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Abstract. When modelling a physical process, there are always dis-
creapencies between the modelled and real behaviours due to simplifica-
tions and neglected effects. Moreover, the parameters of the real process
are never rigorously constant and may vary all along the time around a
mean value. Thus the process state estimation will strongly depend on
these variations which are unknown and thus may be considered as un-
certainties. In order to obtain a guaranteed state reconstruction, the in-
fluence of these uncertainties have to be taken into account. An adapted
representation allowing state reconstruction is the interval model ap-
proach which consists in providing a nominal model of the process in-
fluenced by uncertainties assumed to be represented by intervals with
known bounds. The paper shows how state estimation may be obtained
by using interval model approach; based on interval analysis, a set of
state estimates is defined which is consistent with the available informa-
tion (models, measurements, bounded uncertainties).

1 Introduction: state estimation for uncertain systems

The problem of estimating a system state using the exact knowledge of its in-
put and output signals is well solved for processes with constant and known
parameters (for example by using the well known Luenberger’s observer or finite
memory observer). However, real processes are often affected by disturbances
and noises. Therefore, the design procedures of state observers have been ex-
tended to include the cases when disturbances and/or measurement noises are
present.

When the system parameters are time varying and if their time dependency
is unknown, the Luenberger’s observer may also be applied. However the situa-
tion becomes more critical when the system under consideration is subjected to
unknown disturbances or unknown inputs. When the systems are subjected to
perturbations whose statistic characteristics are known, Kalman's filter may be



used to reconstruct the system state. In fact the observer design techniques for
processes subjected to uncertainties may be roughly divided into three groups.

The first group relies on robust estimation problem. The estimator is made
robust in the face of both exogenous signals (unknown inputs for example) and
model uncertainties. Within such framework, state estimation deals with the
minimization of an induced norm of the transfer function from disturbances to
estimation errors [27].

In the second group, the state estimation is performed on a reduced system
corresponding to the unknown input free subsystem (which exists under some
restrictive conditions). For that, the state equation is splitted into two parts,
one being sensitive to the unknown input, the other being decoupled from this
input. It is then possible, under specific conditions, to eliminate the unknown
input influence on the state and the measurement equations by using an ap-
propriate projection matrix. Thus, the observer is perfectly decoupled from the
disturbances [13]. Another proposed observer design uses the sliding mode ap-
proach. Sliding observer is a high performance state estimator well adapted for
nonlinear uncertain systems [29]. The sliding function of this observer is based
on the estimation error of the available output of the system. Indeed, it con-
sists in a classical Luenberger observer [17] to which is added a nonlinear term
depending on the estimation error.

The last group of methods relies on the description of the uncertainties by
known compact sets. The advantage of this description is the absence of hypoth-
esis about the statistical properties of the uncertainties. The only need is the
knowledge of the uncertainty bounds. In the field of diagnosis, robust model-
based fault detection of dynamic systems using interval observers has been al-
ready addressed. One of the main techniques consists in checking whether the
measurements of the output belong to the interval of all possible estimated out-
puts obtained considering uncertainty on model parameters [30]. In [23], the
authors compare results of diagnosis obtained using interval models with those
obtained with quantized systems describing the qualitative behaviour of a pro-
cess. An original application in the field of flow rate sensor diagnosis is presented
in [22] and the same idea is developed in [3] for data validation. It is important to
point out that, although interval approaches need very little a priori information
(only the uncertain parameter bounds), there are only a few published works on
that subject, see for example [6] or [24].

In the present paper, after a brief overview of interval analysis, some results
on guaranteed state estimation of linear systems with bounded uncertainties
are summarized. Under the assumption that all uncertainties are bounded and
belong to known sets, simple sets are built in order to have a very simple de-
scription of the state domain, such as orthotopes or parallelotopes guaranteed
to contain the actual state vector. Fault diagnosis techniques for linear systems
are derived from the estimation method.

