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RECONSTRUCTION OF WAVELET COEFFICIENTS USING TOTAL
VARIATION MINIMIZATION

SYLVAIN DURAND* AND JACQUES FROMENT

Abstract. We propose a model to reconstruct wavelet coefficients using a total variation mini-
mization algorithm. The approach is motivated by wavelet signal denoising methods, where thresh-
olding small wavelet coefficients leads pseudo-Gibbs artifacts. By replacing these thresholded coef-
ficients by values minimizing the total variation, our method performs a nearly artifact free signal
denoising. In this paper, we detail the algorithm based on a subgradient descent combining a projec-
tion on a linear space. The convergence of the algorithm is established and numerical experiments
are reported.
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1. Introduction. Let us consider the problem of denoising nearly piecewise
smooth functions presenting sharp discontinuities, following the additive noise model

(1.1) u=u-+te,

where @ represents the observed data, u the noiseless function to estimate and ¢
the noise or, more generally, an unknown error. This problem occurs in number
of applications, especially in the signal and image processing community, where one
tries to recover the original smoothness of a signal while the main discontinuities are
preserved. Among the various solutions that have been proposed, we will focus our
attention on two promising approaches which recently appear : wavelet thresholding
and total variation minimization.

Wavelet denoising consists in decomposing the noisy data into an orthogonal
wavelet basis, in suppressing the wavelet coefficients smaller than a given amplitude
using a so-called soft or hard thresholding, and in transforming the data back into the
original domain : let {{¥j n}(jn)ew, {®sn}nea} be an orthogonal basis of wavelets
and scaling functions on the interval I = [a, b] as described by Cohen, Daubechies and
Vial [7], so that we can write any function @ € L?(I) as the sum of the series

(1.2) a= Y @i+ > (i, ¢an)bin

(jm)e® ned

where, Yu,v € L?(I),

(1.3) (u,v) = /Iu(x)v(x) de.

In 4, 7 is the index of scale and n the translation factor, taking values in the
countable set W. The term ¢ ,, denotes the scaling function on scale 27 and translated
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2 SYLVAIN DURAND AND JACQUES FROMENT

by n, which is indexed to a finite set ®. The family {¢ s, }nes is an orthonormal basis
of a space V; that belongs to a multiresolution approximation of L?([).
The hard thresholding operator 7 is defined by

_ox iffe| >
(1.4) () —{ 0 if |z] < A,

while in the case of soft thresholding, the operator 7 is

|z —sgn(z)A if x| > A,
(1.5) (@)= { 0 if |z| < A.

The denoised signal using wavelet thresholding is simply

(1.6) wo= > T )i+ Y San)ban.

(jm)e® ned

We will denote M the map that records the indexes of retained coefficients :
(1.7) M=A{(j,n) € K : {4, ¢;n) > A}

Because of its simplicity, the algorithm sketches in (1.6) has been widely used by
engineers since the beginning of wavelet in signal processing. It has been formalized
by Donoho and Johnstone in [13], where they proved that the performance associated
to non-linear thresholding estimator in orthogonal bases is close to an ideal coefficient
selection and attenuation. In addition, among classical orthogonal bases, wavelet se-
ries outperforms Fourier or cosine series in the representation of piecewise-smooth
functions (see e.g.[6, 8]) : the efficiency of the estimator depends on the rate of decay
of the sorted decomposition coefficients and, thanks to the wavelets time-localization,
the decay of wavelet coefficients in the neighborhood of discontinuities is faster that
the decay of Fourier coefficients. However, wavelet thresholding method is still a reg-
ularization process and the estimator presents oscillations in the vicinity of function’s
discontinuities. Such oscillations are very close to the Gibbs phenomena exhibited by
Fourier thresholding, although they are more local and of smaller amplitude. For this
reason, they are called pseudo-Gibbs phenomena. These oscillations do not affect too
much the L? error between the original noiseless signal and the estimated one, but
they do affect the visual quality of the result : it 1s often impossible to perform a com-
plete denoising while keeping the threshold small enough to avoid the pseudo-Gibbs
phenomena. If € is a Gaussian white noise of standard deviation o, the threshold
should be set to

