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We propose a model to reconstruct wavelet coe cients using a total variation minimization algorithm. The approach is motivated by wavelet signal denoising methods, where thresholding small wavelet coe cients leads pseudo-Gibbs artifacts. By replacing these thresholded coefcients by values minimizing the total variation, our method performs a nearly artifact free signal denoising. In this paper, we detail the algorithm based on a subgradient descent combining a projection on a linear space. The convergence of the algorithm is established and numerical experiments are reported.

where ũ represents the observed data, u the noiseless function to estimate and the noise or, more generally, an unknown error. This problem occurs in number of applications, especially in the signal and image processing community, where one tries to recover the original smoothness of a signal while the main discontinuities are preserved. Among the various solutions that have been proposed, we will focus our attention on two promising approaches which recently appear : wavelet thresholding and total variation minimization.

Wavelet denoising consists in decomposing the noisy data into an orthogonal wavelet basis, in suppressing the wavelet coe cients smaller than a given amplitude using a so-called soft or hard thresholding, and in transforming the data back into the original domain : let f j;n g (j;n)2 ; f J;n g n2 be an orthogonal basis of wavelets and scaling functions on the interval I = a; b] as described by Cohen, Daubechies and Vial 7], so that we can write any function ũ 2 L 2 (I) as the sum of the series ũ = X (j;n)2 hũ; j;n i j;n + X n2 hũ; J;n i J;n (1.2) where, 8u; v 2 L 2 (I), hu; vi = Z I u(x) v(x) dx:

(1. [START_REF] Chambolle | Image recovery via total variation minimization and related problems[END_REF] In j;n , j is the index of scale and n the translation factor, taking values in the countable set . The term J;n denotes the scaling function on scale 2 J and translated by n, which is indexed to a nite set . The family f J;n g n2 is an orthonormal basis of a space V J that belongs to a multiresolution approximation of L 2 (I).

The hard thresholding operator is de ned by (x) = x if jxj ; 0 if jxj < ;

(1.4) while in the case of soft thresholding, the operator is

(x) = x sgn(x) if jxj ; 0 if jxj < :
(1.5)

The denoised signal using wavelet thresholding is simply

u 0 = X (j;n)2
(hũ; j;n i) j;n + X n2 hũ; J;n i J;n :

(1.6)

We will denote M the map that records the indexes of retained coe cients : M = f(j; n) 2 K : jhũ; j;n ij g:

(1.7) Because of its simplicity, the algorithm sketches in (1.6) has been widely used by engineers since the beginning of wavelet in signal processing. It has been formalized by Donoho and Johnstone in 13], where they proved that the performance associated to non-linear thresholding estimator in orthogonal bases is close to an ideal coe cient selection and attenuation. In addition, among classical orthogonal bases, wavelet series outperforms Fourier or cosine series in the representation of piecewise-smooth functions (see e.g. 6, 8]) : the e ciency of the estimator depends on the rate of decay of the sorted decomposition coe cients and, thanks to the wavelets time-localization, the decay of wavelet coe cients in the neighborhood of discontinuities is faster that the decay of Fourier coe cients. However, wavelet thresholding method is still a regularization process and the estimator presents oscillations in the vicinity of function's discontinuities. Such oscillations are very close to the Gibbs phenomena exhibited by Fourier thresholding, although they are more local and of smaller amplitude. For this reason, they are called pseudo-Gibbs phenomena. These oscillations do not a ect too much the L 2 error between the original noiseless signal and the estimated one, but they do a ect the visual quality of the result : it is often impossible to perform a complete denoising while keeping the threshold small enough to avoid the pseudo-Gibbs phenomena. If is a Gaussian white noise of standard deviation , the threshold should be set to = p 2 logN; (1.8) N being the number of samples of the digital signal, so that the estimator is the best in the min-max sense as N tends to in nity 13]. The use of the soft thresholding operator (1.5) instead of the more intuitive hard one (1.4) allows to partially reduce the pseudo-Gibbs phenomena 12]: thanks to the continuity of the soft thresholding operator, the structure of the wavelet coe cients is better preserved. However, the soft thresholding operator introduces another type of artifact : since all wavelet coe cients are lowered, local averages are not preserved, leading peaks to be eroded.

