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Taylor–Couette flow in a two-layer stratified

fluid: instabilities and mixing

E.V. Ermanyuk1, J.-B. Flór∗

Laboratoire des Ecoulements Geophysiques et Industriels, INPG-CNRS-UJF, BP53X,

Grenoble Cedex 9 38041, France

In this preliminary experimental study we investigate the mixing of a salt-stratified two-layer

fluid in a Taylor–Couette flow. We focus on two flow regimes, one in which waves are present in

the pycnocline and vortices in the homogeneous layers, and one with vortices also in the pycno-

cline. The transition between these two regimes differs significantly compared to the wave–vortex

transition found in a uniform stratification, investigated by Caton et al. [Caton, F., Janiaud, B.,

Hopfinger, E.J., 2000. Stability and bifurcations in stratified Taylor–Couette flow. J. Fluid Mech.

419, 93–124], and is accompanied by a larger jump in fundamental frequency of the density fluc-

tuations.

Most density gradients show a strong tendency to sharpen with time, with layer formation in the

case of an initially thick interface. On a long time-scale, the entrainment of a smooth pycnocline

shows cascade-like bifurcations before its transition to chaos. In the latter case, a decrease of the

initial density gradient is observed.

We discuss the mixing efficiency, measured by the Richardson flux number Rif. Its value is a 
function of the Reynolds number ∼ Rek, with k = 3/2, and for Reynolds numbers O(103), the 
mixing efficiency is of order O(10−2).
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1. Introduction

Mixing in density stratified fluids plays an important role in numerous geophysical and

engineering applications, and is responsible for the transport of heat, nutrients and pollu-

tants in the oceans and atmosphere, as well as in various technical devices. The driving

mechanisms for mixing in oceanographic processes have been thoroughly discussed in the

literature over the past five decades (see Kato and Phillips, 1969; Linden, 1979; Fernando,

1991; Staquet and Sommeria, 2002, Caulfield and Peltier, 2002). Typical experiments on

mixing include the entrainment and overturning motion in shear flows (e.g., Strang and

Fernando, 2001), stirring by different mechanical devices such as oscillating grids, or en-

trainment of vortex rings (Linden, 1973, for a review see Fernando, 1991).

In many geophysical flows, mixing is produced by anisotropic flows having a significant

horizontal vorticity component. For example, Langmuir circulation, which is characterized

by the occurrence of organized horizontal helical vortex-structures with their axis directed

along the wind-induced main flow, is thought to play a significant role for the mixing of

the ocean pycnocline (Garrett, 1996). Motivated by this application, we investigate the

evolution of an interface—or pycnocline—of a two-layer fluid in the presence of Taylor

vortices. Taylor–Couette flows are extensively investigated for homogeneous fluids and

give a controlled access to different flow regimes, ranging from wavy flows, wavy-vortex

flows and turbulence (see Andereck et al., 1986). The extension to Taylor–Couette flows

with linear axial stratification have been investigated experimentally and theoretically by

Hopfinger and co-workers (see Boubnov et al., 1995; Boubnov and Hopfinger, 1997; Caton

et al., 2000) and numerically by Hua et al. (1997) and new regimes are shown to occur as a

consequence of the different dynamics. Stratification increases the threshold rotation-rate,

Ωc, for the onset of the Taylor vortices, while for small rotation–stratification frequency

ratio, Ω/N, the Taylor vortices are flattened. In the two-layer stratification, the dynamics

are more complicated, since the buoyancy frequency, N, is not constant, and flow properties

may vary locally. Waves generated inside the pycnocline find critical layers above and

beneath, leading to reflection or absorption, while vortices outside the pycnocline perturb

the stratified layer and the motion there in. These effects may alter the dynamics as well as

the regimes found in linearly stratified TC-flows and have not been investigated before. In

the next section we present our experimental setup, followed by the results on the different

observed regimes in Section 3.1 and the mixing in Section 3.2. We briefly discuss the results

in Section 4.

