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Abstract

This article introduces families of nonadaptive directional wavelets. Unlike
curvelets and contourlets, they are non-redundant and form orthonormal bases
for L*(R?). Their implementation derives from a single nonseparable filter bank
structure with non-uniform sampling. We give several examples of frequency
partitioning, including constructions based on separable multiresolution analy-
ses. We show how to obtain orthonormal bases of wavelets with fast decay, and
compactly supported, biorthogonal wavelet bases. Some aliasing phenomena
that can occur in these constructions are discussed.

1 Introduction

In some signal and image processing applications such as compression and denoising,
one is led to search for sparse representations. For instance, the wavelet transform
is very popular as it provides good non-linear approximations of peacewise smooth
signals. Wavelet basis on R? are generally obtained by tensor product, but separa-
ble wavelets are not well suited to images that have discontinuities positioned along
regular curves. In order to capture geometrical structures of images, many authors
proposed new transformations as natural extensions of wavelets on R?>. Some ap-
proaches consist in adapting separable wavelets to the structures of each image. For
example, bandelets [11] are obtained by warping wavelets along the geometrical flow of
the image. Some authors considered however nonadaptive transformations. Although
representations of images by such transformations may be less sparse, the algorithms
are generally faster. Moreover, no bits are wasted in the description of the geometry,
when dealing with compression.

Due to its high directionality, the curvelet frame introduced by Candés and Donoho
[3], provides an optimal approximation of piecewise smooth images with C? edges.
Originally developed in the continuous case, the curvelets are, however, difficult to
implement on discrete images. In order to circumvent this problem, Do and Vetterli
[7] introduced the contourlets that have the same geometry as curvelets but are di-
rectly defined on a discrete lattice. Although they perform very well in low bit rate
compression, contourlets are still redundant frames (with redundancy factor 1.33)
that make them non adapted to hight bit rate and lossless compression. Lu and Do
[12] introduced a directional filter bank that provides a frequency partitioning which
is close to the curvelets’ but with no redundancy. It consists in splitting the image on



four directional subbands and then applying a multiscaling algorithm on each band.
Although it has the same geometry as one of the examples we consider below (Ex-
ample B), this construction does not derives from a multiresolution analysis (MRA)
of L?(R?) which vouches for the obtaining of a basis for L?(R?). The same frequency
partitioning was studied very recently by Nguyen and Oraintara [17]. The proposed
transformation is based on a non-uniform filter bank as it is the case for the trans-
formations considered in this article. But the filters are obtained by an optimization
method that ensures approximate reconstruction only.

Several other transformations have been proposed. All of these approaches em-
phasize the difficulty to have simultaneously non-redundancy (it fails for [3, 7, 10]),
sharp directionality (see [10, 13]), space localization (see [2, 10]) and an easy imple-
mentation (see [2, 3]) with a natural relation between continuous and discrete cases
(see [9, 12]).

The aim of this article is to develop ideas introduced in a short article [8] in order
to meet these objectives. The transformation we proposed is generated by an MRA.
It uses a single filter bank structure with non-uniform sampling. In section 2, we
gives a condition for perfect reconstruction non-uniform filter banks. In Section 3, we
focus on Shannon filters in order to define the ideal frequency supports of directional
wavelets. Several examples are considered. Section 4 is devoted to the design of
some specific two-band filters that are used in the next sections. Three examples of
frequency partitionings are studied in more details, in the last sections. We construct
smooth approximations of Shannon filters in order to obtain orthogonal wavelets with
fast decay and compactly supported biorthogonal wavelets. The problem of aliasing
that appears in some constructions is also adressed.

2 M-band filtering with non-uniform sampling

Denote by || .|| the Euclidean norm and by (., .} the scalar product on R*. Given
(ex)}_, a basis for R", one defines a point lattice by

n
P=> Ze.
k=1
Its reciprocal lattice is defined by

I'"={yeR": (n,y) € 21Z, ¥y € T'},

so that the Fourier transformation is an isometry between [?(T") and L*(R"/T'*). For
two lattices I'y and 'y with T's C Ty, define also the quotient lattice I'y /Ty = {7 :
v €T}, wherey={0 €'y : § —v € I'2}. Denote by |E| the cardinal number of any
set E.

Given an original lattice A C R™, a filter bank ((Mk,Mk)keK,D) is defined by
transfer functions (My)rex and (Mk)keK in L2(R"/A*), and a subsampling map
D. The latter must preserve the lattice A in the sense that it satisfies the condition
I = DA C A. The original signal x € [*>(A) is filtered on |K| subbands using the
transfer functions (Mp,)rex where My, (€) stands for the complex conjugate of My (€).
Subbands are next subsampled on the common lattice I'. At reconstruction, the
subband of index k is resampled on A by adding zeroes and filtered using the transfer
function M. The |K| obtained filtered signal are added in order to generate the



reconstructed signal Z. One says that the filter bank performs a perfect reconstruction
if and only if z = 7.