(1.8) A=ov/2log N,

N being the number of samples of the digital signal, so that the estimator is the best
in the min-max sense as N tends to infinity [13]. The use of the soft thresholding
operator (1.5) instead of the more intuitive hard one (1.4) allows to partially reduce
the pseudo-Gibbs phenomena [12]: thanks to the continuity of the soft thresholding
operator, the structure of the wavelet coefficients is better preserved. However, the soft
thresholding operator introduces another type of artifact : since all wavelet coefficients
are lowered, local averages are not preserved, leading peaks to be eroded.

Total variation denoising follows a completely different approach. It has been
introduced for the first time by Rudin, Osher and Fatemi in [21], in the context of
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image denoising. They proposed to minimize the total variation (TV) of a function

u € L3(Q)
(1.9) TV(u) ::/Q|Vu|dx,

where €2 is a bounded and convex region of IRY, subject to the fidelity constraint
(1.10) l|lu —t||L2(q) = o,

o being an estimated error level. The noise is reduced while discontinuities are pre-
served, in contrast with other regularization techniques, generally using a L? norm,
where discontinuities are smoothed. Although the TV functional seems to be particu-
larly relevant in regularizing piecewise smooth functions, it generates artifact as well,
known as the staircase effect (see [4, 10] for numerical evidence, and [20] for theoret-
ical analysis in a general framework) : TV-based algorithms tend to restore piecewise
constant functions. For example and though they have the same total variation, a
staircase will be preferred to a ramp (see Figure 5.5). This is mainly due to the lack
of regularity of the TV.

In [23] (see also [1, 3, 11]), Vogel and Oman propose to replace the TV by the
regularized functional

(1.11) Ja(u) ::/Q\/|Vu|2—|—62dx

where ( is a small positive parameter. Being differentiable, the TV-regularized prob-
lem may be stated using various optimization techniques and the staircase effect may
be removed. However, the experiments we have performed tend to show the difficulty
of finding a suitable value for 3 : if 7 is significantly greater than 0, the staircase effect
is effectively removed but the noise 1s diffused, and for § larger again, discontinuities
are smoothed. If not, the regularization is similar to the one performed with the TV,
but in any case the computation (due to the introduction of the square root in (1.11))
is much slower. Another staircase reduction strategy is to introduce higher order
derivatives in the functional, so that inopportune jumps are penalized : see e.g. [2, 4].

The denoising algorithm we are presenting in this article combines the wavelet
and the total variation approaches. In our knowledge, a few articles only use these
complementary tools in the context of signal or image processing. In [15], Malgo-
uyres, Rougé and one of us point out the complementarity of these tools and, in [17],
Malgouyres proposed a deblurring algorithm based on both tools, in the context of
satellite imaging. Another close approach is exposed by Chan and Zhou in [5] ; let us
precise that our algorithm was developed independently. As we do, Chan and Zhou
noticed that a total variation minimization may be applied to remove the pseudo-
Gibbs phenomenon generated by wavelet thresholding. They proposed to solve the
following convex and unconstrained problem

1
1.12 i Ve, ylde+ = ||u—al|7
(112 min o [ [Vug, | da+ gllu= il
where u(., ) is the function reconstructed using the wavelet coefficients (c; ), these
coefficients satisfying ¢; , = 0 if (j,n) ¢ M. The first term of this functional reduces
the oscillations of the estimated function by modifying the values of the retained
wavelet coefficients, so that the total variation is diminished. The second term 1s
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a classical L? fitting term. The regularization parameter o is used to balance the
respective influence of these two terms.

