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STABILITY OF MINIMIZERS OF REGULARIZED LEAST SQUARES

OBJECTIVE FUNCTIONS I: STUDY OF THE LOCAL BEHAVIOR

S. DURAND∗ AND M. NIKOLOVA †

Abstract. Many estimation problems amount to minimizing an objective function composed
of a quadratic data-fidelity term and a general regularization term. It is widely accepted that the
minimizers obtained using nonsmooth and/or nonconvex regularization terms are frequently good
estimates. However, very few facts are known on the ways to control properties of these minimizers.
This work is dedicated to the stability of the minimizers of such nonsmooth and/or nonconvex
objective functions. It consists of two parts: in this part, we focus on general local minimizers,
whereas in a second part, we derive results on global minimizers. Here we demonstrate that the data
domain contains an open, dense subset whose elements give rise to local and global minimizers which
are necessarily strict. Moreover, we show that the relevant minimizers are stable under variations of
the data.

Key words. stability analysis, regularized least-squares, non-smooth analysis, non-convex anal-
ysis, signal and image processing

1. Introduction. This is the first of two papers devoted to the stability of
minimizers of regularized least squares objective functions as customarily used in
signal and image reconstruction. In this part, we deal with the behavior of local
minimizers whereas in the second part we draw conclusions about global minimizers.

In various inverse problems such as denoising, deblurring, segmentation or recon-
struction, a sought-after object x̂ ∈ IRp (such as an image or a signal) is estimated
from recorded data y ∈ IRq by minimizing with respect to x an objective function
E : IRp × IRq → IR,

x̂ := arg min
x∈O

E(x, y),(1)

where O ⊂ IRp is an open domain. In other words, x̂ ∈ IRp is a local minimizer of the
objective function E(., y) since E(x̂, y) is the minimum of E(., y) over O. This work is
dedicated to objective functions of the form

E(x, y) := ‖Lx − y‖2 + Φ(x),(2)

where L : IRp → IRq is a linear operator, ‖ . ‖ denotes the Euclidean norm and
Φ : IRp → IR is a piecewise Cm-smooth regularization term. More precisely,

Φ(x) :=

r
∑

i=1

ϕi(Gix),(3)

where for every i ∈ {1, . . . , r}, the function ϕi : IRs → IR is continuous on IRs and Cm-
smooth everywhere except at a given θi ∈ IRs, and Gi : IRp → IRs is a linear operator.
Since the publication of [36], objective functions of this form are customarily used
for the restoration and the reconstruction of signals and images from noisy data
y obtained at the output of a linear system L [6]. The operator L can represent
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the blur undergone by a signal or an image, a Fourier transform on an irregular
lattice in tomography, a wavelet in seismology, as well as other observation systems.
The quadratic term in (2) thus accounts for the closeness of the unknown x to data
y. The operators Gi in the regularization term Φ usually provide the differences
between neighboring samples of x. For instance, if x is a one-dimensional signal,
usually Gix = xi+1 − xi or in some cases Gix = xi+1 − 2xi + xi−1. Typically, for all
i ∈ {1, . . . , r}, we have θi = 0 and ϕi reads

ϕi(z) = φ(‖z‖), ∀i ∈ {1, . . . , r},(4)

where φ : IR+ → IR is an increasing function, often called potential function. Several
functions φ, among the most popular, are the following [20, 5, 21, 29, 22, 33, 11, 35, 7]:

Lα φ(t) = |t|α, 1 ≤ α ≤ 2,
Lorentzian φ(t) = αt2/(1 + αt2),
Concave φ(t) = α|t|/(1 + α|t|),
Gaussian φ(t) = 1 − exp (−αt2),
Truncated quadratic φ(t) = min

{

αt2, 1
}

,

Huber φ(t) =

{

t2 if |t| ≤ α,
α(α + 2|t − α|) if |t| > α.

(5)

Objective functions as specified above are based either on PDE’s [29, 33, 2, 13, 12, 37],
or relay on probabilistic considerations [4, 20, 16].

Most of the potential functions cited in (5) are “irregular” in the sense that they
are non-convex and/or nonsmooth. Indeed, several authors pointed out the possibility
of getting signals involving jumps and images with sharp edges by using nonconvex
regularization functions [26, 21, 29]. On the other hand, non-smooth regularization
has been shown to avoid Gibbs artifacts and to enforce local homogeneity [19, 18,
1, 27]. In spite of this, very few facts are known about the behavior, and especially
about the stability, of the local minimizers relevant to non-convex objective functions.
Precisely, we study how a local minimizer x̂ of an objective function of the form (2)-
(3) behaves under variations of data y. Let us mention that the principal difficulty
arises in the context of nonconvex objective functions, whereas the stability of convex
objective functions is already well understood [31, 23].

Readers may associate the problem of the stability of a minimizer x̂ with the
problem of the stability of the minimum-value E(x̂, y). Remark that the stability of a
minimizer does imply the stability of the relevant minimum-value, but the inverse is
false in general. Some results have been obtained on the minimum-values of nonconvex
functions [32, 10, 9] but they do not have a direct relation to the problem we consider.

2. Motivation and definitions. Studying the stability of local minimizers
(rather than restricting our interest to global minimizers only) is a matter of crit-
ical importance in its own right for several reasons. In many applications, smooth-
ing is performed by only locally minimizing a nonconvex objective function in the
vicinity of some initial solution. Second, it is worth recalling that no minimization
algorithm guarantees the finding of the global minimum of a general nonconvex ob-
jective function. Some algorithms allow the finding of the global minimum only with
high probability, under demanding requirements (e.g. simulated annealing) [20, 19].
Others allow the finding of a local minimum which is expected to be close to the
global minimum [8]. The practically obtained solutions are thus frequently only local
minimizers, hence the importance of knowing their behavior.
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Our first goal is to catch the set of all y ∈ IRq for which the relevant objective
function E(., y) might exhibit nonstrict minima. We shall demonstrate that all these
ys are contained in a negligible subset of IRq, provided that L is injective (one-to-
one). A further question is to know whether, and in what circumstances, the strict
local minimizers of E(., y) give rise to a continuous local minimizer function as defined
below.

Definition 2.1. A function X : O → IRp, where O is an open domain in IRq, is
said to be a minimizer function relevant to E if every X (y) is a strict (i.e. isolated)
local minimizer of E(., y) whenever y ∈ O.

Our second goal is therefore to show that local minimizer functions are smooth
on an open, dense subset of their domains. From a practical point of view, saying
that a property holds for data belonging to an open, dense subset of IRq means that
it is systematically satisfied since it could fail only for a negligible subset of IRq which
noisy data have no chance of coming across. So, we will quantify with respect to the
Lebesgue measure on IRq the amount of data y ∈ IRq which assuredly give rise either
to strict local minimizers, or to local minimizer functions X which remain smooth on
some neighborhoods. The set given below corresponds to these properties.

Definition 2.2. Let E(., y) be Cm (with m ≥ 1) almost everywhere on IRp, for
every y ∈ IRq. Denote

Ω :=







y ∈ IRq :
if x̂ is a minimizer of E(., y) then there is
a Cm−1 minimizer function X : O → IRp

such that y ∈ O ⊂ IRq and x̂ = X (y)







.(6)

The set Ω, or equivalently its complementary Ωc, can be explicitly calculated in
the following examples.

Example 1. Consider the function

E(x, y) = (x − y)2 + Φ(x),

where

Φ(x) =

{

1 − (|x| − 1)2 if 0 ≤ |x| ≤ 1,
1 if |x| > 1.