Notice that, at this point, the choice of the subsampling map D is not fundamental
(one only needs to know I' = DA). It interferes only when the filter bank is reiterated
on, at least, one of the subbands as it is the case for wavelets. For simplicity, this choice
will remain indeterminate (although it will be clear in the constructions below). We
will use therefore the notation ((My, Mk)keK,A — T') instead of ((Mp, Mk)keK,D).

A necessary and sufficient condition for perfect reconstruction [19] is that

M(€)* M(€) = |A/T|Td )z r, (1)

for a.e. £ € R?, where M (&) = (My(E47))yers/ax kers M(€) = (Mg (§4+7))yers/ax; kek s
M (&)* is the conjugate transpose of the matrix M (&) and Id|, /p| is the [A/T| x |A/T|-
identity matrix. A simple way to show this result is to express the Fourier transform
of the reconstructed signal = as

~

T= |A/F|ZMkMkz+|A/| Yoo Y M+ MeE(- +).
keK (' /A*)\{0} kEK

Condition (1) means that the first term on the right hand side is equal to Z, the
Fourier transform of the original signal z, while the other terms vanish. For example,
((e¥m) im0y, xp, A — T') performs a perfect reconstruction. It amounts, indeed,
to subsample the original signal on the shifted lattices {I' + 7},ca,r Whose union is
the whole lattice A.

More generally, let us assume that the subbands are subsampled on different lat-
tices {T'x}rex with Ty C A, for all £k € K. Denote by I' a common sublattice of all
the lattices 'y (In other words, one has ' C T, Vk € K. Notice that such a lattice
I exists because I'y, C A, Vk € K.) Define

M(€) = (e¥m&+7) pp (€ + ,
(f) (6 k(€ 7))7€F*/A*;kEK7nk€Fk/F

and . ' .
M) = (ez<77k7§+7> M (€ + 7))

Then we have the following reconstruction result

yET*/A*; kEK, m €Ty /T

Proposition 1 The filter bank (M, Mk,A — k) ke performs a perfect reconstruc-
tion if and only if .
M (&)™ M(&) = [A/T[ Idxry (2)

for ae. £ € R™.

Proof. Equation (2) amounts to say that the filter bank defined by the transfer
functions (e*™-) My, e ) My) ek, meery, o and the common subsampling lattice
I', performs a perfect reconstruction. The latter can however be seen as a combination
of (My, My, A — T'y)rex and the filter banks ((e“”">,ei<’7">)nepk/1~,1"k — T') that
are applied to the subbands of index k respectively. The proof derives from the fact
that filter banks ((e¥™ ), el )), p n, T, — T) perform perfect reconstructions. o

In the sequel, in order to obtain non-redundant transformations, we assume that
> kek |ITx/T| = |A/T|. This condition means that the matrix M () is square.



3 Admissible frequency partitioning

We consider, in this section, the special case of filter banks and wavelets which have
ideal localization in the Fourier domain, in the sense that the transfer function of
the filters and the Fourier transforms of the wavelets are indicator functions. These
wavelets, known as Shannon wavelets, suffer a bad localization in the space domain
since they do not belong to L!'(R?). Their study is motivated by the design of the
ideal frequency partitioning that we will try to approximate. In the next sections, we
show how to obtain a better space localization. A first step consists in characterizing
the admissible partitions for filter banks, as they are defined below.

One calls partition or set partition of R, a collection of disjoint subsets of R"
whose union is R*. A family of sets {Ay}rex is said to be a partition of R™/A* if
and only if {A; + A*}rek is a partition of R™. For convenience, sets are defined
modulo a set of Lebesgue measure zero. Given a lattice A C R™, a reciprocal cell is a
set C C R" such that (C + {7v}),ea~ is a partition of R". We consider only Voronoi
reciprocal cells C defined by & € C = |[€]| < ||€ + 7|, Vv € A*. Let us denote by xg
the indicator function of a set E.

Definition 1 A partition {Ay}rek is said to be admissible if and only if there exist
lattices A C R™ and Ty, C A, Vk € K, such that the filter bank (My, Mk,A = Te)kex
defined by .

