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Abstract

In many global optimization problems motivated by engineering applications, the number
of function evaluations is severely limited by time or cost.To ensure that each of these
evaluations usefully contributes to the localization of good candidates for the role of global
minimizer, a stochastic model of the function can be built toconduct a sequential choice of
evaluation points. Based on Gaussian processes and Kriging, the authors have recently in-
troduced the informational approach to global optimization (IAGO) which provides a one-
step optimal choice of evaluation points in terms of reduction of uncertainty on the location
of the minimizers. To do so, the probability density of the minimizers is approximated us-
ing conditional simulations of the Gaussian process model behind Kriging. In this paper, an
empirical comparison between the underlying sampling criterion called conditional mini-
mizer entropy (CME) and the standard expected improvement sampling criterion (EI) is
presented. Classical tests functions are used as well as sample paths of the Gaussian model
and an actual industrial application. They show the interest of the CME sampling criterion
in terms of evaluation savings.
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1 Introduction

To minimize an expensive-to-evaluate functionf , a common approach is to use a cheap
approximation of this function, which can lead to significant savings over traditional
methods. In this context, global optimization techniques based on Gaussian processes
and Kriging (see, e.g.,Chilès and Delfiner [1999]) are oftenpreferred, for this provides an



appealing probabilistic framework to account for the uncertainty on the function approxi-
mation. Expensive-to-evaluate functions are often encountered in industrial optimization
problems, where the function value may be the output of complex computer simulations,
or the result of costly measurements on prototypes.

Most Kriging-based strategies proposed in the past few years (see, e.g., Jones [2001]
and the references therein)implicitly seek a likely value for a global minimizer, and then
assume it to be a suitable location for the next evaluation off . Yet, making full use of
Kriging, it is possible toexplicitly account for the uncertainty on the global minimizers.
The most likely location of a global optimizer is actually not necessarily a good evaluation
point to improve the accumulated knowledge on the global minimizers.

Based on these considerations, the Informational Approachto Global Optimization (IAGO)
strategy recently proposed in Villemonteix et al. [2006] evaluatesf where the potential
for the reduction of uncertainty on the location of the minimizers is deemed to be the high-
est. The entropy of the conditional distribution of the global minimizers is taken as the
uncertainty measure, and is approximated using conditional simulations of the Gaussian
process modelingf . This approach has two main advantages over classical Kriging-based
global optimization methods, such as the Efficient Global Optimization (EGO) algorithm
(see Jones et al. [1998]). First, it should lead to significant savings on the number of eval-
uations of f . Second, results under the form of probability distributions are particularly
attractive. The purpose of this paper is to evidence the evaluation savings that can be
obtained via the use of IAGO.

EGO and IAGO differ only by the sampling criterion used for choosing the next evalua-
tion point. These two criteria, namelyexpected improvement(EI) for EGO andconditional
minimizer entropy(CME) for IAGO, undergo a series of numerical experiments. The first
experiments are conducted on four classical test functions. Later on, empirical conver-
gence rates are estimated using sample paths of a Gaussian process. A final comparison
is performed on a real-case application to the design of intake ports in the automotive
industry, for which a single evaluation of the function to beoptimized requires about ten
hours of computer time.

The Kriging framework is briefly recalled in Section 2, as well as the definitions of the EI
and CME criteria. A brief description of computational aspects of the IAGO approach is
also presented. Section 3 reports the empirical comparisonof these two criteria. Finally,
Section 4 presents conclusions and offers perspectives forfuture work.

2 Kriging-based global optimization

LetX, the factor space, be a compact subset ofR
d and f : X→Rbe the function to be min-

imized. The objective is to findx∗ a global minimizer off overX when the evaluation off
is expensive. To do so, a cheap model off (also known as surrogate approximation) based
on previous evaluations will be used. Even if deterministicmodels have been discussed
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(as in the response surface methodology, see, e.g., Myers and Montgomery [2002]), it is
stochastic models that will retain our attention, and more precisely the Bayesian approach
to global optimization (see, e.g., Mockus [1989]). In this framework, f is viewed as a
realisation (or sample path) of a stochastic processF (F can also be viewed as a Bayesian
prior on f ). The distribution ofF conditionally to past evaluation results forf is used to
design asampling criterionto be optimized to choose an additional evaluation point for
f .

