (b): at high temperature, the MSMA sample is in
austenitic phase (A). After a cooling process, the austenite

phase is transformed into a martensite phase without any
favoured variants. The resulting sample contains therefore
martensite variants into three equal portions (M1, M2 and
M3). If a mechanical stress is applied in a specific direction,
then the fraction of variant with its short axis in this direc-
tion grows. If this stress is high enough then the sample will
only contain this variant (for example M1 in Fig. 1 (b)). If
the stress decreases, the volume fraction of the M1 variant
does not completely decrease due in part to a large hystere-
sis. In the same way, if a magnetic field is applied, the vari-
ant which has its easy magnetization direction in the field
direction is favoured. As the easy magnetization direction
is the same as the short axis of the M2 variant, this variant
fraction increases as shown in Fig. 1 (b) by the application
of a magnetic field perpendicular to the stress field. The
distribution between the magnetic field and the mechani-
cal stress permits to control the macroscopic strain. With
a pre-stress, one can then obtain an actuator driven by the
magnetic field only. By heating, austenite phase can also
be recovered.

Beyond these interesting properties, it must be noticed
that this material has also some important drawbacks like
the brittleness of the single-crystal, the high required mag-
netic field (400 kA/m), the large dependence of the mate-
rial parameters on temperature changes, a small blocking
stress (2-3 MPa) and a large hysteretical thermo-magneto-
mechanical behaviour.

2.2. MSMA quasi-static modelling

2.2.1. Introduction
The quasi-static modelling of the MSMA is based on

the thermodynamics of irreversible processes with inter-
nal variables because this subject can take into account
the strong nonlinear behaviour of this kind of materials.
The resulting model permits to express the behaviour of
the material including all the thermo-magneto-mechanical
couplings. More details concerning the modelling approach
can be found in [2] and only the key points of this modelling
are reported in this paper.

As the active material is used in this paper in a two
dimensional actuation way (in the xy plane shown in Fig.
1), the MSMA sample can be considered as constituted
by only two martensite variants M1 and M2. The internal
variable z and its complement (1− z) are respectively the
M1 and the M2 volume fractions. A magnetic field H and
a mechanical stress σ are applied to the MSMA sample as
described in the section 2.1 and in Fig. 1 (b). The total
strain ε of the MSMA sample can be separated into an
elastic strain σ

E and reorientation strain of the martensite
variants γ · z. E is the Young modulus of the MSMA, and
γ is the maximum strain due to the reorientation process
of martensite variants. In addition, an interaction between
these two variants takes place. The energy corresponding
to this interaction depends on martensite fractions and on
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a specific parameter K12.

2.2.2. Helmholtz free energy
An Helmholtz free energy F of the MSMA sample was

proposed in [2]. It can be divided into four parts: F =
Fchem+Ftherm+Fmech+Fmag. In this paper, because we
are mainly focused on the reorientation process (M1
M2)
and not on the transformation process (A
M), the chem-
ical energy Fchem linked to a phase transition does not
change and can be neglected for the variational computa-
tions. Moreover there is also no variation of the thermal
energy Ftherm because the temperature is kept constant in
the actuator principle described in this paper.

The Helmholtz energy will then not take into account
these two contributions. Fmech takes into account the elas-
tic energy of the MSMA, the energy due to the reorienta-
tion of M1 and M2 martensite variants and the interaction
energy Fint = K12 ·z ·(1−z) between these two variants [9]:

Fmech(ε, z) =
E

2
(ε− γz)2 +K12 · z · (1− z) (1)

Fmag is the MSMA magnetic energy.

Fmag(B, z) =
∫ B

0

H(b)db (2)

The latter is detailed in the following section.

2.2.3. MSMA magnetic behaviour
For the MSMA magnetic modelling using the thermo-

dynamics of irreversible processes with internal variables,
two internal variables are considered. Fig. 2 shows the rep-
resentative elementary volume as proposed in [10]. α(H)
is the Weiss domain width and θ(H) is the magnetization
rotation angle. If no magnetic field is applied, α and θ are
equal to zero. When a small magnetic field is applied in
the x direction, α increases corresponding to a magnetiza-
tion in the M1 easy magnetization direction. When a larger
magnetic field is applied, θ increases to obtain a magneti-
zation in the same direction as the direction of the applied
magnetic field. This process corresponds to a magnetiza-
tion in the M2 hard magnetization direction. From Fig. 2,
the magnetization in the x direction can be expressed as:

M(z,H) = MS [(2α(H)− 1)z + sin(θ(H))(1− z)] (3)

We choose to use a linear with saturation behaviour of
M(H) when z is kept constant. Then, in this case, the
following functions for α(H) and θ(H) can be used:

0 6 α =
χaH

2MS
+

1
2
6 1

−π
2
6 θ = arcsin

(
χtH

MS

)
6
π

2

(4)

χa and χt are respectively the magnetic susceptibilities in
the easy and hard magnetization directions of the marten-
site. The anisotropic energy is taken into account by the
way of these two parameters. Moreover, the saturation be-
haviour is rendered by the use of the magnetisation satu-
ration level MS .
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Fig. 2. Representative elementary volume, arrows represent local
domains magnetizations [10].

2.2.4. Clausius-Duhem inequality
As seen in the scientific literature concerning MSMA,

the mechanical behaviour of this material is highly irre-
versible. In the thermodynamics of irreversible processes
framework, the irreversibility is described and expressed by
the Clausius-Duhem inequality. In [2], we propose for the
MSMAs, the following inequality:

dD = −ρ · dF(σ,H, z) +HdB + σdε > 0 (5)

This expression can be reduced to:

dD = πf∗dz > 0 (6)

πf∗ is the thermodynamic force associated with z and is
defined as:

πf∗ = −∂F
∂z

= σγ −K12(1− 2z) + πfmag(α, θ) (7)

This equation express the distribution between the mechan-
ical force associated with the mechanical compressive stress
σ < 0 and the mechanical force associated with the mag-
netic field πfmag(α, θ). The expression of πfmag(α, θ) is more
easily computed using a Legendre transformation between
B and H:

πfmag(α, θ) = − ∂

∂z

(∫ B

0

H(b)db

)

=
∂

∂z

(∫ H

0

B(h, z)dh

)

=
∂

∂z

(∫ H

0

µo(M(h, z) + h))dh

)

=
∂

∂z

(∫ H

0

µoM(h, z)dh

)

= µoM
2
S

[
(1− 2α) sin θ

χt
+

(2α− 1)2

2χa
+

sin2 θ

2χt

]
(8)

In addition, in order to satisfy the Clausius-Duhem inequal-
ity, one have to ensure that:

if πf∗ ≥ 0, ż ≥ 0

if πf∗ ≤ 0, ż ≤ 0
(9)

It indeed permits to represent some hysteretical processes.
For example, in a major loop, i.e. a complete rearrangement
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from z = 0 to z = 1 (path a) and from z = 1 to z = 0
(path b) as reported in Fig. 3, the rearrangement begins
when πf∗ > πcr for the path a and when πf∗ 6 −πcr for
the path b. After the rearrangement starts, the behaviour
can be represented by the following kinetic equation:

π̇f∗ = λC ż (10)

In this case, it corresponds to a linear piecewise discretiza-
tion.

 z  *fπ 0  crπ  Cλ  path a 

path b 

1 2 1M M→ 2 1M M←  crπ−  
Fig. 3. The thermodynamic force πf∗ according to the internal vari-

able z for an hysteretical behaviour.

3. Lagrangian and Hamiltonian formalisms

3.1. The Lagrangian formalism

The lagrangian formalism is a modelling technique based
on some energy functions used in addition with the Hamil-
ton principle [11] [12]. This principle postulates that the
variation of an action S between two times on a real path is
always equal to zero. This action is the lagrangian L(q, q̇, t)
integrated between the two times t1 et t2 (see Fig. 4).

t1

t20=Sδ (real path)

S =
∫ t2

t1

L dt ⇒ δS = 0 on a real path (11)

Fig. 4. Variation of the action in the Hamilton principle.

In the case of non relativist systems, the lagrangian func-
tion is the difference between a kinetic co-energy T ∗(q̇) and
a potential energy V(q) [13].