The model we are presenting is somewhat opposite to the one of Chan and Zhou.
We propose to reconstruct a function with minimal total variation such that for in-
dexes belonging to M, its wavelet coefficients are the same than the wavelet coefficients
of the observed function u. That is, retained wavelet coefficients are not modified
while canceled coefficients are no more set to 0, but to values that minimize the total
variation. This main idea results simply in the following remark : apart from the
pseudo-Gibbs phenomenon, wavelet thresholding works well in denoising functions.
Therefore, we can assume that the unknown original noiseless signal « has the same
wavelet coefficients than the thresholded one in the location given by the map M.
Wavelet denoising algorithm makes the choice of setting the coefficients outside M
to 0, leading oscillations in the vicinity of discontinuities. Because of the strong de-
pendency between wavelet coefficients in the original noiseless signal, this is far from
an optimal choice. By proposing to set the coefficients outside M to the values that
minimize the total variation of the reconstructed function, occurrence of oscillations
is discouraged : a structure of coefficients compatible with sharp discontinuities is
recovered. Notice that, in contrary to the model of Chan and Zhou, we define a con-
strained problem but which is free of regularization parameter. Since the important
wavelet coefficients are kept unchanged, there is no need for a fitting term. The only
parameter is the threshold A, and it can be fixed according to (1.8).

We have exposed this denoising model in [14], in a mathematically simplified
version. The aim of the current article is to present and justify the algorithm used to
solve the model in the 1D case, which is based on a subgradient descent combining
a projection on a linear space. Section 2 recalls the model in the continuous case,
while section 3 gives its counterpart in the discrete case, which defines the effective
algorithm. Section 4 is devoted to the convergence study of the algorithm. It is
proved that, provided the stepsize i1s not decreasing too fast to 0, the sequence of
computed vectors converges to a solution of the discrete model. Section 5 presents
numerical results on two signals and comparison with wavelet and total variation
classical denoising algorithms is performed.

2. The continuous model. For simplicity, we present the model in the 1D case.
But a similar development can be performed on IR?, for example to denoise images.
The total variation of any unidimensional function « in [ is defined by

L
(2.1) TV(u) = sup Y _ |u(e) — u(wi—1)|
(1) =1
where the supremum is on all sequences (#;) such that a < ) < w2 < ... <z <b.

Let X be the space of L?(I) functions such that their TV norm is finite, which is
an Hilbert space for the scalar product (.,.) defined on L?(I). We denote by U the
constraint space

(22) U= {U e X: V(]a n) € Ma <U, 1/)],n> = <ﬂ, 1/)],n>a Vn € (I)’ <U, ¢J,n> = <ﬂ, ¢J,n>}a

where M is defined in (1.7). The set U is an affine space with direction given by the
linear space

(2.3) V={veX:V(n) €Mv,¢jn)=0;Vn € Q{v,dsn) =0}
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Consider up introduced in (1.6). Since ug € U, we have
(2.4) U={up}+V.

We propose to solve the variational problem
PROBLEM 2.1. Find u* € U such that TV(u*) = Hli[I]l TV(u).
u€

A small technical difficulty comes from the fact that the TV-functional is not
differentiable. In order to avoid the use of a subgradient instead of a gradient, we could
make the choice of a regularization as in (1.11), but as we wrote it in the introduction,
we didn’t find that this would increase the performance of the algorithm. Since TV
is a convex function, we can define a subgradient of TV at u as any function gy (u)
satisfying

(2.5) Yo € X, TV(v) > TV(u) + (gpy (u), v — u),

and we get the classical result
THEOREM 2.2. Any solution u* of Problem 2.1 is given by

(2.6) vt >0, ut =P (u —thV(u*)) ,

for P the affine projector onto U that minimizes the distance.
Proof. As TV is convex, u* is a solution of Problem 2.1 iff

u* € U and Yv € U, (gpy(u™),v —u™) >0
< w'cUandVYveU V>0, (u" — (v —tgpy(u™)),v—u") >0
= Vt>0, u = Plu —tgpy(u)).