When F is Gaussian (we make this assumption in the rest of the paper), the conditional
distribution ofF at an untried point is also Gaussian with mean and variance that can
be obtained analytically using Kriging (prediction based on Gaussian processes has been
known for more than 50 years as Kriging in geostatistics and we shall keep to this ter-
minology). Gaussian models and Kriging have been introduced in the field of Bayesian
optimization in Jones et al. [1998], through the Efficient Global Optimization (EGO) al-
gorithm. Since then (see Mockus [1989] for an overview of previous work in the field),
Gaussian processes and Kriging have been the object of most publications in the field
of Bayesian global optimization, with improvements of the EGO algorithm (see, e.g.,
Williams et al. [2000] or Huang et al. [2006]) and comparative studies (see, e.g. Jones
[2001] or Sasena et al. [2002]). Our contribution to the fieldis also based on Kriging.

2.1 Linear prediction

In this section, we recall some well-known facts about Kriging on which the rest of the pa-
per is based (for more details, see (Chilès and Delfiner [1999], Villemonteix et al. [2006])
and the references therein).

Let k(., .) be the covariance function ofF, andx be a point inX whereF is to be pre-
dicted. The mean ofF(x) is assumed to be a finite linear combination of known functions
pi of x, m(x) = βββTp(x), whereβββ is a vector of fixed coefficients to be computed, and
p(x) = [p1(x), ..., pl(x)]T. Usually the functionspi are monomials of low degree in the
components ofx (in practice, their degrees do not exceed two).

Given the vectorfn = [ f (x1), ..., f (xn)]
T of past evaluations at points inSn = {x1, ...,xn} ∈

Xn (a sample value ofFn = [F(x1), ...,F(xn)]
T), the Kriging predictorF̂(x) of F(x) is the

minimum-variance unbiased linear predictor in the vector space span{F(x1), ...,F(xn)}.
It can be written as

F̂(x) = λλλ(x)TFn , (1)

with Fn = [F(x1), ...,F(xn)]
T, andλλλ(x) the vector of Kriging coefficients for the predic-

tion atx.
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The vector of coefficientsλλλ(x) is solution of the linear system of equations
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The Kriging coefficients atx can thus be computed without evaluatingf (x), along with
the variance of the prediction error

σ̂2(x) = k(x,x)−λλλ(x)Tk(x)−p(x)Tµµµ(x) , (3)

as these quantities only depend on the covariance ofF . Once f has been evaluated at all
xi in Sn, the prediction off (x) is the conditional mean ofF, given by

f̂ (x) = E[F̂(x)|Fn] = λλλ(x)Tfn,

with Fn = {Fn = fn} the evaluation results. Whenf is evaluated exactly, Kriging is an
interpolation (∀xi ∈ Sn, F̂(xi) = F(xi)). Although noise on the evaluation results could
easily be taken into account in the prediction, in what follows, the evaluations are assumed
to be noise-free (see Villemonteix et al. [2006] for the noisy case).

As advocated in Stein [1999], the covariance ofF is chosen within the Matérn class of
covariance functions (cf. Villemonteix et al. [2006] and the reference therein for more
details on the choice of a covariance), and the covariance parameters are either set a priori
or estimated from the data using the maximum-likelihood method.

After the evaluations inSn, f (x) is viewed as a sample path ofF that interpolates the data
fn. Such sample paths, known asconditional sample paths, are realizations ofF condi-
tionally to Fn and are essential to the IAGO approach. They represent all the behaviors
that are deemed possible forf given the results of evaluations inSn. Figure 1(a) illustrates
the relationships betweenf , f̂ , σ̂ and the conditional sample paths.

2.2 Kriging-based sampling criteria

Among the many sampling criterion available in the literature, we feel that expected im-
provement (EI), which has been the object of most publications in the field for the last ten
years, is the most suited for a comparison with the one we proposed in Villemonteix et al.
[2006].
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2.2.1 Expected improvement

This sampling criterion corresponds to a one-step optimal strategy given the Gaussian
prior F on the unknown functionf . Let f ∗ = minx∈X f (x) be the global minimum off ,
Sn be a set ofn evaluation points inX, and considerMn = minxi∈Sn F(xi) an estimator for
f ∗. For the loss function

L(Sn,F) = Mn− f ∗,

the risk, or expected loss for a candidate pointc for the evaluation off , given the evalua-
tion resultsfn, is given by

E(L(Sn∪{c},F)|Fn) = E(min{Mn,F(c)}|Fn)− f ∗. (4)

One can show that minimizing (4) is equivalent to maximizingthe EI criterion as pre-
sented for example in Jones [2001], i.e.,

EI(c) = E [I(c)|Fn] , (5)

with

I(c) =







0 if F(c) ≥ Mn

Mn−F(c) otherwise
.