2. Experimental setup and procedure

2.1. Apparatus

The experimental apparatus consists of two Plexiglas coaxial cylinders with radii, respec-

tively, a = 15 cm and b = 20 cm, and is an enlarged version of the stratified Taylor–Couette

system described in Caton et al. (2000) further referred to as CJH. The outer cylinder is fixed

while the inner cylinder is driven by a DC-motor at a rotation rateΩ of a value between 0.08

and 0.56 s−1. The total depth of the fluid in the experiments,H, is 76 cm yielding a moderate
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value of aspect ratio A = H/d = 15.2, where d = b− a. The annular space between the

cylinders was filled with a two-layer salt-stratified fluid and tap-water is used as working

fluid. The vertical density distribution can be approximated as

ρ(z) = ρ0

[

1 −
ǫ

2
tanh

2(z− h)

δ

]

, where ρ0 =
ρ1 + ρ2

2
and ǫ =

ρ2 − ρ1

ρ0
,

with z = 0 at the free surface and the z-axis directed vertically upwards; h is the depth of

the upper fluid (in experiments h = H/2), δ the characteristic thickness of the pycnocline,

and ρ1, ρ2 and ρ0 are the fluid densities in the upper and lower layers and mean density,

respectively. Experiments with a smooth pycnocline were performed at large δ, obtained

after having the interface diffused during several days.

The density difference between the layers was varied within the range 0.0015 ≤ ǫ ≤

0.02. In the otherwise quiescent fluid, parameter δ changed with time t as δ ∼ t1/2, owing to

the molecular diffusion of salt. Both, sharp and smooth pycnoclines were studied with typical

Table 1

Governing parameters of the experimental runs, where series A and B and experiment C correspond to runs with

an initially smooth interface whereas in series D, E the interface was initially sharp.

Experiment series ǫ δ/d Ω (s−1) N (s−1) Ta× 105 Gr × 106

A 0.006 1.7 0.068 0.83 1.5 4.3

0.084 2.3

0.098 3.1

0.111 3.9

0.125 5.0

0.139 6.2

0.154 7.6

0.165 10.6

B 0.024 1.56 0.097 1.74 3.0 19

0.123 4.8

0.151 7.3

0.178 10.1

0.209 14.0

0.268 23.0

0.293 27.3

0.33 34.9

C 0.006 1.7 0.16 0.83 8.2 4.3

D 0.0015 0.2 0.5 1.21 80 9.3

0.003 1.72 18.5

0.006 2.43 37.5

0.009 2.97 55

0.02 4.43 123

E 0.003 0.2 0.29 1.72 27 18.5

0.35 39

0.41 54

0.46 68

0.53 90

The Taylor number, Ta, is defined as 4Ω2

Y2 · d4/(b2/a2 − 1) ≈ 3.2 × 107Ω2 and the Grashof number Gr =

N2d4/ν2 = 6.25 × 106N2 with N = (gǫ/δ)0.5.
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values δ/d around 0.2 and 2, respectively. The Reynolds number Re = Ωad/ν (where ν is

the kinematic viscosity) was varied between 600 and 4200. A list with the experimental

parameters is given in Table 1, which includes the experimental values of the Taylor number

and Grashof number.

For an identification of the observed flow patterns, we used the shadow-graph technique,

which visualizes variations in the second spatial derivative of the instantaneous density

profile by light and dark projections of a punctual light-source that shines through the

fluid. The white and dark-gray band represents the interface (see Fig. 1a). These light in-

tensity fluctuations were recorded with a B&W analog camera. From the images a fixed

vertical line of pixels was selected in real time and added with a prescribed sampling

rate to the stack of lines taken at previous time steps. This vertical line of pixels was

taken at 1 cm distance from the wall of the outer cylinder (see arrows in Fig. 1a and

Fig. 2a). For the measurement of mixing across the density interface we used laser-induced

fluorescence.

