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STABLE SOLUTIONS FOR THE BILAPLACIAN WITH

EXPONENTIAL NONLINEARITY.

JUAN DÁVILA, LOUIS DUPAIGNE, IGNACIO GUERRA, AND MARCELO MONTENEGRO

Abstract. Let λ∗ > 0 denote the largest possible value of λ such that






∆2u = λeu in B

u =
∂u

∂n
= 0 on ∂B

has a solution, where B is the unit ball in R
N and n is the exterior unit normal

vector. We show that for λ = λ∗ this problem possesses a unique weak solution
u∗. We prove that u∗ is smooth if N ≤ 12 and singular when N ≥ 13, in which
case u∗(r) = −4 log r + log(8(N − 2)(N − 4)/λ∗) + o(1) as r → 0. We also
consider the problem with general constant Dirichlet boundary conditions.

1. Introduction

We study the fourth order problem














∆2u = λeu in B

u = a on ∂B

∂u

∂n
= b on ∂B

(1)

where a, b ∈ R, B is the unit ball in R
N , N ≥ 1, n is the exterior unit normal

vector and λ ≥ 0 is a parameter.
Recently higher order equations have attracted the interest of many researchers.

In particular fourth order equations with an exponential non-linearity have been
studied in 4 dimensions, in a setting analogous to Liouville’s equation, in [3, 12, 24]
and in higher dimensions by [1, 2, 4, 5, 13].

We shall pay special attention to (1) in the case a = b = 0, as it is the natural
fourth order analogue of the classical Gelfand problem

{−∆u = λeu in Ω

u = 0 on ∂Ω
(2)

(Ω is a smooth bounded domain in R
N ) for which a vast literature exists [7, 8, 9,

10, 18, 19, 20, 21].
From the technical point of view, one of the basic tools in the analysis of (2) is

the maximum principle. As pointed out in [2], in general domains the maximum
principle for ∆2 with Dirichlet boundary condition is not valid anymore. One of the
reasons to study (1) in a ball is that a maximum principle holds in this situation,
see [6]. In this simpler setting, though there are some similarities between the two
problems, several tools that are well suited for (2) no longer seem to work for (1).
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As a start, let us introduce the class of weak solutions we shall be working with :
we say that u ∈ H2(B) is a weak solution to (1) if eu ∈ L1(B), u = a on ∂B,
∂u
∂n = b on ∂B and

∫

B

∆u∆ϕ = λ

∫

B

euϕ, for all ϕ ∈ C∞
0 (B).

The following basic result is a straightforward adaptation of Theorem 3 in [2].

Theorem 1.1. ([2]) There exists λ∗ such that if 0 ≤ λ < λ∗ then (1) has a minimal
smooth solution uλ and if λ > λ∗ then (1) has no weak solution.

The limit u∗ = limλրλ∗ uλ exists pointwise, belongs to H2(B) and is a weak
solution to (1). It is called the extremal solution.

The functions uλ, 0 ≤ λ < λ∗ and u∗ are radially symmetric and radially de-
creasing.

The branch of minimal solutions of (1) has an important property, namely uλ is
stable in the sense that

∫

B

(∆ϕ)2 ≥ λ

∫

B

euλϕ2, ∀ϕ ∈ C∞
0 (B),(3)

see [2, Proposition 37].
The authors in [2] pose several questions, some of which we address in this work.

First we show that the extremal solution u∗ is the unique solution to (1) in the class
of weak solutions. Actually the statement is stronger, asserting that for λ = λ∗

there are no strict super-solutions.

Theorem 1.2. If

v ∈ H2(B), ev ∈ L1(B), v|∂B = a, ∂v
∂n |∂B ≤ b(4)

and
∫

B

∆v∆ϕ ≥ λ∗
∫

B

evϕ ∀ ϕ ∈ C∞
0 (B), ϕ ≥ 0,(5)

then v = u∗. In particular for λ = λ∗ problem (1) has a unique weak solution.

This result is analogous to work of Martel [19] for more general versions of (2)
where the exponential function is replaced by a positive, increasing, convex and
superlinear function.

Next, we discuss the regularity of the extremal solution u∗. In dimensions N =
5, . . . , 16 the authors of [2] find, with a computer assisted proof, a radial singular
solution Uσ to (1) with a = b = 0 associated to a parameter λσ > 8(N − 2)(N − 4).
They show that λσ < λ∗ if N ≤ 10 and claim to have numerical evidence that
this holds for N ≤ 12. They leave open the question of whether u∗ is singular in
dimension N ≤ 12. We prove

Theorem 1.3. If N ≤ 12 then the extremal solution u∗ of (1) is smooth.

The method introduced in [10, 20] to prove the boundedness of u∗ in low di-
mensions for (2) seems not useful for (1), thus requiring a new strategy. A first
indication that the borderline dimension for the boundedness of u∗ is 12 is Rellich’s
inequality [23], which states that if N ≥ 5 then

∫

RN

(∆ϕ)2 ≥ N2(N − 4)2

16

∫

RN

ϕ2

|x|4 ∀ϕ ∈ C∞
0 (RN ),(6)
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where the constant N2(N − 4)2/16 is known to be optimal. The proof of Theo-

rem 1.3 is based on the observation that if u∗ is singular then λ∗eu
∗ ∼ 8(N−2)(N−

4)|x|−4 near the origin. But 8(N − 2)(N − 4) > N2(N − 4)2/16 if N ≤ 12 which
would contradict the stability condition (3).

In view of Theorem 1.3, it is natural to ask whether u∗ is singular in dimension
N ≥ 13. If a = b = 0, we prove

Theorem 1.4. Let N ≥ 13 and a = b = 0. Then the extremal solution u∗ to (1)
is unbounded.

For general boundary values, it seems more difficult to determine the dimensions
for which the extremal solution is singular. We observe first that given any a, b ∈ R,
u∗ is the extremal solution of (1) if and only if u∗ − a is the extremal solution of
the same equation with boundary condition u = 0 on ∂B. In particular, if λ∗(a, b)
denotes the extremal parameter for problem (1), one has that λ∗(a, b) = e−aλ∗(0, b).
So the value of a is irrelevant. But one may ask if Theorem 1.4 still holds for any
N ≥ 13 and any b ∈ R. The situation turns out to be somewhat more complicated :

Proposition 1.5.

a) Fix N ≥ 13 and take any a ∈ R. Assume b ≥ −4. There exists a critical
parameter bmax > 0, depending only on N , such that the extremal solution
u∗ is singular if and only if b ≤ bmax.

b) Fix b ≥ −4 and take any a ∈ R. There exists a critical dimension Nmin ≥
13, depending only on b, such that the extremal solution u∗ to (1) is singular
if N ≥ Nmin.

Remark 1.6.

• We have not investigated the case b < −4.
• If follows from item a) that for b ∈ [−4, 0], the extremal solution is singular

if and only if N ≥ 13.
• It also follows from item a) that there exist values of b for which Nmin > 13.

We do not know whether u∗ remains bounded for 13 ≤ N < Nmin.

Our proof of Theorem 1.4 is related to an idea that Brezis and Vázquez ap-
plied for the Gelfand problem and is based on a characterization of singular energy
solutions through linearized stability (see Theorem 3.1 in [8]). In our context we
show

Proposition 1.7. Assume that u ∈ H2(B) is an unbounded weak solution of (1)
satisfying the stability condition

λ

∫

B

euϕ2 ≤
∫

B

(∆ϕ)2, ∀ϕ ∈ C∞
0 (B).(7)

Then λ = λ∗ and u = u∗.

We do not use Proposition 1.7 directly but some variants of it – see Lemma 2.6
and Remark 2.7 in Section 2 – because we do not have at our disposal an explicit
solution to the equation (1). Instead, we show that it is enough to find a sufficiently
good approximation to u∗. When N ≥ 32 we are able to construct such an ap-
proximation by hand. However, for 13 ≤ N ≤ 31 we resort to a computer assisted
generation and verification.
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Only in very few situations one may take advantage of Proposition 1.7 directly.
For instance for problem (1) with a = 0 and b = −4 we have an explicit solution

ū(x) = −4 log |x|
associated to λ̄ = 8(N − 2)(N − 4). Thanks to Rellich’s inequality (6) the solution
ū satisfies condition (7) when N ≥ 13. Therefore, by Theorem 1.3 and a direct
application of Proposition 1.7 we obtain Theorem 1.4 in the case b = −4.