It is not difficult to check that the minimizer x̂ of E(., y) takes different forms according
to the values of y.

- If |y| > 1, the minimizer is strict and reads x̂ = y.
- If y = 1, every x̂ ∈ [0, 1] is a nonstrict minimizer.
- If y = −1, every x̂ ∈ [−1, 0] is a nonstrict minimizer.
- If y ∈ (−1, 1), the minimizer is strict and constant, x̂ = 0.

Thus we find that Ωc = {−1, 1} which means that Ω is open and dense in IR.
Example 2. Consider

E : IR2 × IR → IR,

(x, y) 7→ (x1 − x2 − y)2 + β(x1 − x2)
2,

where β > 0. For all y ∈ IR, every x̂ ∈ IR2, such that x̂1 − x̂2 = y/(1 + β), is a
minimizer of E(., y). Hence Ωc = IR.

Example 3. Consider

E : IR2 × IR → IR,

(x, y) 7→ (x1 − x2 − y)2 + |x1| + |x2|.
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The minimizers x̂ of E(., y) are obtained after a simple computation.

- If y > 1/2, every x̂ = (α, α − y + 1/2) for α ∈ [0, y − 1/2] is a nonstrict
minimizer.

- If y ∈ (−1/2, 1/2), the only minimizer is x̂ = (0, 0).
- If y < −1/2, every x̂ = (α, α − y − 1/2) for α ∈ [y + 1/2, 0] is a nonstrict

minimizer.

Consequently, Ω = (−1/2, 1/2).

Let us remark that L is injective in Example 1 whereas it is non-injective in
Examples 2 and 3. We can construct many other examples of objective functions E
involving L non-injective for which Ωc is non-negligible. This suggests we make the
following assumption:

H1. The operator L : IRp → IRq in (2) is injective, i.e. rankL = p.

It is not a necessary condition to have a negligible Ωc, but it allows us to obtain
results which are strong enough.

Remark 1. We do not focus properly on the question whether or not E admits
minimizers when y ranges over IRq. The results presented in the following are mean-
ingful if, for all y ∈ IRq, the objective function E(., y) admits at least one minimizer,
although the results formulated next remain trivially true in the opposite situation.
This comes from an astuteness in the definition of Ω in (2.2) allowing it to contain y’s
for which E(., y) does not admit minimizers. Practically, every objective function used
for the estimation on an unknown magnitude x admits minimizers. Let us recall that
E(., y) is guaranteed to admit minimizers if it is coercive, i.e. if E(x, y) → ∞ along
with ‖x‖ → ∞ [15, 32]. For instance, this situation occurs, for all y ∈ IRq when L is
injective and Φ does not decrease faster or equally as fast as −‖Lx‖2 as ‖x‖ → ∞.
This is trivially satisfied in practice where Φ is bounded below.

For any function f : IRp → IR, we denote by ∇f(x) ∈ IRp the gradient of f at
a point x ∈ IRp and by ∇2f(x) ∈ IRp × IRp the Hessian matrix of f at x. Although
E depends on two variables (x, y), we will be concerned only with its derivatives
with respect to x. For simplicity, ∇E and ∇2E will systematically be used to denote
gradient and Hessian with respect to the first variable x. By B(x, ρ) we will denote a
ball in IRn with radius ρ and center x, for whatever dimension n appropriate to the
context. Furthermore, the letter S will denote the unit sphere in IRn centered at the
origin. When necessary, the superscript n is used to specify that Sn is the unit sphere
in IRn. Last, we denote IR+ = {t ∈ IR : t ≥ 0}.

The reasoning underlying our work is based upon the necessary conditions for
minimum, and also upon some sufficient conditions for strict minimum. We also
make a recurrent use of the implicit functions theorem [3], Sard’s Theorem [3] and of
several results about the minimizers of a non-smooth objective function E of the form
(2)-(3) [28]. The subsequent considerations are split into two parts according to the
differentiability of Φ.

3. Cm-smooth objective function. The characterization of Ω, developed in
this section, is based on the next Lemma, which constitutes a straightforward exten-
sion of the Implicit functions Theorem [3].

Lemma 3.1. Suppose E : IRp× IRq → IR is any function which is Cm, with m ≥ 2,
with respect to both arguments. Fix y ∈ IRq. Let x̂ be such that ∇E(x̂, y) = 0 and
∇2E(x̂, y) is positive definite.
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Then there exist ρ > 0 and a unique Cm−1-minimizer function X : B(y, ρ) → IRp

such that X (y) = x̂.

Proof. Since ∇E(x̂, y) = 0 and ∇2E(x̂, y) is an isomorphism from IRp to IRp, the
Implicit functions theorem tells us that there exist ρ > 0 and a unique Cm−1-function
X : B(y, ρ) → IRp satisfying

∇E(X (y′), y′) = 0 for all y′ ∈ B(y, ρ).

In other words, each X (y′) is a stationary point of E(x, y′) if y′ ∈ B(y, ρ). Since
X is continuous, for ρ sufficiently small, the constant rank theorem [3] ensures that,
for every y′ ∈ B(y, ρ), we have rank∇2E(X (y′), y′) ≥ rank∇2E(x̂, y) = p, and hence
rank∇2E(X (y′), y′) = p. Then every X (y′), relevant to y′ ∈ B(y, ρ), is a strict local
minimizer of E(., y′). 2

In the following, we focus on objective functions E of the form (2) where Φ is any
Cm function on IRp, with m ≥ 2. If for a given y ∈ IRq, a point x̂ ∈ IRp is a strict or
non-strict local minimizer of E(., y), then

∇E(x̂, y) = 0,(7)

where ∇E(x, y) = 2LT (Lx − y) + ∇Φ(x).(8)

Using the fact that

∇E(x̂, 0) = 2LT Lx̂ + ∇Φ(x̂),(9)

the variables x̂ and y can be separated in equation (7) which then becomes:

2LT y = ∇E(x̂, 0).(10)

A point x̂, satisfying (10), is guaranteed to be a strict minimizer of E(., y) if the Hessian
of E(., y) at x̂, namely ∇2E(x̂, y), is positive definite. Furthermore, the Hessian of
E(., y) at an arbitrary x reads

∇2E(x, y) = 2LT L + ∇2Φ(x).(11)

We emphasize the fact that the Hessian of E(., y) is independent of y at any x ∈ IRp,
by writing ∇2E(x, 0) instead of ∇2E(x, y). Based on Lemma 3.1, we cannot guarantee
that a point x̃ satisfying (7) is a strict minimizer of E(., y) if ∇2E(x̃, 0) is singular.
Hence all the ys leading to a nonstrict minimizer, or to a non-continuous minimizer
function, are contained in a set Ωc

0 as specified below.
Lemma 3.2. Suppose E is as in (2) where Φ is an arbitrary Cm-function on IRp,

with m ≥ 2. Consider the set

Ω0 :=
{

y ∈ IRq : ∃x̃ ∈ H0 satisfying 2LT y 6= ∇E(x̃, 0)
}

,(12)

where

H0 :=
{

x ∈ IRp : det∇2E(x, 0) = 0
}

.(13)

Then we have

Ω0 ⊂ Ω,
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where Ω is the set introduced in Definition 2.2.

Observe that H0 is the set of all the critical points of ∇E(x, y). Since ∇2E(x, 0)
is independent of y, the set H0 is independent of y as well.