Total variation denoising follows a completely di erent approach. It has been introduced for the rst time by Rudin, Osher and Fatemi in 21], in the context of image denoising. They proposed to minimize the total variation (TV) of a function u 2 L 2 ( )

TV(u) := Z jruj dx; (1.9)
where is a bounded and convex region of IR d , subject to the delity constraint jju ũjj L 2 ( ) = ;

(1. [START_REF] Coifman | Translation-invariant de-noising[END_REF] being an estimated error level. The noise is reduced while discontinuities are preserved, in contrast with other regularization techniques, generally using a L 2 norm, where discontinuities are smoothed. Although the TV functional seems to be particularly relevant in regularizing piecewise smooth functions, it generates artifact as well, known as the staircase e ect (see [START_REF] Chan | A continuation method for total variation denoising problems[END_REF][START_REF] Coifman | Translation-invariant de-noising[END_REF] for numerical evidence, and 20] for theoretical analysis in a general framework) : TV-based algorithms tend to restore piecewise constant functions. For example and though they have the same total variation, a staircase will be preferred to a ramp (see Figure 5.5). This is mainly due to the lack of regularity of the TV.

In 23] (see also 1, 3, 11]), Vogel and Oman propose to replace the TV by the regularized functional

J (u) := Z p jruj 2 + 2 dx (1.11)
where is a small positive parameter. Being di erentiable, the TV-regularized problem may be stated using various optimization techniques and the staircase e ect may be removed. However, the experiments we have performed tend to show the di culty of nding a suitable value for : if is signi cantly greater than 0, the staircase e ect is e ectively removed but the noise is di used, and for larger again, discontinuities are smoothed. If not, the regularization is similar to the one performed with the TV, but in any case the computation (due to the introduction of the square root in (1.11)) is much slower. Another staircase reduction strategy is to introduce higher order derivatives in the functional, so that inopportune jumps are penalized : see e.g. 2, 4].

The denoising algorithm we are presenting in this article combines the wavelet and the total variation approaches. In our knowledge, a few articles only use these complementary tools in the context of signal or image processing. In 15], Malgouyres, Roug e and one of us point out the complementarity of these tools and, in 17], Malgouyres proposed a deblurring algorithm based on both tools, in the context of satellite imaging. Another close approach is exposed by Chan and Zhou in 5] ; let us precise that our algorithm was developed independently. As we do, Chan and Zhou noticed that a total variation minimization may be applied to remove the pseudo-Gibbs phenomenon generated by wavelet thresholding. They proposed to solve the following convex and unconstrained problem min

(cj;n) Z jru (cj;n) j dx + 1 2 jju ũjj 2 L 2 ( ) (1.12)
where u (cj;n) is the function reconstructed using the wavelet coe cients (c j;n ), these coe cients satisfying c j;n = 0 if (j; n) 6 2 M. The rst term of this functional reduces the oscillations of the estimated function by modifying the values of the retained wavelet coe cients, so that the total variation is diminished. The second term is a classical L 2 tting term. The regularization parameter is used to balance the respective in uence of these two terms. The model we are presenting is somewhat opposite to the one of Chan and Zhou. We propose to reconstruct a function with minimal total variation such that for indexes belonging to M, its wavelet coe cients are the same than the wavelet coe cients of the observed function ũ. That is, retained wavelet coe cients are not modi ed while canceled coe cients are no more set to 0, but to values that minimize the total variation. This main idea results simply in the following remark : apart from the pseudo-Gibbs phenomenon, wavelet thresholding works well in denoising functions. Therefore, we can assume that the unknown original noiseless signal u has the same wavelet coe cients than the thresholded one in the location given by the map M. Wavelet denoising algorithm makes the choice of setting the coe cients outside M to 0, leading oscillations in the vicinity of discontinuities. Because of the strong dependency between wavelet coe cients in the original noiseless signal, this is far from an optimal choice. By proposing to set the coe cients outside M to the values that minimize the total variation of the reconstructed function, occurrence of oscillations is discouraged : a structure of coe cients compatible with sharp discontinuities is recovered. Notice that, in contrary to the model of Chan and Zhou, we de ne a constrained problem but which is free of regularization parameter. Since the important wavelet coe cients are kept unchanged, there is no need for a tting term. The only parameter is the threshold , and it can be xed according to (1.8).