One can easily rewrite (5) as

EI(c) = σ̂(c)
[

uΦ(u)+Φ′(u)
]

, (6)

with

u =
mn− f̂ (c)

σ̂(c)
,

mn = E[Mn|Fn] = minxi∈Sn f (xi) the current estimation of the minimum, andΦ the normal
cumulative distribution. The new evaluation point is then chosen as a global maximizer
of EI(c).

2.2.2 Conditional minimizer entropy

The IAGO approach is based on two complementary principles,that set it apart from
previous work in Bayesian global optimization. First, a one-step optimal sampling crite-
rion for the reduction of the uncertainty on the minimizers.Second, the use of Kriging
to evaluate this sampling criterion by approximating the distribution of the minimizers
conditionally to past evaluations. We now briefly present our sampling criterion, and refer
to Villemonteix et al. [2006] for computational details.

In Villemonteix et al. [2006], conditional entropy has beenintroduced to measure the
information gained on the minimizers by an additional evaluation of f . This Stepwise
Uncertainty Reduction(SUR) strategy Geman and Jedynak [1995], chooses the point that
potentially brings the largest reduction in entropy (seen as a measure of uncertainty).
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More formally, given our Gaussian priorF on the functionf to be minimized, the uncer-
tainty on the minimizerx∗ can be measured by the entropy of the global minimizers

H(X∗) = − ∑
x∈G

pX∗(x)log(pX∗(x)),

with X∗ a random vector uniformly distributed in the set of the global minimizers ofF
over a discrete approximationG of X, andpX∗ the point mass density ofX∗.

Now, given a vectorfn of evaluation results, the uncertainty left onx∗ is the entropy of
pX∗(·|Fn) the point mass density ofX∗ conditionally to the evaluation resultsFn (or in
shortconditional minimizer density),

H(X∗|Fn) = − ∑
x∈G

pX∗(x|Fn)log(pX∗(x|Fn)).

The idea of the IAGO strategy is iteratively to ensure a one-step optimal reduction of the
entropy of this distribution.

The risk associated with a candidate evaluation atc ∈ X is then chosen as the differential
entropy of the global minimizers conditionally to the potential result of an evaluation atc
(in short CME forconditional minimizer entropy)

Hn(c) = H(X∗|Fn,F(c)),

and the evaluation is performed at

xn+1 = argmin
c∈X

Hn(c).

From the definition of conditional entropy (Cover and Thomas[1991]), we can write

Hn(c) =

Z

y∈R

pF(c)(y|Fn)

(

− ∑
x∈G

pX∗(x|Fn,F(c) = y) log(pX∗(x|Fn,F(c) = y))

)

dy, (7)

with pF(c)(·|Fn) the distribution ofF(c) and pX∗(·|Fn,F(c) = y) the distribution ofX∗

conditionally toFn and{F(c) = y}. The CMEHn(c), as written in (7), can be viewed as
an expected loss, the loss function being the entropy ofpX∗(·|Fn,F(c) = y) the conditional
minimizer density aftern+1 evaluations.

2.2.3 Practical aspects

The distributionpF(c)(·|Fn) is Gaussian, with mean and variance simply obtained by Krig-
ing. There is, however, no result in the literature that we can use to describe analytically
any useful property of the conditional minimizer density. To compute (7), we resort to an
approximation that is conducted via Monte-Carlo simulations ofF conditionally to avail-
able evaluation resultsFn and to a potential evaluation resulty at c (this approximation
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Algorithm
Input: Initial design of evaluation points and corresponding values of f
Output: Additional evaluations
1. while the evaluation budget is not exhausted or some other convergence condition is not

satisfied
2. do Estimate the parameters of the covariance
3. Compute the Kriging model
4. Optimize the sampling criterion (EI or CME here)
5. Evaluatef

Table 1
Efficient global optimization (EGO) framework

as well as recommendations for the choice ofG are described in details in Villemonteix
et al. [2006]). This approximation leads to a complexity inO(N) for the computation
of Hn(c), with N the size of the discrete approximation ofX. Note that in IAGO the
conditional minimizer density is thus available at each step and provides (at least for low-
dimensional problems) a clear view of the progress achievedin the optimization process
(cf. Figure 1(b)).