M;, = My, :\/|A/Fk|XAk+A*7 Vk € K, (3)

performs a perfect reconstruction

Proposition 2 The partition { Ay }rex is admissible if and only if there exist lattices
AeR" and Ty, C A, Vk € K, such that

{Ar}rer is a partition of R™ [A*, (4)

and
{Ak + v} erz/a- is a partition of R" /A*,  Vk € K. (5)

Proof. On one hand, Condition (4) implies that, for a.e. £ € R”,

Y Y @O @emoNe = Y Y (VIR xaen @)

kEK m €Ty /T kEK np €Ty /T

Y ITk/THA/Tk] Xap+a- (€)

keK

= |A/TY.

On the other hand, Condition (5) implies that x4, (§) x4, (€ + &) =0, for all k € K
and v, € I'};, which leads to

D > M€ e M (€ + ) = 0.
k€K n €Ty /T

By Proposition 1, (M, Mk, T'k)kek performs therefore a perfect reconstruction. Con-
versely, if equation (2) is satisfied, one obtains by the same calculation as above,

Z (XAk+A* (E))2 =1,

keK



Figure 1: No lattice corresponds to this ideal frequency partitioning.

which proves (4). Similarly,

S G ETN M(€ +7) el My (€ + ) = [A/T], Yk € K, Vi € T,
yED* /A*

proves that

Y (xawa-(€+7) =1, VkeK,
YETE /A*

which leads to (5). o

The wavelets that are considered in this article derive from an MRA. The notation
My is assigned to the refinement filter. We require henceforth that 0 belongs to the
interior of Ag. Moreover, we require M, to be as much isotropic as possible in the
sense that the set Ay satisfies some invariance by rotation property. There are mainly
two possible choices: square or hexagonal shape.

In order to have filters with real coefficients, and consequently to have real valued
wavelets, we require the sets Ay to be symmetric with respect to 0. For instance,
when n = 2, given an original lattice A C R? with reciprocal cell C, put

A, = {f S C\Ao : Arctan fz/fl € [91671,9]@] +7TZ},

for some parameters (0;)rcx (see Figure 1). Clearly, {Ay}rex is a partition of C.
The question is therefore to find Ay, (0)rerx and (T'y)rex such that the partition
{Ag, Ti }rex is admissible, or equivalently, the families {Ay, + v}er+/a- form parti-
tions of R? /A*, for all k € K. We give here examples on R? although the study could
be generalized to R™.

Example A Let A = Z2 Then we have C = [—7, 7). Consider the case of quincunx
MRA where the refinement filter is defined by the set

A0:{£€R2: |fl—f2|<27r and |£1—62|<27T}.

The associated sublattice is
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Figure 2: Examples of admissible frequency partitionings.

The quincunx Shannon wavelet corresponds to the case of 1 direction. More precisely,
we have A; = [—7,7]? \ Ap and I'; = ['y. One can however obtain 2 directions by
putting 8 = km and T'y = 272, or 4 directions with 6, = kw/2 and T'y, = 2Ty (see
Figure 2-A).

Example B Let A = Z2 and consider the well-known case of a separable, dyadic
MRA. We have Ay = [-7/2,7/2])? and [y = 272 We can have 6p directions (with
p € N\ {0}). For instance, if p = 1, put

Ay = {fe-maP\Ao: & <L <3G or36 <6 <G}
Ay = {fe[-mmP\ Ao: 36| < & or & < 3J&]}
As = {fe[-maPP\4do: (=&, &) € A1} (6)
Ay = {ge[-mnP\Ao: (&,6) € Ar}
As = {€e[-mn’\Ao: (&,6) € Az}
Ag = {fe[-mmP\Ao: (&,6) € A3}
These sets are shown on Figure 2-B. The 6 wavelets subbands are sampled on the
same lattice
r—a( 1l 71z (7)
- 1 1 ’
with reciprocal lattice
* m 1 -1 2
"= 5 < 11 )Z . (8)

One checks easily that each set A can be split in p subsets in order to obtain more



directions (see Figure 3-B). The 6p wavelets subbands are sampled on the lattices

_(4 2 2 :
I‘k—<0 2p>Z’ if ke {l,...,3p},

_(2p 0 9 .
Fk_(Qp 4>Z, ifke{3p+1,...,6p}.

The latters correspond to the reciprocal lattices

r;:( ™2 0 >Z2, ithe{l,... 3p),

—w/2 w/[p
c_ (70 T2\,
I‘k—< 0 /2 )Z, if ke{3p+1,...,6p}.

Example C Let A = Z? again and consider the case of the triadic (separable) MRA
defined by
Ag={¢ e R |&] < 21/3 and |&]| < 27/3}

and
Ty =372

We can obtain this time 8p directions (with p € N'\ {0}) as it is shown Figure 2-C.
Compared to the dyadic MRA, this construction permits to have a larger frequency
support and, consequently, a better space localization in the direction of oscillations.