In [2] the authors say that a radial weak solution u to (1) is weakly singular if

lim
r→0

ru′(r) exists.

For example, the singular solutions Uσ of [2] verify this condition.
As a corollary of Theorem 1.2 we show

Proposition 1.8. The extremal solution u∗ to (1) with b ≥ −4 is always weakly
singular.

A weakly singular solution either is smooth or exhibits a log-type singularity at
the origin. More precisely, if u is a non-smooth weakly singular solution of (1) with
parameter λ then (see [2])

lim
r→0

u(r) + 4 log r = log
8(N − 2)(N − 4)

λ
,

lim
r→0

ru′(r) = −4.

In Section 2 we describe the comparison principles we use later on. Section 3 is
devoted to the proof of the uniqueness of u∗ and Propositions 1.7 and 1.8. We prove
Theorem 1.3, the boundedness of u∗ in low dimensions, in Section 4. The argument
for Theorem 1.4 is contained in Section 5 for the case N ≥ 32 and Section 6 for
13 ≤ N ≤ 31. In Section 7 we give the proof of Proposition 1.5.

Notation.

• BR: ball of radius R in R
N centered at the origin. B = B1.

• n: exterior unit normal vector to BR
• All inequalities or equalities for functions in Lp spaces are understood to

be a.e.

2. Comparison principles

Lemma 2.1. (Boggio’s principle, [6]) If u ∈ C4(BR) satisfies






∆2u ≥ 0 in BR

u =
∂u

∂n
= 0 on ∂BR

then u ≥ 0 in BR.

Lemma 2.2. Let u ∈ L1(BR) and suppose that
∫

BR

u∆2ϕ ≥ 0

for all ϕ ∈ C4(BR) such that ϕ ≥ 0 in BR, ϕ|∂BR
= 0 = ∂ϕ

∂n |∂BR
. Then u ≥ 0 in

BR. Moreover u ≡ 0 or u > 0 a.e. in BR.

For a proof see Lemma 17 in [2].
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Lemma 2.3. If u ∈ H2(BR) is radial, ∆2u ≥ 0 in BR in the weak sense, that is
∫

BR

∆u∆ϕ ≥ 0 ∀ϕ ∈ C∞
0 (BR), ϕ ≥ 0

and u|∂BR
≥ 0, ∂u

∂n |∂BR
≤ 0 then u ≥ 0 in BR.

Proof. We only deal with the case R = 1 for simplicity. Solve






∆2u1 = ∆2u in B1

u1 =
∂u1

∂n
= 0 on ∂B1

in the sense u1 ∈ H2
0 (B1) and

∫

B1

∆u1∆ϕ =
∫

B1

∆u∆ϕ for all ϕ ∈ C∞
0 (B1). Then

u1 ≥ 0 in B1 by Lemma 2.2.
Let u2 = u− u1 so that ∆2u2 = 0 in B1. Define f = ∆u2. Then ∆f = 0 in B1

and since f is radial we find that f is constant. It follows that u2 = ar2 + b. Using
the boundary conditions we deduce a+ b ≥ 0 and a ≤ 0, which imply u2 ≥ 0. �

Similarly we have

Lemma 2.4. If u ∈ H2(BR) and ∆2u ≥ 0 in BR in the weak sense, that is
∫

BR

∆u∆ϕ ≥ 0 ∀ϕ ∈ C∞
0 (BR), ϕ ≥ 0

and u|∂BR
= 0, ∂u

∂n |∂BR
≤ 0 then u ≥ 0 in BR.

The next lemma is a consequence of a decomposition lemma of Moreau [22]. For
a proof see [14, 15].

Lemma 2.5. Let u ∈ H2
0 (BR). Then there exist unique w, v ∈ H2

0 (BR) such that
u = w + v, w ≥ 0, ∆2v ≤ 0 in BR and

∫

BR
∆w∆v = 0.

We need the following comparison principle.

Lemma 2.6. Let u1, u2 ∈ H2(BR) with eu1 , eu2 ∈ L1(BR). Assume that

∆2u1 ≤ λeu1 in BR

in the sense
∫

BR

∆u1∆ϕ ≤ λ

∫

BR

eu1ϕ ∀ϕ ∈ C∞
0 (BR), ϕ ≥ 0,(8)

and ∆2u2 ≥ λeu2 in BR in the similar weak sense. Suppose also

u1|∂BR
= u2|∂BR

and
∂u1

∂n
|∂BR

=
∂u2

∂n
|∂BR

.

Assume furthermore that u1 is stable in the sense that

(9) λ

∫

BR

eu1ϕ2 ≤
∫

BR

(∆ϕ)2, ∀ϕ ∈ C∞
0 (BR).

Then

u1 ≤ u2 in BR.
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Proof.Let u = u1 − u2. By Lemma 2.5 there exist w, v ∈ H2
0 (BR) such that

u = w + v, w ≥ 0 and ∆2v ≤ 0. Observe that v ≤ 0 so w ≥ u1 − u2.
By hypothesis we have for all ϕ ∈ C∞

0 (BR), ϕ ≥ 0,
∫

BR

∆(u1 − u2)∆ϕ ≤ λ

∫

BR

(eu1 − eu2)ϕ ≤ λ

∫

BR∩[u1≥u2]

(eu1 − eu2)ϕ

and by density this holds also for w:

(10)

∫

BR

(∆w)2 =

∫

BR

∆(u1 − u2)∆w

≤ λ

∫

BR∩[u1≥u2]

(eu1 − eu2)w = λ

∫

BR

(eu1 − eu2)w,

where the first equality holds because
∫

BR
∆w∆v = 0. By density we deduce from

(9):

(11) λ

∫

BR

eu1w2 ≤
∫

BR

(∆w)2.

Combining (10) and (11) we obtain
∫

BR

eu1w2 ≤
∫

BR

(eu1 − eu2)w.

Since u1 − u2 ≤ w the previous inequality implies

(12) 0 ≤
∫

BR

(eu1 − eu2 − eu1(u1 − u2))w.

But by convexity of the exponential function eu1 − eu2 − eu1(u1 − u2) ≤ 0 and we
deduce from (12) that (eu1 − eu2 − eu1(u1 − u2))w = 0. Recalling that u1 − u2 ≤ w
we deduce that u1 ≤ u2. �

Remark 2.7. The following variant of Lemma 2.6 also holds:
Let u1, u2 ∈ H2(BR) be radial with eu1 , eu2 ∈ L1(BR). Assume ∆2u1 ≤ λeu1

in BR in the sense of (8) and ∆2u2 ≥ λeu2 in BR. Suppose u1|∂BR
≤ u2|∂BR

and
∂u1

∂n |∂BR
≥ ∂u2

∂n |∂BR
and that the stability condition (9) holds. Then u1 ≤ u2 in BR.

Proof. We solve for ũ ∈ H2
0 (BR) such that

∫

BR

∆ũ∆ϕ =

∫

BR

∆(u1 − u2)∆ϕ ∀ϕ ∈ C∞
0 (BR).

By Lemma 2.3 it follows that ũ ≥ u1 − u2. Next we apply the decomposition of
Lemma 2.5 to ũ, that is ũ = w+ v with w, v ∈ H2

0 (BR), w ≥ 0, ∆2v ≤ 0 in BR and
∫

BR
∆w∆v = 0. Then the argument follows that of Lemma 2.6. �

Finally, in several places we will need the method of sub and supersolutions in
the context of weak solutions.

Lemma 2.8. Let λ > 0 and assume that there exists ū ∈ H2(BR) such that
eū ∈ L1(BR),

∫

BR

∆ū∆ϕ ≥ λ

∫

BR

eūϕ for all ϕ ∈ C∞
0 (BR), ϕ ≥ 0
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and

ū = a,
∂ū

∂n
≤ b on ∂B1.

Then there exists a weak solution to (1) such that u ≤ ū.

The proof is similar to that of Lemma 19 in [2].

3. Uniqueness of the extremal solution: proof of Theorem 1.2

Proof of Theorem 1.2. Suppose that v ∈ H2(B) satisfies (4), (5) and v 6≡ u∗.
Notice that we do not need v to be radial.

The idea of the proof is as follows :

Step 1. The function

u0 =
1

2
(u∗ + v)

is a super-solution to the following problem














∆2u = λ∗eu + µηeu in B

u = a on ∂B

∂u

∂n
= b on ∂B

(13)

for some µ = µ0 > 0, where η ∈ C∞
0 (B), 0 ≤ η ≤ 1 is a fixed radial cut-off function

such that

η(x) = 1 for |x| ≤ 1
2 , η(x) = 0 for |x| ≥ 3

4 .