L(q, q̇) = T ∗(q̇)− V(q) (12)

In the case of conservative systems (i.e. closed and non-
dissipative: L = L(q, q̇)), a variational calculus on the
Hamilton principle leads to the set of n Lagrange equations:

∂L
∂qi
− d

dt

(
∂L
∂q̇i

)
= 0 i ∈ [1, n] (13)

∂L
∂qi

are generalized forces and pi = ∂L
∂q̇i

are generalized
momentums. This formalism can be extended to the non-
conservative case (open and dissipative systems) including
kinematic constraints using an extented lagrangian function
L′ and the Lagrange multipliers technique:
– the external generalized forces fext(q, t) are taking into

account in the variation of L′ by adding their virtual
works δWext = fext(q, t) · δq ;

– dissipations by static and viscous frictions are taking into
account by adding their dissipated energies variations
δQs(q) and δQv(q̇). The dissipation by viscous friction
Qv(q̇) is calculated with a Rayleigh dissipation function
R(q̇): Qv(q̇) =

∫ t2
t1
R(q̇) dt ;

– the holonomic kinematic constraints c(q) = 0 are taking
into account with a Lagrange multipliers technique by
adding the term −λ · δc(q) to the variation δL′.

Finally, we have:

δL′ = δL+ fext · δq + δQs + δQv − λ · δc (14)

The Hamilton principle using δL′ gives the following La-
grange equations:

∂L
∂qi
− d

dt

(
∂L
∂q̇i

)
− ∂R
∂q̇i

+
∂Qs
∂qi

+ fext,i−λi ·
∂ci
∂qi

= 0 (15)

More details concerning these modelling techniques can be
found in [13] for electrical and electromechanical systems
and in [14] and [15] for mechatronic and distributed sys-
tems.

3.2. The Hamilton formalism

The Hamilton formalism is an extension of the lagrangian
formalism which uses a Legendre transformation to substi-
tute the time rate functions q̇ in the lagrangian L(q, q̇) for
the generalized momentum p = ∂L

∂q̇ in a new energy func-
tion called the hamiltonian function H(q,p):

H(q,p) = p · q̇− L(q, q̇) (16)

In the case of non relativist systems, the hamiltonian func-
tion corresponds to the total energy expressed with coor-
dinates q and momentums p instead of coordinates q and
velocities q̇:

H(q,p) = T (p) + V(q) (17)

Then the n second order Lagrange equations are trans-
formed into a set of 2n first order Hamilton equations:

q̇i =
∂H
∂pi

ṗi = −∂H
∂qi

i ∈ [1, n] (18)

The extented lagrangian function for a controlled dissipa-
tive system with kinematic constraints can also be trans-
formed into an extented hamiltonian function. This leads
to the following Hamilton equations:
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
q̇i =

∂H
∂pi

ṗi = −∂H
∂qi
− ∂R
∂q̇i

+
∂Qs
∂qi

+ fext,i − λi ·
∂ci
∂qi

(19)

The recent control techniques called Port-Hamiltonian use
this set of equations in a matrix form. In addition, it uses
a specific writing to characterize the connections between
different coordinates. For a conservative system, this gives
[5]:

d

dt

qi
pi

 =

 0 I

−I 0


︸ ︷︷ ︸

J

·


∂H
∂qi
∂H
∂pi

 (20)

The extension to a controlled dissipative system with kine-
matic constraints is also possible by using a matrix A rep-
resenting the kinematic constraints between the different
coordinates qi, a dissipation matrix R including the viscous
and static frictions and finally a matrix B and a control
input u(t) to take into account the external forces:

d

dt

q

p

 =

 0 I

−I −R

 ·

∂H
∂q
∂H
∂p

+

0

A

 · λ+

0

B

 ·u(t)

(21)

4. Description of the MSMA actuator

The mechatronic system considered in this paper is a
simple actuator including an MSMA sample. It is presented
in Fig. 5. A magnetic circuit including a coil and a ferro-
magnetic core permits to create a magnetic field inside an
air-gap where an MSMA sample is inserted. This sample is
attached at one extremity to the fixed support and at the
other extremity to a mobile load. The weight of the load
permits to pre-stress the MSMA sample to obtain a mo-
tion in both directions. Gravitational and inertial effects of
the load have to be taken into account. The coil is supplied
by an home-made switching power amplifier (200 V - 2 A).
The displacement of the load is measured with a laser sen-
sor (Keyence LK-152) and the control is performed using
a DSP board (dSpace). A PC is used for the displacement
signal acquisition and to control the complete system.

A picture of this actuator is presented in Fig. 6. As it can
be seen in the experimental system, a fulcrum and a arm
lever are used to amplify the inertial effects. The working
of the complete system is equivalent to the system depicted
in Fig. 5 if we take into account two different masses mg

and mi for the gravity and the inertial effects. Large white
arrows represent all forces exerted on the bar.