We have exposed this denoising model in 14], in a mathematically simpli ed version. The aim of the current article is to present and justify the algorithm used to solve the model in the 1D case, which is based on a subgradient descent combining a projection on a linear space. Section 2 recalls the model in the continuous case, while section 3 gives its counterpart in the discrete case, which de nes the e ective algorithm. Section 4 is devoted to the convergence study of the algorithm. It is proved that, provided the stepsize is not decreasing too fast to 0, the sequence of computed vectors converges to a solution of the discrete model. Section 5 presents numerical results on two signals and comparison with wavelet and total variation classical denoising algorithms is performed.

2. The continuous model. For simplicity, we present the model in the 1D case.

But a similar development can be performed on IR d , for example to denoise images. The total variation of any unidimensional function u in I is de ned by

TV(u) = sup (xl) L X l=1 ju(x l ) u(x l 1 )j (2.1)
where the supremum is on all sequences (x l ) such that a x 1 < x 2 < : : : < x L b. Let X be the space of L 2 (I) functions such that their TV norm is nite, which is an Hilbert space for the scalar product h:; :i de ned on L 2 (I). We denote by U the constraint space U = fu 2 X : 8(j; n) 2 M; hu; j;n i = hũ; j;n i; 8n 2 ; hu; J;n i = hũ; J;n ig;

(2.2) where M is de ned in (1.7). The set U is an a ne space with direction given by the linear space V = fv 2 X : 8(j; n) 2 M; hv; j;n i = 0; 8n 2 ; hv; J;n i = 0g:

(2.3) Assuming this new notation, we de ne the discrete problem as in Problem 2.1 and thus Theorem 2.2 follows unchanged. From now, Problem 2.1 and Theorem 2.2 will refer to the discrete formulation. Theorem 2.2 leads us to de ne, as an approximation method of the solution of Problem 2.1, the following subgradient descent scheme with a projection on the constraint: Problem 3.1. u k+1 = P u k t k g TV (u k ) ; (3.4) where u 0 2 U is the denoised signal by wavelet thresholding obtained from the discrete formulation of (1.6), and where t k > 0 is the step chosen in order to obtain the convergence.

Theorem 3.2. Problem 3.1 can be solved using the following algorithm

u k+1 = u k t k P V (g k ) (3.5)
where P V is the orthogonal projection onto V and where g k 2 X satis es 8n = 2; : :

:N 1; g n k = sgn(u n k u n 1 k ) sgn(u n+1 k u n k ); g 1 k = sgn(u 2 k u 1 k ); g n k = sgn(u n k u n 1 k ): (3.6)
Proof. Equation (3.5) comes from the equality 8u 2 X; P (u) = u 0 + P V (u u 0 );

(3.7)
and from the fact that g k , as de ned in (3.6), is a subgradient of TV at u k . Indeed, remark that jyj jxj + sgn(x)(y x) (8x; y 2 IR);

(3.8)

Let y = v n+1 v n , x = u n+1 k u n
k , and sum over n. One obtains T V (v) T V (u k ) + hg k ; v u k i:

(3.9)

The subgradient g k is projected onto V using the FWT, followed by the cancellation of coe cients belonging to M and by an inverse FWT. If we assume a xed number of iterations in (3.5), the complexity of the algorithm is of the same order than the complexity of the FWT, that is O(N). [START_REF] Chan | A continuation method for total variation denoising problems[END_REF]. Convergence of the algorithm. In this section, we establish the following result Theorem 4.1. Let the sequence (t k ) satis es

t k > 0; lim k!+1 t k = 0; +1 X k=0 t k = +1: (4.1)
Then, the algorithm given by Theorem 3.2 converges in the sense that lim k!+1 min u 2U jju k u jj = 0 and lim k!+1 TV(u k ) = min u2U TV(u); (4.2) where U = fu 2 U : TV(u ) = min u2U TV(u)g: (4.3) This theorem is an adaptation of a classical result for the subgradient method, that we recall below (see 22] for a demonstration). Theorem 4.2. Let X be a vectorial space of nite dimension and J a convex function de ned on X which has a bounded set of minimum point X . Assume that the sequence of positive numbers (t k ) satis es the conditions (4.1) and suppose that a sequence (x k ) of X is generated according to the formula

x k+1 = x k t k g J (x k ); (4.4)
where g J (x k ) is a subgradient of J at x k and for x 0 2 X an arbitrary starting point.