Fig. 1. Shadow-graph image of the gap between the cylinders (a) and (b) spatio-temporal image of the selected

vertical line of pixels in the wave–vortex regime. The picture contains 674 vertical lines taken at the acquisition

frequency 1 Hz, and time increases from left to right. Experimental parameters: ǫ = 0.024, δ/d = 1.56, Ω =

0.151 rad/s.
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Fig. 2. Typical shadow-graph image of the gap between the cylinders (a), (b) spatio-temporal image of the selected

vertical line of pixels for a total acquisition time of 443 s at the sampling frequency 1 Hz, and (c) shadow-graph

image of the gap between the cylinders after the experimental run. Experimental parameters ǫ = 0.024, δ/d = 1.56,

Ω = 0.268 rad/s.

3. Experimental results

3.1. Flow regimes and entrainment in a smooth pycnocline

We have noted two different flow regimes depending on the rotation rate while keeping

the stratification of the interface constant. For low rotation values, Taylor vortices are present

in the two homogeneous layers, while the flow is stabilized and axisymmetric in the centre

of the pycnocline. Since the buoyancy frequency decreases to zero at the edges of the

pycnocline, waves are generated at some level above the pycnocline centre. This regime

is referred to as the wave–vortex regime. For higher rotation rates, vortices are present,

both in the pycnocline and the two homogeneous layers. The latter is referred to as the

vortex–vortex regime.

A typical example of the wave–vortex regime, is illustrated in Fig. 1a, showing high-

gradient interfaces on the upper and lower edges of the pycnocline, with alteration of dark

and light zones inside the pycnocline. Fig. 1b shows the spatio-temporal image of the

vertical line of pixels marked by the black arrow in Fig. 1a. Fig. 1b reveals the wave motion

inside the pycnocline. Note that inside the pycnocline, the density varies with height. At the

centre of the pycnocline where the buoyancy is maximal, waves are suppressed in agreement

with results in a linearly stratified fluid by Boubnov and Hopfinger (1997), while waves

with increasing amplitude occur with distance from the pycnocline-centre and decreasing
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buoyancy. These waves are progressive and propagate towards the edges of the pycnocline.

The time-history of the light fluctuations inside the pycnocline yields sine curves with a

well defined frequency Ωf.

The saw-like patterns at the pycnocline edges represent the motion of the vortices, which

interact with the waves that are periodically emitted in the pycnocline. The waves break

above and below the pycnocline where the local buoyancy frequency is relatively small,

and dense (light) fluid is entrained into the upper (lower) layer. Nevertheless little mixing

takes place, and the initial density profile is quickly recovered after turning off the inner

cylinder rotation. Note, that in contrast to the standing waves observed in the wavy regime

by CJH in a linearly stratified fluid, we observe progressive wave patterns; their amplitude

increases with distance from the pycnocline centre due to the decreasing buoyancy fre-

quency, as can be inferred from the variation in wave-signature in the shadow-graph images

(see Fig. 1).

For higher rotation rates the wave motion is unstable, leading to the formation of strat-

ified vortices in the pycnocline region. The threshold rotation-rate for the occurrence of

vortex motion corresponded well with that in a linear stratified fluid found by Boubnov

and Hopfinger (1997) in the same device for Ωc ≥ 0.075N + 0.075, with N the maximum

stratification of the pycnocline. Fig. 2a shows an example of this vortex–vortex regime,

consisting of a system of narrow layers separated by clearly visible interfaces. The spatio-

temporal image of this flow is shown in Fig. 2b for the same δ/d and ǫ as in Fig. 1. In

the pycnocline we notice periodic oscillations with upward and downward propagation di-

rection and a well-pronounced fundamental frequency Ωf. At the edges of the pycnocline,

the noise increases and fluctuations at frequencies lower than the fundamental one appear

(typically, at Ωf/2 and Ωf/3).