In the Bayesian optimization framework, the expensive-to-evaluate function is replaced
by a cheap criterion, updated after each evaluation, which has to be optimized for a new
evaluation point to be chosen. Up to now, we have focused on the choice of criterion, but
no attention has been paid to the entire procedure for globaloptimization, including for
example an update process for the Kriging prediction. To keep this paper focused on a
comparison between sampling criteria, we shall only mention the classical framework of
the Efficient Global Optimization (EGO) presented in Table 1.

EGO (see, e.g. Jones et al. [1998]) starts with a small initial design used to get a first
estimate of the parameters of the covariance and to compute afirst Kriging model. Based
on this model, an additional point is selected in the design space to be the location of
the next evaluation off in order to maximize the EI criterion. The parameters of the
covariance are then re-estimated, the Kriging model is re-computed, and the process of
choosing new points continues until the improvement expected from sampling additional
points has become sufficiently small. The CME criterion can easily be inserted in a similar
algorithm in place of EI to transform EGO into IAGO.

3 Empirical comparison between EI and CME

As presented in the previous section, EI and CME are both Kriging-based sampling cri-
teria and both one-step optimal in some sense. CME should lead to faster convergence
rates, and this for three major reasons.

First, EI aims at estimating theminimum, while CME concentrates on theminimizers.
The search is therefore likely to be more global when based onthe latter. Second, EI
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Fig. 1. (a): Conditional sample paths ofF, and corresponding Kriging prediction. The squares
represent available values off , the bold line is the conditional mean̂f as computed by the Kriging
predictor, the dotted lines provide 95% confidence intervals for the prediction (̂f ±1.96σ̂) and the
thin lines are conditional sample paths. (b): Estimated conditional minimizer density (pX∗(·|Fn))
associated with the Kriging prediction.

aims at improving the estimation of the minimum by sampling where its appearance is
most probable. It seems more reasonable to try diminishing the uncertainty associated
with its position. For example, it might be excessively costly to refine the estimation in a
small neighborhood of apotentialminimum, which may only be local, while evaluations
usingHn could show that a large part of the search space has a very low probability of
containing the global minimum (this idea will be confirmed inSection 3.3). Third, the
computation of CME involves the statistical properties of the sample paths ofF, while,
by contrast the computation ofEI involves only the conditional mean and variance ofF
atc. A more thorough use of the available information on the function is indeed appealing
in this context of expensive, and therefore sparse, evaluations.
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To substantiate these intuitions, a comparison of EI and CMEis in order.

3.1 Experimental conditions

To make this comparison fair, we propose to study the behaviors of EI and CME inde-
pendently from the choice (or estimation) of the covariance(Step 2 in Table 1) and from
the optimization method to be used to optimize the sampling criteria (Step 4 in Table 1).
These aspects are quite complex, and ad-hoc strategies havebeen proposed in the litera-
ture (see Jones [2001] for an example of optimization methodfor the sampling criteria).
However, our first objective here is to motivate the choice ofa sampling criterion.

Therefore, we conducted our experiments using the same Matérn covariance with the
same values, fixed a priori, for the covariance parameters. The setG of potential evalua-
tion points was identical for both criteria, and the choice of the next evaluation point was
carried out via an exhaustive computation of the relevant sampling criterion over this set.
The question to be addressed in what follows then boils down to the following interroga-
tion: Given the same prior information on the function, which sampling criterion chooses
the best point (in a sense to be discussed later) amongst a finite set of possible evaluations
points?

3.2 Tests on classical benchmarks

The four test functions used in this section are taken from Huang et al. [2006], where a
comparison was conducted between EI and classical global optimization schemes such as
DIRECT (see, e.g., Perttunen [1991]). The problem dimensions range from two to five,
and all functions present several local minimizers (see Table 3 in Appendix 2). The co-
variance parameters are estimated beforehand on the results of 200 evaluations randomly
chosen in search space (using a latin hyper cube sampler), and the two criteria are opti-
mized over a latin hyper cube design containing 1000 points randomly re-sampled after
every evaluation.