An attractive way to tackle with uncertain parameters consists in considering
bounded perturbations, the bounds of the later being a priori known. Indeed, as
at each time instant the perturbations are unknown, it is impossible to determine



the state of the system; thus, it seems reasonnable to estimate a domain in which
the state lies. This problem is known as “set-valued state estimation” [16], [20],
[32] and may be expressed under a general formulation when considering the
following model of the system:

x(k+1) = Az(k) + Bu(k) + v(k)
S { y(k) = Cx(k) + w(k) (1)

where € IR" is the state, u € IR” the input, y € IR™ the observed output ; v(k)
and w(k) are perturbations or bounded uncertainties, A, B and C' are matrices of
appropriate dimensions with possibly uncertain bounded parameters. Knowing
the bounds (v~ v™1), (w™ w%), (A~ A"), (B~ Bt)and (C— CV) of the
uncertainties, the model S, the input and output measurements, the aim is to
estimate the bounds (z~ (k) 2" (k)) of the state z(k). At time k, the state
domain is noted:

Dy ={z /27 (k) <x(k) <a(k)} (2)

and, at time k + 1, the new domain D, j; is obtained using the previous do-
mains Dy ... Dy, the new measurements u(k), y(k + 1) and the bounds of
the uncertainties. The case of linear systems is a priori simple, the state domain
being represented with a polytope.

2 Interval analysis

This section reviews basic interval arithmetic operations for interval computa-
tions used in the paper. In the scope of the present paper, interval arithmetic
makes it possible to take into consideration the parameter uncertainties and thus
to provide strict bounds of the estimated variables. In the remaining, only real
intervals are considered. As a definition, a real interval, denoted [z], is a closed
and connected subset of IR, defined by:

] =[z" aT]={zeR /a2~ <z <az'} (3)

This definition can be extended to the v-dimension space: an interval vector
[z] of IR" is an v-dimensional rectangle or “box” of IR” and is the Cartesian
product of intervals. The set of all boxes of IR" is denoted IIR".

The definition of real arithmetic operators and functions are extended to
intervals, see some basic example in table 1. Given a function f : IR — IR, a
function /' : IR — IR is an inclusion function of f if Vr € [z], f(x) € F([z]). It
is clear that this inclusion function is not unique; the natural inclusion function
is obtained by substituting all real arguments and elementary functions (log,
exp...) by their extension to intervals.



Definition or Formulation
Operation
Interval number x €[z~ xF|, x7:lower bound, zT: upper bound
x=[z" a']
Center Te=(x 4+x7)/2, x,=(xT —z7)/2
Radius X=Zc+pr, |p|<l
Addition z=x+y= [ +y z +y']
z=x-y=[ —y" =" —y]
Multiplication z =Xy
by an interval z = [min(a) max(a)], a=(z y 2y ,aTy ,a"y")
Multiplication ifa>0,z=ax=lax” az™]
by a scalar ifa<0,z=ax=[az" az’]
Division Z=X:y = [z :r:+][n++ ”L_]
unless 0 € [y~ y7] in which case the result of division is undefined

Table 1. Interval arithmetic operations

3 Ideal observer

In the paper, we consider a linear discrete time equation:

x(k+ 1) = Ax(k) + Bu(k) + v(k)
S ylk) = Cx(k) (4)
Ym (k) = y(k) + w(k)

where k is the time, x € IIR" the state, v € IR" the input, y € IR"™ the
output, y,, € IR™ the output measurement. The initial state z(0) is asumed to
belong to some prior compact set D, o C IIR™. The sequences {v(k)} and {w(k)}
are unknown state and measurement noises also assumed to belong to known
compact sets. More precisely, they are assumed to satisfy:
v” <w(k) <ot
{w‘ <w(k) <wt

where the indicated bounds are known at each time k.

The aim of the paper is to reconstruct the process state and does not concern
the construction of the model and the identification of its parameters. However,
let us just recall that identification algorithms of interval models provide for each
parameter both lower and upper bound [10], [6]. A guaranteed state estimator,
also named set-valued observer (SVO) constructs sets of admissible states which
are consistent with the a priori bounds v=, v, w™, w™ [28], [26]. In the linear
case these sets generally can be described by polytopes.