3. The discrete model. We now assume that functions are signals with N
samples, that is X = IRY. For such a discrete signal we use the vectorial notation

u=(ut,u? ... u"), we denote by (.,.) the standard scalar product on RY
N
(3.1) Yu,v e RY, (u,v) :Zu"v",
n=1
and ||.]| is the associated Euclidean norm. The discrete total variation of u is given
by
N-1
(3.2) TV(u) = > Ju" —u?|.
n=1

Let u® be the continuous, or analog function in the approximation space V; (scale
1), associated to the discrete signal u by u¢ = > u"¢g » and u” = (u°, ¢g ). The sets
U and V are defined as in (2.2) and (2.3), using a FWT (Fast Wavelet Transform [18])
to compute from u up to the coarse scale 2/ (for a given J < 0), the sequence of wavelet
coefficients ((u®, ¥ n))jnew (with J < j < 0), plus the remaining approximation

((u, 05n))nea

U={ue X :V({yn) eM (U, = ;) and
(3 3) Vn € (I)’ <uc’ ¢J,n> = <ac’ ¢J,n>}
’ V={veX: V({jn) eM (¢, =0and
Vn e ®, (v°, ¢5,) = 0}.
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Assuming this new notation, we define the discrete problem as in Problem 2.1 and
thus Theorem 2.2 follows unchanged. From now, Problem 2.1 and Theorem 2.2 will
refer to the discrete formulation. Theorem 2.2 leads us to define, as an approximation
method of the solution of Problem 2.1, the following subgradient descent scheme with
a projection on the constraint:

ProBLEM 3.1.

(3.4) Upp1 = P (up — tkgTV(Uk)) ;

where ug € U 1s the denoised signal by wavelet thresholding obtained from the discrete
formulation of (1.6), and where t, > 0 is the step chosen in order to obtain the
convergence.

THEOREM 3.2. Problem 3.1 can be solved using the following algorithm

(3.5) k41 =k — tp Py (gr)

where Py 1s the orthogonal projection onto V' and where g, € X salisfies

Vn=2...N—-1 g} =sgn(u} —u;" )—sgn( +1
(3.6) g = —sgn(uj; — U}c),
gk = sgn(ufp —up™h).

_UZ)’

Proof. Equation (3.5) comes from the equality
(3.7) Yu € X, P(u) = ug + Py(u— ug),

and from the fact that gj, as defined in (3.6), is a subgradient of TV at ug. Indeed,
remark that

(3.8) lyl > |#| +sgn(z)(y — z) (Yz,y € R),
Let y = ot — " 2 = uZ'H — uy, and sum over n. One obtains
(3.9) TV (v) > TV (ug) + {gr, v — ug).

O
The subgradient gy is projected onto V' using the FWT, followed by the cancel-
lation of coefficients belonging to M and by an inverse FWT. If we assume a fixed

number of iterations in (3.5), the complexity of the algorithm is of the same order
than the complexity of the FWT, that is O(N).

4. Convergence of the algorithm. In this section, we establish the following
result
THEOREM 4.1. Let the sequence (ty) satisfies

+oo
(41) tr >0, hHl t, =0, Ztk_—l—oo
k=0

Then, the algorithm given by Theorem 3.2 converges in the sense that

4.2 li — = d 1 T = T
(4.2) kJToouHélrI} [lug — uw™|| =0 an im V(ug) = umem V),
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where

(4.3) U ={u €U : TV(u") = Zrélrljl TV(u)}.
This theorem is an adaptation of a classical result for the subgradient method, that
we recall below (see [22] for a demonstration).

THEOREM 4.2. Let X be a vectorial space of finite dimension and J a convex
function defined on X which has a bounded set of minimum point X*. Assume that
the sequence of positive numbers (1) satisfies the conditions ({.1) and suppose that a
sequence (xy) of X is generated according to the formula

(4.4) Trt1 = T — trgy(2x),

where g7(xy) is a subgradient of J at xy, and for xg € X an arbitrary starting point.
Then either

(a) the sequence (gs(xy)) is bounded and the algorithm converges in the sense that
(4.5) kEToo  in, ||z — «"|| = 0 and kEToo J(zy) = min J(z),

or

(b) the sequence (gj(xk)) is unbounded and there is no convergence.