5. Energies expressions

In this section the different energy expressions for the
considered system are presented. A powerfull property of an
energetic description is the property of additivity. It states

Mobile mechanical load

MSMA into air-gap

Magnetic core with coil

Non-ferromagnetic frame

Load displacement direction

Magnetic
field

direction

u(t)

I(t)

=20 mmol
x

m 

Fig. 5. General scheme of the MSMA based actuator.

Load

Displacement
laser sensor

MSMA Magnetic 
circuit

Fulcrum 

Bar 

Fig. 6. Photograph of the actuator test bench.

that the total energy of one system is equal to the sum of
the energy of each sub-system (magnetic circuit, MSMA,
and driven load). For each sub-system, all generalized co-
ordinates qi, generalized momentums pi, hamiltonian func-
tion, dissipation matrix R, and kinematics constraints ma-
trix A will be detailed. The different energies are sketched
in Fig. 7.

Coil

Iron magnetic
energy WFe

Leak energy
WL

Air-gap 
energy Wa-g 

Magnetic
energy

VMSMA Fmag

Mechanical
energy

VMSMA Fmech

Kinetic
energy Tload

Gravity
potential

energy Vload

Magnetic circuit MSMA Load

QJoule

Wext

Qhyst Qviscous

Fig. 7. Different energies of the full system.

5.1. Magnetic circuit modelling

In order to model the core and the magnetic circuit, we
use an electrical network including resistances and induc-
tances (see Fig. 8). This lumped-parameters model per-
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mits to take into account the magnetic leakage in the sur-
rounding air and the ferromagnetic saturation without any
time-consuming numerical computation such as the finite
elements method.

5.1.1. Definition of magnetic circuit coordinates
A lagrangian electrostatic convention (see [16]) is cho-

sen because it permits to consider the voltage u(t) applied
to the coil as an external generalized force fext(t). Induc-
tances LFe, Ll, La and L are respectively associated with
the magnetic flux accross the Fe-Si core, the leakage mag-
netic flux in the surrounding air, the magnetic flux accross
the airgap, and lastly the magnetic flux accross the MSMA.
It must be noticed that both inductances LFe and L are
not constant parameters but they take into account the
nonlinear magnetic behaviours of these two materials. The
corresponding coordinates are reported in Table 1.

i qi q̇i pi

Coil 1 charge qc I φ

Fe-Si core 2 DFe HFe · lFe BFe · SFe

Air leakage 3 DL HL · lL BL · SL

Air-gap 4 Da−g Ha−g · la−g Ba−g · Sa−g

MSMA 5 D H · l B · S
Table 1

Generalized coordinates, velocities and momentums used in the mod-
elling of the magnetic circuit of the Fig. 8.

For the coil’s quantities, a global form is used: the elec-
tric charge qc is the generalized coordinate q1, the current
I is the generalized velocity q̇1, the magnetic flux φ is the
generalized momentum p1. For the other magnetic quanti-
ties, a local form is used: the magnetic excitation field Di

corresponds to the generalized coordinate, the curvilinear
integral Hi · li along the path li corresponds to the gener-
alized velocity, the flux Bi · Si accross the surface Si is the
generalized momentum. lFe, ll, la and l are respectively the
ferromagnetic core, leakage, airgap and MSMA mean flux
path lengths. The dissipation due to eddy-currents are ne-
glected because the laminated Fer-Si magnetic core limits
them drastically. r  I  2LL  FeL  a gL −  MSMAL  Fe FeH l  a g a gH l− −  L LH l  H l  ( )u t  LL  
Fig. 8. Lumped-parameter model used for the modelling of electrical

and magnetical quantities.

5.1.2. Dissipation potential of the magnetic circuit
Joule effect losses in the coil are taken into account with

a dissipation potential (Rayleigh function R1). If r is the
full resistance of the coil, we have:

R1 =
1
2
r · q̇2c =

1
2
r · I2 (22)

5.1.3. Magnetic circuit energies and hamiltonian function
The magnetic energy depends on the magnetic fields Bi

(generalized momentum pi) in the volume V :

H =Wmag

=
∫
V

∫ Bi

o

Hi(b)db · dV

=WL2 +WFe +WL +Wa−g

WL2(φ) =
φ2

2LL2

WFe(BFe) = VFe ·
∫ BF e

o

HFe(b)db

WL(BL) = VL ·
1

2µo
B2
L

Wa−g(Ba−g) = Va−g ·
1

2µo
B2
a−g

(23)

The magnetic energy WFe stored in the Fe-Si core takes
into account the nonlinear saturated magnetic behaviour
of the Fe-Si material with an arctan shape function. The
value of WL2 is extremely smaller than these of the three
other terms.