Remark 2. If ∇2E(x, 0) is positive definite for all x ∈ IRp, the set H0 is empty
and Lemma 3.2 shows that Ω = IRq. It is a tautology to say that in this case, there is
a unique Cm−1 minimizer function X as stated in Definition 2.2. The above condition
on ∇2E(x, 0) is satisfied whenever L is injective and Φ is convex. This is readily seen
from (11) where LT L is positive definite and all the eigenvalues of the second term
are non-negative.

However, H0 is generally non-empty if Φ is non-convex. This is the reason why,
in the following, we rather focus on non-convex functions Φ. More specifically, we
consider functions which satisfy the following assumption.

H2. As t → ∞, we have
∇Φ(tv)

t
→ 0 uniformly with v ∈ S.

This assumption is satisfied by the regularization functions used by many au-
thors [21, 29, 22]. The theorem stated next provides the principal result of this
section.

Theorem 3.3. Suppose E is as in (2) where Φ is an arbitrary Cm function on
IRp, with m ≥ 2. Suppose that H1 is satisfied. Then we have the following:

(i) The set Ωc, the complementary of Ω specified in Definition 2.2, is negligible
in IRq.

(ii) Moreover, if H2 is satisfied, Ωc is a negligible subset of IRq.

Remark 3. The results (i) and (ii) of the theorem remain true if we replace Ω by
Ω0, as defined in (12). In fact, the proof of the theorem establishes these results for
Ω0. The ultimate conclusions are obtained using Ωc ⊂ Ωc

0, according to Lemma 3.2.

Remark 4. It is straightforward that under the conditions of Theorem 3.3, the
minimum-value function y 7→ E(X (y), y) is Cm−1 smooth. The same conclusion can
be drawn also for nonsmooth objective functions as considered in Theorem 4.2.

Proof. As mentioned in Remark 3, it is sufficient to prove Theorem 3.3 for Ω0

instead of Ω. The proof of this theorem is based on three auxiliary statements which
are given below. These statements are presented in a more general form which allows
their application in the context of nonsmooth regularization functions, considered
later in § 4.

Lemma 3.4. Let L be an injective linear operator between two finite-dimensional
spaces M and N . Consider an arbitrary subset V ⊂ M which is negligible in M .
Define:

W :=
{

y ∈ N : LT y ∈ V
}

.

Then we have

(i) W is negligible in N ;
(ii) W is closed if V is closed.

Proof of Lemma 3.4. Since V is negligible, for every ε > 0 there is a sequence of
balls {Bi} such that

V ⊂
∞
⋃

i=1

Bi and

∞
∑

i=1

measure(Bi) < ε.
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Then

W ⊂
∞
⋃

i=1

{

y ∈ N : LT y ∈ Bi

}

.

However, for every i we have

measure
({

y ∈ N : LT y ∈ Bi

})

≤
1

|λ|
measure(Bi),(14)

where λ is the singular value of L which is the smallest in magnitude. By assumption
H 1, we are guaranted that λ 6= 0. It follows from (14) that

measure(W ) <
1

|λ|

∞
∑

i=1

measure(Bi) <
ε

|λ|
.

The point (i) is proven.
Suppose now that V is closed. The closeness of W follows from the continuity of

LT . 2

The next two results concern gradient-type functions of the form (9).
Theorem 3.5 (Sard’s theorem). Let M and N be two affine vector spaces of the

same dimension. For U an open subset of M , let G : U → N be a C1-function and H
denote the set of the critical points of G:

H := {x ∈ U : det∇G(x) = 0} .

Then G(H) := {G(x) : x ∈ H} is a negligible subset of N .
The proof of this statement can be found e.g. in [30, 25].
Lemma 3.6. Let M and N be two real vector spaces of the same finite dimension.

Consider a closed subset H of M . Let G be a continuous function from H to N such
that

1. G(H) is a negligible subset of N ;
2. there is a point x0 ∈ H as well as a positive constant C, such that for all

x ∈ H satisfying ||x − x0|| > C we have ||G(x) − G(x0)|| ≥ C ||x − x0||.
Then G(H) is included in a closed and negligible subset of N .

Proof of Lemma 3.6. Let x0 ∈ H and C > 0 be as required in assumption 2. Then
for all α > C,

G(H) ∩ B(G(x0), Cα) ⊂ G
(

H ∩ B(x0, α)
)

⊂ G(H).(15)

The second inclusion is evident. The first one comes from the following facts. Let

y ∈ G(H) \ G
(

H ∩ B(x0, α)
)

. Hence there is x such that y = G(x) and ‖x − x0‖ >

α > C. By assumption 2, we get ||G(x) − G(x0)|| ≥ Cα. This means that y 6∈
G(H) ∩ B(G(x0), Cα).

Furthermore, as G is continuous and H ∩ B(x0, α) is compact, G
(

H ∩ B(x0, α)
)

is also compact. By the last inclusion in (15), G(H∩B(x0, α)) is a negligible subset of
N . Then, by the first inclusion, G(H)∩B(x0, Cα) is included in a negligible compact
set. This is true for all α, so by making α tends to infinity, we obtain the desired

7



conclusion. 2

Let us now come back to the Proof of Theorem 3.3. Note that the complementary
set of Ω0 given in (12) can also be expressed as

Ωc
0 =

{

y ∈ IRq : LT y ∈ ∇E(H0, 0)
}

,

where ∇E(x, 0) is given in (9) and H0 in (13). By applying now Theorem 3.5 with
the associations G = ∇E(., 0), H = H0 and M = N = IRp, we find that ∇E(H0, 0)
is a negligible subset of IRp. We now apply Lemma 3.4 where we identify V with
∇E(H0, 0) and N with IRq. Thus (i) is proven.

We complete our reasoning in order to prove (ii). By the continuity of ∇E(., 0),
the set H0 is closed. Let us check whether assumption 2 of Lemma 3.6 is true for
G = ∇E(., 0) and H = H0. We have

‖G(x)‖ ≥ 2‖LT Lx‖ − ‖∇Φ(x)‖.

Moreover, ‖LT Lx‖ ≥ λ2‖x‖ for any x ∈ IRp, where λ2 is the least eigenvalue of LT L;
since L is injective, λ2 > 0. Next, assumption H2 means that there is C > 0 such that
‖x‖ > C leads to ‖∇Φ(x)‖ ≤ λ2‖x‖. Hence, the assumption 2 of Lemma 3.6 is true
for x0 = 0, which fact allows us to deduce that ∇E(H0, 0) is contained in a closed,
negligible subset of IRp. The statement (ii) is obtained by applying Lemma 3.4 again.
2

Remark 5. Even if the chances of getting a point y, yielding a nonstrict mini-
mizer, is “almost null”, it is legitimate to ask what is the shape of H0, as defined in
(13), since it contains all the non-strict minimizers of E(., y), for all y. A key point
in Theorem 3.3 is that ∇E(H0, 0) is negligible although H0 itself may be of positive
measure. However, we observe that for the most important classes of functions Φ, the
set H0 is negligible as well. For instance, such is the case if L is injective, Φ is analytic
and there is x0 ∈ IRp for which the Hessian matrix ∇2Φ(x0) has all its eigenvalues
non-negative. Indeed, assume that H0 is of positive measure. Being closed, H0 con-
tains an open p-cell. As ∇2E(., 0) is analytic on IRp, it follows that det∇2E(x, 0) = 0
for all x ∈ IRp. However, the latter is impossible because by assumption there is x0

such that

∇2E(x0, 0) = 2LT L + ∇2Φ(x0)(16)

is positive definite, as being the sum of a positive definite and of a semi-positive
definite matrix.