Step 2. Using a solution to (13) we construct, for some λ > λ∗, a super-solution
to (1). This provides a solution uλ for some λ > λ∗, which is a contradiction.

Proof of Step 1. Observe that given 0 < R < 1 we must have for some c0 =
c0(R) > 0

v(x) ≥ u∗(x) + c0 |x| ≤ R.(14)

To prove this we recall the Green’s function for ∆2 with Dirichlet boundary condi-
tions















∆2
xG(x, y) = δy x ∈ B

G(x, y) = 0 x ∈ ∂B

∂G

∂n
(x, y) = 0 x ∈ ∂B,

where δy is the Dirac mass at y ∈ B. Boggio gave an explicit formula for G(x, y)
which was used in [16] to prove that in dimension N ≥ 5 (the case 1 ≤ N ≤ 4 can
be treated similarly)

G(x, y) ∼ |x− y|4−N min

(

1,
d(x)2d(y)2

|x− y|4
)

(15)

where

d(x) = dist(x, ∂B) = 1 − |x|.
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and a ∼ b means that for some constant C > 0 we have C−1a ≤ b ≤ Ca (uniformly
for x, y ∈ B). Formula (15) yields

G(x, y) ≥ cd(x)2d(y)2(16)

for some c > 0 and this in turn implies that for smooth functions ṽ and ũ such that
ṽ − ũ ∈ H2

0 (B) and ∆2(ṽ − ũ) ≥ 0,

ṽ(y) − ũ(y) =

∫

∂B

(∂∆xG

∂nx
(x, y)(ṽ − ũ) − ∆xG(x, y)

∂(ṽ − ũ)

∂n

)

dx

+

∫

B

G(x, y)∆2(ṽ − ũ) dx

≥ cd(y)2
∫

B

(∆2ṽ − ∆2ũ)d(x)2 dx.

Using a standard approximation procedure, we conclude that

v(y) − u∗(y) ≥ cd(y)2λ∗
∫

B

(ev − eu
∗

)d(x)2 dx.

Since v ≥ u∗, v 6≡ u∗ we deduce (14).
Let u0 = (u∗ + v)/2. Then by Taylor’s theorem

ev = eu0 + (v − u0)e
u0 +

1

2
(v − u0)

2eu0 +
1

6
(v − u0)

3eu0 +
1

24
(v − u0)

4eξ2(17)

for some u0 ≤ ξ2 ≤ v and

eu
∗

= eu0 + (u∗ − u0)e
u0 +

1

2
(u∗ − u0)

2eu0 +
1

6
(u∗ − u0)

3eu0 +
1

24
(u∗ − u0)

4eξ1

(18)

for some u∗ ≤ ξ1 ≤ u0. Adding (17) and (18) yields

1

2
(ev + eu

∗

) ≥ eu0 +
1

8
(v − u∗)2eu0 .(19)

From (14) with R = 3/4 and (19) we see that u0 = (u∗ + v)/2 is a super-solution
of (13) with µ0 := c0/8.

Proof of Step 2. Let us show now how to obtain a weak super-solution of (1) for
some λ > λ∗. Given µ > 0, let u denote the minimal solution to (13). Define ϕ1 as
the solution to















∆2ϕ1 = µηeu in B

ϕ1 = 0 on ∂B

∂ϕ1

∂n
= 0 on ∂B,

and ϕ2 be the solution of














∆2ϕ2 = 0 in B

ϕ2 = a on ∂B

∂ϕ2

∂n
= b on ∂B.

If N ≥ 5 (the case 1 ≤ N ≤ 4 can be treated similarly), relation (16) yields

ϕ1(x) ≥ c1d(x)
2 for all x ∈ B,(20)
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for some c1 > 0. But u is a radial solution of (13) and therefore it is smooth in
B \B1/4. Thus

u(x) ≤Mϕ1 + ϕ2 for all x ∈ B1/2,(21)

for some M > 0. Therefore, from (20) and (21), for λ > λ∗ with λ− λ∗ sufficiently
small we have

( λλ∗
− 1)u ≤ ϕ1 + ( λλ∗

− 1)ϕ2 in B.

Let w = λ
λ∗
u− ϕ1 − ( λλ∗

− 1)ϕ2. The inequality just stated guarantees that w ≤ u.
Moreover

∆2w = λeu +
λµ

λ∗
ηeu − µηeu ≥ λeu ≥ λew in B

and

w = a
∂w

∂n
= b on ∂B.

Therefore w is a super-solution to (1) for λ. By the method of sub and super-
solutions a solution to (1) exists for some λ > λ∗, which is a contradiction. �

Proof of Proposition 1.7. Let u ∈ H2(B), λ > 0 be a weak unbounded solution
of (1). If λ < λ∗ from Lemma 2.6 we find that u ≤ uλ where uλ is the minimal
solution. This is impossible because uλ is smooth and u unbounded. If λ = λ∗ then
necessarily u = u∗ by Theorem 1.2. �

Proof of Proposition 1.8. Let u denote the extremal solution of (1) with b ≥ −4.
If u is smooth, then the result is trivial. So we restrict to the case where u is
singular. By Theorem 1.3 we have in particular that N ≥ 13. We may also assume
that a = 0. If b = −4 by Theorem 1.2 we know that if N ≥ 13 then u = −4 log |x|
so that the desired conclusion holds. Henceforth we assume b > −4 in this section.

For ρ > 0 define

uρ(r) = u(ρr) + 4 log ρ,

so that

∆2uρ = λ∗euρ in B1/ρ.

Then

duρ
dρ

∣

∣

∣

ρ=1,r=1
= u′(1) + 4 > 0.

Hence, there is δ > 0 such that

uρ(r) < u(r) for all 1 − δ < r ≤ 1, 1 − δ < ρ ≤ 1.

This implies

uρ(r) < u(r) for all 0 < r ≤ 1, 1 − δ < ρ ≤ 1.(22)

Otherwise set

r0 = sup { 0 < r < 1 |uρ(r) ≥ u(r) }.
This definition yields

uρ(r0) = u(r0) and u′ρ(r0) ≤ u′(r0).(23)
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Write α = u(r0), β = u′(r0). Then u satisfies










∆2u = λeu on Br0

u(r0) = α

u′(r0) = β.

(24)

Observe that u is an unbounded H2(Br0) solution to (24), which is also stable.
Thus Proposition 1.7 shows that u is the extremal solution to this problem. On the
other hand uρ is a supersolution to (24), since u′ρ(r0) ≤ β by (23). We may now
use Theorem 1.2 and we deduce that

u(r) = uρ(r) for all 0 < r ≤ r0,

which in turn implies by standard ODE theory that

u(r) = uρ(r) for all 0 < r ≤ 1,

a contradiction with (22). This proves estimate (22).
From (22) we see that

duρ
dρ

∣

∣

∣

ρ=1
(r) ≥ 0 for all 0 < r ≤ 1.(25)

But
duρ
dρ

∣

∣

∣

ρ=1
(r) = u′(r)r + 4 for all 0 < r ≤ 1

and this together with (25) implies

duρ
dρ

(r) =
1

ρ
(u′(ρr)ρr + 4) ≥ 0 for all 0 < r ≤ 1

ρ
, 0 < ρ ≤ 1.(26)

which means that uρ(r) is non-decreasing in ρ. We wish to show that limρ→0 uρ(r)
exists for all 0 < r ≤ 1. For this we shall show

uρ(r) ≥ −4 log(r) + log

(

8(N − 2)(N − 4)

λ∗

)

for all 0 < r ≤ 1

ρ
, 0 < ρ ≤ 1.(27)

Set

u0(r) = −4 log(r) + log

(

8(N − 2)(N − 4)

λ∗

)

.

and suppose that (27) is not true for some 0 < ρ < 1. Let

r1 = sup { 0 < r < 1/ρ |uρ(r) < u0(r) }.
Observe that

λ∗ > 8(N − 2)(N − 4).(28)

Otherwise w = −4 ln r would be a strict supersolution of the equation satisfied by
u, which is not possible by Theorem 1.2. In particular, r1 < 1/ρ and

uρ(r1) = u0(r1) and u′ρ(r1) ≥ u′0(r1).