5.1.4. External force of the magnetic circuit
The generalized external force applied to this sub-system

is the voltage applied to the coil:

fext = u(t) (24)

5.1.5. Kinematic constraints of the magnetic circuit
Ampère’s law (Kirchhoff’s current law in Fig. 8) gives

some algebraic relations between coordinates resulting in
the definition of two kinematic constraints:

N · I = HFe · lFe +HL · lL∫
dt

=⇒ c1(q) = DFe +Dl −N · qc = 0
HL · lL = Ha−g · la−g +H · l∫

dt
=⇒ c2(q) = DL −Da−g −D = 0

5.2. MSMA modelling

5.2.1. Definition of MSMA coordinates
Two types of generalized coordinates are considered in

the MSMA modelling. The first ones, the temperature T ,
the strain ε and the magnetic field H are classical thermo-
dynamic variables. They are associated with three thermo-
dynamic forces, the entropy s, the mechanical stress σ and
the magnetization of the MSMA M . The coordinate T is
not used afterwards because of the isothermic working of
the actuator and the constant value of Ftherm. The second
type of generalized coordinates appears only in the frame of
the thermodynamics of irreversible processes with internal
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variables. An internal variable is a generalized coordinate
characterizing an internal working of the material not di-
rectly linked to any external forces. This variable permits
to take into account the memory effect of the material. For
the MSMA, the volume fraction z is an internal variable.
All the relevant generalized coordinates used for the mod-
elling of the MSMA are reported in Table 2.

i qi q̇i pi

MSMA 5 Field D H · l B · S

MSMA 6 Fraction z ż pz

MSMA 7 Strain ε ε̇ pε

Table 2

Generalized coordinates, velocities and momentums used in the mod-
elling of the MSMA.

5.2.2. MSMA energies and hamiltonian function
The Hamiltonian function of the MSMA sample corre-

sponds to its total energy. Because of the size and weight of
the MSMA sample compared to the size and weight of the
load, the influence of the potential and the kinetic energies
of MSMA is quite low in the complete device energy and
therefore these two terms can be neglected. The hamilto-
nian function of the MSMA sample can be expressed as:

HMSMA = VMSMA · (Fmech +Fmag) +
p2
z

2mz
+

p2
ε

2mε
(25)

mz andmε are inertial parameters corresponding respec-
tively to the z and ε variables. We consider them in the gen-
eral case, but they will be neglected in the computation be-
cause (i) the mass of the MSMA material is very lower than
the mass of the load and (ii) the process of martensite re-
orientation is considered as nearly instantaneous compared
to the other time constants (electrical and mechanical). In
the hamiltonian formalism, it is equivalent to say that pε
and pz are nearly equal to 0. The Helmholtz free energies
Fmech and Fmag are expressed in the section 2.2.2.

5.2.3. Dissipation potential of the MSMA
The internal variable z was introduced to model the dis-

sipative hysteretical behaviour of the material. In order to
satisfy the second thermodynamic law, z is used to define
the Clausius-Duhem inequality:

d̄D = πf∗(z, ż) · d̄z ≥ 0 (26)

with πf∗(z, ż) the thermodynamic force associated with z.
A simplified expression is chosen corresponding to a static
hysteresis without inner loops:

πf∗(z, ż) = λC

[
z +

sign(ż)
2

− 1
2

]
+ πcr · sign(ż) (27)

λC corresponds to a constant kinetic parameter. πcr is an
internal friction parameter. The dissipation power Physt is
then deduced:

Physt = VMSMA · Ḋ = VMSMA · πf∗(z, ż) · ż

= VMSMA ·
(
λC · ż ·

[
z +

sign(ż)
2

− 1
2

]
+ ż · πcr · sign(ż)

)
This power can be incorporated in the dissipation matrix
R by adding the following term as reported in [5]:(

∂Physt
∂ż

)
/ż (28)

5.3. Load modelling

The driven load energy includes a kinetic energy (Tload =
1

2mp
2
x with m the mass of the load) and a gravity potential

energy (Vload = mgx with g the gravity constant). The vis-
cous friction of the load in the surrrounding air is modelled
using a dissipation potential (Rayleigh function R2 = f

2 ẋ
2

with f the viscous friction coefficient). The only relevant
generalized coordinate for the load is its position x as re-
ported in Table 3.

i qi q̇i pi

Load 8 displacement x ẋ px

Table 3

Generalized coordinate, velocity and momentum used in the mod-

elling of the load.