The key point is to transform the constrained minimization Problem 2.1 to an
unconstrained one, so that Theorem 4.2 can be applied. Since U is an affine space,
this is simply done using the obvious lemma

LEMMA 4.3. u* s a solution of Problem 2.1 iff v* = ug + v* where v* € V
satisfies

(4.6) Jw*) = Héi‘I/IJ(v) for J(v) := TV(v+ ug).
The corresponding algorithm is given by

LEMMA 4.4. Let (vy) be the sequence defined on V' by vy = up — ug, the sequence
(ug) being defined as in (3.5). Then,

(47) Vg 41 :vk—tkgj(vk), vo=0€V,

where gy(vi) is a subgradient of J at vy.
Proof. We have vi41 = v, — t;: Py (g95) and gj(vx) := Py (gk) is a subgradient of
J at vg. Indeed, from

(4.8) Yu e U, TV(u) = TV (ug) > (g, u — up)
one gets, with v = u — ug,

Yo eV, J(v) — J(vg) (g, v — vg)
(g, Pv(v —wvg)) (since v—up € V)

(Pv(gr),v—vk) (since Py is symmetric).

VIV IV

O
Now, to prove Theorem 4.1, it suffices to show that the sequence (vy) satisfies
the conditions of Theorem 4.2, where one sets X = V. This is done by lemmas 4.5

and 4.6 :
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LEMMA 4.5. The set V* := {v* € V : J(v*) < J(v) Yv € V} is bounded and J
15 a conver functional.

Proof. The functional TV defines a (convex) semi-norm on IRY and hence on
V. Let us prove that for any v € V, we have TV(v) = 0 = v = 0. Since linear
combination of wavelets (¢; ,,) have a zero average and since (v°, ¢s,) = 0, one gets

(4.9) / / Z v Y50 )Ujn + /Z s @an)Pan = 0.

]n E\Il ned

If TV (v) = 0, then v = (v°,¢pn) = v (Yn = 1...N), v being constant. Since one
can write

(4.10) Ve = Z< 1/{771 1/{771‘1‘2 ¢0n ¢0na
we get

(4.11) oz/IvC:VZ/Iqso,n:y:o.

Therefore, TV is a norm on V which is equivalent to the Euclidean norm. In
particular,

(4.12) da>0:VYeeV allv|] < TV(v).
Hence,
Yo eV, J(v) =TV (ug+v) >TV(v) = TV (ug) > al|v]|| = TV (ug),

and

Yo* eV ||v*]| < (Héi‘glj(v) + TV(UO)) /a.

LEMMA 4.6. The sequence (g5(vy)) is bounded.
Proof. Since Py is a continuous operator, it suffices to prove that the sequence
(gr) is bounded. This is obviously true from (3.6). O

5. Numerical results. The algorithm described in Section 3 has been imple-
mented using the tools given by the free and open-source MegaWave2 software [16].
A forthcoming update of this software will contain all the modules used to obtain the
following experiments, so that everyone will be able to reproduce the results and to
perform additional experiments.

We report two experiments. The first one consists in denoising a synthetic signal
containing two discontinuities of second order (a ramp), followed by a sharp disconti-
nuity (a step), followed by a peak. A Gaussian white noise has been added following
the model & = u+ €. Figure 5.1 displays the original noiseless signal u, Figure 5.2 the
noisy signal @, Figure 5.3 the wavelet-denoised signal uy and Figure 5.4 the restored
signal uy for & = 10000. The estimator uy is far better than ug, either in terms of
SNR (Signal to Noise Ratio) or visually. Fair results are still obtained with much
lower k (as low as k ~ 10).
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Let us now compare our result with three standard methods. On Figure 5.5, the
signal @ has been denoised by Rudin-Osher-Fatemi’s variational method, exhibiting
the staircase phenomena. Then, in the latter method, the Total Variation has been
replaced by the regularized-TV Jg given in (1.11), with 2 = 10~*. The obtained re-
sult is displayed on Figure 5.6. The data fidelity weight has been chosen large enough
in order not to smooth the jump, but, as a consequence, the noise is diffused. Finally,
Figure 5.7 shows the signal 4 denoised by Coifman and Donoho’s translation invari-
ant wavelet thresholding algorithm [9]. This procedure, called SpinCycle, consists
in applying the thresholding process to translated versions of the original signal and
averaging them. The pseudo-Gibbs phenomena have been reduced compared to the
standard wavelet thresholding (Figure 5.4), but they are still visible.