It follows that u0 is a supersolution of














∆2u = λ∗eu in Br1

u = A on ∂Br1

∂u

∂n
= B on ∂Br1 ,

(29)
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with A = uρ(r1) and B = u′ρ(r1). Since uρ is a singular stable solution of (29), it
is the extremal solution of the problem by Proposition 1.7. By Theorem 1.2, there
is no strict supersolution of (29) and we conclude that uρ ≡ u0 first for 0 < r < r1
and then for 0 < r ≤ 1/ρ. This is impossible for ρ > 0 because uρ(1/ρ) = 4 log ρ

and u0(1/ρ) < 4 log ρ+ log(8(N−2)(N−4)
λ∗

) < uρ(1/ρ) by (28). This proves (27).
By (26) and (27) we see that

v(r) = lim
ρ→0

uρ(r) exists for all 0 < r < +∞,

where the convergence is uniform (even in Ck for any k) on compact sets of R
N \{0}.

Moreover v satisfies

∆2v = λ∗ev in R
N \ {0}.(30)

Then for any r > 0

v(r) = lim
ρ→0

uρ(r) = lim
ρ→0

u(ρr) + 4 log(ρr) − 4 log(r) = v(1) − 4 log(r).

Hence, using equation (30) we obtain

v(r) = −4 log r + log

(

8(N − 2)(N − 4)

λ∗

)

= u0(r).

But then

u′ρ(r) = u′(ρr)ρ → −4, as ρ→ 0.

and therefore, with r = 1

ρu′(ρ) → −4 as ρ→ 0.(31)

�

4. Proof of Theorem 1.3

We will show first

Lemma 4.1. Suppose that the extremal solution u∗ to (1) is singular. Then for
any σ > 0 there exists 0 < R < 1 such that

u∗(x) ≥ (1 − σ) log

(

1

|x|4
)

, ∀ |x| < R.(32)

Proof. Assume by contradiction that (32) is false. Then there exists σ > 0 and a
sequence xk ∈ B with xk → 0 such that

u∗(xk) < (1 − σ) log

(

1

|xk|4
)

.(33)

Let sk = |xk| and choose 0 < λk < λ∗ such that

max
B

uλk
= uλk

(0) = log

(

1

s4k

)

.(34)

Note that λk → λ∗, otherwise uλk
would remain bounded. Let

vk(x) =
uλk

(skx)

log( 1
s4

k

)
x ∈ Bk ≡ 1

sk
B.
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Then 0 ≤ vk ≤ 1, vk(0) = 1,

∆2vk(x) = λk
s4k

log( 1
s4

k

)
euλk

(skx)

≤ λk

log( 1
s4

k

)
→ 0 in Bk

by (34). By elliptic regularity vk → v uniformly on compact sets of R
N to a

function v satisfying 0 ≤ v ≤ 1, v(0) = 1, ∆2v = 0 in R
N .By Liouville’s theorem

for biharmonic functions [17] we conclude that v is constant and therefore v ≡ 1.
Since |xk| = sk we deduce that

uλk
(xk)

log( 1
s4

k

)
→ 1,

which contradicts (33). �

Proof of Theorem 1.3. We write for simplicity u = u∗, λ = λ∗. Assume by
contradiction that u∗ is unbounded and 5 ≤ N ≤ 12. If N ≤ 4 the problem is
subcritical, and the boundedness of u∗ can be proved by other means : no singular
solutions exist for positive λ (see [2])-though in dimension N = 4 they can blow up
as λ→ 0, see [24].

For ε > 0 let ψ = |x| 4−N
2

+ε and let η ∈ C∞
0 (RN ) with η ≡ 1 in B1/2 and

supp(η) ⊆ B. Observe that

(∆ψ)2 = (HN +O(ε))|x|−N+2ε, where HN =
N2(N − 4)2

16
.

Using a standard approximation argument as in the proof of Lemma 2.6, we can
use ψη as a test function in (9) and we obtain

∫

B

(∆ψ)2 +O(1) ≥ λ

∫

B

euψ2,

since the contribution of the integrals outside a fixed ball around the origin remains
bounded as ε→ 0 (here O(1) denotes a bounded function as ε→ 0).

This implies

λ

∫

B

eu|x|4−N+2ε ≤ (HN +O(ε))

∫

B

|x|−N+2ε = ωN
HN

2ε
+O(1)(35)

where ωN is the surface area of the unit N − 1 dimensional sphere SN−1. In
particular

∫

B e
u|x|4−N+2ε < +∞.

For ε > 0 we define ϕ = |x|4−N+2ε. Note that away from the origin

∆2ϕ = εkN |x|−N+2ε, where kN = 4(N − 2)(N − 4) +O(ε).(36)

Let ϕj solve






∆2ϕj = εkN min(|x|−N+2ε, j) in B

ϕj =
∂ϕj
∂n

= 0 on ∂B.
(37)
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Then ϕj ↑ ϕ as j → +∞. Using (35) and (37)

εkN

∫

B

u min(|x|−N+2ε, j) =

∫

B

u∆2ϕj = λ

∫

B

euϕj

≤ λ

∫

B

euϕ

≤ ωN
HN

2ε
+O(1)

where O(1) is bounded as ε→ 0 independently of j. Letting j → +∞ yields

εkN

∫

B

u |x|−N+2ε ≤ ωN
HN

2ε
+O(1),(38)

showing that the integral on the left hand side is finite. On the other hand, by (32)

εkN

∫

B

u |x|−N+2ε ≥ εkNωN(1 − σ)

∫ 1

0

log(
1

r4
)r−1+2ε dr = kNωN(1 − σ)

1

ε
.(39)

Combining (38) and (39) we obtain

(1 − σ)kN ≤ HN

2
+O(ε).

Letting ε→ 0 and then σ → 0 we have

8(N − 2)(N − 4) ≤ HN =
N2(N − 4)2

16
.

This is valid only if N ≥ 13, a contradiction. �

Remark 4.2. The conclusion of Theorem 1.3 can be obtained also from Proposi-
tion 1.8. However that proposition depends crucially on the radial symmetry of the
solutions, while the argument in this section can be generalized to other domains.

5. The extremal solution is singular in large dimensions

In this section we take a = b = 0 and prove Theorem 1.4 for N ≥ 32.
The idea for the proof of Theorem 1.4 is to to estimate accurately from above the

function λ∗eu
∗

, and to deduce that the operator ∆2 − λ∗eu
∗

has a strictly positive
first eigenvalue (in the H2

0 (B) sense). Then, necessarily, u∗ is singular.
Upper bounds for both λ∗ and u∗ are obtained by finding suitable sub and

supersolutions. For example, if for some λ1 there exists a supersolution then λ∗ ≥
λ1. If for some λ2 one can exhibit a stable singular subsolution u, then λ∗ ≤ λ2.
Otherwise λ2 < λ∗ and one can then prove that the minimal solution uλ2

is above
u, which is impossible. The bound for u∗ also requires a stable singular subsolution.

It turns out that in dimension N ≥ 32 we can construct the necessary subso-
lutions and verify their stability by hand. For dimensions 13 ≤ N ≤ 31 it seems
difficult to find these subsolutions explicitly. We adopt then an approach that
involves a computer assisted construction of subsolutions and verification of the
desired inequalities. We present this part in the next section.

Lemma 5.1. Assume N ≥ 13. Then u∗ ≤ ū = −4 log |x| in B1.
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Proof. Define ū(x) = −4 log |x|. Then ū satisfies














∆2ū = 8(N − 2)(N − 4)eū in R
N

ū = 0 on ∂B1

∂ū

∂n
= −4 on ∂B1

Observe that since ū is a supersolution to (1) with a = b = 0 we deduce imme-
diately that λ∗ ≥ 8(N − 2)(N − 4).

In the case λ∗ = 8(N −2)(N −4) we have uλ ≤ ū for all 0 ≤ λ < λ∗ because ū is
a supersolution, and therefore u∗ ≤ ū holds. Alternatively, one can invoke Theorem
3 in [2] to conclude that we always have λ∗ > 8(N − 2)(N − 4).