Then either (a) the sequence (g J (x k )) is bounded and the algorithm converges in the sense that lim k!+1 min x 2X jjx k x jj = 0 and lim k!+1 J(x k ) = min x2X J(x); (4.5) or (b) the sequence (g J (x k )) is unbounded and there is no convergence.

The key point is to transform the constrained minimization Problem 2.1 to an unconstrained one, so that Theorem 4.2 can be applied. Since U is an a ne space, this is simply done using the obvious lemma Lemma 4.3. u is a solution of Problem 2.1 i u = u 0 + v where v 2 V satis es J(v ) = min v2V J(v) for J(v) := TV(v + u 0 ): (4.6)

The corresponding algorithm is given by Lemma 4.4. Let (v k ) be the sequence de ned on V by v k = u k u 0 , the sequence (u k ) being de ned as in (3.5). Then, v k+1 = v k t k g J (v k ); v 0 = 0 2 V; (4.7) where g J (v k ) is a subgradient of J at v k .

Proof. We have v k+1 = v k t k P V (g k ) and g J (v k ) := P V (g k ) is a subgradient of J at v k . Indeed, from 8u 2 U; TV(u) TV(u k ) (g k ; u u k )

(4.8) one gets, with v = u u 0 , 8v 2 V; J(v) J(v k ) (g k ; v v k ) (g k ; P V (v v k )) (since v v k 2 V ) (P V (g k ); v v k ) (since P V is symmetric):
Now, to prove Theorem 4.1, it su ces to show that the sequence (v k ) satis es the conditions of Theorem 4.2, where one sets X = V . This is done by lemmas 4.5 and 4.6 : Lemma 4.5. The set V := fv 2 V : J(v ) J(v) 8v 2 V g is bounded and J is a convex functional.

Proof. The functional T V de nes a (convex) semi-norm on IR N and hence on V . Let us prove that for any v 2 V , we have T V (v) = 0 ) v = 0. Since linear combination of wavelets ( j;n ) have a zero average and since hv c ; J;n i = 0, one gets Therefore, T V is a norm on V which is equivalent to the Euclidean norm. In particular, 9a > 0 : 8v 2 V; a jjvjj T V (v): (4.12) Hence, 8v 2 V; J(v) = T V (u 0 + v) T V (v) T V (u 0 ) a jjvjj T V (u 0 ); and 8v 2 V ; jjv jj min v2V J(v) + T V (u 0 ) =a: Lemma 4.6. The sequence (g J (v k )) is bounded. Proof. Since P V is a continuous operator, it su ces to prove that the sequence (g k ) is bounded. This is obviously true from (3.6).

5. Numerical results. The algorithm described in Section 3 has been implemented using the tools given by the free and open-source MegaWave2 software 16]. A forthcoming update of this software will contain all the modules used to obtain the following experiments, so that everyone will be able to reproduce the results and to perform additional experiments.

We report two experiments. The rst one consists in denoising a synthetic signal containing two discontinuities of second order (a ramp), followed by a sharp discontinuity (a step), followed by a peak. A Gaussian white noise has been added following the model ũ = u + . Let us now compare our result with three standard methods. On Figure 5.5, the signal ũ has been denoised by Rudin-Osher-Fatemi's variational method, exhibiting the staircase phenomena. Then, in the latter method, the Total Variation has been replaced by the regularized-TV J given in (1.11), with = 10 4 . The obtained result is displayed on Figure 5.6. The data delity weight has been chosen large enough in order not to smooth the jump, but, as a consequence, the noise is di used. Finally, Figure 5.7 shows the signal ũ denoised by Coifman and Donoho's translation invariant wavelet thresholding algorithm 9]. This procedure, called SpinCycle, consists in applying the thresholding process to translated versions of the original signal and averaging them. The pseudo-Gibbs phenomena have been reduced compared to the standard wavelet thresholding (Figure 5.4), but they are still visible.

The second experiment is obtained from a natural noisy signal ũ, which follows our assumption of a piecewise smooth noiseless signal u. The signal ũ shows in Figure 5.8 corresponds to a line of a digital image, which is a snapshot of an o ce. Figure 5.9 displays the signal u 0 and Figure 5.10 the signal u k . Once again, the visual aspect of u k is far better than u 0 . 