The general idea for that construction consists in determining sets of possible

states of the system which are consistent with the known bounds of the uncer-
tainties, the model equation, and the current measurements (i.e. the admissible




domain). The survey article of Milanese and Vicino [19] presents the basis state-
ment of such methods. Particular applications in the field of bioprocesses are
described in [5], [11], [31].
For example, consider the following system:
:L’l(k' + 1) - :L’QUC):
:L’Q(k' + 1) = [07 08]..{.1(:'1,) — 0‘511-'2(36)
y(k) = 21(k) + w2 (k)

21(0) = [0.878 0.912]
22(0) = [0.5 0.6] (

ot
-

The state at time 1 consistent with the initial state and the bounds of the
perturbations is described by:

05 <z(1)<06 6)
0.315 < 25(1) < 0.48

Consider now the measurement at time 1: y(1) = [0.815 0.95]. The state
consistent with this measurement has to verify:

0.815 < 21 (1) + 22(1) < 0.95 (7)

Figure 1 shows in the plane {x5, z1 } the set of the state values which are both
consistent with the state equation and the measurement. This set (in grey color
on the figure) results from the intersection of the zonotope defined by equation
(6) and the strip defined by (7).
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Fig. 1. Set of admissible state values at time 1

3.1 Ideal observer structure

We are now interested in constructing the admissible domain, denoted D, j
which is consistent with the current measurement, the model of the system and
the bounds of the uncertainties. The initial state z(0) of system (4) is assumed to
belong to the compact set D, ¢ C IR". The uncertainties v and w are bounded



and, without severe restriction of the approach, they are supposed constant all
along the time:
|v(k) [£ 00 |w(k) |< dw

Thus at time k, D, x represents the set of all the state values, z(k), consistent
with the available information I;:

Iy = {Dz,0, {uli—1),ym(i),| v(i) |< b, [ w(i) |< 5w}§:1}

— Observation step. At time k, the observation allows to deduce the possible
values taken by the state z(k) considering the available measurement y,, (k).
First, the sets of the values of the system outputs which are consistent with
the measurements y,, (k) and the uncertainty bounds are defined by:

Dyr={y/ |y —ymk)|< 0w}
Then the set of the possible state values x(k) is deduced:
DY, ={zr €IR"/ Cx €Dy} (8)

More simply, the domain DY, represents the set of possible states at time k
based on the single measurement Ym (k) only and is obtained through a set-
inversion technique. This problem may be solved analytically for “academic”
examples where the structure of the function Cz allows the extraction of the
state x. In other situations, numerical algorihms are used to approximate
the true domain; for that purpose, see for example the package SIVIA [14].

— Prediction step. The prediction step involves the evaluation of the state
equation to propagate the current set of states and parameters until the next
measured value is available. Thus we define the domain:

D ={Az+ Bu(k)+v / 2 € Do, | v[< 6y} (9)

— Correction step. Finally, the admissible domain D, ;, compatible with the
information I, is obtained by the intersection of the two domains obtained
using the model equation and the measurement equation, as follows:

Do ki1 =Dy x N D} iy (10)

Remark 1. In some situation, depending on the measurement values, it is pos-
sible to obtain an empty intersection when using (10) because of contradictory
knowledges. If necessary, this problem may be overcome by using an expansion
operator allowing to enlarge the domain of the admissible output [12]. However,
when the objective of the state estimation is included in the general framework
of diagnosis, this particular situation may be analysed in order to detect and
identify faults. Indeed, an empty set is a good way to detect the presence of
outliers or more generally a dysfunction of the system.