Suppose now that λ∗ > 8(N − 2)(N − 4). We prove that uλ ≤ ū for all 8(N −
2)(N − 4) < λ < λ∗. Fix such λ and assume by contradiction that uλ ≤ ū is not
true. Note that for r < 1 and sufficiently close to 1 we have uλ(r) < ū(r) because
u′λ(1) = 0 while ū′(1) = −4. Let

R1 = inf{ 0 ≤ R ≤ 1 | uλ < ū in (R, 1) }.
Then 0 < R1 < 1, uλ(R1) = ū(R1) and u′λ(R1) ≤ ū′(R1). So uλ is a super-solution
to the problem

(40)















∆2u = 8(N − 2)(N − 4)eu in BR1

u = uλ(R1) on ∂BR1

∂u

∂n
= u′λ(R1) on ∂BR1

while ū is a subsolution to (40). Moreover it is stable for this problem, since from
Rellich’s inequality (6) and 8(N −2)(N −4) ≤ N2(N −4)2/16 for N ≥ 13, we have

8(N − 2)(N − 4)

∫

BR1

eūϕ2 ≤ N2(N − 4)2

16

∫

RN

ϕ2

|x|4 ≤
∫

RN

(∆ϕ)2 ∀ϕ ∈ C∞
0 (BR1

).

By Remark 2.7 we deduce ū ≤ uλ in BR1
which is impossible. �

An upper bound for λ∗ is obtained by considering again a stable, singular sub-
solution to the problem (with another parameter, though):

Lemma 5.2. For N ≥ 32 we have

λ∗ ≤ 8(N − 2)(N − 4)e2.(41)

Proof. Consider w = 2(1 − r2) and define

u = ū− w

where ū(x) = −4 log |x|. Then

∆2u = 8(N − 2)(N − 4)
1

r4
= 8(N − 2)(N − 4)eū = 8(N − 2)(N − 4)eu+w

≤ 8(N − 2)(N − 4)e2eu.

Also u(1) = u′(1) = 0, so u is a subsolution to (1) with parameter λ0 = 8(N −
2)(N − 4)e2.

For N ≥ 32 we have λ0 ≤ N2(N − 4)2/16. Then by (6) u is a stable subsolution
of (1) with λ = λ0. If λ∗ > λ0 = 8(N −2)(N −4)e2 the minimal solution uλ0

to (1)
with parameter λ0 exists and is smooth. From Lemma 2.6 we find u ≤ uλ0

which
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is impossible because u is singular and uλ0
is bounded. Thus we have proved (41)

for N ≥ 32. �

Proof of Theorem 1.4 in the case N ≥ 32.
Combining Lemma 5.1 and 5.2 we have that if N ≥ 32 then λ∗eu

∗ ≤ r−4 8(N −
2)(N − 4)e2 ≤ r−4N2(N − 4)2/16. This and (6) show that

inf
ϕ∈C∞

0
(B)

∫

B
(∆ϕ)2 − λ∗

∫

B
eu

∗

ϕ2

∫

B ϕ
2

> 0

which is not possible if u∗ is bounded. �

6. A computer assisted proof for dimensions 13 ≤ N ≤ 31

Throughout this section we assume a = b = 0. As was mentioned in the previous
section, the proof of Theorem 1.4 relies on precise estimates for u∗ and λ∗. We
present first some conditions under which it is possible to find these estimates.
Later we show how to meet such conditions with a computer assisted verification.

The first lemma is analogous to Lemma 5.2.

Lemma 6.1. Suppose there exist ε > 0, λ > 0 and a radial function u ∈ H2(B) ∩
W 4,∞
loc (B \ {0}) such that

∆2u ≤ λeu for all 0 < r < 1

|u(1)| ≤ ε,

∣

∣

∣

∣

∂u

∂n
(1)

∣

∣

∣

∣

≤ ε

u 6∈ L∞(B)

λeε
∫

B

euϕ2 ≤
∫

B

(∆ϕ)2 for all ϕ ∈ C∞
0 (B).(42)

Then

λ∗ ≤ λe2ε.

Proof. Let

ψ(r) = εr2 − 2ε(43)

so that

∆2ψ ≡ 0, ψ(1) = −ε, ψ′(1) = 2ε

and

−2ε ≤ ψ(r) ≤ −ε for all 0 ≤ r ≤ 1.

It follows that

∆2(u+ ψ) ≤ λeu = λe−ψeu+ψ ≤ λe2εeu+ψ.

On the boundary we have u(1) + ψ(1) ≤ 0, u′(1) + ψ′(1) ≥ 0. Thus u + ψ is a
singular subsolution to the equation with parameter λe2ε. Moreover, since ψ ≤ −ε
we have λe2εeu+ψ ≤ λeεeu and hence, from (42) we see that u+ψ is stable for the
problem with parameter λe2ε. If λe2ε < λ∗ then the minimal solution associated to
the parameter λe2ε would be above u+ψ, which is impossible because u is singular.
�
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Lemma 6.2. Suppose we can find ε > 0, λ > 0 and u ∈ H2(B) ∩W 4,∞
loc (B \ {0})

such that

∆2u ≥ λeu for all 0 < r < 1

|u(1)| ≤ ε,

∣

∣

∣

∣

∂u

∂n
(1)

∣

∣

∣

∣

≤ ε.

Then

λe−2ε ≤ λ∗.

Proof. Let ψ be given by (43). Then u−ψ is a supersolution to the problem with
parameter λe−2ε. �

The next result is the main tool to guarantee that u∗ is singular. The proof, as
in Lemma 5.1, is based on an upper estimate of u∗ by a stable singular subsolution.

Lemma 6.3. Suppose there exist ε0, ε > 0, λa > 0 and a radial function u ∈
H2(B) ∩W 4,∞

loc (B \ {0}) such that

∆2u ≤ (λa + ε0)e
u for all 0 < r < 1(44)

∆2u ≥ (λa − ε0)e
u for all 0 < r < 1(45)

|u(1)| ≤ ε,

∣

∣

∣

∣

∂u

∂n
(1)

∣

∣

∣

∣

≤ ε(46)

u 6∈ L∞(B)(47)

β0

∫

B

euϕ2 ≤
∫

B

(∆ϕ)2 for all ϕ ∈ C∞
0 (B),(48)

where

β0 =
(λa + ε0)

3

(λa − ε0)2
e9ε.(49)

Then u∗ is singular and

(λa − ε0)e
−2ε ≤ λ∗ ≤ (λa + ε0)e

2ε.(50)

Proof. By Lemmas 6.1 and 6.2 we have (50). Let

δ = log

(

λa + ε0
λa − ε0

)

+ 3ε.

and define

ϕ(r) = − δ
4
r4 + 2δ.

We claim that

u∗ ≤ u+ ϕ in B1.(51)

To prove this, we shall show that for λ < λ∗

uλ ≤ u+ ϕ in B1.(52)

Indeed, we have

∆2ϕ = −δ2N(N + 2)

ϕ(r) ≥ δ for all 0 ≤ r ≤ 1

ϕ(1) ≥ δ ≥ ε, ϕ′(1) = −δ ≤ −ε
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and therefore

∆2(u+ ϕ) ≤ (λa + ε0)e
u + ∆2ϕ ≤ (λa + ε0)e

u = (λa + ε0)e
−ϕeu+ϕ

≤ (λa + ε0)e
−δeu+ϕ.(53)

By (50) and the choice of δ

(λa + ε0)e
−δ = (λa − ε0)e

−3ε < λ∗.(54)

To prove (52) it suffices to consider λ in the interval (λa − ε0)e
−3ε < λ < λ∗. Fix

such λ and assume that (52) is not true. Write

ū = u+ ϕ

and let
R1 = sup{ 0 ≤ R ≤ 1 |uλ(R) = ū(R) }.

Then 0 < R1 < 1 and uλ(R1) = ū(R1). Since u′λ(1) = 0 and ū′(1) < 0 we must
have u′λ(R1) ≤ ū′(R1). Then uλ is a solution to the problem















∆2u = λeu in BR1

u = uλ(R1) on ∂BR1

∂u

∂n
= u′λ(R1) on ∂BR1

while, thanks to (53) and (54), ū is a subsolution to the same problem. Moreover
ū is stable thanks to (48) since, by Lemma 6.1,

λ < λ∗ ≤ (λa + ε0)e
2ε(55)

and hence

λeū ≤ (λa + ε0)e
2εe2δeu ≤ β0e

u.

We deduce ū ≤ uλ in BR1
which is impossible, since ū is singular while uλ is

smooth. This establishes (51).
From (51) and (55) we have

λ∗eu
∗ ≤ β0e

−εeu

and therefore

inf
ϕ∈C∞

0
(B)

∫

B
(∆ϕ)2 − λ∗eu

∗

ϕ2

∫

B ϕ
2

> 0.

