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RECONSTRUCTION OF WAVELET COEFFICIENTS USING TOTALVARIATION MINIMIZATIONSYLVAIN DURAND� AND JACQUES FROMENTyAbstract. We propose a model to reconstruct wavelet coe�cients using a total variation mini-mization algorithm. The approach is motivated by wavelet signal denoising methods, where thresh-olding small wavelet coe�cients leads pseudo-Gibbs artifacts. By replacing these thresholded coef-�cients by values minimizing the total variation, our method performs a nearly artifact free signaldenoising. In this paper, we detail the algorithm based on a subgradient descent combining a projec-tion on a linear space. The convergence of the algorithm is established and numerical experimentsare reported.Key words. wavelet, total variation, denoising, subgradient methodAMS subject classi�cations. (MSC 2000) 26A45, 65K10, 65T60, 94A121. Introduction. Let us consider the problem of denoising nearly piecewisesmooth functions presenting sharp discontinuities, following the additive noise model~u = u+ �;(1.1)where ~u represents the observed data, u the noiseless function to estimate and �the noise or, more generally, an unknown error. This problem occurs in numberof applications, especially in the signal and image processing community, where onetries to recover the original smoothness of a signal while the main discontinuities arepreserved. Among the various solutions that have been proposed, we will focus ourattention on two promising approaches which recently appear : wavelet thresholdingand total variation minimization.Wavelet denoising consists in decomposing the noisy data into an orthogonalwavelet basis, in suppressing the wavelet coe�cients smaller than a given amplitudeusing a so-called soft or hard thresholding, and in transforming the data back into theoriginal domain : let �f j;ng(j;n)2	; f�J;ngn2�	 be an orthogonal basis of waveletsand scaling functions on the interval I = [a; b] as described by Cohen, Daubechies andVial [7], so that we can write any function ~u 2 L2(I) as the sum of the series~u = X(j;n)2	h~u;  j;ni j;n +Xn2�h~u; �J;ni�J;n(1.2)where, 8u; v 2 L2(I), hu; vi = ZI u(x) v(x) dx:(1.3)In  j;n, j is the index of scale and n the translation factor, taking values in thecountable set 	. The term �J;n denotes the scaling function on scale 2J and translated� CMLA, Ecole Normale Sup�erieure de Cachan, 61 avenue du Pr�esident Wilson, 94235 Cachancedex, France (sdurand@cmla.ens-cachan.fr) & LAMFA, Universit�e de Picardie-Jules Verne, 33 rueSaint Leu, 80039 Amiens cedex 1, France.y PRISME, UFR Math. et Info. Universit�e Paris 5 R. Descartes, 45 rue des Saints-P�eres, 75270Paris cedex 06, France (froment@math-info.univ-paris5.fr) & CMLA, Ecole Normale Sup�erieurede Cachan, 61 avenue du Pr�esident Wilson, 94235 Cachan cedex, France.1



2 SYLVAIN DURAND AND JACQUES FROMENTby n, which is indexed to a �nite set �. The family f�J;ngn2� is an orthonormal basisof a space VJ that belongs to a multiresolution approximation of L2(I).The hard thresholding operator � is de�ned by� (x) = � x if jxj � �;0 if jxj < �;(1.4)while in the case of soft thresholding, the operator � is� (x) = � x� sgn(x)� if jxj � �;0 if jxj < �:(1.5)The denoised signal using wavelet thresholding is simplyu0 = X(j;n)2	 � (h~u;  j;ni) j;n +Xn2�h~u; �J;ni�J;n:(1.6)We will denote M the map that records the indexes of retained coe�cients :M = f(j; n) 2 K : jh~u;  j;nij � �g:(1.7)Because of its simplicity, the algorithm sketches in (1.6) has been widely used byengineers since the beginning of wavelet in signal processing. It has been formalizedby Donoho and Johnstone in [13], where they proved that the performance associatedto non-linear thresholding estimator in orthogonal bases is close to an ideal coe�cientselection and attenuation. In addition, among classical orthogonal bases, wavelet se-ries outperforms Fourier or cosine series in the representation of piecewise-smoothfunctions (see e.g.