Moreover the load attached to the MSMA sample gives
an algebraic relation between the strain ε and the displace-
ment x. This leads to an other kinematic constraint:

l0 · ε = x⇒ c3(q) = x− l0 · ε = 0

6. Hamilton equations

By adding all the previous sub-system energies, the
Hamiltonian function of the full system can be written as:

H =
φ2

2LL2
+ VFe

∫ BF e

o

HFe(b)db

+ VL
1

2µo
B2
L + Va−g

1
2µo

B2
a−g+

VMSMA ·

(
E

2
(ε− γz)2 +K12 · z · (1− z) +

∫ B

o

H(b)db

)

+
p2
z

2mz
+

p2
ε

2mε
+

1
2m

p2
x +mgx

(29)
By using the port-hamiltonian representation, we have to
define different vectors such as the generalized coordinates
q, momentums p and lagrange multipliers vector λ:

qT = [qc, DFe, DL, Da−g, D, z, ε, x]

pT = [φ,BFeSFe, BLSL, Ba−gSa−g, BS, pz, pε, px]

λT =
(
λ1 λ2 λ3

) (30)

We also have to define different matrix such as the dissi-
pation matrix R, the kinematic constraints matrix A and
the external input matrix B:
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R =



r 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0
(
∂Physt
∂ż

)
/ż 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 f



AT =


−N 1 1 0 0 0 0 0

0 0 1 −1 −1 0 0 0

0 0 0 0 0 0 −lo 1


BT =

(
1 0 0 0 0 0 0 0

)

(31)

The expression of the hamiltonian function permits to ob-
tain 16 Hamilton equations. Among these 16 equations, 8
are associated with the time rate of coordinates and 8 with
the time rate of momentums. The 8 equations associated
with the time rate of coordinates gives 8 definitions of vari-
ables:
– the first Hamilton equation is the definition of the induc-

tance LL2:
LL2q̇c = φ (32)

– the four following Hamilton equations are the definition
of the magnetic fields Hi for i ∈ {Fe, L, a− g,∅}:

Ḋi = liHi (33)

– the three following Hamilton equations are the definition
of the relations between the momentum pi and the ve-
locities q̇i for qi ∈ {z, ε, x}:

pqi
= mqi

q̇i (34)

The 8 equations associated with the time rate of momen-
tums give 8 relations that can be rewritten to obtain 4 phys-
ical equations (one voltage Kirchoff’s law, two magnetic
flux conservations and one Newton’s law), one constitutive
equation for the MSMA and finally the value of the three
Lagrange multipliers (as denoted before, due to some sim-
plifications, pz, pε and φ can be considered as nearly equal
to 0):
– the dynamic electrical equation (Voltage Kirchoff’s

Law):
u = rI +NḂFeSFe (35)

– two equations for the conservation of magnetic fluxes in
the magnetic circuit (see Fig. 8): ḂLSL = ḂFeSFe − Ḃa−gSa−g

ḂS = Ḃa−gSa−g
(36)

– the dynamic equation of the load (Newton’s law):

mẍ = −mg − fẋ− Soσ , (37)

– the quasi-static behaviour of the MSM material (the con-
stitutive equation):

πf∗(z, ż) = −γz +K12(1− 2z) +
∂
∫ B
o
H(b)db
∂z

. (38)

– the values of the three Lagrange multipliers:
λ1 = ḂFeSFe

λ2 = −Ḃa−gSa−g
λ3 = −Soσ

(39)

7. Parameters identification

In order to determine some parameters of the MSMA
material and some of the complete system, experimental
measurements followed by an identification procedure have
been performed.

7.1. Magnetic circuit characteristics

The magnetic circuit parameters were identified by two
experiments. The first one is the measurement of the air-
gap magnetic field versus coil current without any MSMA
sample in the airgap. These measurements are reported in
Fig. 9 compared with the simulations resulting from the
identification procedure.
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Fig. 9. First experiment for the magnetic circuit identification pro-

cedure (without MSMA): Magnetic field versus coil current (experi-
mental measurements: + when the current is increasing and × when

the current is decreasing, simulation using identified parameters:

solid line).