This is not possible if u∗ is a smooth solution. �

For each dimension 13 ≤ N ≤ 31 we construct u satisfying (44) to (48) of the
form

u(r) =

{

−4 log r + log
(

8(N−2)(N−4)
λ

)

for 0 < r < r0

ũ(r) for r0 ≤ r ≤ 1
(56)

where ũ is explicitly given. Thus u satisfies (47) automatically.
Numerically it is better to work with the change of variables

w(s) = u(es) + 4s, −∞ < s < 0

which transforms the equation ∆2u = λeu into

Lw + 8(N − 2)(N − 4) = λew, −∞ < s < 0
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where

Lw =
d4w

ds4
+ 2(N − 4)

d3w

ds3
+ (N2 − 10N + 20)

d2w

ds2
− 2(N − 2)(N − 4)

dw

ds

The boundary conditions u(1) = 0, u′(1) = 0 then yield

w(0) = 0, w′(0) = 4.

Regarding the behavior of w as s→ −∞ observe that

u(r) = −4 log r + log

(

8(N − 2)(N − 4)

λ

)

for r < r0

if and only if

w(s) = log
8(N − 2)(N − 4)

λ
for all s < log r0.

The steps we perform are the following:

1) We fix x0 < 0 and using numerical software we follow a branch of solutions to


















Lŵ + 8(N − 2)(N − 4) = λeŵ, x0 < s < 0

ŵ(0) = 0, ŵ′(0) = t

ŵ(x0) = log
8(N − 2)(N − 4)

λ
,

d2ŵ

ds2
(x0) = 0,

d3ŵ

ds3
(x0) = 0

as t increases from 0 to 4. The numerical solution (ŵ, λ̂) we are interested in
corresponds to the case t = 4. The five boundary conditions are due to the fact
that we are solving a fourth order equation with an unknown parameter λ.

2) Based on ŵ, λ̂ we construct a C3 function w which is constant for s ≤ x0

and piecewise polynomial for x0 ≤ s ≤ 0. More precisely, we first divide the
interval [x0, 0] in smaller intervals of length h. Then we generate a cubic spline

approximation gfl with floating point coefficients of d4ŵ
ds4 . From gfl we generate a

piecewise cubic polynomial gra which uses rational coefficients and we integrate it

4 times to obtain w, where the constants of integration are such that djw
dsj (x0) = 0,

1 ≤ j ≤ 3 and w(x0) is a rational approximation of log(8(N−2)(N−4)/λ). Thus w
is a piecewise polynomial function that in each interval is of degree 7 with rational
coefficients, and which is globally C3. We also let λ be a rational approximation of

λ̂. With these choices note that Lw + 8(N − 2)(N − 4) − λew is a small constant
(not necessarily zero) for s ≤ x0.

3) The condition (44) and (45) we need to check for u are equivalent to the
following inequalities for w

Lw + 8(N − 2)(N − 4) − (λ+ ε0)e
w ≤ 0, −∞ < s < 0(57)

Lw + 8(N − 2)(N − 4) − (λ− ε0)e
w ≥ 0, −∞ < s < 0.(58)

Using a program in Maple we verify that w satisfies (57) and (58). This is done
evaluating a second order Taylor approximation of Lw+8(N−2)(N−4)−(λ+ε)ew

at sufficiently close mesh points. All arithmetic computations are done with rational
numbers, thus obtaining exact results. The exponential function is approximated by
a Taylor polynomial of degree 14 and the difference with the real value is controlled.
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More precisely, we write

f(s) = Lw + 8(N − 2)(N − 4) − (λ+ ε0)e
w,

f̃(s) = Lw + 8(N − 2)(N − 4) − (λ+ ε0)T (w),

where T is the Taylor polynomial of order 14 of the exponential function around 0.
Applying Taylor’s formula to f at yj , we have for s ∈ [yj , yj+h],

f(s) ≤ f(yj) + |f ′(yj)|h+
1

2
Mh2

≤ f̃(yj) + |f̃ ′(yj)|h+
1

2
Mh2 + |f(yj) − f̃(yj)| + |f ′(yj) − f̃ ′(yj)|h

≤ f̃(yj) + |f̃ ′(yj)|h+
1

2
Mh2 + E1 + E2h,

where

M is a bound for |f ′′| in [yj , yj + h]

E1 is such that (λ + ε0)|ew − T (w)| ≤ E1 in [yj , yj + h]

E2 is such that (λ + ε0)|(ew − T ′(w))w′| ≤ E2 in [yj, yj + h].

So, inequality (57) will be verified on each interval [yj , yj + h] where w is a polyno-
mial as soon as

f̃(yj) + |f̃ ′(yj)|h+
1

2
Mh2 + E1 + E2h ≤ 0.(59)

When more accuracy is desired, instead of (59) one can verify that

f̃(xi) + |f̃ ′(xi)|
h

m
+

1

2
M(

h

m
)2 + E1 + E2

h

m
≤ 0,

where (xi)i=1...m+1 are m+ 1 equally spaced points in [yj , yj + h].
We obtain exact values for the upper boundsM,E1, E2 as follows. First note that

f ′′ = Lw′′−(λ+ε0)e
w((w′)2+w′′). On [yj , yj+h], we have w(s) =

∑7
i=0 ai(s−yj)i

and we estimate |w(s)| ≤
∑7
i=0 |ai|hi for s ∈ [yj , yj + h]. Similarly,

∣

∣

∣

∣

dℓw

dsℓ
(s)

∣

∣

∣

∣

≤
7

∑

i=ℓ

i(i− 1) . . . (i− ℓ+ 1)|ai|hi−ℓ for all s ∈ [yj , yj + h](60)

The exponential is estimated by ew ≤ e1 ≤ 3, since our numerical data satisfies the
rough bounds −3/2 ≤ w ≤ 1. Using this information and (60) yields a rational
upper bound M . E1 is estimated using Taylor’s formula :

E1 = (λ+ ε0)
(3/2)15

15!
.

Similarily, E2 = (λ + ε0)
(3/2)14

14! B1 where B1 is the right hand side of (60) when
ℓ = 1.

4) We show that the operator ∆2 − βeu where u(r) = w(log r)− 4 log r, satisfies
condition (48) for some β ≥ β0 where β0 is given by (49). In dimension N ≥ 13
the operator ∆2 − βeu has indeed a positive eigenfunction in H2

0 (B) with finite
eigenvalue if β is not too large. The reason is that near the origin

βeu =
c

|x|4 ,
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where c is a number close to 8(N−2)(N−4)β/λ. If β is not too large compared to λ
then c < N2(N−4)2/16 and hence, using (6), ∆2−βeu is coercive in H2

0 (Br0) (this
holds under even weaker conditions, see [11]). It follows that there exists a first
eigenfunction ϕ1 ∈ H2

0 (B) for the operator ∆2 − βeu with a finite first eigenvalue
µ1, that is

∆2ϕ1 − βeuϕ1 = µ1ϕ1 in B

ϕ1 > 0 in B

ϕ1 ∈ H2
0 (B).

Moreover µ1 can be characterized as

µ1 = inf
ϕ∈C∞

0
(B)

∫

B(∆ϕ)2 − βeuϕ2

∫

B
ϕ2

and is the smallest number for which a positive eigenfunction in H2
0 (Ω) exists.

Thus to prove that (48) holds it suffices to verify that µ1 ≥ 0 and for this it is
enough to show the existence of a nonnegative ϕ ∈ H2

0 (B), ϕ 6≡ 0 such that














∆2ϕ− βeuϕ ≥ 0 in B

ϕ = 0 on ∂B

∂ϕ

∂n
≤ 0 on ∂B.

(61)

Indeed, multiplication of (61) by ϕ1 and integration by parts yields

µ1

∫

B

ϕϕ1 +

∫

∂B

∂ϕ

∂n
∆ϕ1 ≥ 0.

But ∆ϕ1 ≥ 0 on ∂B and thus µ1 ≥ 0. To achieve (61) we again change variables
and define

φ(s) = ϕ(es) −∞ < s ≤ 0.

Then we have to find φ ≥ 0, φ 6≡ 0 satisfying










Lφ− βewφ ≥ 0 in −∞ < s ≤ 0

φ(0) = 0

φ′(0) ≤ 0.