Remark 2. Repeated application of the intersection procedure (10) generally
leads to a complex shape (and consequently a complex description) of the set



D.. 1. Both computation time of the intersection and the storage memory neces-
sary to describe this shape considerably increase and may be serious drawbacks
for real-time application. To overcome this problem, it is then possible to reduce
the complexity of the procedure by evaluating an approximated (but guaranteed)
set D 1. of D, . This has been suggested in several papers, in particular [7], [18].
In the paper [9], the authors suggest an algorithm to limit the order of zono-
topes obtained through successive integrations of the state equation, the idea is
to over-approximate a zonotope by a zonotope of lower order. Consequently, the
SVO algorithm is structured as follows:

Step 0 Initialize D} ; with Dy. Let k = 1

e Step 1 Collect the data u(k) and vy, (k)

e Step 2 Characterize the output domain Dy = {y / |y — ym(k) |< du}

e Step 3 Characterize the state domain D}, = {z € IR"/ Cz € D, 1}

e Step 4 Characterise the admissible state domain D, =D, N DY

e Step b Reduce the domain complexity IA)‘H‘ 2Dy ik

e Step 6 Predict the state set D}, = {Az + Bu(k) +v / x € Dy, | v|< 6y}
e Step 7 Increase k:=k + 1, go ’E:O Step 1

3.2 Example

For example, let us consider the linear system:

z(k+1) =[0.50 0.65]z(k) +0.25, x(0) € [0.10 0.20] (11)
y(k) = 2z(k) + w(k), | w(k) [<0.08

This system is sensitive to three uncertainties, which respectively affect its
initial state, the output measurements and one parameter of the system.

From the initial state, we have the a priori domain D, = [0.10 0.20].
Considering the first measure y,,(1) = 0.44, the output domain is given by
Dy1 = [0.36 0.52], then the state domain is obtained: DY ; = [0.18 0.26]. By
intersecting the two state domains D ; and DY |, the admissible state domain
is derived:

D,1 = [0.18 0.20]

For this particular example, there is no need to reduce the domain complexity.
The predicted state domain is directly evaluated using the state equation:

Dy, =1[0.34 0.38]

This elementary computational cycle may be restarted, using all the available
measurements and the current admissible state domain.



4 Worst case estimation

Uncertain systems described by (4) are characterized by time varying parame-
ters. Even if the value of the parameters are not precisely known it is realistic to
assume that their range of variation are a priori known or identified. Knowing
the bounds of the parameter values, the state estimation must be carried out for
all possible values of the parameters at each time.

Let study the worst case provoked by the uncertainties. The vocable worst
is understood in the sense that it results in the largest interval for the state
estimate. It appears that the worst sequence of parameter values on a time
window, is not always the sequence of the worst parameter values at each time
in the window. Thus all possible time evolutions of the parameter values must
be envisaged to guarantee that x lies in [z~ 27].

4.1 A closed-form solution

The proposed method consists in searching a closed-form expression of the state
x(k), depending only on the initial state x(0) and the sequence of the uncer-
tainties {n(0),n(1),...,n(n —1)}. At each time, the study of this closed-form
expression for all possible values of the uncertainties should allow to obtain an
interval estimate for each component of the state vector. Let us consider a linear

system of the form:

{:ﬁ(k) = A(nk —1)x(k—1)+ Bu(k—1) z(0) € Dyp (12)

(k) = Ca(k)

where 1(k) denotes the uncertainties. With no loss of generality, it is assumed
that the uncertainties are normalized: (k)| < 1, where the operator < applied
to a vector means that each component of n(k) is bounded by 1, the state vector
can be written as:

(k) = f(z(0),u(k —1),..., w(0),n(k—1), ..., n(0)) (13)

Defining the vector n, and uy obtained by concatenating the values of the
uncertainties and the inputs on the time window [0, k& — 1]:

=0"0)...q" (k- 1) '
Zi = ((?I-T(U)H.?LT(k— 1))) (14)

the state vector can be written as:
2(k) = £(2(0), uxs i) (15)

Then, for a given time k, the set D, ;. in which lies the state vector is given
by:

Dy ={x €R" [z = f(2(0), ur,mr), 2(0) € Dy, | mi [< 1} (16)



As previously argued, this general formulation leads to tedious calculus.
Moreover, it may result in very complex shape of the state domain D, ;. Re-
gardless to a possible over-estimation, the state domain can be bounded by its
interval hull [1S, ., the latter being easier to evaluate than the former. For in-
stance, [15, . can be defined by:

08, = [o= (k) 2™ (k)] (17)

The upper and lower bounds of the state estimate are given by (18), where
the operators min and max are applied to each component of x(k).

zt (k)= max x(k)
M || <1
(k)= min z(k)

M| | =1

(18)

This model-based approach provides state estimates taking into consideration
the worst sequence of the uncertainties. The only conservatism introduced by this
method is due to the fact that optimization procedures to obtain the bounds of
each component of z(k) are run independently. It does not take into account that
the components of z(k) are coupled by the uncertainties which simultaneously
influence the different components of z(k). This conservatism may result in a
larger estimated state domain, containing the real state domain.

4.2 A sub-optimal solution

Despite its formal simplicity, the computing load of the previous proposed method
increases with k, because of the increasing number of uncertainties. Unfortu-
nately, there is no link between D, 1 and D, j, defined in (16), since all pos-
sible sequences of uncertainties must be envisaged for each case and the worst
N is not always composed of (nx_1.n7 (k)). A solution to limit the computation
complexity and to allow on-line estimation, is the estimation on a sliding win-
dow of width ¢ + 1. The value of £ depends on the system dynamics, and may
be chosen to be equal to two or three times the (pseudo) natural period. With a
constant width window, the dimension of n;, is constant. The procedure becomes
the following: the state vector at time k 4 { depends on the first value of the
state vector in the window and the inputs:

ul = (ui(k) coul(k+0-1)) (19)

The consequent state domain is similar to the one defined in (16), except
that the number of optimization parameters is constant when the time window
is sliding.



A simpler, but more conservative, solution consists in using an almost time
invariant approach. For that purpose, the uncertainties are assumed to be con-
stant (and equal to i) on the time window

xlk+ €)= fo(x(k),ulk+£-1), ..., u(k),n) (20)

In this case, the number of uncertain parameters is constant and does not
depend on this width. The main remaining question is the determination of the
window width, some answers can be found in [21].

5 Application to diagnosis

The previous sections were dedicated to the design of an interval state observer.
The interval estimate is obtained by the intersection between the prediction
issued from the state equation and the state deduced from the observation equa-
tion of the outputs of the system. When applying this procedure, one assumes
implicitly that both sources of information are coherent and are not affected by
any biases. In this case, the resulting estimate is representative of the actual state
of the system. For diagnosis purpose, it is precisely the problem of inconsistency
of information which prevails. The impossibility of merging the two sources of
information (case where the two domains D} | and DY, are disjoined) reveals
the presence of measurement errors or, more exactly the incompatibility between
the measurements and the model of the system. During this diagnosis analysis,
one is particularly interested in estimating the system outputs, while the state
estimation is only an intermediate step. Indeed, the output estimate could be
compared with the measured outputs in order to generate the so-called residuals,
whereas this analysis is not possible for the system state. This comparison be-
tween the estimated outputs and the measured ones will be made in an interval
framework in order to take into account of the bounded uncertainties affecting
both the measurements and the model of the system.

5.1 Residual generation
The output domain D;k predicted by the model of the system is deduced from
the state domain D :
Dy ={y" /y" =Ca" +w, " = Az + Bu(k) + v,
:I:ED.TJC: |’U|£ 51,‘: |Ti.-‘|£ 51{-‘} (21)

In the same way, the admissible output domain Dy, j.41, evaluated from the
measurements, is defined by:

Dy,k+l = {y / | b= ym(k + 1) |S 510} (22)

Consequently, starting from these two domains, an interval residual can be
defined in the following way:

i1 =Dy, N Dy ki1 (23)



A fault is detected if 7,41 = 0. One should note that, determining the fron-
tiers of the two domains at every time may result in an important computational
load. For this reason, the exact domain is often approximated by a domain of
simpler form, for example presenting less vertice. Thus, modifying (23), a fault
is detected if the following residual is empty:

o _ 7y
Fr1 = D N Dy kyr (24)
where Tj;' . 1s an overestimation of D: g LG
+ Ayt "
D}, CDf, (25)