[6, 8]) : the e�ciency of the estimator depends on the rate of decayof the sorted decomposition coe�cients and, thanks to the wavelets time-localization,the decay of wavelet coe�cients in the neighborhood of discontinuities is faster thatthe decay of Fourier coe�cients. However, wavelet thresholding method is still a reg-ularization process and the estimator presents oscillations in the vicinity of function'sdiscontinuities. Such oscillations are very close to the Gibbs phenomena exhibited byFourier thresholding, although they are more local and of smaller amplitude. For thisreason, they are called pseudo-Gibbs phenomena. These oscillations do not a�ect toomuch the L2 error between the original noiseless signal and the estimated one, butthey do a�ect the visual quality of the result : it is often impossible to perform a com-plete denoising while keeping the threshold small enough to avoid the pseudo-Gibbsphenomena. If � is a Gaussian white noise of standard deviation �, the thresholdshould be set to � = �p2 logN;(1.8)N being the number of samples of the digital signal, so that the estimator is the bestin the min-max sense as N tends to in�nity [13]. The use of the soft thresholdingoperator (1.5) instead of the more intuitive hard one (1.4) allows to partially reducethe pseudo-Gibbs phenomena [12]: thanks to the continuity of the soft thresholdingoperator, the structure of the wavelet coe�cients is better preserved. However, the softthresholding operator introduces another type of artifact : since all wavelet coe�cientsare lowered, local averages are not preserved, leading peaks to be eroded.Total variation denoising follows a completely di�erent approach. It has beenintroduced for the �rst time by Rudin, Osher and Fatemi in [21], in the context of



RECONSTRUCTION OF WAVELET COEFFICIENTS USING TOTAL VARIATION 3image denoising. They proposed to minimize the total variation (TV) of a functionu 2 L2(
) TV(u) := Z
 jruj dx;(1.9)where 
 is a bounded and convex region of IRd, subject to the �delity constraintjju� ~ujjL2(
) = �;(1.10)� being an estimated error level. The noise is reduced while discontinuities are pre-served, in contrast with other regularization techniques, generally using a L2 norm,where discontinuities are smoothed. Although the TV functional seems to be particu-larly relevant in regularizing piecewise smooth functions, it generates artifact as well,known as the staircase e�ect (see [4, 10] for numerical evidence, and [20] for theoret-ical analysis in a general framework) : TV-based algorithms tend to restore piecewiseconstant functions. For example and though they have the same total variation, astaircase will be preferred to a ramp (see Figure 5.5). This is mainly due to the lackof regularity of the TV.In [23] (see also [1, 3, 11]), Vogel and Oman propose to replace the TV by theregularized functional J�(u) := Z
pjruj2+ �2 dx(1.11)where � is a small positive parameter. Being di�erentiable, the TV-regularized prob-lem may be stated using various optimization techniques and the staircase e�ect maybe removed. However, the experiments we have performed tend to show the di�cultyof �nding a suitable value for � : if � is signi�cantly greater than 0, the staircase e�ectis e�ectively removed but the noise is di�used, and for � larger again, discontinuitiesare smoothed. If not, the regularization is similar to the one performed with the TV,but in any case the computation (due to the introduction of the square root in (1.11))is much slower. Another staircase reduction strategy is to introduce higher orderderivatives in the functional, so that inopportune jumps are penalized : see e.g. [2, 4].The denoising algorithm we are presenting in this article combines the waveletand the total variation approaches. In our knowledge, a few articles only use thesecomplementary tools in the context of signal or image processing. In [15], Malgo-uyres, Roug�e and one of us point out the complementarity of these tools and, in [17],Malgouyres proposed a deblurring algorithm based on both tools, in the context ofsatellite imaging. Another close approach is exposed by Chan and Zhou in [5] ; let usprecise that our algorithm was developed independently. As we do, Chan and Zhounoticed that a total variation minimization may be applied to remove the pseudo-Gibbs phenomenon generated by wavelet thresholding. They proposed to solve thefollowing convex and unconstrained problemmin(cj;n) �Z