More specifically, the assumption about the positive definiteness of ∇2Φ(x0) holds
for x0 = 0 whenever Φ is of the form of (3)-(4) with φ analytic and symmetric,
and φ′′(0) ≥ 0—this comes from the fact that ∇2Φ(0) = φ′′(0)

∑r

i=1 GT
i Gi. These

requirements are satisfied by the objective functions used in [21, 24, 29] where the
typical choices for φ read

φ(t) =
t2

t2 + α
,(17)

φ(t) = 1 − e−αt2 ,(18)
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where α > 0 is a parameter.
Let us come back to the expression of ∇2E(x0, 0) in (16). Observe that if there is a

point x0 such that ∇2Φ(x0) is positive definite, the set H0 is negligible independently
of the injectivity of L.

4. Objective function involving nonsmooth regularization. We shall now
consider regularization terms Φ as introduced in (3), namely

Φ(x) =

r
∑

i=1

ϕi(Gix),(19)

where Gi : IRp → IRs are linear operators, for all i = 1, . . . , r. We will assume that for
each i = 1, . . . , r, there is a constant θi ∈ IRs such that ϕi is Cm on IRs \ {θi}, with
m ≥ 2, and continuous on IRs. Typically, ϕi is nonsmooth at θi. Potential functions
which are non-smooth at more than one point, say θi, can be seen as a combination
of several ϕi, which are nonsmooth at θi, applied to the same Gix. Notice that the
regularization function studied in §3 can be seen as a special case of (19) corresponding
to r = 1, G1 = I and ϕ1 ∈ Cm(IRs). In the context of piecewise smooth potential
functions, the assumption H2 is specified as it follows:

H3. For every i and for t ∈ IR, we have
∇ϕi(tu)

t
→ 0 uniformly with u ∈ Ss

when t → ∞.
We restrict our attention to potential functions ϕi which admit at θi directional

derivatives for every direction u ∈ IRs.
Definition 4.1. Consider a function f : M → IR with M a finite-dimensional

real affine space. For x ∈ M and u in the relevant vector space, f is said to admit
a one-sided directional derivative at x in the direction of u, denoted by d+f(x)(u), if
the difference quotient t → [f(x + tu) − f(x)]/t for t ∈ IR has a limit when t ց 0:

d+f(x)(u) := lim
tց0

f(x + tu) − f(x)

t
.

In order to simplify the notations, we introduce the normalization application N
which, with each vector v, associates its projection on the relevant unit sphere, i.e.

N (v) =
v

‖v‖
.(20)

Whenever ϕi is nonsmooth at θi, the directional derivative d+ϕi(θi)(u) is a nonlinear
function of the direction u. We will focus on functions ϕi for which d+ϕi(θi)(u) can be
expressed as the scalar product of the direction u and a direction-dependent vector,
that we call directional gradient. More rigourously, we will focus on functions ϕi which
satisfy the following property:

H4. For every net h ∈ IRs converging to 0 and such that limh→0 N (h) exists, the
limit limh→0 ∇ϕi(θi + h) exists and depends only on limh→0 N (h). We put

∇+ϕi(θi)

(

lim
h→0

N (h)

)

:= lim
h→0

∇ϕi(θi + h).(21)

By a slight abuse of notation, we extend this definition to every u ∈ IRs in the following
way:

∇+ϕi(θi)(u) =

{

∇+ϕi(θi) (N (u)) if u 6= 0,
0 if u = 0.

(22)
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The vector ∇+ϕi(θi)(u) is the directional gradient of ϕi at θi for u, as it was mentioned
above. In particular, if ϕi is smooth at θi, for every u 6= 0, we have ∇+ϕi(θi)(u) =
∇ϕi(θi), i.e. we get the gradient of ϕi at θi. This fact suggests we extend the
definition of ∇+ϕi on IRs by taking ∇+ϕi(z)(u) = ∇ϕi(z) for every z 6= θi and for
every u 6= 0. When the directional gradient ∇+ϕi(θi) exists, the one-sided directional
derivative d+ϕi(θi) is well defined and, more generally, for any z ∈ IRs and for any
u ∈ IRs, we have

d+ϕi(z)(u) = lim
tց0

ϕi(z + tu) − ϕi(z)

t

= lim
tց0

uT∇ϕi(z + κttu) for κt ∈ (0, 1) [by the mean value theorem]

= uT∇+ϕi(z)(u).(23)

We will also use two other assumptions which are given below.
H5. For every i ∈ {1, . . . , r}, the application u → ∇+ϕi(θi)(u) is Lipschitz on

Ss.
Remark 6. Under assumption H5, the relation reached in (23) shows that the

application u → d+ϕi(θi)(u) is Lipschitz on IRs.
H6. For every i ∈ {1, . . . , r}, the application u 7→ ∇ϕi(θi + hu) converges to

∇+ϕi(θi) as h ց 0, uniformly on Ss.
Definition 4.1 and the last assumptions are illustrated in the context of the most

typical potential functions as mentioned in (4).
Example 4. Consider

ϕi(z) = φ(‖z − θi‖) for z ∈ IRs,

where φ ∈ Cm(IR+), m ≥ 2, and φ′(0) > 0. The latter inequality implies that ϕi is
nonsmooth at θi. By applying (21)-(22), it is easily obtained that



















∇ϕi(z) = φ′(‖z − θi‖)
z − θi

‖z − θi‖
if z 6= θi,

∇+ϕi(θi)(u) = φ′(0+)
u

‖u‖
if z = θi.

Both assumptions H5 and H6 are clearly satisfied. The assumption H3 amounts to
saying that φ′(t)/t → 0 when t → ∞. This is satisfied by all the functions cited in
(5). By (23), the directional derivative of ϕi at θi for u reads

d+ϕi(θi)(u) = uT∇+ϕi(θi)(u) = φ′(0+)‖u‖.(24)

Below we extend Theorem 3.3 to objective functions involving nonsmooth regu-
larization terms.

Theorem 4.2. Suppose E is as in (2)-(3). For all i ∈ {1, . . . , r}, let ϕi be Cm

on IR \ {θi} with m ≥ 2 and continuous at θi where the assumptions H4, H5 and H6
hold. Suppose that H1 is satisfied. Then we have the following:

(i) The set Ωc, the complementary of Ω specified in Definition 2.2, is negligible
in IRq.

(ii) Moreover, if H3 is satisfied, Ωc is a negligible subset in IRq.
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The proof of this theorem relies on several propositions and lemmas. Before we
present them, let us first exhibit some basic facts entailed by the non-smoothness of
Φ. Let x̂ be a minimizer of E(., y). If Gix̂ 6= θi for all i = 1, . . . , r, then (x̂, y) is
contained in a neighborhood where E is Cm. So every minimizer x̂′ of E(., y′) satisfies
∇E(x̂′, y′) = 0 and the second differential ∇2E(., y′) is well defined on this neighbor-
hood. For all (x̂′, y′) in the neighborhood, we can apply the theory about smooth
regularization developed in § 3. Otherwise, all minimizers x̂ of E(., y), involving at
least one index i for which Gix̂ = θi, belong to the following set,

F :=

r
⋃

i=1

{x ∈ IRp : Gix = θi} .(25)

If Gi 6= 0, ∀i ∈ {1, . . . , r}, it is obvious that F is both closed and negligible in IRp.
Then it is legitimate to ask what is the chance of a minimizer of E(., y), for some
y ∈ IRq, coming across to F . It has been shown in [27] that if the ϕi are C2 on
IRs \ {θi} and such that

d+ϕi(θi)(v) > −d+ϕi(θi)(−v), ∀v ∈ IRs \ {0},

the minimizers x̂ of E(., y) involve numerous indices i for which Gix̂ = 0, that is
x̂ ∈ F . When {Gi} yield the first-order differences between adjacent neighbors, this
amounts to the stair-casing effect which has been experimentally observed by many
authors [17, 14].