It DF ..k is easier to compute than D', the residuals (24) are simpler to com-

y.k?
pute that (23); however, the domain D+k results to detect less faults than the
domain D+ In fact, if 'D vk N Dy i1 # () and DT ok 1Dy ki1 = = ), then a fault
occurred but was not d("r(‘{ ted [4]. Thus the diffic ulty is to define a compromise
between the complexity of the determination of the state domain or the out-
put domain and the tolerable rate of no detection. The reader will notice that,
compared to what was presented at the section 3, within the framework of the
state estimation, the reduction of complexity was not carried out on the same
domain. According to the difficulty of implementation, the user can choose to
do this reduction at any step of the proposed algorithms, keeping in mind that
this latter always generates an approximation.

The preceding formalism makes it possible to detect inconsistencies of data.
Nevertheless, this diagnosis remains a little vague, thus it is worth specifying
how, in a more general way, to highlight the occurrence of a fault. A solution
consists in computing the interval state estimate using only a part of the output
measurements. Analogously to the design of banks of dedicated observers in [8],
p domains can be built, where each domain is computed with only one compo-
nent of the measurement vector v, .

In the following, a procedure of change detection of the operating mode of a
system is proposed knowing, at every moment, its inputs and outputs.

5.2 Change detection of operating mode

In the framework of supervised diagnosis, one admits that all the failures affect-
ing a system are known. Each failure results in a given and known operating
mode: each normal operating mode or dysfunctioning mode is thus described by
a model. Therefore, the failure i is associated to the particular model:

M, {ic(k +1) = Ajz(k) 4+ Biu(k) + v(k)

ym(k) = C?ﬁf(k‘) + w(k) (26)

where v and w already denotes the uncertainties affecting the model and the
measurement system.



In a more general way, the set of the models M;, i = 1...N represents
all the operating modes including the healthy modes related to the absence of
faults. Thus, the diagnosis consists, starting from available measurements, in
determining which model, among a set of models with uncertain parameters,
is compatible with the measurements and the bounds of the uncertainties. The
selected principle is the invalidation of model. At one moment k, each model M;
allows to predict the state x in an interval form (domain D}, ;). If a prediction
is incompatible with the state D, , ; deduced from the measurements y, then
the corresponding model does not reflect the current situation and thus the sys-
tem does not operate in the corresponding mode.

The algorithm to be implemented, inspired of [18], is then the following:

Step 0. Define an initial state domain 'D;"O, kE=1.
e Step 1. Collect the data u(k) and y,,, (k)
e Step 2. Characterize the output domain D,, ;.

Dy,k = {y/ | Y= ym(k) |S 610}

e Step 3. Characterize the admissible state domain starting from the output
domain, fori=1,...,N:

Dy

x,k,i

={zeIR" / Ciz € D, 1}

e Step 4. Characterize the admissible state domains Dy . ;, fori=1,...,N:
Dy i = Dj:_,k—l,i n DE,_JM;

e Step 5. Reduce the domain complexity, fori=1,...,N:

Df i € Dy

e Step 6. Characterize the admissible domain using prediction based on the

i" model, fori =1,...,N:

’D'-'-.k.\i = {Aix_'— Biu(k) T v / re ﬁx.k.%’z | v |£ 6?,'}

T

e Step 7. Increase k = k + 1 and go to Step 1.

The interpretation of the various domains D, 1 ; is done in the following way.
Let us recall that D, j;, i = 1...N represents the set of all the admissible
states consistent with the available measurements and the uncertainty bounds,
considering the it" model. If the particular domain Dy k.ip 15 empty, it means
that the current evolution is not correctly described by the ifj* operating mode.

Obviously, if two domains D, 1 ;, and D, y;, are not simultaneously empty,
there is an ambiguity. Indeed, the two modes i; et i» are then candidates to
describe the corresponding situation. In this case, additional information is nec-
essary to refine the diagnosis and to distinguish the modes iy and i3. The concept



of persistence can be a recourse useful to this discrimination. The method is to
build and analyze the various domains at consecutive moments, the vacuity of
the domains is then analyzed over one more significant duration.