The second experiment is the measurement of the current
dynamical response versus time for a 100 V voltage step.
This measurement is reported in Fig. 10 compared with the
simulations resulting from the identification procedure.

7.2. MSMA quasi-static characteristics

In order to find the χa and χt parameters, the dynamical
response of the magnetic circuit including the MSMA sam-
ple has been measured. A 100 V voltage step is applied to
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Fig. 10. Second experiment for the magnetic circuit identification
procedure (without MSMA): coil current versus time for a 100 V

voltage step (experimental measurements: cross ×, simulation using

identified parameters: solid line).

the coil and the current is measured. In a first experiment,
the MSMA was blocked to keep the martensite volume frac-
tion z = 0. In a second experiment, the MSMA was free of
stress and initialized to z = 1. Fig. 11 shows experimen-
tal results compared with simulations using the identified
parameters. These results show that the response changes
according to the z value. This property can be exploited
in a self-sensing application. Indeed, by measuring the cur-
rent change, the volume fraction z and the displacement of
the load can be estimated. An example of such an applica-
tion as sensor has already been studied in [17]. It uses the
change of the inductance value at low magnetic field as an
information for a position sensor application.
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Fig. 11. Self-sensing feasibility: current versus time for a 100 V
voltage step for z = 1 (modelling: solid line, experimental results:

cross points) and for z = 0 (simulation: dashed line, experimental
results: circles).

A compression test was performed in order to identify all
MSMA mechanical parameters. Fig. 12 compares experi-
mental and simulation results for the mechanical stress ver-
sus strain with and without a magnetic field. For a mechani-
cal cyclic charging without a magnetic field, the mechanical
behaviour is not closed (the ending point of the curve is not
the starting point). This is due to the very large hysteresis

of the MSMA material. But for a mechanical cyclic charg-
ing with a sufficient magnetic field (600 kA/m), the curve
is closed (the ending and the starting points coincide).
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Fig. 12. Mechanical stress versus strain with and without a magnetic

field for a cyclic charging (simulation: solid line, experimental results:
cross points)

7.3. Load characteristics

The parameter f was identified thanks to a dynamical
response measurement reported in Fig. 14.

Table 4 summarizes all the parameters values directly
measured or identified and used afterwards.

8. Experimental validation of the model

Numerical computations were conducted with the Mat-
lab Simulinkr software. Our simulation uses a finite dif-
ferences method to compute the dynamical response of the
complete device. Some S-functions programmed in C lan-
guage were developed to increase the computing speed. The
solver uses a classical Euler integration scheme with a sam-
pling time of 10 µs.

In a first time, a sufficiently slow voltage ramp was ap-
plied as an input to verify the quasi-static model behaviour.
Fig. 13 presents the voltage, current and displacement of
the actuator versus time for the experimental and the sim-
ulation values. The maximum reachable displacement is
about 550 micrometres after a current ramp satured at 1
A.

In a second time, a voltage step is applied to extract the
dynamical behaviour of this system. Fig. 14 reports also the
voltage, current and displacement versus time (this graph
uses a smaller time range). The maximum reachable dis-
placement is now about 750 micrometres for a 1 A current
step.

One have to note that the dynamical effect combined
with the nonlinear MSMA behaviour permits to obtain a
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Measured la−g = 0.65 mm

lMSMA = 3.2 mm

mgrav = 1.44 kg

minertia = 2.32 kg

S = 5 × 20 mm2

Sair = S

r = 61.8 Ω

N = 1500 turns

lo = 20 mm

Identified SFe = 5 × 23 mm2

using Fig. 9 SL = 30 × S

and Fig. 10 lL = 27 mm

lFe = 3 mm

Identified χt = 1

using Fig. 11 χa = 40

Identified γ = 0.055

using Fig. 12 λC = 130000 J/m3

πcr = 0 J/m3

K12 = 35000 J/m3

µoMs = 0.65 T

E = 5e8 Pa

Identified with f = 100

dynamical results

Iron parameters χFe = 7700

µoMsatFe = 2.03 T

Table 4

Summary of the device parameters directly measured or identified
using some experiments.
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Fig. 13. Quasi-static behaviour of the system: voltage, current and
displacement versus time (simulation: dotted line, experimental re-

sults: solid line).
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Fig. 14. Dynamic behaviour of the system: voltage, current and dis-

placement versus time (simulation: dotted line, experimental results:
solid line).

larger reachable strain in the dynamic mode than in the
quasi-static mode. This is due to the decrease of the com-
pressive stress applied to the MSMA sample when the ac-
celeration of the load appears in dynamic mode. The sim-
ulation results appear reasonably accurate compared with
the experimental measurements.