A single pointx1is randomly chosen in search space as a common starting pointfor both
criteria, and 50 runs are conducted for each function to reduce the dependency on the
starting point. After thei-th evaluation off , the efficiency of each criteria is measured by

Gi =
f (x1)−mi

f (x1)− f ∗
,

with mi = minx∈{x1,...xi} f (x) the current estimate of the global minimum.Gi (a modified
version of the quality measure used in Barton [1984]) thus describes the reduction, after
i iterations of the optimization process, of the initial estimation error for the global mini-
mum f (x1)− f ∗. Table 2 presents, for each criterion, the averaged efficiency after 20, 50
and 100 evaluations. EI beats CME for the Ackley function when i = 40, but for the other
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Gi when points are chosen using EI Gi when points are chosen using CME

i = 20 i = 50 i = 100 i = 20 i = 50 i = 100

Six-Hump Camel Back 0.65 1 1 0.76 1 1

Tilted Branin 0.83 0.92 0.98 0.89 0.95 0.97

Hartman 3 0.64 0.98 1 0.82 0.99 1

Ackley 5 0.36 0.75 0.73 0.34 0.59 0.72
∗For each criterion, the convergence measureGi is averaged over 50 runs (the estimated standard
error for the estimation of these figures is always smaller than 0.01).
Table 2
Comparison of EI and CME on four test functions taken from Huang et al. [2006]∗.

three test functions CME converges faster towards the optimum than EI, and significantly
so for the Hartman 3 function.

3.3 Tests on Gaussian processes simulations

Even if a comparison on classical test functions gives some perspectives on the qualities
of each of the criteria, the variability of the results from one test problem to the next may
be significant, so one can hardly use them to decide beforehand which sampling criterion
to use on a specific problem. It therefore would be best to derive some analytical conver-
gence rates for both criteria under reasonable hypotheses on the function to be optimized.
In our context of expensive-to-evaluate functions, these convergence rates would have to
be non-asymptotic, and we do not know of any such results in the literature. However,
the probabilistic framework considered here makes it possible to estimate empirical con-
vergence rates. Since the function to be optimized is assumed to be a sample path of a
Gaussian process, we can estimate the convergence rates with both criteria when optimiz-
ing sample paths of a Gaussian process whose covariance is the same as that chosen for
the optimization algorithm.

For the sake of brevity, we shall limit our presentation to two Gaussian processes, one
with very smooth sample paths, and the other with irregular sample paths.

Two sets of 1000 sample paths were generated over a regular grid of 1500 points in[0,1]2.
15 evaluations are then performed on each sample paths usingboth criteria. After each
new evaluation, and for each criterion, estimation errors are computed for the global min-
imum and the minimizer, as well as the entropy of the conditional minimizer density. Two
estimators of the global minimum are considered here, namely mn = minx∈{x1,...xn} f (x),
the best evaluation result obtained so far, and

m̃n = f̂ (argmax
x∈G

pX∗(x|Fn)),

the predicted value associated with the point where the conditional minimizer density is
the highest. The average convergence rates for irregular sample paths are presented on
Figure 2(a) in terms of the entropy of the conditional minimizer density, on Figure 2(b)
in terms of the estimation error formn, and on Figure 2(c) in terms of the estimation error
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for m̃n.

As expected, since the entropy of the conditional minimizeris the loss function behind
CME, CME performs significantly better than EI in terms of theentropy of the condi-
tional minimizer density and, in average, the uncertainty on the positions of the global
minimizers diminishes faster if points are chosen using CME(cf. Figure 2(a)). This fact
was guaranteed for the first evaluation since CME is one-stepoptimal for this loss func-
tion, but it had to be checked for several evaluations.

Similarly, if the convergence is measured by the estimationerrormn− f ∗, EI is bound to
perform better if we consider only the first evaluation, since the convergence measure is
the loss function behind EI. However, it appears that after 15 evaluations, the performance
of EI and CME are similar (cf. Figure 2(b)), suggesting that even if EI is one-step optimal,
in the long run, CME will bring the largest reduction formn− f ∗ (this is confirmed by
computations, not presented here, with a larger number of evaluations).