This situation of ambiguity would deserve many other developments on the
analysis of its origins. An important point to analyze would be the separability
or the discernability of the operating modes which are related to the distances
between corresponding models (the concept of distance remaining to be clearly
defined) and to the influence of the noise of measurements.

6 Example: search for active mode

Let us consider a system which can be in one of the three following configurations:
normal mode of operation (i = 0), first abnormal mode of dysfunction (i = 1),
second abnormal mode of dysfunction (i = 2). It is assumed that the models
corresponding to these three modes are known, as well as the measurements
of the inputs and outputs collected on the system. The problem arising is to
determine the current operating mode of the system at every moment.

6.1 System models

To simplify, the three models are taken as relations between the outputs y; =
(yi1 wi2)T and the inputs @ = (z;1  2,2)T of the system:

{y(k) = X():(k)
M‘{eﬁtk) = o+ Tim(k), [ milk) |<1 27)

For each mode 7, the uncertain parameter 8;(k) is described by its nomi-
nal value fp;, and uncertainty modeled by a normalized variable n;(k) and its
distribution matrix 7;. In the example, the uncertain parameters are defined by:

0= (%) + (03 01 0z)m®
nt)= (%) + (03 01)m® @

n9=(3)+ (01 01 01)m®

The reader will notice that this application example is slightly different from
the previously described case. Here, the considered models are described by
input-output relations rather than state space models. It results that there is no
need to characterize any admissible state domains but only admissible output
domains. This is the reason why the used notation are slightly modified. In
particular, D, ;. ; will denote the admissible output domains for each model.



6.2 Improving the output estimation

Following the previously stated principle, the outputs y(k) can be predicted from
the inputs xz(k) of each of the three operating models:

Dyki={y / y=X(k)(Ooi + Tini(k))}, [ mi(k) |[< 1 (29)

The procedure is illustrated by the figures 2 and 3 obtained with:

X(k) = (?—13)

Let us consider the model M;, at an unspecified instant for which the two
components of the uncertain parameter vector are given by:

f't'f] {91] =3.5 + 0.17}']‘1 + 0.21}1,2

010 =44 0301 + 0.1 2 (30)

It should be noticed that the two components of #; are coupled via two stan-
dardized uncertainties 7, ; and 7; ». The couplings are highlighted by eliminating
71,1 or 71,2 in (30), which can be rewritten as:

301, — 012 = 6.5+ 0.511 2 (31)
911 — 2912 =—45— 0‘57}1,1 :
as -5 I T==" "
——7 i !
o / 1 !
a mMbdel 1/ -5 | |
! o Model 2
3.5 = -7 | |
=1 | !
3 Model O -8 I"' x“"'-—i : :__;_-_\_ o
I’;hkzr__i;:ﬁ;l‘! S : odel 1 :
2.5 -2 !
!_ _\d_=—:___\
Fig. 2. Parameter domain. Fig. 3. Output domain.

Thus, taking into account the bounds of 1y, and 7; 2, the domain defining
the components #; and #,2 is defined by the polytope:

3.2 < 011 < 3.8
3.6 < 012 <44
6 <301 — 012 <7
—5 <01 — 201, < 4

(32)

The domain corresponding to this description is represented on the figure 2.
Same construction applies to the polytopes resulting from the two other models



My and M. Then the domain D, ;. ; may be obtained. For example, D, 1 1, using
(29) and (30), may be constructed using the components of y:

{ y1 =11+ 0.59;1 + 0.5 2

Yz = —8.5 — 0.8?}'1.1 - 0.1?’;1,2 (33)

Taking into account the coupling between the two components and the values
of the bounds of 7; ; and 7 2, the following inequalities define the domain D, ;. 1:

10 < 1 <12
94 < Yo <76
4.1 < 0.8y1 + 0.5y2 < 4.8
-35< yr+5dy2 < -28

(34)