Example D Let A = Z? and
Ag={EeR?: |&] <, |26 4+ 3&| < 2m and |26, — 3&| < 27} (9)

which is associated with the subsampling lattice

- 5)z (10)

The boundary of this set Ag is, in some sense, closer to a circle than the previous
examples, although it is only invariant by rotation of w. As the lattice I'y is not
obtained from A by dilation and rotation, the same filter bank should not be used at
the next level of the decomposition in order to keep the isotropy property. It can be
replaced by a filter bank designed on the basis of the next example which deals with
hexagonal MRA. The generated wavelets will not derived therefore from an MRA in
a usual sense.
In this example, one can obtain 3 directions only. They are given by

A = {fe[-ma\ Ao [&] <2/&]/3}
Ay = {ee[-mmP\Ao: & <36/2<00r0<36/2< &) (11)
Az = {€el-maP\Ado: (-&,&) € Ao}

(see Figure 2-D). However, if one allows some aliasing, it is possible to obtain 6p
directions as it is shown Figure 3-D. Notice that the aliased areas are in the corners
of the spectrum. Images concentrate generally very few energy on these regions since
most optics have circulary symmetric lenses.

Example E The example of the hexagonal MRA is interesting as it allows to have
a more isotropic refinement filter. (It is invariant by rotation of w/3.) The associated



directional filter banks generate therefore frequency partitionings that are closer to
the ideal partitioning of Figure 1. Let

v=(1yva 2pvs )%
with reciprocal lattice
= (% )
Hence, the reciprocal cell is
C={eR: 6] <m& &+ V36| < V3r& |& + V36| < Vir).
A natural choice for the refinement filter is given by
Ag={¢e€R?: 26€C} and To=2A.

One can have 3p directions (with p € N\ {0}-see Figure 2-E) where the wavelet
subbands are sampled on three different lattices that are obtained one from another
by rotation of £7/3. For p = 1, one has I’y = I'g. It corresponds to the usual
hexagonal wavelets [6].

When they are applied recursively, all these filter banks generate Shannon wavelets
whose frequency supports are given on Figure 3. An anisotropy scaling law [4] can
be prescribed to the generated basis as for curvelet and contourlet frames. It consists
in doubling the number of directions when refining from coarse to fine (see Figure 3—
B,C,DE).

4 Regular 2-band filter banks

The bad localization in the space domain of Shannon wavelets is due to the lack of
regularity of their Fourier transforms and of the transfer functions of the associated
filter bank. The next sections are devoted to the construction of smooth approxi-
mations of the Shannon filters considered above. As regular M-band filter banks are
difficult to obtain, their design is always limited to 2 bands. The smooth transfer
functions will be constructed by products and sums of 2-band filters.

Given an original image defined on A = Z?, the two bands generated by perfect
reconstruction quincunx filters (Qx, Q&) re{o,1} are subsampled on the quincunx lattice

I' = QZ? with sampling matrix
1 1
(1 1) "

The design of these filters is restricted to (o and Cjo since one sets, in practice,

Q1(6) = Qo (€ + (m,m)) and Q1 (€) = €1 Qo (€ + (m, 7)), VE = (&1,&) € R2. If
Qo =Qo =2 X Ao+277Z25

the perfect reconstruction condition is satisfied if and only if {Ag, Ag + (7, 7)} is a
partition of T?> = R?*/A*. When Qo and Qo are smooth, their energy is, in general,
mostly concentrated on a set Ay that satisfies the above condition and that we call
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Figure 3: Examples of frequency supports of Shannon directional wavelets.
ideal support of @y (and éo). In order to obtain a regular filter whose support
approximates the set Ag, put, for instance,
= V2 g% XAy t2m22

QO - QO = 1/27 (13)
(Zwer*/wm |9 * XAgt2nz2(- + ’Y)|2)

where T'* /2772 = {(0,0), (7, m)} and g € C*°(R?) is non-negative and even. Notice
that, for all € > 0 and all p > 1, there is a function g such that ||Qo — x4, ||, < €. This
remark will be used in Section 6. Transformation of variable (generalized McClellan
transformation) [18] permits to get finite impulse response (FIR) biorthogonal filters
having similar shape.

The most commonly used quincunx filters are diamond shaped filters that are
characterized by the ideal support

{¢e-m7)P: |G+ & <7m&|é —&| <7} + 2027

(see Figure 4-left). Symmetric (biorthogonal or infinite impulse response-IIR) dia-
mond shape filters are usually designed from 1D filters using McClellan transformation
[16]: if mg is a symmetric 1D filter with ideal support [—7/2,7/2] + 27 Z, write

mo(§) = P(cosf), VEER

Then put
cos &y + cosés

Qo(8) :73< 5

>, VE e R2,
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Figure 4: Ideal supports of (Qo,@1), (Ro, R1) and (P, Py).