 jru(cj;n)j dx+ 12 jju� ~ujj2L2(
)(1.12)where u(cj;n) is the function reconstructed using the wavelet coe�cients (cj;n), thesecoe�cients satisfying cj;n = 0 if (j; n) 62M . The �rst term of this functional reducesthe oscillations of the estimated function by modifying the values of the retainedwavelet coe�cients, so that the total variation is diminished. The second term is



4 SYLVAIN DURAND AND JACQUES FROMENTa classical L2 �tting term. The regularization parameter � is used to balance therespective inuence of these two terms.The model we are presenting is somewhat opposite to the one of Chan and Zhou.We propose to reconstruct a function with minimal total variation such that for in-dexes belonging toM , its wavelet coe�cients are the same than the wavelet coe�cientsof the observed function ~u. That is, retained wavelet coe�cients are not modi�edwhile canceled coe�cients are no more set to 0, but to values that minimize the totalvariation. This main idea results simply in the following remark : apart from thepseudo-Gibbs phenomenon, wavelet thresholding works well in denoising functions.Therefore, we can assume that the unknown original noiseless signal u has the samewavelet coe�cients than the thresholded one in the location given by the map M .Wavelet denoising algorithm makes the choice of setting the coe�cients outside Mto 0, leading oscillations in the vicinity of discontinuities. Because of the strong de-pendency between wavelet coe�cients in the original noiseless signal, this is far froman optimal choice. By proposing to set the coe�cients outside M to the values thatminimize the total variation of the reconstructed function, occurrence of oscillationsis discouraged : a structure of coe�cients compatible with sharp discontinuities isrecovered. Notice that, in contrary to the model of Chan and Zhou, we de�ne a con-strained problem but which is free of regularization parameter. Since the importantwavelet coe�cients are kept unchanged, there is no need for a �tting term. The onlyparameter is the threshold �, and it can be �xed according to (1.8).We have exposed this denoising model in [14], in a mathematically simpli�edversion. The aim of the current article is to present and justify the algorithm used tosolve the model in the 1D case, which is based on a subgradient descent combininga projection on a linear space. Section 2 recalls the model in the continuous case,while section 3 gives its counterpart in the discrete case, which de�nes the e�ectivealgorithm. Section 4 is devoted to the convergence study of the algorithm. It isproved that, provided the stepsize is not decreasing too fast to 0, the sequence ofcomputed vectors converges to a solution of the discrete model. Section 5 presentsnumerical results on two signals and comparison with wavelet and total variationclassical denoising algorithms is performed.2. The continuousmodel. For simplicity, we present the model in the 1D case.But a similar development can be performed on IRd, for example to denoise images.The total variation of any unidimensional function u in I is de�ned byTV(u) = sup(xl) LXl=1 ju(xl)� u(xl�1)j(2.1)where the supremum is on all sequences (xl) such that a � x1 < x2 < : : : < xL � b.Let X be the space of L2(I) functions such that their TV norm is �nite, which isan Hilbert space for the scalar product h:; :i de�ned on L2(I). We denote by U theconstraint spaceU = fu 2 X : 8(j; n) 2M; hu;  j;ni = h~u;  j;ni; 8n 2 �; hu; �J;ni = h~u; �J;nig;(2.2)where M is de�ned in (1.7). The set U is an a�ne space with direction given by thelinear spaceV = fv 2 X : 8(j; n) 2M; hv;  j;ni = 0; 8n 2 �; hv; �J;ni = 0g:(2.3)