  1. Introduction. Let us consider the problem of denoising nearly piecewise smooth functions presenting sharp discontinuities, following the additive noise model ũ = u + ; (1.1)

  (v) = 0, then v n = hv c ; 0;n i = (8n = 1 : : :N), being constant.

Figure 5 .

 5 1 displays the original noiseless signal u, Figure 5.2 the noisy signal ũ, Figure 5.3 the wavelet-denoised signal u 0 and Figure 5.4 the restored signal u k for k = 10000. The estimator u k is far better than u 0 , either in terms of SNR (Signal to Noise Ratio) or visually. Fair results are still obtained with much lower k (as low as k ' 10).
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 558595 Fig. 5.1. Original function u.
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Consider u 0 introduced in (1.6). Since u 0 2 U, we have U = fu 0 g + V:

(2.4) We propose to solve the variational problem Problem 2.1. Find u 2 U such that TV(u ) = min u2U TV(u).

A small technical di culty comes from the fact that the TV-functional is not di erentiable. In order to avoid the use of a subgradient instead of a gradient, we could make the choice of a regularization as in (1.11), but as we wrote it in the introduction, we didn't nd that this would increase the performance of the algorithm. Since TV is a convex function, we can de ne a subgradient of TV at u as any function g TV (u) satisfying 8v 2 X; TV(v) TV(u) + hg TV (u); v ui;

(2.5) and we get the classical result Theorem 2.2. Any solution u of Problem 2.1 is given by 8t > 0; u = P u t g TV (u ) ;

(2.6) for P the a ne projector onto U that minimizes the distance.

Proof. As T V is convex, u is a solution of Problem 2.1 i u 2 U and 8v 2 U; hg TV (u ); v u i 0 () u 2 U and 8v 2 U; 8t > 0; hu (u tg TV (u )); v u i 0 () 8t > 0; u = P (u t g TV (u )):

3. The discrete model. We now assume that functions are signals with N samples, that is X = IR N . For such a discrete signal we use the vectorial notation u = (u 1 ; u 2 ; : : :; u N ), we denote by (:; :) the standard scalar product on

and jj:jj is the associated Euclidean norm. The discrete total variation of u is given by

Let u c be the continuous, or analog function in the approximation space V 0 (scale 1), associated to the discrete signal u by u c = P n u n 0;n and u n = hu c ; 0;n i. The sets U and V are de ned as in (2.2) and (2.3), using a FWT (Fast Wavelet Transform 18]) to compute from u up to the coarse scale 2 J (for a given J < 0), the sequence of wavelet coe cients (hu c ; j;n i) j;n2 (with J j < 0), plus the remaining approximation (hu c ; J;n i) n2 : U = fu 2 X : 8(j; n) 2 M; hu c ; j;n i = hũ c ; j;n i and 8n 2 ; hu c ; J;n i = hũ c ; J;n ig V = fv 2 X : 8(j; n) 2 M; hv c ; j;n i = 0 and 8n 2 ; hv c ; J;n i = 0g: 6. Concluding remarks. We have presented a method to reconstruct wavelet coe cients using a total variation minimization algorithm. This approach performs a nearly artifact free signal denoising : the pseudo-Gibbs phenomena vanish almost totally while the sharpness of the signal is preserved, without staircase e ect. However, better results may be obtained by improving our algorithm. Observe that the peak on the right side of Figure 5.4 has been slightly eroded compared to the original one. This drawkback is shared by all TV regularization approaches; in our case it may be lowered by keeping small coe cients vanished when they are not in the vicinity of jumps. In this way, a standard wavelet denoising would be applied on regular parts. Another subject of research would be to introduce a weighted TV functional, so that the regularization would be relaxed in transient parts and reinforced in smooth ones, following the idea recently proposed by L. Moisan in 19] in the context of spectral extrapolation.

Let us emphasize that, although our algorithm was justi ed and illustrated in the case of unidimensional signals, it can be easily extended to signals of higher dimensions, and in particular to images for which the piecewise-smooth assumption is highly relevant. A slight modi cation of the constraint may also be performed in order to achieve restoration of signals and images that have been compressed within an orthogonal basis, although in such case care should be taken in order to keep the convergence of the algorithm.