In the sequel, the notation (Qy, Qk)keK will be reserved for diamond shape filters.
We can also define Ro(§) = Qo(§ + (7, 0)) which is mostly supported on

{¢ € [-ma]: |&] > |&]|} + 2722

(see Figure 4-middle). Notice that this kind of directional filters, known as fan filters,
is already used in the contourlet transform.
We will also denote Py a regular filter whose support approximates the set

Ag ={¢€[—m 7] |36 +&| < 21 & |36 — & < 27} + 2777

(see Figure 4-right). It can be design by generalized McClellan transform. The
simplest way to approximate that support is indeed to write

2cos&; + cosés

n( =P (224

), V¢E e R2.

Quincunx filters are not the only 2-band filters on [2(Z?). Other sampling lattices
are possible. Let us define So(§) = Qo(Q¢) (where Q is defined in (12)) with ideal
support

{el-mal: (la] <7m/2&|&| <m/2) or (|& > 7/2 & |&] > 7/2)} + 27Z?

(see Figure 5-left) and
No(§) = Qo (Q¢ + (m,0)) (14)
with ideal support

{¢e-m7: (& >0& & >0)or (& <0& & <0)) + 2772

(see Figure 5—middle). These last two filter banks (S, §k)ke{071} and (N, Nk)ke{o,l}
are associated with the sampling lattice

(20 2 . (10 2
I‘—(O 1>Z orequlvalently,l"—<0 2>Z.

Notice that when it is applied to the spaces (V; @ W;);, (W; ®V;); and (W; @ Wj);

generated by separable wavelets [14], the filter bank (Ng, Ni.)reqo,13 leads to the same
frequency partitioning as complex wavelets [10] without redundancy (see Figure 6).

10
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Figure 5: Ideal supports of (So, S1), (No, N1) and (Lo, Ly).

Figure 6: Frequency partitioning of complex wavelets.

Given 1D dyadic filters (mg, My )refo,1}, We can equivalently define

Mo(&) = mo(&1)mo(&),

Mi(§) = mo(&)ma(&) N1(26),

My (§) = mo(&) mi(&) No(26),

M3(§) = mi(&)mo(&2) N1(26), (15)
My(&) = ma(&)mo(&2) No(26),

Ms(&) = ma(&)ma(&2) N1(26),

Mg(&) = ma(&)ma(&2) No(26),

and define the same way the conjugate filters. This construction was suggested in [8]
and developed independently by Lu and Do in [13].
Define also Lo with ideal support Ag U As as defined in (9-11) (see Figure 5-right)

and subsampling lattice
(20 2
r=(2 )z

It can be designed using (13) (changing Ag in Ag U Az, and with I'*/27Z2 = {(0,0),
(m,0)}) or using [18].

At last, we will use filters (/\/’k,/\~/’k)ke{071} that have the same geometry as (N,
Nk)ke{o,l}a but which satisfy the only constraints Ny No+Ni N7 = 1 and Ny (-, (m, 7))
= Ny, Vk € {0,1}. They can be obtained by putting, for example, NV}, = Nj./+/2, but
more degrees of freedom are possible in their design.

11
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Figure 7: Ideal frequency supports of a quincunx wavelet, a directional filter and the
obtained directional wavelet.

5 Quincunx directional wavelets (Example A)

The example of quincunx MRA is interesting as it uses, already implemented, diamond-
shaped filters (and the associated fan filters) only. The obtained wavelets have how-
ever limited directionality. For 2 directions, put

Mo(§) = Qo(),
My (§) Q1(£) Ro(Q8),
M>(§) Q1(8) R1(Q8),

where the matrix Q and the functions @)y and R} are defined in the previous section.
Define the same way the synthesis filters M. This construction amounts to applying,
first, the filters (Qo, @1) (followed by the adapted subsampling), then to applying the
filters (Ro, R1) to the high frequency band. To obtain 4 directions, apply (Ro, R1)
twice (see Figure 7), or put equivalently,

Mo(§) = Qolf),

Mi(6) = Qi(&) Ro(Q¢) Ro(Q%¢),
My(€) = Qi(§) Ro(Q€) R1(Q€),
Ms(€) = Q1(&) Ri(Q¢) Ri(Q%9),
Mi(€) = Q1(&) Ri(QE) Ro(Q%¢).

6 Dyadic directional wavelets with separable refine-
ment filter (Example B)

The wavelets introduced in example B have the noteworthy property that they can be
constructed from a separable MRA. The design and the regularity of separable MRA
have already been widely studied. Moreover, the associated filters are implemented
in faster algorithms.