RECONSTRUCTION OF WAVELET COEFFICIENTS USING TOTAL VARIATION 5Consider u0 introduced in (1.6). Since u0 2 U , we haveU = fu0g+ V:(2.4)We propose to solve the variational problemProblem 2.1. Find u� 2 U such that TV(u�) = minu2U TV(u).A small technical di�culty comes from the fact that the TV-functional is notdi�erentiable. In order to avoid the use of a subgradient instead of a gradient, we couldmake the choice of a regularization as in (1.11), but as we wrote it in the introduction,we didn't �nd that this would increase the performance of the algorithm. Since TVis a convex function, we can de�ne a subgradient of TV at u as any function gTV(u)satisfying 8v 2 X; TV(v) � TV(u) + hgTV(u); v � ui;(2.5)and we get the classical resultTheorem 2.2. Any solution u� of Problem 2.1 is given by8t > 0; u� = P �u� � t gTV(u�)� ;(2.6)for P the a�ne projector onto U that minimizes the distance.Proof. As TV is convex, u� is a solution of Problem 2.1 i�u� 2 U and 8v 2 U; hgTV(u�); v � u�i � 0() u� 2 U and 8v 2 U; 8t > 0; hu� � (u� � tgTV(u�)); v � u�i � 0() 8t > 0; u� = P (u� � t gTV(u�)):3. The discrete model. We now assume that functions are signals with Nsamples, that is X = IRN . For such a discrete signal we use the vectorial notationu = (u1; u2; : : : ; uN ), we denote by (:; :) the standard scalar product on IRN8u; v 2 IRN ; (u; v) = NXn=1unvn;(3.1)and jj:jj is the associated Euclidean norm. The discrete total variation of u is givenby TV(u) = N�1Xn=1 jun+1 � unj:(3.2)Let uc be the continuous, or analog function in the approximation space V0 (scale1), associated to the discrete signal u by uc =Pn un�0;n and un = huc; �0;ni. The setsU and V are de�ned as in (2.2) and (2.3), using a FWT (Fast Wavelet Transform [18])to compute from u up to the coarse scale 2J (for a given J < 0), the sequence of waveletcoe�cients (huc;  j;ni)j;n2	 (with J � j < 0), plus the remaining approximation(huc; �J;ni)n2� :U = fu 2 X : 8(j; n) 2M; huc;  j;ni = h~uc;  j;ni and8n 2 �; huc; �J;ni = h~uc; �J;nigV = fv 2 X : 8(j; n) 2M; hvc;  j;ni = 0 and8n 2 �; hvc; �J;ni = 0g:(3.3)



6 SYLVAIN DURAND AND JACQUES FROMENTAssuming this new notation, we de�ne the discrete problem as in Problem 2.1 andthus Theorem 2.2 follows unchanged. From now, Problem 2.1 and Theorem 2.2 willrefer to the discrete formulation. Theorem 2.2 leads us to de�ne, as an approximationmethod of the solution of Problem 2.1, the following subgradient descent scheme witha projection on the constraint:Problem 3.1. uk+1 = P �uk � tkgTV(uk)� ;(3.4)where u0 2 U is the denoised signal by wavelet thresholding obtained from the discreteformulation of (1.6), and where tk > 0 is the step chosen in order to obtain theconvergence.Theorem 3.2. Problem 3.1 can be solved using the following algorithmuk+1 = uk � tkPV (gk)(3.5)where PV is the orthogonal projection onto V and where gk 2 X satis�es8n = 2; : : :N � 1; gnk = sgn(unk � un�1k ) � sgn(un+1k � unk);g1k = �sgn(u2k � u1k);gnk = sgn(unk � un�1k ):(3.6)Proof. Equation (3.5) comes from the equality8u 2 X; P (u) = u0 + PV (u� u0);(3.7)and from the fact that gk, as de�ned in (3.6), is a subgradient of TV at uk. Indeed,remark that jyj � jxj+ sgn(x)(y � x) (8x; y 2 IR);(3.8)Let y = vn+1 � vn, x = un+1k � unk , and sum over n. One obtainsTV (v) � TV (uk) + hgk; v � uki:(3.9)The subgradient gk is projected onto V using the FWT, followed by the cancel-lation of coe�cients belonging to M and by an inverse FWT. If we assume a �xednumber of iterations in (3.5), the complexity of the algorithm is of the same orderthan the complexity of the FWT, that is O(N ).4. Convergence of the algorithm. In this section, we establish the followingresultTheorem 4.1. Let the sequence (tk) satis�estk > 0; limk!+1 tk = 0; +1Xk=0 tk = +1:(4.1)Then, the algorithm given by Theorem 3.2 converges in the sense thatlimk!+1 minu�2U� jjuk � u�jj = 0 and limk!+1TV(uk) = minu2U TV(u);(4.2)