The conditions for a point x̂ ∈ F to be a minimizer of E(., y) are now more tricky
than in the case when E(., y) is smooth in the vicinity of x̂. For every x̂ ∈ F , and for
every i ∈ J , where

J := {i ∈ {1, . . . , r} : Gix̂ = θi} ,(26)

the function ϕi(Gi .) is nonsmooth at x̂. Otherwise, for i ∈ Jc = {i ∈ {1, . . . , r} : i 6∈
J}, the function x → ϕi(Gix) is differentiable on a neighborhood of x̂ in the usual
sense. This suggests we introduce the following partial objective function,

EJ(x, y) = ‖Lx − y‖2 +
∑

i∈Jc

ϕi(Gix),

which is Cm on a neighborhood of x̂. Moreover, for every y ∈ IRq, we see that EJ(., y)
is Cm at any x belonging to the set

ΘJ :=

{

x ∈ IRp :

[

Gix = θi for all i ∈ J,
Gix 6= θi for all i ∈ Jc

}

.(27)

By the way, ΘJ is an affine space and ΘJ is a differentiable manifold. The relevant
tangent space at any point of ΘJ is denoted TJ and satisfies

TJ =
⋂

i∈J

Ker Gi.(28)

Notice that the family of all ΘJ , when J ranges over P({1, . . . , r}), forms a partition
of IRp (i.e. a covering of IRp composed of disjoint sets). We can notice also that

⋃

J∈P({1,···,r})

{y ∈ IRq : ∃x̂ ∈ ΘJ minimizer of E(., y)}
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is a covering of IRq provided that for every y the objective function admits at least
one minimizer. In particular, this is a partition of IRq if E(., y) admits a unique strict
minimizer for all y.

Any minimizer x̂ of E(., y) satisfies

d+E(x̂, y)(v) ≥ 0, ∀v ∈ IRp.

Let J be associated with x̂ according to (26). For any x ∈ ΘJ , and for any v ∈ IRp,
we have

d+E(x, y)(v) = vT∇EJ (x, y) +
∑

i∈J

vT GT
i ∇

+ϕi(θi)(Giv),(29)

with

∇EJ (x, y) = 2LT (Lx − y) +
∑

i∈Jc

GT
i ∇ϕi(Gix).(30)

Below we shall evoke E|ΘJ
(., y)—the restriction of E(., y) to the manifold ΘJ .

Note that

E|ΘJ
(., y) = EJ |ΘJ

(., y) + K where K =
∑

i∈J

ϕi(θi),

and consequently E|ΘJ
(., y) is Cm on ΘJ . Based on these expressions, we formulate a

result which extends Lemma 3.1. The proofs of all statements given in what follows
are detailed in the appendix.

Proposition 4.3. Consider E defined as in (2)-(3) and y ∈ IRq. For all i ∈
{1, . . . , r}, let ϕi be Cm on IR \ {θi} with m ≥ 2 and continuous at θi where the
assumptions H4, H5 and H6 hold. Focus on x̂ ∈ IRp and let J be defined as in (26).
Suppose x̂ is a local minimizer of E|ΘJ

(., y) such that:
(a) ∇2 (E|ΘJ

) (x̂, y) is positive definite;
(b) if J is nonempty,

d+E(x̂, y)(v) > 0, ∀v ∈ T⊥
J ∩ S.

Then there exist ρ > 0 and a unique Cm−1 local minimizer function X : B(y, ρ) →
IRp such that x̂ = X (y). Moreover, X (y′) ∈ ΘJ for all y′ ∈ B(y, ρ).

All data points y ∈ IRq for which all local minimizers of E(., y) satisfy the con-
ditions of Proposition 4.3 clearly belong to Ω. Reciprocally, its complementary Ωc is
included in the set of those data points y for which the conditions of Proposition 4.3
are liable to fail. As previously, we will try to confine the latter set to a closed
negligible subset of IRq.

Corollary 4.4. Let E be as in Proposition 4.3. For J ∈ P({1, . . . , r}), define

HJ
0 := {x ∈ ΘJ : det∇2(E|ΘJ

)(x, 0) = 0},(31)

WJ :=

{

w ∈ T⊥
J : vT w ≤

∑

i∈J

vT GT
i ∇

+ϕi(θi)(Giv), ∀v ∈ T⊥
J

}

.(32)

Let ΠTJ
be the orthogonal projection onto TJ . Put

AJ :=
{

y ∈ IRq : 2ΠTJ
LT y ∈ ∇ (E|ΘJ

) (HJ
0 , 0)

}

,(33)

BJ :=
{

y ∈ IRq : 2LT y ∈ ∇EJ (ΘJ , 0) + ∂T⊥

J
WJ

}

,(34)

12



where ∂T⊥

J
WJ is the boundary of WJ considered in T⊥

J .

Then Ωc, the complement of Ω in IRq introduced in Definition 2.2, satisfies

Ωc ⊆
⋃

J∈P({1,...,r})

(AJ ∪ BJ) .(35)

The reasoning underlying Corollary 4.4 can be summarized in the following way.
The set AJ in (33) contains all the y ∈ IRq which lead to a stationary point of E|ΘJ

(., y)
belonging to ΘJ where the Hessian of E|ΘJ

(., y) is singular, i.e. for which the condition
(a) of Proposition 4.3 is not valid. For any J nonempty, BJ contains all y for which
E(., y) can exhibit minimizers for which the condition (b) of Proposition 4.3 fails. It
remains to consider the extent of the sets AJ and BJ . The set AJ is addressed next.

Proposition 4.5. Let E be as in Proposition 4.3. We have the following state-
ments.

(i) The set AJ , defined in (33), is negligible in IRq.
(ii) If all ϕi satisfy H3, the closure of AJ is a negligible subset of IRq.
Although the proof is totally different, we have a similar statement for the sets

BJ .
Proposition 4.6. Let E be as in Proposition 4.3. We have the following state-

ments.
(i) The set BJ , defined in (34), is negligible in IRq.
(ii) If the assumption H3 is true, the closure of BJ is a negligible subset of IRq.
The proof of Theorem 4.2 is a straightforward consequence of Corollary 4.4 and

Propositions 4.5 and 4.6.