For simplicity, we first consider the case of orthonormal wavelets or, in other words,
the case when My = My, Vk € {0,...,6}. In order to regularize the directional filters
defined in Example B, it is not possible to use the same approach as Meyer wavelets
(see [14]) as it is shown by the following proposition. Denote by B(0, €) the unit ball
of radius € and by supp f the support of a function f.

Proposition 3 Let ¢ € (0,7/(6v/2)) and let the sets {Ak}refo,....61 be defined by (6).
There do mnot exist functions (My)reqo,... 61 i1 L?(T?) such that the three following
properties are satisfied simultaneously

12



i) the matriz |AJT|~'/2M is unitary,
it) the functions My are continuous, for all k € {0,...,6},
iii) their supports satisfy supp My C Ay + B(0,¢), for all k € {0,...,6}.

This kind of property has already been considered as the permissibility condi-
tion [5]. One says that the passband supports of Figure 2-B are nonpermissible.

Proof. The idea of the proof is to show that the condition

> M(- +y)Ms(. +7) =0, (16)
yer* /(22>

which is a consequence of i), is in contradiction with 4i) and éii) since, by the latter
conditions, the terms of the sum (16) cannot cancel. Indeed, by condition iii),

supp M1 M3 C E = ([-m, —n/3]U [r/3,7]) x {7} + B(0,¢€) + 27 Z*.
Thus
supp M1 Mz Nsupp My (. +7)Ma(. +9) =0, Yy € T*/(Z*)*\{(0,0), (x,0)}, (17)
where I'* is defined by (8), while
supp My Ms Nsupp M (. + (7,0)) Ms(. + (m,0)) C F,

with
F = ([-27/3,—n/3|U[r/3,21/3]) x {7} + B(0,¢) + 21 Z>.

Condition (16) implies therefore that supp M; M3 C F. Put
G={(€E\F: [[E—nll>e Vne A, Vi1, 3}

As € < w/(6v/2), the set G is non empty. Clearly, M; = 0 on G, for i # 1, 3, and
the condition 320 |M;]> = 1 becomes |M;|?> + |M3|*> = 1 on G. Moreover, on the
boundary of each connected component of G, there is a point &; such that M3(&;) =0
and consequently |M;(&1)] = 1, and there is a point & such that M;(£3) = 0 and
|M3(&3)| = 1. This contradicts the fact that M;Ms = 0 on G and My, Mj are
continuous. S

This proposition means that, in some sense, regularized filters have aliased com-
ponents, and it can be seen as a drawback of the proposed transformation. We have
however the following property.

Proposition 4 Lete >0, p € [1,00) and let the sets { A }reqo,....61 be defined by (6).
There exist { My }reqo,...63 in L?(T?) such that

i) the matriz |AJT|~Y/2M is unitary,
i) the functions My, are C*, for all k € {0,...,6},
i) we have ||| My| — xa,llp <€, for all k € {0,...,6}.
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o

Figure 8: Ideal supports of & — Py(2€), £ — mo(&) my (&) and & — Ma(§).

A straightforward corollary of the proposition amounts to changing condition i)
into the weaker condition

/ | My (€)” dE < e, for all k € {0,...,6},
A

c
k

where A¢ is the complementary set of Ay in [—, 7]?. It shows that the energy of Mj,
is mostly concentrated on Ay.

We give in the sequel a construction that can be used as a proof of the above
proposition. Consider a separable MRA with 1-D quadrature mirror filters (mq,my).
Going back to (15), and changing (No, N1) in (R, R1) or (Py, P1), we clearly obtain
new, perfect reconstruction, filter banks. Think , for instance, at

Mo(§) = mo(&1)mo(&2),

Mi(§) = mo(&)mi(&e) Pi(2€),

Ms(&) = mo(&)ma(&2) Po(2€),

M3(§) = mi(&)mo(&2) Pi(26), (18)
My(&) = mi(&)mo(&2) Po(2€),

Ms(€) = my(&)mi(&e) Ri(26),

Ms(§) = my(&) mi(&2) Ro(26).

This filter bank does not corresponds to the sought frequency partitioning. However,
using the filters (NVp, N7), we can also define

Mo(§) = mo(&1)mo(&2),

Mi(§) = my(&)ma(&2) Ro(28) N1(28) + mo(&1) ma (&) Pr(26) No(26),

My(&) = mo(&)ma(&2) Po(2€),

M3(&) = mo(&)ma(&) Pr(25) Ni(26) — ma (1) mi(&2) Ro(26) No(26),  (19)
My(§) = my(&)ma(&2) Ri(26) No(28) + ma (&) mo(&a) Po(26) N1(26),

Ms(§) = my(&)mo(&e) Pi(26),

Ms(€) my (1) mo(&2) Po(28) No(26) —ma (&) ma(&2) Ri(26) N1(2€).