Five minutes after having turned off the rotation of the inner cylinder the shadow-graph

images reveal a well-pronounced layered structure (see Fig. 2c), showing that the stratified

vortices effectively mix the pycnocline. The ratio between the vertical and horizontal sizes

of the layered structure in Fig. 2c is remarkably low. It reaches 1:6 in the middle of the

pycnocline and slightly increases to 1:5 at the edges of the pycnocline, due to a decrease

of the local buoyancy frequency. Note, however, that the vertical size of the structure does

not increase in inverse proportion to the local buoyancy frequency. The vertical size of

the layers at the edges of the pycnocline is 1.2 times greater than in the middle of the

pycnocline, while the initial local buoyancy frequency at the horizons of these layers is

1.4 times smaller than in the middle of the pycnocline. Also, it should be noted that the

aspect ratio of 1:6 is equal to the lowest aspect ratio observed in the same apparatus by

Boubnov and Hopfinger (1997) for a uniform stratification. In a smaller Taylor–Couette

device, the onset of the stratified vortex regime in the uniformly stratified fluid leads to the

formation of structures having an aspect ratio between vertical and horizontal size around 1:2

(see CJH).

The transition from the wave–vortex regime to the vortex–vortex regime is accompanied

by a jump in the mean rotation frequency Ωf of the 3D flow-structure. This (fundamental)

frequency can be measured from the light-intensity fluctuations shown in Fig. 1b, where

one single revolution period of the flow structure around the cylinder axis is depicted by a

horizontal bar. For a purely azimuthal flow the rotation frequency Ω0 with which the flow

structure drifts can be derived for the Taylor–Couette flow, and yields after averaging over
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the volume in the gap (see CJH):

〈Ω0〉 =

(

−
a2

b2 − a2
+

2a2b2

(b2 − a2)2
ln
b

a

)

Ω.

For our setup this gives 〈Ω0〉 = 0.411Ω. When the axisymmetry of the system is broken

by an azimuthal mode, m ≥ 1, the flow-structure precesses relative to the mean rotation

frequency with a frequency, α, given by the relation (Knobloch, 1996; Caton et al., 1999):

Ωf = m〈Ω0〉 + α(m).

As N increases, the frequency jump occurs at higherΩ due to the stabilizing effect of the

stratification (see Fig. 3). Both, in the wave–vortex regime and the vortex–vortex regime,

Ωf increases linearly with Ω. The least square approximation yields for the wave–vortex

regime

Ωf = 0.41Ω+ 0.0014 (1)

and for the vortex–vortex regime

Ωf = 0.81Ω+ 0.138. (2)

In the wave–vortex regime, the dependence of Ωf on Ω is remarkably close to the angular

velocity for purely azimuthal flow, 〈Ω0〉. Surprisingly, this result corresponds with the

Ωf(Ω)-relation in the stratified vortex regime, characterized by counter-rotating vortex pairs

with azimuthal modem = 1 (see CJH), whereas the nature of the wave–vortex regime, with

progressive waves in the pycnocline and vortical motion at the edges of the pycnocline,

is altogether different. Also in both cases, the evolution of Ωf with Ω does not depend

on stratification since the data obtained for different values of N fall on the same straight

line. Though further research is required to give a sound explanation, possibly, the drift

and precession of the vortical motions in the weakly stratified upper and lower part of the

Fig. 3. Wave–vortex transition (open symbols: ǫ = 0.006, δ/d = 1.7, N = 0.83 rad/s; black symbols: ǫ = 0.024,

δ/d = 1.56, N = 1.74 rad/s).
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Fig. 4. Spatio-temporal shadow-graph image of entrainment in a smooth pycnocline. The acquisition frequency

is 0.05 Hz and the total acquisition time amounts 9.8 h. Experimental run C with Ω = 0.16 rad/s and times T1 =

2940 s, T2 = 7320 s after the onset of rotation.

pycnocline govern the drift at the interface, suggesting the correspondence in fundamental

frequency with the stratified-vortex regime and the precession value of exactly twice that

in CJH.

In the vortex–vortex regime, the shadow-graph lines are propagating in up- and down-

ward directions (see Fig. 4), while from (1) and (2) we note that in the vortex–vortex regime

the coefficient of Ω is twice the value of the coefficient in the wave–vortex regime, and the

precession about 100 times as large. This high value of the precession suggests the presence

of higher modes (m = 2), most likely to be expected in the layers with absent, or relatively

weak stratification. At the transition in a two-layer fluid from the wave–vortex regime to

the vortex–vortex regime we note a clear jump in frequencyΩf. In contrast, in the stratified

vortex regime in a linearly stratified fluid (see CJH) the measured frequency of the density

fluctuations decreases with Ω in the wave regime and then grows linearly with Ω without

any jump in frequency.