5. Appendix.

Proof of Proposition 4.3. As a first stage we will consider the consequences
of the assumption (a). The point x̂ satisfies

∇ (E|ΘJ
) (x̂, y) = 0,(36)

∇2 (E|ΘJ
) (x̂, 0) is positive definite.(37)

By the Implicit functions theorem, there are ρ > 0 and a unique Cm−1-function
XJ : B(y, ρ) → ΘJ such that

∇ (E|ΘJ
) (XJ(y′), y′) = 0 when y′ ∈ B(y, ρ).(38)

In addition, by (37) and the fact that ∇2 (E|ΘJ
) is continuous, there is η > 0 such that

∇2 (E|ΘJ
) (x, 0) is positive definite whenever x ∈ B(x̂, η). Since XJ is continuous, for ρ

small enough, we have XJ (B(y, ρ)) ⊆ B(x̂, η). In other words, ∇2 (E|ΘJ
) (XJ (y′), y′)

is positive definite on B(y, ρ). This fact, combined with (38) shows that XJ is a local
minimizer function on B(y, ρ), relevant to the restricted objective function E|ΘJ

.
By taking into account also the consequences of assumption (b), we will show

that for every y′ belonging to a neighborhood of y, the point x̂′ := XJ(y′) ∈ ΘJ is a
strict minimizer of the relevant non-restricted objective function E(., y′). To this end,
we analyze the growth of E(., y′) near to x̂′ along arbitrary directions v ∈ IRp. Since
any v ∈ IRp is decomposed in a unique way into

v = vJ + v⊥
J with vJ ∈ TJ and v⊥

J ∈ T⊥
J ,
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we can write

E(x̂′ + v, y′) − E(x̂′, y′) = [E(x̂′ + vJ + v⊥
J , y′) − E(x̂′ + vJ , y′)](39)

+ [E(x̂′ + vJ , y′) − E(x̂′, y′)].

The sign of the two terms between the brackets will be checked separately. The fact
that Gix̂

′ 6= θi for all i ∈ Jc entails that there is ν2 ∈ (0, ν1) such that Gi(x̂
′ + v) 6= θi

for all i ∈ Jc, if ‖v‖ < ν2. In such a case, x̂′ + vJ ∈ ΘJ , so we have

E(x̂′ + vJ , y′) − E(x̂′, y′) = E|ΘJ
(x̂′ + vJ , y′) − E|ΘJ

(x̂′, y′).

Because, by construction, x̂′ is a minimizer of E|ΘJ
(., y′), for any y′ ∈ B(y, ρ) there

exists ν1 > 0 such that

E|ΘJ
(x̂′ + vJ , y′) − E|ΘJ

(x̂′, y′) > 0 if 0 < ‖vJ‖ < ν1.(40)

Now we focus on the first term on the right side of (39) which will be shown to be
positive when ‖v‖ is small enough. Instead of x̂′ + vJ ∈ ΘJ , we consider any x′ ∈ ΘJ

in a neighborhood of x̂. We show that for any y′ near y, the function E(., y′) reaches
a strict minimum at such a x′ in the direction of T⊥

J .
Since by H5, u 7→ d+ϕi(θi)(u) is lower semi-continuous on Ss, we see that u 7→

d+E(x̂, y)(u) is lower semi-continuous on Sp. Then the assumption (b) implies that

η := inf
u∈T⊥

J
∩S

d+E(x̂, y)(u) > 0,

where the positivity of η is due to the compactness of T⊥
J ∩ S. It follows that

d+E(x̂, y)(v⊥
J ) >

η

2
‖v⊥

J ‖, ∀v⊥
J ∈ T⊥

J \ {0}.(41)

Then we see that E(x′ + v⊥
J , y′) − E(x′, y′) will be positive for (x′, y′, v⊥

J ) on a neigh-
borhood of (x̂, y, 0) if

∣

∣E(x′ + v⊥
J , y′) − E(x′, y′) − d+E(x̂, y)(v⊥

J )
∣

∣ <
η

2
‖v⊥

J ‖.(42)

In order to show this statement, for v⊥
J ∈ T⊥

J , let us define

I := {i ∈ {1, · · · , r} : Giv
⊥
J = 0}.

Then for x′ ∈ ΘJ near x̂, we have

E(x′ + v⊥
J , y′) − E(x′, y′)

= 2(v⊥
J )T LT (Lx′ − y′) + ‖Lv⊥

J ‖2 +
∑

i∈Ic

[ϕi(Gix
′ + Giv

⊥
J ) − ϕi(Gix

′)].

The one-sided derivative of E given in (29), is written

d+E(x̂, y)(v⊥
J ) = 2(v⊥

J )T LT (Lx̂ − y)

+
∑

i∈Jc∩Ic

(v⊥
J )T GT

i ∇ϕi(Gix̂) +
∑

i∈J∩Ic

(v⊥
J )T GT

i ∇
+ϕi(θi)(Giv

⊥
J ).
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Based on the last two equations,

∣

∣E(x′ + v⊥
J , y′) − E(x′, y′) − d+E(x̂, y)(v⊥

J )
∣

∣

≤
∣

∣(v⊥
J )T

(

2LT L(x′ − x̂) − 2LT (y′ − y) + LT Lv⊥
J(43)

−
∑

i∈Jc∩Ic

GT
i (∇ϕi(Gix̂) −∇ϕi(Gix

′))

)∣

∣

∣

∣

∣

(44)

+
∑

i∈Jc∩Ic

∣

∣ϕi(Gix
′ + Giv

⊥
J ) − ϕi(Gix

′) − (v⊥
J )T GT

i ∇ϕi(Gix
′)

∣

∣(45)

+
∑

i∈J∩Ic

∣

∣ϕi(θi + Giv
⊥
J ) − ϕi(θi) − d+ϕi(θi)(Giv

⊥
J )

∣

∣ .(46)

The expression in (43)-(44) is bounded by

‖v⊥
J ‖

(

2‖LT L‖ ‖x′ − x̂‖ + 2‖L‖ ‖y′ − y‖ + ‖LT L‖ ‖v⊥
J ‖

+
∑

i∈Jc∩Ic

‖Gi‖ ‖∇ϕi(Gix̂) −∇ϕi(Gix
′))‖

)

.

The term between the parentheses will be smaller than η/6 if (x′, y′, v⊥
J ) is close

enough to (x̂, y, 0). Hence the term in (43)-(44) is upper bounded by (η/6)‖v⊥
J ‖. As

the functions ϕi are at least C1 in a neighborhood of Gix
′ when i ∈ Jc ∩ Ic, the

expression in (45) can be bounded above by (η/6)‖v⊥
J ‖. Last, by hypothesis H6,

the expression (46) can be bounded by (η/6)‖v⊥
J ‖ as well. We thus obtain that the

expression in (42) is smaller than η‖v⊥
J ‖. Hence the conclusion.

Proof of Corollary 4.4. Let y ∈ Ωc, then E(., y) admits at least one minimizer
x̂ ∈ IRp such that the conclusion of Proposition 4.3 fails. Let J be calculated according
to (26), then x̂ ∈ ΘJ . Clearly x̂ is also a stationary point of E|ΘJ

(., y), which means
that

∇ (E|ΘJ
) (x̂, y) = 0.

By noticing that for every direction v ∈ TJ we have E(x̂ + v, y) = EJ (x̂ + v, y) + K,

where K =
∑

i∈J

ϕi(θi) is independent of v, we see that

ΠTJ
∇EJ (x̂, y) = ∇ (E|ΘJ

) (x̂, y).