RECONSTRUCTION OF WAVELET COEFFICIENTS USING TOTAL VARIATION 7where U� = fu� 2 U : TV(u�) = minu2U TV(u)g:(4.3)This theorem is an adaptation of a classical result for the subgradient method, thatwe recall below (see [22] for a demonstration).Theorem 4.2. Let X be a vectorial space of �nite dimension and J a convexfunction de�ned on X which has a bounded set of minimum point X�. Assume thatthe sequence of positive numbers (tk) satis�es the conditions (4.1) and suppose that asequence (xk) of X is generated according to the formulaxk+1 = xk � tkgJ (xk);(4.4)where gJ (xk) is a subgradient of J at xk and for x0 2 X an arbitrary starting point.Then either(a) the sequence (gJ (xk)) is bounded and the algorithm converges in the sense thatlimk!+1 minx�2X� jjxk � x�jj = 0 and limk!+1 J(xk) = minx2X J(x);(4.5)or(b) the sequence (gJ (xk)) is unbounded and there is no convergence.The key point is to transform the constrained minimization Problem 2.1 to anunconstrained one, so that Theorem 4.2 can be applied. Since U is an a�ne space,this is simply done using the obvious lemmaLemma 4.3. u� is a solution of Problem 2.1 i� u� = u0 + v� where v� 2 Vsatis�es J(v�) = minv2V J(v) for J(v) := TV(v + u0):(4.6)The corresponding algorithm is given byLemma 4.4. Let (vk) be the sequence de�ned on V by vk = uk�u0, the sequence(uk) being de�ned as in (3.5). Then,vk+1 = vk � tkgJ (vk); v0 = 0 2 V;(4.7)where gJ (vk) is a subgradient of J at vk.Proof. We have vk+1 = vk � tkPV (gk) and gJ (vk) := PV (gk) is a subgradient ofJ at vk. Indeed, from 8u 2 U; TV(u)� TV(uk) � (gk; u� uk)(4.8)one gets, with v = u� u0,8v 2 V; J(v) � J(vk) � (gk; v � vk)� (gk; PV (v � vk)) (since v � vk 2 V )� (PV (gk); v � vk) (since PV is symmetric):Now, to prove Theorem 4.1, it su�ces to show that the sequence (vk) satis�esthe conditions of Theorem 4.2, where one sets X = V . This is done by lemmas 4.5and 4.6 :



8 SYLVAIN DURAND AND JACQUES FROMENTLemma 4.5. The set V � := fv� 2 V : J(v�) � J(v) 8v 2 V g is bounded and Jis a convex functional.Proof. The functional TV de�nes a (convex) semi-norm on IRN and hence onV . Let us prove that for any v 2 V , we have TV (v) = 0 ) v = 0. Since linearcombination of wavelets ( j;n) have a zero average and since hvc; �J;ni = 0, one getsZI vc = ZI X(j;n)2	hvc;  j;ni j;n + ZI Xn2�hvc; �J;ni�J;n = 0:(4.9)If TV (v) = 0, then vn = hvc; �0;ni =  (8n = 1 : : :N ),  being constant. Since onecan write vc = Xj�0;nhvc;  j;ni j;n +Xn hvc; �0;ni�0;n;(4.10)we get 0 = ZI vc = Xn ZI �0;n =)  = 0:(4.11)Therefore, TV is a norm on V which is equivalent to the Euclidean norm. Inparticular, 9a > 0 : 8v 2 V; a jjvjj � TV (v):(4.12)Hence, 8v 2 V; J(v) = TV (u0 + v) � TV (v) � TV (u0) � a jjvjj � TV (u0);and 8v� 2 V �; jjv�jj � �minv2V J(v) + TV (u0)�=a:Lemma 4.6. The sequence (gJ (vk)) is bounded.Proof. Since PV is a continuous operator, it su�ces to prove that the sequence(gk) is bounded. This is obviously true from (3.6).5. Numerical results. The algorithm described in Section 3 has been imple-mented using the tools given by the free and open-source MegaWave2 software [16].A forthcoming update of this software will contain all the modules used to obtain thefollowing experiments, so that everyone will be able to reproduce the results and toperform additional experiments.We report two experiments. The �rst one consists in denoising a synthetic signalcontaining two discontinuities of second order (a ramp), followed by a sharp disconti-nuity (a step), followed by a peak. A Gaussian white noise has been added followingthe model ~u = u+ �. Figure 5.1 displays the original noiseless signal u, Figure 5.2 thenoisy signal ~u, Figure 5.3 the wavelet-denoised signal u0 and Figure 5.4 the restoredsignal uk for k = 10000. The estimator uk is far better than u0, either in terms ofSNR (Signal to Noise Ratio) or visually. Fair results are still obtained with muchlower k (as low as k ' 10).