EI would thus seem to be a better criterion in a context where very few evaluations are
allowed. However,mn is estimator actually a rather poor estimator of the global mini-
mum, and it appears that when a faster-to-converge estimator is used instead ofmn, CME
performs significantly better than EI (Figure 2(c)), and this right form the start. This esti-
mator ism̃n , whose interest is apparent for the three search strategy considered here, for
whichmn− f ∗ is significantly bigger than ˜mn− f ∗, and more than three times so after the
first evaluation (Figure 2(b) and Figure 2(c)). CME should therefore be preferred to EI
when one is confronted with irregular sample paths, since itallows a better estimation of
f ∗.

If we look at what happens on a typical sample path (see Figure4), the drawbacks of
EI are clearly evidenced. As intuitively stated at the beginning of the section, EI stalls
on a local optimum because with (4) as a loss function, it is better to ensure a small
improvement near a minimum already found than to check that it is effectively a global
minimum. In the case of irregular sample paths this might be highly dangerous, and IAGO
performs better simply because it first addresses the question of whether a minimizer is
global before improving the precision on its exact position. When the sample paths are
more regular, this advantage diminishes (cf. Figure 3), as the local optima are scarcer.

A significant problem is left aside here, namely what happensin practice if the parameters
of the covariance are poorly estimated? Does the optimization strategy still perform well?
Robustnessto a poor choice of covariance parameters is of course a majorissue but it is not
considered here.The EI and CME criteria should have similarrobustness properties and
may both be deceived by a poor choice of covariance as demonstrated in Jones [2001]. We
feel that this problem should be tackled from a Bayesian point of view, with some prior
on the covariance parameters. This will be done in future work, where we shall compare
an extended version of IAGO to the methods in Jones [2001] designed to be robust to a
poor choice of covariance.
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Fig. 2. Convergence rates using EI (dotted line) and IAGO (bold line), when convergence is mea-
sured byH(X∗|Fn) (a), by the estimation error for the global minimum with the best value ob-
tained so far (mn) as an estimator (b), by the estimation error for the global minimum with ˜mn as
an estimator (c). The convergence measures are averaged over 1000 sample paths of a Gaussian
process with a Matérn covariance with parametersν = 1, ρ = 0.3 andσ = 1 (see Appendix 5.1).
The dashed line represents, as a reference, the convergencerate for a random choice of evaluation
points. 12
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Fig. 3. Convergence rates using EI (dotted line) and IAGO (bold line), when convergence is mea-
sured byH(X∗|Fn) (a), and when convergence is measured by the estimation error for the mini-
mum withm̃n as estimator (b). The dashed line represents, as reference, the convergence rate for a
random choice of evaluation points. The sample paths used here are smoother than those used for
Figure 2 (the parameter for the Matérn covariance areν = 5, ρ = 0.3 andσ = 1).

3.4 Test on an industrial application: intake port design

This section presents an industrial optimization problem in the automotive field, also used
for the comparison of CME and EI.

3.4.1 Problem description

Intake ports (Figure 5) are engine components that convey a mixture of air and fuel to
the combustion chambers. The importance of this type of component lies in the properties
of the flow it induces in the combustion chamber, which has a direct impact on both the
performance and the emissions of pollutant by the engine. Tocomply with new emission
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Fig. 4. Minimization of a sample path from the Gaussian process used to evaluate the conver-
gence rates of Figure 2. The dots indicate the evaluation points chosen by EI. The crosses indicate
the evaluation points chosen by CME. The order in which the evaluations are carried out is also
indicated for CME.

standards (Euro V and Euro VI), while satisfying the ever increasing need for engine per-
formance, the shape of intake ports has to be carefully optimized. Two often-conflicting
objectives have to be maximized simultaneously, namely theflow rate and a scalar char-
acteristic of the turbulent flow known astumble(Lumley [1999]). Physics tells us that the
higher the flow rate, the larger the amount of fuel that can be burnt, and consequently the
larger the power delivered by the engine. Similarly, pollutants as nitrogen oxides (NOx)
and carbon monoxide (CO) are, to a large extent, created whenthe air/fuel mix is not
homogeneous. Therefore, the larger the turbulence (and tumble accounts for the relevant
properties of it), the smaller the pollution.

The specifications for these two objectives are liable to change during conception. There-
fore, it is important to determine not only an optimal geometry for a given set of prefer-
ences but rather the full Pareto front. However, building prototypes for tests is exceedingly
expensive, and each flow simulation by finite-element methods takes about ten hours on
powerful servers. The approach advocated in this paper is therefore particularly attractive
given the general will for reduction of duration and cost associated with development.
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Fig. 5. Intake port. The component itself is in the middle. Below is the combustion chamber. The
upper cylinder is a tranquilizing volume necessary for the convergence of finite-element simula-
tions.