We deduce

2ΠTJ
LT y = ΠTJ

∇EJ (x̂, 0) = ∇ (E|ΘJ
) (x̂, 0)(47)

Since y is in Ωc, at least one of the conditions (a) or (b) of Proposition 4.3 is not
satisfied. If (a) fails, we have

det∇2 (E|ΘJ
(x̂, y)) = 0

which means that x̂ ∈ HJ
0 . Since x̂ satisfies (47) as well, it follows that y ∈ AJ . It is

easy to see that these considerations are trivially satisfied if J = ∅.
Next, we focus on the case when (b) fails. In the particular case when J = ∅,

(32) shows that W∅ = ∅, since T∅ = IRp. Consequently, B∅ = ∅ as well. Let us now
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consider the case when J is nonempty. The fact that x̂ is a minimizer of E(., y) implies
that

d+E(x̂, y)(v) = vT∇EJ (x̂, 0) − 2vT LT y +
∑

i∈J

vT GT
i ∇

+ϕi(θi)(Giv) ≥ 0, ∀v ∈ T⊥
J

which expression comes from (29). Using the definition of WJ in (32), the latter
expression is equivalent to

2ΠT⊥

J
LT y − ΠT⊥

J
∇EJ (x̂, 0) ∈ WJ

Saying that (b) fails means that ∃v ∈ T⊥
J , v 6= 0 such that d+E(x̂, y)(v) = 0. Hence

we can write down

2ΠT⊥

J
LT y − ΠT⊥

J
∇EJ (x̂, 0) ∈ ∂T⊥

J
WJ .

Since x̂ minimizes E(., y), (47) is true. Adding it to the expression above yields

2LT y ∈ ∇EJ (x̂, 0) + ∂T⊥

J
WJ .

Hence y ∈ BJ .

Proof of Proposition 4.5. By applying Sard’s Theorem (see Theorem 3.5) to
M = ΘJ , N = TJ , U = ΘJ and G = ∇ (E|ΘJ

) (., 0), the set ∇ (E|ΘJ
) (HJ

0 , 0), with HJ
0

as in (31), is negligible in TJ . Next, we notice rank ΠTJ
LT = dim TJ . By identifying

ΠTJ
LT with the operator LT of Lemma 3.4, and ∇ (E|ΘJ

) (HJ
0 , 0) with V , we obtain

(i). Similarly to Theorem 3.3, the assumptions H1 and H3 shows that G satisfies the

condition 2 of Lemma 3.6. The same Lemma then implies that ∇ (E|ΘJ
) (HJ

0 , 0) is

negligible in TJ . Applying again Lemma 3.4 along with V = ∇ (E|ΘJ
) (HJ

0 , 0) yields
(ii).

Proof of Proposition 4.6. The proof of this proposition relies on the following
theorem.

Theorem 5.1. Let U be an open subset of IRn and f : U → IRn a locally Lipschitz
function. If W is a negligible subset of U , then f(W ) is a negligible subset of IRn.

The proof of this theorem can be found for instance in [34].
Proof of Proposition 4.6.. As B∅ = ∅, we just have to prove the proposition for

J 6= ∅. Since WJ is convex, ∂T⊥

J
WJ is negligible in T⊥

J , hence the set ΘJ + ∂T⊥

J
WJ

is negligible in IRp. By noticing that the function x + x̃ 7→ ∇EJ (x, 0) + x̃ is C1 on
ΘJ + T⊥

J = IRp, Theorem 4.6 shows that ∇EJ (ΘJ , 0) + ∂T⊥

J
WJ is also negligible in

IRp. Then Lemma 3.4 applied to V = ∇EJ (ΘJ , 0) + ∂T⊥

J
WJ leads to (i).

In order to prove (ii), we show that under the assumption H3, BJ is also negligible
in IRq. Based on Lemma 3.4 again, this is true provided that ∇EJ (ΘJ , 0) + ∂T⊥

J
WJ is

negligible in IRp. The development below is dedicated to show the latter statement.
The term ∇EJ (ΘJ , 0) reads

∇EJ (ΘJ , 0)

=
{

lim
n→∞

∇EJ (xn, 0) : xn ∈ ΘJ , ∀n ∈ NN and lim
n→∞

∇EJ (xn, 0) exists
}

.(48)

Assumption H3, joined to the fact that ∇EJ (xn, 0) is bounded when n → ∞, implies
that {xn}n∈NN is also bounded. Consequently, {xn}n∈NN admits a subsequence which
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converges in ΘJ ; by a slight abuse of notation, the latter will be denoted by {xn}n∈NN
again. Let x̄ := limn→∞ xn. Then x ∈ ΘJ where

ΘJ =
⋃

I⊂Jc

ΘJ∪I .

Since all the sets ΘJ∪I in the above union are disjoint, there is a unique set I0 ⊂ Jc

such that x ∈ ΘJ∪I0
.

If I0 = ∅, we can write down that

lim
n→∞

∇EJ (xn, 0) = ∇EJ (x, 0).

For I0 6= ∅, the considerations are more intricate and are developed in several
stages. Starting with I0, for every k = 1, 2, · · · we define recursively

uk := lim
n→∞

N
(

Π
TJ∩(∩i∈Ik−1

Ker Gi)⊥
(xn − x)

)

,(49)

Ik := {i ∈ Ik−1 : Giuk = 0} .(50)

The limit in (49) is taken over an arbitrary convergent subsequence. More precisely,
for every k, we recursively extract a subsequence of {xn} that is denoted {xn} again,
and which ensures the existence of the limit. Clearly, uk is well defined only when
Ik−1 6= ∅. The definitions in (49) and (50) are considered in the following intermediate
statements:

Lemma 5.2. There exists K, 1 ≤ K ≤ r, such that the sequence {Ik}k∈{0,···,K}

is strictly decreasing with respect to the inclusion relation, and IK = ∅.
Proof of Lemma 5.2. For k small enough, the definition of uk shows that uk 6∈
∩Ik−1

Ker Gi, hence there exists i ∈ Ik−1 for which Giuk 6= 0. Consequently {Ik}k∈NN
is strictly decreasing whenever Ik is nonempty. The existence of K is straightforward.
2

Lemma 5.3. For every k ∈ {1, · · · ,K} we have uk ∈ Uk where

Uk :=



























(

TJ ∩
(

⋂

i∈Ik−1\Ik
Ker Gi

)⊥

∩
(
⋂

i∈Ik
Ker Gi

)

)

\
(

⋃

i∈Ik−1\Ik
Ker Gi

)

if k < K,
(

TJ ∩
(

⋂

i∈IK−1
Ker Gi

)⊥
)

\
(

⋃

i∈Ik−1\Ik
Ker Gi

)

if k = K.

Proof of Lemma 5.3. By the definitions of uk and of Ik,

uk ∈ TJ ∩





⋂

i∈Ik−1

Ker Gi





⊥

and uk ∈
⋂

i∈Ik

Ker Gi,

respectively. Hence, uk belongs to the intersection of the above sets. By using the
following trivial decomposition when k < K,





⋂

i∈Ik−1

Ker Gi





⊥

=









⋂

i∈Ik−1\Ik

Ker Gi



 ∩

(

⋂

i∈Ik

Ker Gi

)





⊥
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=





⋂

i∈Ik−1\Ik

Ker Gi





⊥

+

(

⋂

i∈Ik

Ker Gi

)⊥

we find that

uk ∈ TJ ∩











⋂

i∈Ik−1\Ik

Ker Gi





⊥

+

(

⋂

i∈Ik

Ker Gi

)⊥





∩

(

⋂

i∈Ik

Ker Gi

)

=






TJ ∩





⋂

i∈Ik−1\Ik

Ker Gi





⊥

∩

(

⋂

i∈Ik

Ker Gi

)







+



TJ ∩

(

⋂

i∈Ik

Ker Gi

)⊥

∩

(

⋂

i∈Ik

Ker Gi

)





= TJ ∩





⋂

i∈Ik−1\Ik

Ker Gi





⊥

∩

(

⋂

i∈Ik

Ker Gi

)

We obtain the result relevent to k = K likewise. 2

Lemma 5.4. If i ∈ Ik−1 \ Ik,

lim
n→∞

∇ϕi(Gixn) = ∇+ϕi(θi)(N (Giuk)).