RECONSTRUCTION OF WAVELET COEFFICIENTS USING TOTAL VARIATION 9Let us now compare our result with three standard methods. On Figure 5.5, thesignal ~u has been denoised by Rudin-Osher-Fatemi's variational method, exhibitingthe staircase phenomena. Then, in the latter method, the Total Variation has beenreplaced by the regularized-TV J� given in (1.11), with � = 10�4. The obtained re-sult is displayed on Figure 5.6. The data �delity weight has been chosen large enoughin order not to smooth the jump, but, as a consequence, the noise is di�used. Finally,Figure 5.7 shows the signal ~u denoised by Coifman and Donoho's translation invari-ant wavelet thresholding algorithm [9]. This procedure, called SpinCycle, consistsin applying the thresholding process to translated versions of the original signal andaveraging them. The pseudo-Gibbs phenomena have been reduced compared to thestandard wavelet thresholding (Figure 5.4), but they are still visible.The second experiment is obtained from a natural noisy signal ~u, which follows ourassumption of a piecewise smooth noiseless signal u. The signal ~u shows in Figure 5.8corresponds to a line of a digital image, which is a snapshot of an o�ce. Figure 5.9displays the signal u0 and Figure 5.10 the signal uk. Once again, the visual aspect ofuk is far better than u0.
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000Fig. 5.1. Original function u.
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000Fig. 5.2. Noisy function ~u, obtained by adding to u a Gaussian white noise � of � = 0:05.SNR=18:7 db.



10 SYLVAIN DURAND AND JACQUES FROMENT
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000Fig. 5.3. Denoised function u0 , obtained by wavelet hard thresholding. SNR=29:0 db. NTV(Normalized Total Variation)=0:0031.
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000Fig. 5.4. Denoised function uk, obtained by our method. SNR=31:1 db. NTV=0:0018.
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000Fig. 5.5. Rudin-Osher-Fatemi's algorithm : denoised function argminTV (v) subject to jjv �~ujjl2 = �. SNR=29:3 db.6. Concluding remarks. We have presented a method to reconstruct waveletcoe�cients using a total variation minimization algorithm. This approach performsa nearly artifact free signal denoising : the pseudo-Gibbs phenomena vanish almosttotally while the sharpness of the signal is preserved, without staircase e�ect.



RECONSTRUCTION OF WAVELET COEFFICIENTS USING TOTAL VARIATION 11
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000Fig. 5.6. Regularized Total Variation algorithm : denoised function argminJ�(v) subject tojjv � ~ujjl2 = �. SNR=28:7 db.
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000Fig. 5.7. SpinCycle : denoised function, obtained by translation invariant wavelet thresholding.SNR=31:4 db.However, better results may be obtained by improving our algorithm. Observethat the peak on the right side of Figure 5.4 has been slightly eroded compared tothe original one. This drawkback is shared by all TV regularization approaches; inour case it may be lowered by keeping small coe�cients vanished when they are notin the vicinity of jumps. In this way, a standard wavelet denoising would be appliedon regular parts. Another subject of research would be to introduce a weightedTV functional, so that the regularization would be relaxed in transient parts andreinforced in smooth ones, following the idea recently proposed by L. Moisan in [19]in the context of spectral extrapolation.Let us emphasize that, although our algorithm was justi�ed and illustrated inthe case of unidimensional signals, it can be easily extended to signals of higherdimensions, and in particular to images for which the piecewise-smooth assumptionis highly relevant. A slight modi�cation of the constraint may also be performed inorder to achieve restoration of signals and images that have been compressed withinan orthogonal basis, although in such case care should be taken in order to keep theconvergence of the algorithm.Acknowledgments. The authors are grateful to Lionel Moisan, Mila Nikolovaand Bernard Roug�e for useful discussions.
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