Because of the gradual erosion of the pycnocline by the Taylor vortices in the outer

homogeneous regions, the parameter δ (and thus also N) slowly varies in time and different

flow transitions are observed to occur. An example is shown in Fig. 4 for the vortex–vortex

regime. Up to the time T1 the process is essentially similar to the one depicted in Fig. 2b,

with sinuous oscillations at a certain fundamental frequency. After T2, one clearly notices

the varying oscillation and the subsequent gradual increase of stochastic noise, apparent

from the noise in grey levels in Fig. 4. The described behavior reminds to a classic scenario

of transition to chaos via period-doubling cascades (Landau and Lifshitz, 1987).

Since the buoyancy frequency is maximum in the middle of the pycnocline and decreases

to zero at its edges, the entrained fluid there has initially less potential energy. Therefore,

with the decrease of the pycnocline thickness, the entrainment-rate gradually decreases.

Indeed, when scrutinizing the pycnocline edges with time in Fig. 4 one can notice small

curvatures.

Fig. 5. (a) Spatio-temporal image of the mixing of a two-fluid system with a sharp pycnocline. The image contains

496 vertical lines taken with acquisition frequency 0.1 Hz; the vertical size of the image is 10d. (b) Light-intensity

profiles J(z/d) at different stages of the mixing process, with time-step �t = 1000 s between the profiles and

solid black lines representing the initial profile at t = 0. (c) Time-evolution of the normalized potential energy P.

Experimental parameters: ǫ = 0.003, Ω = 0.5 rad/s, Re = 3800.
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3.2. Mixing in a two-fluid system

In this subsection, we focus our attention on the mixing of a two-fluid system with

a sharp interface with δ/d around 0.2. To keep the duration of experimental runs within

reasonable limits, experiments were conducted at Reynolds numbers of 2000 and higher.

The flow evolution of which a typical spatio-temporal image of the process is shown in

Fig. 5a , was visualized with the laser-induced-fluorescence (LIF) technique. The mixing

process can be schematically divided into three stages. In the first stage, the initial density

distribution is reduced to a sharp interface with nearly zero δ, as is apparent from the high

contrast between light and dark zones in Fig. 5a. In the next stage, entrainment in the upper

(and lower) layer of the fluid at the interface gradually decreases the density difference,

ǫ(t), until reaching a critical value ǫc at time Ti, when the sharp interface starts to fade.

In the subsequent stage the two density fluids mix to one homogeneous layer reached

at time Ts; after time Ts the light intensity in the image in Fig. 5a has turned uniform

grey. These times, Ti and Ts are, respectively, referred to as the interface and stratification

life time.

The time-evolution of the light intensity distribution over depth J(z/D) is shown in

Fig. 5b. J is normalized such that at t = 0, its mean initial value in the upper and lower

fluid correspond, respectively, to 0 and 100. Assuming that J is directly proportional to

the local density, we can calculate the evolution of the potential energy P of the system

with time, which is shown in Fig. 5c in normalized units, with the initial and final levels

taken as 0 and 1. For our experimental setup, the variation of the potential energy between

the initial two-fluid and the final homogeneous state corresponds in dimensional form to

�P = ǫρgπ(b2 − a2)h2/2. We can define the flux Richardson number as the ratio Rif =

�P/�E, where �E is the mechanical energy input in the system. The total mechanical

energy required to mix the two-layer fluid can be estimated as �E = MΩTs, where M is

the torque acting on the inner rotating cylinder. We estimated this torque from Dubrulle and

Hersant (2002) for a homogeneous fluid, assuming that it is the same as in a stratified fluid.