Proof of Lemma 5.4. From the hypothesis H4, we have

lim
n→∞

∇ϕi(Gixn) = lim
n→∞

∇ϕi(θi + Gi(xn − x))

= ∇+ϕi(θi)
(

lim
n→∞

N (Gi(xn − x))
)

provided that the limit between the parentheses is well defined. Let us examine the
latter question. The fact that xn and x are elements of ΘJ implies that xn − x ∈ TJ

and moreover

Gi(xn − x) = Gi ΠTJ
(xn − x)

= Gi ΠTJ∩(∩j∈Ik−1
Ker Gj)⊥(xn − x) + GiΠTJ∩(∩j∈Ik−1

Ker Gj)(xn − x)

= Gi ΠTJ∩(∩j∈Ik−1
Ker Gj)⊥(xn − x)

Hence,

N (Gi(xn − x)) = N
(

Gi ΠTJ∩(∩j∈Ik−1
Ker Gj)⊥(xn − x)

)

= N
(

Gi N
(

ΠTJ∩(∩j∈Ik−1
Ker Gj)⊥(xn − x)

))

Letting n → ∞, we obtain

lim
n→∞

N (Gi(xn − x)) = N
(

Gi lim
n→∞

N
(

ΠTJ∩(∩j∈Ik−1
Ker Gj)⊥(xn − x)

))

= N (Giuk)

18



The last expression is well defined since i 6∈ Ik ensures Giuk 6= 0. 2

We now come back to the proof of the proposition. Given I ⊂ {1, · · · , r}, let us
introduce the function

FI : IRp \ {∪i∈IKer Gi} → IRp,

u → FI(u) :=
∑

i∈I

GT
i ∇

+ϕi(θi)(N (Giu))(51)

By the definition of Ik in (50), uk 6∈ ∪i∈Ik−1\Ik
Ker Gi. Then, according to lemma 5.4,

lim
n→∞

∑

i∈Ik−1\Ik

GT
i ∇ϕi(Gixn) = FIk−1\Ik

(uk).

Hence, from the definition of EJ , we have

lim
n→∞

∇EJ (xn, 0) = ∇EJ∪I0
(x, 0) +

K
∑

k=1

FIk−1\Ik
(uk).

Based on (48) and Lemma 5.3, we can write

∇EJ (ΘJ , 0) ⊂ ∇EJ (ΘJ , 0)

∪





r
⋃

K=1

⋃

{Ik}K
k=1

⊂IK

(

∇EJ∪I0
(ΘJ∪I0

, 0) +

K
∑

k=1

FIk−1\Ik
(Uk)

)



 ,(52)

where

IK :=
{

{Ik}
K
k=1 ⊂ (P({1, · · · , r}))K : {Ik}

K
k=1 is strictly decreasing and IK = ∅

}

.

Lemma 5.5. Let {Ik}
K
k=0 be a strictly decreasing sequence (with respect to the

inclusion relation) and {Uk}
K
k=0 are defined as in Lemma 5.3. Then we have Uk⊥Ul

for every k 6= l and

TJ = TJ∪I0
⊕

(

K
⊕

k=1

Uk

)

.

Remark that Uk 6= {0} since uk ∈ Uk and uk 6= 0. It follows that

dim





⋃

i∈Ik−1\Ik

Ker Gi



 < dim






TJ ∩





⋂

i∈Ik−1\Ik

Ker Gi





⊥

∩

(

⋂

i∈Ik

Ker Gi

)







Then Uk is a vector space which reads

Uk = TJ ∩





⋂

i∈Ik−1\Ik

Ker Gi





⊥

∩

(

⋂

i∈Ik

Ker Gi

)
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Proof of Lemma 5.5. This proof is based on the following identity:

⋂

i∈Ik

Ker Gi =









⋂

i∈Ik−1\Ik

Ker Gi



 ∩

(

⋂

i∈Ik

Ker Gi

)





⊕











⋂

i∈Ik−1\Ik

Ker Gi





⊥

∩

(

⋂

i∈Ik

Ker Gi

)







=





⋂

i∈Ik−1

Ker Gi





⊕











⋂

i∈Ik−1\Ik

Ker Gi





⊥

∩

(

⋂

i∈Ik

Ker Gi

)






[by Ik ⊂ Ik−1]

Consequently

TJ ∩

(

⋂

i∈Ik

Ker Gi

)

=



TJ ∩





⋂

i∈Ik−1

Ker Gi







 ⊕ Uk.(53)

By using recursively the obtained identity we get

TJ = TJ ∩











⋂

i∈IK−1

Ker Gi



 ⊕





⋂

i∈IK−1

Ker Gi





⊥






=



TJ ∩





⋂

i∈IK−1

Ker Gi







 ⊕ UK

=



TJ ∩





⋂

i∈IK−2

Ker Gi







 ⊕ UK−1 ⊕ UK [by (53)]

= · · ·

=

[

TJ ∩

(

⋂

i∈I0

Ker Gi

)]

⊕

(

K
⊕

k=1

Uk

)

= TJ∪J0
⊕

(

K
⊕

k=1

Uk

)

The proof is complete. 2

We can now complete the proof of the proposition. By Lemma 5.5, we have the
following inclusion

(

ΘJ∪I0
+

K
∑

k=1

Uk + ∂T⊥

J
WJ

)

⊂
(

ΘJ + ∂T⊥

J
WJ

)

.
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Since ∂T⊥

J
WJ is negligible in T⊥

J , the expression in the right side above determines a

set which is negligible in IRp. Hence the term in the left side is negligible as well.
Let x̃ ∈ ΘJ∪I0

be given, then ΘJ∪I0
= {x̃} + TJ∪I0

. By Lemma 5.5, any x ∈ IRp

can be decomposed in a unique way in the form

x = x̃ + xJ∪I0
+ x1 + · · · + xK + x⊥

J

where xJ∪I0
∈ TJ∪I0

xk ∈ Uk, ∀k ∈ {1, · · · ,K}

x⊥
J ∈ T⊥

J

Based on this decomposition and using FI defined in (51), the function

ΘJ∪I0
+

K
∑

k=1

Uk + T⊥
J → IRp

x̃+xJ∪I0
+x1+· · ·+xK +x⊥

J 7→ ∇EJ∪I0
(x̃ + xJ∪I0

, 0) +
K

∑

k=1

FIk−1\Ik
(xk) + x⊥

J

is locally Lipschitz since ∇EJ∪I0
is C1 and FIk−1\Ik

is Lipschitz by H5. Its image when

x ranges over ΘJ∪I0
+

∑K

k=1 Uk + ∂T⊥

J
WJ , that is

∇EJ∪I0
(ΘJ∪I0

, 0) +
K

∑

k=1

FIk−1\Ik
(Uk) + ∂T⊥

J
WJ ,

is consequently negligible in IRp.
We prove the same way that ∇EJ (ΘJ , 0) + ∂T⊥

J
WJ is negligible in IRp. Thus, ac-

cording to (52), ∇EJ (ΘJ , 0) + ∂T⊥

J
WJ is a negligible subset of IRp, as being a finite

union of negligible subsets. The proof is complete.
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