(62)

Regarding the behavior as s → −∞, we note that w is constant for −∞ < s < x0,
and therefore, if

Lφ− βewφ ≡ 0 −∞ < s ≤ x0

then φ is a linear combination of exponential functions e−αs where α must be a
solution to

α4 − 2(N − 4)α3 + (N2 − 10N + 20)α2 + 2(N − 2)(N − 4)α = βew(x0)

where βew(x0) is close to 8(N − 2)(N − 4)β/λ. If N ≥ 13 the polynomial

α4 − 2(N − 4)α3 + (N2 − 10N + 20)α2 + 2(N − 2)(N − 4)α− 8(N − 2)(N − 4)

has 4 distinct real roots, while if N ≤ 12 there are 2 real roots and 2 complex
conjugate. If N ≥ 13 there is exactly one root in the interval (0, (N−4)/2), 2 roots
greater than (N − 4)/2 and one negative. We know that ϕ(r) = φ(log r) ∼ r−α is
in H2, which forces α < (N −4)/2. It follows that for s < x0, φ is a combination of
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e−α0s, e−α1s where α0 > 0, α1 < 0 are the 2 roots smaller than α < (N −4)/2. For
simplicity, however we will look for φ such that φ(s) = Ce−α0s for s < x0 where
C > 0 is a constant. This restriction will mean that we will not be able to impose
φ′(0) = 0 at the end. This is not a problem because φ′(0) ≤ 0.

Notice that we only need the inequality in (62) and hence we need to choose
α ∈ (0, N − 4/2) such that

α4 − 2(N − 4)α3 + (N2 − 10N + 20)α2 + 2(N − 2)(N − 4)α ≥ βew(x0).

The precise choice we employed in each dimension is in a summary table at the end
of this section.

To find a suitable function φ with the behavior φ(s) = Ce−α for s < x0 we set
φ = ψe−αs and solve the following equation

Tαψ − βewψ = f

where the operator Tα is given by

Tαψ =
d4ψ

ds4
+ (−4α+ 2(N − 4))

d3ψ

ds3
+ (6α2 − 6α(N − 4) +N2 − 10N + 20)

d2w

ds2

+ (−4α3 + 6α2(N − 4) − 2α(N2 − 10N + 20) − 2(N − 2)(N − 4))
dψ

ds

+ (α4 − 2α3(N − 4) + α2(N2 − 10N + 20) + 2α(N − 2)(N − 4))ψ

and f is some smooth function such that f ≥ 0, f 6≡ 0. Actually we choose β̄ > β0

(where β0 is given in (49)) find ᾱ satisfying approximately

ᾱ4 − 2(N − 4)ᾱ3 + (N2 − 10N + 20)ᾱ2 + 2(N − 2)(N − 4)ᾱ = β̄ew(x0).

We solve numerically

Tᾱψ̂ − β̄ewψ̂ = f x0 < s < 0

ψ̂(x0) = 1, ψ̂′′(x0) = 0, ψ̂′′′(x0) = 0

ψ̂(0) = 0

Using the same strategy as in 2) from the numerical approximation of d4ψ̂
ds4 we

compute a piecewise polynomial ψ of degree 7, which is globally C3 and constant
for s ≤ x0. The constant ψ(x0) is chosen so that ψ(0) = 0. We use then Maple to
verify the following inequalities

ψ ≥ 0 x0 ≤ s ≤ 0

Tαψ − βewψ ≥ 0 x0 ≤ s ≤ 0

ψ′(0) ≤ 0

where β0 < β < β̄ and 0 < α < (N − 4)/2 are suitably chosen.

At the URLs:

http://www.lamfa.u-picardie.fr/dupaigne/

http://www.ime.unicamp.br/~msm/

we have provided the data of the functions w and ψ defined as piecewise polynomials
of degree 7 in [x0, 0] with rational coefficients for each dimension in 13 ≤ N ≤ 31.
We also give a rational approximation of the constants involved in the corresponding
problems.
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We use Maple to verify that w and ψ (with suitable extensions) are C3 global
functions and satisfy the corresponding inequalities, using only its capability to
operate on arbitrary rational numbers. These operations are exact and are limited
only by the memory of the computer and clearly slower than floating point opera-
tions. We chose Maple since it is a widely used software, but the reader can check
the validity of our results with any other software (see e.g. the open-source solution
pari/gp).

The tests were conducted using Maple 9.

Summary of parameters and results

N λ ε0 ε β̄ β α
13 2438.6 1 5 · 10−7 2550 2500 3.9
14 2911.2 1 3 · 10−6 3100 3000 3.4
15 3423.8 1 3 · 10−6 3600 3500 3.1
16 3976.4 1 1 · 10−5 4100 4000 3.0
17 4568.8 1 2 · 10−4 4800 4600 3.0
18 5201.1 2 2 · 10−4 5400 5300 2.7
19 5873.2 2 2 · 10−4 6100 6000 2.7
20 6585.1 3 7 · 10−4 7000 6800 2.7
21 7336.7 3 7 · 10−4 7700 7500 2.6
22 8128.1 4 1 · 10−3 8600 8400 2.6
23 8959.1 4 1 · 10−3 9400 9200 2.5
24 9829.8 4 1 · 10−3 10400 10200 2.5
25 10740.1 4 1 · 10−3 11400 11200 2.5
26 11690.1 6 2 · 10−3 12400 12200 2.5
27 12679.7 7 2 · 10−3 13400 13200 2.4
28 13709.0 7 2 · 10−3 14500 14300 2.4
29 14777.8 7 2 · 10−3 15400 15200 2.4
30 15886.2 8 2 · 10−3 16600 16400 2.4
31 17034.3 10 2 · 10−3 17600 17500 2.3

Remark 6.4. 1) Although we work with λ rational, in the table above we prefer to
display a decimal approximation of λ.

2) In the previous table we selected a “large” value of ε0 in order to have a fast
verification with Maple. By requiring more accuracy in the numerical calculations,
using a smaller value of ε0 and using more subintervals to verify the inequalities
in the Maple program it is possible to obtain better estimates of λ∗. For instance,
using formulas (50), we obtained

N λ ε0 ε λ∗min λ∗max β̄ β α
13 2438.589 0.003 5 · 10−7 2438.583 2438.595 2550 2510 3.9
14 2911.194 0.003 5 · 10−7 2911.188 2911.200 3100 3000 3.4

The verification above, however, required to check 1500 subintervals of each of
the 4500 intervals of length 0.002, which amounts to substantial computer time.

7. Proof of Proposition 1.5

Throughout this section, we restrict, as permitted, to the case a = 0.
a)Let u denote the extremal solution of (1) with homogeneous Dirichlet boundary

condition a = b = 0. We extend u on its maximal interval of existence (0, R̄).
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Lemma 7.1. R̄ <∞ and u(r) ∼ log(R̄ − r)−4 for r ∼ R̄.

Proof. The fact that R̄ < ∞ can be readily deduced from Section 2 of [1]. We
present an alternative (and more quantitative) argument. We first observe that

(63) u′′ − 1

r
u′ > 0 for all r ∈ [1, R̄).

Integrate indeed (1) over a ball of radius r to conclude that

(64) 0 < λ

∫

Br

eu =

∫

∂Br

∂

∂r
∆u = ωNr

N−1

(

u′′′ +
N − 1

r
(u′′ − 1

r
u′)

)

If r = 1, since u is nonnegative in (0, 1) and u(1) = u′(1) = 0, we must have
u′′(1) ≥ 0. In fact, u′′(1) > 0. Otherwise, we would have u′′(1) = 0 and u′′′(1) > 0
by (64), contradicting u > 0 in (0, 1). So, we may define

R = sup{r > 1 : u′′(t) − 1

t
u′(t) > 0 for all t ∈ [1, r)}

and we just need to prove that R = R̄. Assume this is not the case, then u′′(R) −
1
Ru

′(R) = 0 and u′′′(R) =
(

u′′ − 1
Ru

′
)′

(R) ≤ 0. This contradicts (64) and we have

just proved (63). In particular, we see that u is convex increasing on (1, R̄).

Since u is radial, (1) reduces to

(65) u(4) +
2(N − 1)

r
u′′′ +

(N − 1)(N − 3)

r2
u′′ − (N − 1)(N − 3)

r3
u′ = λeu.

Multiply by u′ :

u(4)u′ +
2(N − 1)

r
u′′′u′ +

(N − 1)(N − 3)

r2
u′′u′ − (N − 1)(N − 3)

r3
(u′)2 = λ(eu)′,

which we rewrite as

[(u′′′u′)′ − u′′′u′′] + 2(N − 1)

[

(

1

r
u′′u′

)′

− u′′
(

1

r
u′

)′
]

+(N − 1)(N − 3)

(

(u′)2

2r2

)′

= λ(eu)′.