3.4.2 Computational issues

To extend our sampling criteria to a multi-objective problem, we use a standard procedure
and consider several linear combinations of the objective functions (a.k.a. aggregations),
each accounting for a different zone of the Pareto front. In Knowles [2003], this approach
has been used to extend the EI criterion to a multi-objectiveproblem by randomly select-
ing a new aggregation after each evaluation off . In this paper, we follow the same route,
but use the IAGO framework to compute the entropy of the conditional density of the
minimizers for the mono-objective optimization problem corresponding to each aggrega-
tion in a given set. The search can thus be directed towards the most uncertain regions of
the Pareto front.

The resulting multi objective extensions of CME and EI have been applied to the opti-
mization of six shape parameters of an intake port (these parameters are not detailed here
for confidentiality reasons). To improve the number of simulations achievable in a given
time, the geometry and mesh are automatically generated foreach finite-element sim-
ulation. The optimization algorithm is then directly interfaced with the solver, limiting
human intervention to the initialization of the procedure.

The initial value for the parameters of the Matérn covariance are estimated on simula-
tions that have been collected during the design of previousintake ports. It thus becomes
possible to initialize the algorithms with very few randomly chosen points (here with five
points).

One thousand candidate points are used (N = 1000) and the parameters of the Matèrn
covariance are fixed.
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Fig. 6. Results of 20 evaluations randomly chosen using an LHC (dots), or optimally chosen by
CME (crosses) or by EI (squares). For CME and EI, only the Pareto-optimal points are presented.
For LHC, a larger dot size indicates points that are, within the considered set of points, Pareto-opti-
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the set of points that are dominated by the Pareto-optimal points obtained using CME and which
dominate the “worst point”, i.e. the point with worst valuesattained for both objectives

.

3.4.3 Results

For comparison purposes, simulations were conduced on twenty intake ports whose pa-
rameters were chosen using EI, CME, or a Latin Hyper Cube (LHC) as a reference. The
Pareto-optimal points within each of the three sets of evaluation results are presented in
Figure 6. Comparison between sets estimates of Pareto fronts is a tricky process, which
may involve various quality measures Knowles et al. [2006].Here however, the compari-
son is clearly in favor of CME, as

• among all evaluation results, the point closest to an “ideal” solution (i.e. with best value
yet obtained for both objectives, here[−0.97,−1.97]T) has been chosen by CME;

• all but one point chosen by EI are dominated by points chosen by CME. In other words,
almost any good solution found by EI is bettered by a solutionfound by CME;

• the volume of the set of points dominated by the Pareto-optimal points (cf. Knowles
et al. [2006] for details on this quality measure) is 0.31 forCME (this volume is rep-
resented on Figure 6), while it is only 0.26 for EI (the reference for the computation is
the point with worst values attained for both objectives as coordinates).

This test case confirms that Bayesian global optimization iseasily applicable to an indus-
trial problem, even with a very small evaluation budget. Theinterest of CME is apparent
after only a few evaluations, as predicted by the convergence rates of Section 3.3.
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3.5 Computational burden

The comparison made so far dealt only with convergence rates. The superiority of CME
over EI was demonstrated for sample paths of Gaussian randomprocesses, at least for two
very different regularities of the sample paths (cf. Section 3.3), while the convergence
rates are generally in favor of CME when applied to some classical test functions (cf.
Section 3.2) or to an actual industrial problem. However, EIis easier to compute since
it only requires the mean and variance of the prediction at the candidate point, while
the complexity of the computation of IAGO is inO(N), with N the size of a discrete
approximation ofX used for the estimation of the conditional density.

In practice, with our implementation of IAGO (cf. Villemonteix et al. [2006]) around 40s
are required on an AMD opteron 285 server to choose an additional evaluation point for
the sample paths of Section 3.3 (by extensive computation ofHn over 1500 candidate
points, which is enough in practice since this set is randomly re-sampled after each eval-
uation). By comparison, choosing a point with EI takes less than half a second under the
same conditions. To broaden the range of potential applications, we tried to limit the com-
putational expense by testing other approximations for theconditional minimizer density
(since the manipulation of sample paths, necessary for the approximation proposed here,
is responsible for most of the computational burden). We proposed for example, to esti-
mate the derivatives off by Kriging (as in, e.g., Vazquez and Walter [2005]) and to com-
pute the probability for a given point to be a local optimum and under a certain threshold.
It was then easy to build a relatively accurate approximation of the conditional minimizer
density, but the approximation had a detrimental effect on the convergence rate, so that
EI then became more efficient. In fact, the quality of the approximation of the conditional
minimizer density is important for CME to perform better than EI.