The domain described by (34) is represented on the figure 3 in the plane
{y1,y2} of the output. At a given time instant, the parameter 6 belongs to one
of the 3 polytopes of figure 2 and the measurement y belongs to one of the 3
polytopes of figure 3. The “complex” shape of these domains result from the
coupling between the two outputs (see for example (34)). In the sequel, in order
to simplify the fault detection procedure, the selected domain is the smallest
zonotope [, 1 ; containing the exact domain D, ;. ;. For example, the domain
Dy 11 defined by (33) is approximated by the zonotope O, ;. 1:

<y <
{ 10<y, <12 (35)

—94 <y <76

The figure 3 compares the zonotope 0, 1 ; (dashed lines) with the corre-
sponding polytope D, ;. For this particular example, one can note that the
three zonotopes (0, 1 ;,4 = 1,2, 3 are disjoined.

The definition of these zonotopes must be done on-line at each instant. A
more exploitable information consists in using an interval representation of each
component y;;(k) of the output predicted by each model.

6.3 Generation of the active mode indicators

The figure 4 shows the bounds of the two outputs y;1, %2 (in columns) for each
model (in rows). The simulation was done on the horizon [0 30|, the changes of
operating mode occured at the moments 12 (switching from My to M) and 20
(switching from M; to Ms). On each figure, the output y(k) is drawn in dash-line
in order to be compared with its estimates based on each model. Therefore the
admissible output domains are defined for the three models. The active mode is
determined by analysing the measured output of the system together with these
three domains. In the considered example, the output is not corrupted by any
bounded noise and can thus be directly compared with the bounds of the output
interval of the three models. For each component of the output vector and each
model M;, one defines the following residuals:

rij (k) =y (k) —y; (k), w5 (k) —;(K)], i=0,1,2 j=1,2  (36)
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Fig. 4. Interval type outputs estimated by the three models.

y;; and y:; being the bounds of the model M; output and y;, the jth component
of the observed output. The residuals are depicted on figure 5. Clearly, the
active mode can be detected when the interval residual contains the value 0.
The detector able to carry out the analysis of the residuals is based on the sign

of the residual bounds:
1 . _
Tij (k) = 3 (1 = sign(y,; (k) — y; (k) (v (k) — y; (k) (37)

where it is recalled that the indexes i and j respectively relates to the i*" model
and the j' component of the output. Their evolutions are represented on the
figure 6. One can give the following interpretation: a value of 7 equal to 1 (re-
spectively 0) testifies to (respectively invalidates) the membership of the origin
to the interval residual. The result presented on this figure is discriminating with
respect to the changes of mode. The examination of the indicators 791 and o2
built from the model corresponding to mode 0, makes it possible to state the
following results: between the moments 0 and 12, the mode 0 is active, between
the moments 12 and 30, three false detections appear (they can be easily elimi-
nated by a nonpersistence test). The analysis of the residuals resulting from the
two other models confirms and supplements this conclusion. Globally, these six
graphs are coherent and contribute to well defining the active mode, at every
moment.

7 Conclusion

Undoubtedly, taking benefits of any knowledge about uncertainties is one of
the fundamental points of current research and development in system analysis.
This communication was focused on the bounded approach which consists in
representing each uncertainty by an interval. The propagation of these intervals
along the time in the system equation then results in defining observers of the



interval type, which themselves, provide estimates of the interval type of the state
of the system. Within the framework of the diagnosis, that leads to define fault
indicators of the interval type. This study offers many prospects. Among them,
in order to be efficient, the different bounds of the state and measurement noises
must be evaluated. These bounds can be determined a priori from the “quality”
of the model and that of the measurements. They can also be estimated from
experimental input-output data assuming they are not corrupted by faults. Some
attempts in that way were already published [2], [1]. Moreover, the decision logic
elaborated on the basis of the interval residuals can also be enhanced. The fusion
of the results delivered by the indicators of mode change remains to be made and,
in particular, the use of the exoneration principle could be useful for providing
a coherent diagnosis.
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Fig. 5. Residuals
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Fig. 6. Indicators of operating mode change.
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