By (63), it follows that for r ∈ [1, R̄),

[(u′′′u′)′ − u′′′u′′] + 2(N − 1)

(

1

r
u′′u′

)′

+ (N − 1)(N − 3)

(

(u′)2

2r2

)′

≥ λ(eu)′.

Integrating, we obtain for some constant A

u′′′u′ − (u′′)2

2
+ 2(N − 1)

1

r
u′′u′ +

(N − 1)(N − 3)

2

(u′)2

r2
≥ λeu −A.

We multiply again by u′ :

(66)

[

(u′′(u′)2)′ − u′′
(

(u′)2
)′

]

− 1

2
(u′′)2u′ + 2(N − 1)

1

r
u′′(u′)2

+
(N − 1)(N − 3)

2

1

r2
(u′)3 ≥ (λeu −Au)′.

We deduce from (63) that

1

r
u′′(u′)2 =

1

2

(

1

r
(u′)3

)′

− 1

2
(u′)2(

1

r
u′)′ ≤ 1

2

(

1

r
(u′)3

)′

and
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1

r2
(u′)3 ≤ 1

r
(u′)2u′′ ≤ 1

2

(

1

r
(u′)3

)′

.

Using this information in (66), dropping nonpositive terms and integrating, we
obtain for some constant B,

u′′(u′)2 +
(N2 − 1)

4

1

r
(u′)3 ≥ λeu −Au −B

Applying (63) again, it follows that for C = N2−1
4 + 1

Cu′′(u′)2 ≥ λeu −Au−B

which after multiplication by u′ and integration provides positive constants c, C
such that

(u′)4 ≥ c(eu −Au2 −Bu − C).

At this point, we observe that since u is convex and increasing, u converges to +∞
as r approaches R̄. Hence, for r close enough to R̄ and for c > 0 perhaps smaller,

u′ ≥ c eu/4.

By Gronwall’s lemma, R̄ is finite and

u ≤ −4 log(R̄− r) + Cfor rclose to R̄.

It remains to prove that u ≥ −4 log(R̄− r) − C. This time, we rewrite (1) as
[

rN−1(∆u)′
]′

= λrN−1eu.

We multiply by rN−1(∆u)′ and obtain :

1

2

[

r2N−2((∆u)′)2
]′

= λr2N−2eu(∆u)′ ≤ Ceu(∆u)′ ≤ C(eu∆u)′.

Hence, for r close to R̄ and C perhaps larger,

((∆u)′)2 ≤ Ceu∆u

and so √
∆u(∆u)′ ≤ Ceu/2∆u ≤ C′eu/2u′′ ≤ C′(eu/2u′)′,

where we have used (63). Integrate to conclude that

(∆u)3/2 ≤ Ceu/2u′.

Solving for ∆u and multiplying by (u′)1/3, we obtain in particular that

(u′)1/3u′′ ≤ Ceu/3u′.

Integrating again, it follows that (u′)4/3 ≤ Ceu/3, i.e.

u′ ≤ Ceu/4.

It then follows easily that (for r close to R̄)

u ≥ −4 log(R̄ − r) − C.

�

Proof of Proposition 1.5 a). Given N ≥ 13, let bmax denote the supremum of
all parameters b ≥ −4 such that the corresponding extremal solution is singular.
We first observe that

bmax > 0.



STABLE SOLUTIONS FOR ∆2u = λeu 25

In fact, it follows from Sections 5 and 6 that the extremal solution u associated to
parameters a = b = 0 is strictly stable :

inf
ϕ∈C∞

0
(B)

∫

B
(∆ϕ)2 − λ∗

∫

B
euϕ2

∫

B
ϕ2

> 0.(67)

Extend u as before on its maximal interval of existence (0, R̄). Choosing R ∈ (1, R̄)
close to 1, we deduce that (67) still holds on the ball BR. In particular, letting
v(x) = u(Rx) − u(R) for x ∈ B, we conclude that v is a singular stable solution
of (1) with a = 0 and b = Ru′(R) > 0. By Proposition 1.7, we conclude that
bmax > 0. We now prove that

bmax <∞.

Assume this is not the case and let un denote the (singular) extremal solution
associated to bn, where bn ր ∞. We first observe that there exists ρn ∈ (0, 1) such
that u′n(ρn) = 0. Otherwise, un would remain monotone increasing on (0, 1), hence
bounded above by un(1) = 0. It would then follow from (1) and elliptic regularity
that un is bounded. Let vn(x) = un(ρnx) − un(ρn) for x ∈ B and observe that vn
solves (1) with a = b = 0 and some λ = λn. Clearly vn is stable and singular. By
Proposition 1.7, vn coincides with u, the extremal solution of (1) with a = b = 0.
By standard ODE theory, vn = u on (0, R̄). In addition,

bn = u′n(1) =
1

ρn
v′n

(

1

ρn

)

=
1

ρn
u′

(

1

ρn

)

→ +∞,

which can only happen if 1/ρn → R̄.
Now, since un is stable on B, u = vn is stable on B1/ρn

. Letting n → ∞, we
conclude that u is stable on BR̄. This clearly contradicts Lemma 7.1.

We have just proved that bmax is finite. It remains to prove that u∗ is singular
when −4 ≤ b ≤ bmax. We begin with the case b = bmax. Choose a sequence
(bn) converging to bmax and such that the corresponding extremal solution un is
singular. Using the same notation as above, we find a sequence ρn ∈ (0, 1) such
that

1

ρn
u′

(

1

ρn

)

= bn → bmax.

Taking subsequences if necessary and passing to the limit as n→ ∞, we obtain for
some ρ ∈ (0, 1)

1

ρ
u′

(

1

ρ

)

= bmax.

Furthermore, by construction of ρn, u is stable in B1/ρn
hence in B1/ρ. This implies

that v defined for x ∈ B by v(x) = u(xρ ) − u( 1
ρ), is a stable singular solution of

(1) with b = bmax. By Proposition 1.7, we conclude that the extremal solution is
singular when b = bmax.

When b = −4 we have already mentioned in the introduction that u∗ is singular
for N ≥ 13 as a direct consequence of Proposition 1.7 and Rellich’s inequality.

So we are left with the case −4 < b < bmax. Let u∗m denote the extremal
solution when b = bmax, which is singular, and λ∗m the corresponding parameter.
For 0 < R < 1 set

uR(x) = u∗m(Rx) − u∗m(R).
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Then

∆2uR = λRe
uR where λR = λ∗0R

4eu
∗

m(R),

and uR = 0 on ∂B, while

duR
dr

(1) = R
du∗m
dr

(R).

By (31), note that

R
du∗m
dr

(R) → bmax as R → 1, and R
du∗m
dr

(R) → −4 as R → 0.

Thus, for any −4 < b < bmax we have found a singular stable solution to (1) (with
a = 0). By Proposition 1.7 the extremal solution to this problem is singular.

�

Proof of Proposition 1.5 b). Let b ≥ −4. Lemma 5.1 applies also for b ≥ −4
and yields u∗ ≤ ū where ū(x) = −4 log |x|. We now modify slightly the proof of
Lemma 5.2. Indeed, consider w = (4 + b)(1 − r2)/2 and define u = ū− w. Then

∆2u = 8(N − 2)(N − 4)
1

r4
= 8(N − 2)(N − 4)eū = 8(N − 2)(N − 4)eu+w

≤ 8(N − 2)(N − 4)e(4+b)/2eu.

Also u(1) = 0, u′(1) = b, so u is a subsolution to (1) with parameter λ0 = 8(N −
2)(N − 4)e(4+b)/2.

If N is sufficiently large, depending on b, we have λ0 < N2(N − 4)2/16. Then
by (6) u is a stable subsolution of (1) with λ = λ0. As in Lemma 5.2 this implies
λ∗ ≤ λ0.

Thus for large enough N we have λ∗eu
∗ ≤ r−4 8(N − 2)(N − 4)e(4+b)/2 <

r−4N2(N − 4)2/16. This and (6) show that

inf
ϕ∈C∞

0
(B)

∫

B
(∆ϕ)2 − λ∗

∫

B
eu

∗

ϕ2

∫

B ϕ
2

> 0

which is not possible if u∗ is bounded. �
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