Notice that, for all &, the energy of M}, is mostly Concentrated on Ay, as it is illustrated
by the example given on Figure 8. The modulus of these functions can be arbitrarily
close to the corresponding Shannon filters in the sense of the LP-norm, since the
associated two-band filters satisfy this property. Moreover, we have the following
result.

Lemma 1 The filter bank defined by (19) performs a perfect reconstruction.
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Proof. The matrix |A/T|~'/2M defined by (2) and (19) is unitary. Indeed, to prove
that
> Mi(E+)Mi(§+7) =80u, Vkle{l,...,6} (20)
YET/(Z2)*
notice that N3 (26) = N (2(€ + 7)), for all v € T*/(Z?)* and k € {0,1}. Factorize
with N3 (2€), then use
No (&) + VLGP =1

and the orthogonality of the filter bank defined by (18). This orthogonality is a
straightforward consequence of

mi (&) mu(&;) +my(§5 +m) mi(§ +m) =26, Yk, 1€ {0,1},Vj € {1,2}

and
Tk(f) Tl(f) + Tk(é. + (ﬂ'a’”)) Tl(f + (ﬂ'a’”)) = 25kl7 VEk,l € {07 1}7
where T stands for P or Q. When k or I = 0, change M in My e* ) with n = (0,0)

or (1,1), in (20). o

The technique used in the design of this filter bank could be developed in a more
general form that include the method introduced by Maas [15] and Ayache [1] for the
design of nonseparable filters.

More directions are generated by applying specially designed filters to each wavelet
subband. These filters are obtained by combining some linear operators with Ny, Ny,
Py or P;. By this construction, we can have orthonormal bases for L?(R?) where
the wavelets have fast decay. Using FIR filters, we get compactly supported wavelets
having at least the same regularity and the same number of directional vanishing
moments as the separable wavelets generated by (mg,m1). Notice indeed that these
directional wavelets are finite sums of separable wavelets.

The method can be generalized to biorthogonal filters in order to have Riesz bases
for L?(R?). Indeed, consider the filter bank

Mo (&) mo(&1) mo(&2), 5

Mi(§) = mi(&)ma(&e) Ro(2) N1(28) +mo (&) ma(&2) Pr(2€) No(2€),

Mz(&) = mo(&)ma(&e) Po(26), _

M3(§) = mo(&)ma(&2) Pr(26) N1(2€) — ma(§1) ma(&2) Ro(26) No(26),

My(€) = mi(&)ma(&e) Ri(2) No(28) +ma (&) mo(&2) Po(2€) N1(2€),

M5(&) = mu(&)mo(&e) Pi(26), _

Mg(§) = ma(&)mo(&2) Po(28) No(28) — mu (1) ma(§2) Ra(2€) N1(26),
and

Mo (&) mo (&) mo(&2), B B

Mi(§) = ma(&)ma(&2) Ro(26) N1(2€) + mo (&) ma(&2) Pr(28) No(2€),

My(€) = mo(&r)ma(&2) Po(26),

Ms(§) = mo(&)ma(&e) Pr(26) Ni(26) — ma (&) ma(&e) Ro(2€) No(26),

My(§) = ma(&)ma(&2) Ri(26) No(2€) + ma (1) o (€2) Po(26) N1(26),

Ms(§) = ma(&)mo(€2) F1(26), N

Mg(§) = mai(&)mo(&2) Po(28) No(28) — ma (&) ma (€2) R (2€) N1 (2€).

The same kind of arguments as above proves that it performs a perfect reconstruction.
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7 Dyadic directional wavelets with hexagonal re-
finement filter (Example D)

The hexagonal MRA has several advantages on the square MRA. First, hexagonal
lattices satisfy some interesting mathematical properties: they permit to avoid some
connectivity problems that arise on square lattices, and they require the least number
of samples to represent images with circulary spectrum. It is also possible to design
refinement filters that are invariant by rotation of 7/3. Moreover the number of
wavelets can be restricted to 3 directions, and in such a case, we will show that the
aliasing phenomenon revealed by Proposition 3 can be alleviated.

Since images are generally defined on square lattices, we consider Example D
instead of Example E. Notice that these two transformations have the drawback of
using nonseparable refinement filters. Once again, we consider the case of orthonormal
wavelets, although the extension to biorthogonal wavelets is straightforward.