The second experiment is obtained from a natural noisy signal u, which follows our
assumption of a piecewise smooth noiseless signal u. The signal @ shows in Figure 5.8
corresponds to a line of a digital image, which is a snapshot of an office. Figure 5.9
displays the signal ug and Figure 5.10 the signal u. Once again, the visual aspect of
uy 1s far better than ug.

1.2 T T T T

1F -

0.8

0.6

0.4

0.2

0

-0.2 1 1 1 1
0 500 1000 1500 2000

Fi1ac. 5.1. Original function u.

1.2 T T T T

0.8 | E
0.6 E
04 E

0.2 —

-0.2 1 1 1 1
0 500 1000 1500 2000

Fic. 5.2. Noisy function 4, obtained by adding to uw a Gaussian white noise € of o = 0.05.
SNR=18.7 db.
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-0.2 1 1 1 1
0 500 1000 1500 2000

Fi1G. 5.3. Denoised function ug , obtained by wavelet hard thresholding. SNR=29.0 db. NTV
(Normalized Total Variation)=0.0031.

1.2 T T T T

-0.2 1 1 1 1
0 500 1000 1500 2000

Fi1G. 5.4. Denoised function uy, obtained by our method. SNR=31.1 db. NTV=0.0018.

1.2 T T T T

-0.2 1 1 1 1
0 500 1000 1500 2000

F1G. 5.5. Rudin-Osher-Fatemi’s algorithm : denoised function argminTV (v) subject to ||v —
17,||lz =o. SNR=29.3 db.

6. Concluding remarks. We have presented a method to reconstruct wavelet
coefficients using a total variation minimization algorithm. This approach performs
a nearly artifact free signal denoising : the pseudo-Gibbs phenomena vanish almost
totally while the sharpness of the signal is preserved, without staircase effect.
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1.2 T T T T

1
0.8
0.6
0.4
0.2

0

-0.2 1 1 1 1
0 500 1000 1500 2000

F1G. 5.6. Regularized Total Variation algorithm : denoised function argminJg(v) subject to
[|lv = @l|;2 = 0. SNR=28.7 db.

1.2 T T T T

1
0.8
0.6
0.4
0.2

0

-0.2 1 1 1 1
0 500 1000 1500 2000

Fic. 5.7. SpinCycle : denoised function, obtained by translation invariant wavelet thresholding.
SNR=31.4 db.

However, better results may be obtained by improving our algorithm. Observe
that the peak on the right side of Figure 5.4 has been slightly eroded compared to
the original one. This drawkback is shared by all TV regularization approaches; in
our case it may be lowered by keeping small coefficients vanished when they are not
in the vicinity of jumps. In this way, a standard wavelet denoising would be applied
on regular parts. Another subject of research would be to introduce a weighted
TV functional, so that the regularization would be relaxed in transient parts and
reinforced in smooth ones, following the idea recently proposed by L. Moisan in [19]
in the context of spectral extrapolation.

Let us emphasize that, although our algorithm was justified and illustrated in
the case of unidimensional signals, it can be easily extended to signals of higher
dimensions, and in particular to images for which the piecewise-smooth assumption
is highly relevant. A slight modification of the constraint may also be performed in
order to achieve restoration of signals and images that have been compressed within
an orthogonal basis, although in such case care should be taken in order to keep the
convergence of the algorithm.

Acknowledgments. The authors are grateful to Lionel Moisan, Mila Nikolova
and Bernard Rougé for useful discussions.
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0 100 200 300 400 500

F1G. 5.8. Real signal v extracted from a line of a digital image (view of an office).

200 T T T T T
150 _
100 - b
50 _
0 1 1 A 1 1
0 100 200 300 400 500

F1G. 5.9. Denoised line of the image, obtained by wavelet hard thresholding. NTV=3.244.
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F1G. 5.10. Denoised line of the image, obtained by our method. NTV=2.365.
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