IAGO therefore remains destined to the optimization of functions that require a large
amount of computer time (or more generally a significant expense) to be evaluated, which
is after all what it was designed for and is the case in many applications in the industrial
world including the one we presented here.

4 Conclusions and perspectives

In this paper, we have evidenced a clear superiority of CME over EI, especially when the
function to be optimized is irregular. The comparison has been conducted using classi-
cal test functions and an actual industrial application, but above all using sample paths
of the model behind Kriging. The use of sample paths indeed allows the computation
of empirical convergence rates that can also be useful to tune other components of any
Kriging-based algorithms (e.g., the optimization of the sampling criterion). Now that the
interest of the CME criterion has been demonstrated, attention should turn to other crucial
aspects of any Kriging-based optimization algorithm. One of these aspects is the improve-
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ment of robustness against a bad choice of covariance for theGaussian process model. We
feel that the Bayesian framework that we have used until now should also be useful in this
respect.

5 Appendices

5.1 Appendix 1: Matèrn covariance

In this paper, we follow Stein (1999) and use of the isotropicMatérn covariance:

k(x,y) = k(h) =
σ2

2ν−1Γ(ν)

(

2ν1/2h
ρ

)ν

K ν

(

2ν1/2h
ρ

)

∀ (x,y) ∈ X
2 , (8)

with h the Euclidean distance betweenx andy, andK ν the modified Bessel function of
the second kind (Yaglom [1986]). The parameters of this covariance are easy to interpret,
as ν controls regularity,σ2 is the variance (k(0) = σ2), andρ represents therangeof
the covariance,i.e., the characteristic correlation distance. They can eitherbe fixed using
prior knowledge on the system, or be estimated from experimental data. In geostatistics,
estimation is carried out using the adequacy between the empirical and model covariance
(see, e.g., Chilès and Delfiner [1999]). In other areas, cross validation (cf. Wahba [1998])
and maximum likelihood (cf. Stein [1999]) are mostly employed. For simplicity and gen-
erality reasons (cf. Stein [1999]), the maximum-likelihood method is preferred here.

5.2 Appendix 2: Test functions
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Name Description

Six-Hump Camel
Back Branin
[1972]

d = 2

f (x) = 4x2
1−2.1x4

1 +1/3x6
1 +x1x2−4x2

2 +4x4
2

−1.6≤ x1 ≤ 2.4,−0.8≤ x2 ≤ 1.2

Nlocal = 6,Nglobal = 2

x∗ = [0.089,0.713]T and[0.089,0.713]T , f ∗ = −1.03

Tilted Branin
Huang et al. [2006]

d = 2

f (x) =
(

x2−
5.1
4π2 x2

1 + 5
π x1−6

)
2

+10
(

1− 1
8π
)

cosx1 +10+0.5x1

−5≤ x1 ≤ 10,0≤ x2 ≤ 15

Nlocal = 3,Nglobal = 1

x∗ = [−3.2,12.3]T f ∗ = −1.17

Hartman 3 Hart-
man [1973]

d = 3

f (x) = −∑4
i=1 diexp

[

−∑3
j=1αi j (x j − pi j )

]

,

whereα =
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0.3689 0.1170 0.2673

0.4699 0.4387 0.7470

0.1091 0.8732 0.5547

0.03815 0.5743 0.8828

















0≤ xi ≤ 1, i = 1,2,3

Nlocal > 1,Nglobal = 1

x∗ = (0.114,0.556,0.852)T , f ∗ = −3.86

Ackley 5 Ackley
[1987]

d = 5

f (x) = −20exp[−0.2
√

1
d ∑d

i=1 x2
i ]−exp[ 1

d ∑d
i=1 cos(2πxi)]+20+e

∀i ∈ J1,3K −32.8≤ xi ≤ 32.8

Nlocal > 1,Nglobal = 1

x∗ = 0, f ∗ = 0
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