The partitioning of Figure 2-D can be achieved using the same technique as in
Section 6. Put, for instance,

Mo(&) = Po(&,26) mo(&r),
Mi(§) = Po(&,26)mi(&),
My(€) = Pi(&,2&) (No(2&1,8) mo(&r) +Ni(261, &) mi(&1)),
Ms(§) Py (26, 61) (No (261, &) mo(&1) — No (261, &) ma (&)

In order to reduce the aliasing alluded above, one can also define

MO(f) = (f)LO( 51752)7
Mi(§) = Li(§) Li(=&, &),
M;(§) Lo(&) L1 (=61, &),
M3(&) = Li(§) Lo(—&1,&2).

One obtains 6 directions by using the filters (N, N1). For instance, apply & —
No(€1,&2/2) to the 15 wavelet subband (see Figure 9-left). Equivalently, define

Mo(§) = Lo(§) Lo(—¢&1,&2),

Mi(§) = Li(§) Li(=&,&2) No(261,62)
My(§) = Li(§) Li(=&,&2) Ni(261,62)
Ms(&) = Lo(&) Li(—&1,&) No(D1§),
My(&) = Lo(&) Li(=&1,&) Ni(D1§),
Ms(&) = Li(&) Lo(—&1, &) No(D2§),
Me(§) = Li(§) Lo(=&,&2) Ni(D2f),

where / /
1 3/2 -1 3/2
Dl— ( 1 1/2 ) and DQ— < 1 _1/2 > .
As in section 6, more directions are obtained by applying filter bancs that are designed

by combining well adapted linear operators with (Pp, P1) or (Ng, N1) (see Figure 9).
By (10), at the next levels of the pyramidal algorithm, original lattices are

A:2j< 1}2 ?)Z{ for j > 1.
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Figure 9: Ideal supports of £ — Ny(21, &), ProF and NyoG for two linear operators
F and E.

Figure 10: Ideal supports of & — Po(E) and & — Np(2£1,&)-

By a change of scale, they come down to the case j = 0. In other words,

_ 1 0 2 * _ 271' ™ 2
A—<1/2 1>Z and A—< 0 27r>Z'

One can distort hexagonal filters [6] to obtain 3 directions. Since the lattice is not
invariant by rotation of /3, one does not need to design filters that satisfy this
invariance property. Therefore, we can use (see Figure 10-left)

Mo(§) = PRy(EE) Py(E(=£1,&)),
M(&§) = Pi(EE) Pi(E(=&1,6)),
My(&) = PRy(EE) Pi(E(=&1,8)),
M3(§) = Pi(E) Ry(E(=£1,&)),

where /
1 -1/2
B= ( 1 3/2 )

Once again, more directions are obtained by using (N, N1) (see Figure 10-right) and
(Py, P1). More precisely, for 6 directions, let

Mo(§) = PRy(EE) Po(E(=£1,6)),

Mi(§) = Pi(EE Pi(E(=£1,8)) No(261,62),
My(&) = PL(EE P(E(=&,6)) Ni(261, &),
M3(&) = R(E& P(E(=&,&)) No(Di),
My(€) = R(EE P(E(=&,&)) Ni(Did),
Ms(&) = Pi(EE) Po(E(=£1,82)) No(D2€),
Ms(§) = Pi(EE) Po(E(=£1,62)) Ni(D2€)



Figure 11: Ideal (left) and real (right) frequency support of a passband directional
filter.

As it is mentioned above, Proposition 3 does not extend to the proposed frequency
partitioning (and the associated partitioning of Example E) in the case of 3 directions.
To obtain a counterexample, put

2 g% Ap+A*
My = g * XAg+ 75 (21)
(2 erear 19 xaga (- +)P)

where Ay is defined by (9), I'*/A* = {(0,0),(w,0),(n/2,7),(—7/2,7)} and g €
C°°(R?) is non-negative, even and such that supp g C B(0,¢). Clearly M, is sup-
ported on Ag+ B(0,€)+A*. (One can also define My (&) = So(&1,&2) Po(&2,2&1) where
So and Py are well localized.) As My is real-valued, the wavelet filters can be defined
by

Mi(€) = €=/ My(¢+ (m,0)),
My(§) = eE@+e/2) My(¢ + (n/2,m)),
M3(§) = €& Mo(€+ (—n/2,7)).

One checks easily that the so defined matrix 27! (Mg (€ 4+ 7)) kefo,....3}yer+/a+ 18 uni-
tary.

Unfortunately, this result does not extend to the case of 6 directions (or 6 x 2P
directions, more generally). Indeed, in order to show that the passband support of
the filters are nonpermissible, one can adapt the proof of Proposition 3 to the sets A;
and A, of Figure 2-E, for instance. However we can design filters that have very few
aliasing by using (Np, N1) that are obtained by (13-14). For more directions, use again
(No, N1) and (P, Py) designed by the same method (see Figure 9 and Figure 11).
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