9. Discussion on the energy distribution

The different energies previously computed are reported
in Fig. 15 first column for the quasi-static mode and in Fig.
15 second column for the dynamic mode.

9.1. Quasi-static mode

The first top left graph of Fig. 15 presents the electrical
energyWext supplied to the device. As the energy exchange
is dWext = u(t) · dqc, the energy supply rate corresponding
to the the electrical power is therefore Ẇext = u(t) · I(t).
The heat exchange was not measured on the bench but the
dissipation by Joule effect can be computed as Qjoule =∫ t
0
R1(q̇1) dt and is reported in the same figure. As it can

be seen, the two plots are nearly superposed and therefore
the main part of the supply energy is dissipated as heat
losses into the coil. This confirms that MSMA as well as
classical Shape Memory Alloys are not attractive materials
from the efficiency point of view.

The rest of the available energy is divided into the coil
and core magnetic energies (recoverable energies, see the
second top left graph of Fig. 15) and into an energy transfer
to the MSMA and to the load (see the third top left graph
of Fig. 15). A part of the MSMA energy is lost in the hys-
teretical loop of the material behavior Qhyst =

∫ t
0
Physt dt

when the other is converted through the electromechan-
ical energy conversion process. The result of this energy
conversion is then distributed as a viscous friction process
Qviscous =

∫ t
0
R2(ẋ) dt, a potential energy Vload(x) and

a kinetic energy Tload(px). We can see in the bottom left
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Fig. 15. Computations of the different energies (Joules) versus time : in the static mode (left column) and in the dynamic mode (right column).

graph of Fig. 15 that the practical available mechanical en-
ergies (kinetic Tload and potential Vload) are quite small
compared to the input energy. The MSMA elastic energy
Fmech − Fint, the kinetic energy Tload, and viscous losses
Qviscous are constant because of the quasi-static mode.

9.2. Dynamic mode

The first top right graph of Fig. 15 shows also clearly that,
in this system, the supplied energy is mainly dissipated by
heat losses into the coil. The differences between dynamic
mode and quasi-static mode are now discussed. In Fmech,
the martensite interaction energy Fint = K12 · z · (1 − z)
reaches a maximum when the z value is equal to 0.5. An en-
ergy transfer between the MSMA elastic energy E

2 ·(ε−γ·z)
2

and the kinetic energy Tload exists. Actually, this elastic en-
ergy increases when some energy is supplied to the system,
then decreases to a lower value than beginning because of
kinetic energy Tload. At this time, Vload can increase to a
higher value than in quasi-static mode. The dissipation is

more important forQhyst andQviscous in the dynamic case
than in the quasi-static but Qjoule is lower in the dynamic
case because the time range is smaller than in quasi-static
mode.

9.3. Energy efficiency

Less than 8 to 11 mJ are recovered by the load for 5 to
20 Joules supplied to the actuator. These results clearly
show a poor actuator efficiency. Because the main energetic
losses are due to the Joule effect, an efficient actuator is
an actuator which can hold a displacement value without
keeping a current into the coil. This problem can be par-
tially solved by using a Push-Pull actuator design working
by voltage pulses: two MSMA samples and two magnetic
circuits are used in an antagonistic way in order to obtain
a multi-stable actuator. This kind of actuator was also de-
signed and studied by the authors in [18].
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10. Conclusion and perspectives

In this paper, a lagrangian formalism and its hamilto-
nian extension combined with the thermodynamics of ir-
reversible processes were used to obtain the complete dy-
namical modelling of a mechatronic device including Mag-
netic Shape Memory Alloys. This model permits to simu-
late the complete dynamical behaviour of this system even
if the MSMA behaviour is nonlinear and hysteretic. The
self-sensing feasibility and an estimation of the different en-
ergies were given. All these results are experimentally vali-
dated and a satisfactory accuracy between simulations and
experimental results is observed. The model can be used
confidently in the near future in order to design a new con-
troller using some energy based control techniques such as
it is proposed in [3], [4], [5] and [6].
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