According to Dubrulle and Hersant (2002) the torque is given by M = GρνH , where G is

calculated from the gap width andRe = 3800 according to their relation (20), and givesG =

2.51 × 106. With ρ = 1000 kg/m3, T = 1.9 × 10−3 N m and the work performed during

the mixing time Ts = 4000 s the mechanical energy is then �E = 3.82 J. The potential

energy variation for two ideally separated layers is�P = ǫρ0gπ(b2 − a2)h2/2 (where h =

H/2, ǫ = 0.003), which in our case gives�P = 0.117 J, yielding a flux Richardson number,

Rif = �P/�E = 0.031.

For a fixed rotation rate, i.e., fixed Reynolds number, the variation ofTi andTs is displayed

as a function of the interface density difference, ǫ, in Fig. 6. Both, Ti and Ts are directly

proportional to ǫ implying that the interface and stratification life-times are proportional to

the initial potential energy; the mixing efficiency remains thus constant.

For a fixed stratification, ǫ, the dependence of Ti and Ts on Ω (∼ Re) are shown in Fig.

7 on a logarithmic scale. Within the parameter range under consideration, Ti and Ts are

proportional to Ω−4. For the range of Re-numbers studied in the present experiments the

torque M ∼ Ren, with n = 3/2 (see Dubrulle and Hersant, 2002). Since the total variation

of potential energy �P is the same for all experimental data shown in Fig. 7, we can

conclude that Rif = �P/�E = 1/(MiΩTs) ∼ Rek, with k = 3/2.
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Fig. 6. Values of Ti, (open circles) and Ts, (black circles), vs. ǫ. The values T are obtained from spatio-temporal

shadow-graph images obtained at acquisition frequency of 0.1 Hz. The rotation rate is kept constant atΩ = 0.5 rad/s

(Re = 3800).

Fig. 7. Log–log plot of values of Ti (open circles) and Ts (black circles) vs. ǫ. The valuesT are obtained from spatio-

temporal shadow-graph images obtained at acquisition frequency of 0.1 Hz. The stratification of the interface is

ǫ = 0.003. The solid line has a slope of Ω−4.

4. Discussion

Uniform stratification is normally considered as a generic case for the studies on contin-

uously stratified fluids. New dynamical effects occur when the spatial scale of the buoyancy

frequency variation is comparable with the characteristic dimension of the flow. In the

present study the vertical extension of the pycnocline is comparable with the gap width of

the experimental system. We noticed a marked difference in flow evolution with that in a

fluid with constant buoyancy frequency. The transition from the wave–vortex to the vortex–

vortex regime differs significantly from the one described for the uniform stratification in

CJH and is accompanied by a jump of the fundamental frequency of the density fluctuations

in the flow. Such a jump implies an increase of the azimuthal mode-number. Physically, the

main difference of the present system with the linearly stratified case, is the perturbation
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of the pycnocline by the Taylor vortices in the relatively weakly stratified layers above and

below the pycnocline centre. This explains the presence of higher azimuthal modes.

Generally, experiments on mixing in stratified fluids with smooth density profiles (see

Fernando, 1991), show a strong tendency toward sharpening of density gradients, with layer

formation in case of a thick interface. Depending on the density difference ǫ, an increase

of the initial density gradient as well as a decrease of the initial density gradient has been

observed.

The mixing efficiency for Reynolds numbers O(103) is found as low as 0.031 compared

to values of 0.1 and 0.2 in, respectively, numerical simulations on unstable shear flows

(Caulfield and Peltier, 2000) and experiments on turbulence in stratified fluids (Park et

al., 1994). The reason must be that the main torque is on the primary azimuthal flow,

while the Taylor vortices that mix the flow, are of secondary order. In addition, they are

highly anisotropic in contrast to generally investigated turbulent flows. To make a proper

comparison with former studies on mixing efficiency, we will need to know the exact

strength of the the Taylor vortices; this will be presented in the near future. Nevertheless,

these values may be interesting in view of the mixing due to other secondary flows such as

for instance Langmuir circulation, which are presently of interest in view of the mixing of

the ocean upper layer.
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