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Let λ * > 0 denote the largest possible value of λ such that

has a solution, where B is the unit ball in R N and n is the exterior unit normal vector. We show that for λ = λ * this problem possesses a unique weak solution u * . We prove that u * is smooth if N ≤ 12 and singular when N ≥ 13, in which case u * (r) = -4 log r + log(8(N -2)(N -4)/λ * ) + o(1) as r → 0. We also consider the problem with general constant Dirichlet boundary conditions.

Introduction

We study the fourth order problem

       ∆ 2 u = λe u in B u = a on ∂B ∂u ∂n = b on ∂B (1) 
where a, b ∈ R, B is the unit ball in R N , N ≥ 1, n is the exterior unit normal vector and λ ≥ 0 is a parameter. Recently higher order equations have attracted the interest of many researchers. In particular fourth order equations with an exponential non-linearity have been studied in 4 dimensions, in a setting analogous to Liouville's equation, in [START_REF] Baraket | Singular limits for 4-dimensional semilinear elliptic problems with exponential nonlinearity[END_REF][START_REF] Djadli | Existence of conformal metrics with constant Q-curvature[END_REF][START_REF] Wei | Asymptotic behavior of a nonlinear fourth order eigenvalue problem[END_REF] and in higher dimensions by [START_REF] Arioli | Entire solutions for a semilinear fourth order elliptic problem with exponential nonlinearity[END_REF][START_REF] Arioli | A semilinear fourth order elliptic problem with exponential nonlinearity[END_REF][START_REF] Berchio | Some remarks on biharmonic elliptic problems with positive, increasing and convex nonlinearities[END_REF][START_REF] Berchio | Positivity preserving property for a class of biharmonic problems[END_REF][START_REF] Ferrero | The Dirichlet problem for supercritical biharmonic equations with power-type nonlinearity[END_REF].

We shall pay special attention to [START_REF] Arioli | Entire solutions for a semilinear fourth order elliptic problem with exponential nonlinearity[END_REF] in the case a = b = 0, as it is the natural fourth order analogue of the classical Gelfand problem -∆u = λe u in Ω u = 0 on ∂Ω

(Ω is a smooth bounded domain in R N ) for which a vast literature exists [START_REF] Brezis | Blow-up for ut -∆u = g(u) revisited[END_REF][START_REF] Brezis | Blow-up solutions of some nonlinear elliptic problems[END_REF][START_REF] Cohen | Some positone problems suggested by nonlinear heat generation[END_REF][START_REF] Crandall | Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems[END_REF][START_REF] Joseph | Quasilinear Dirichlet problems driven by positive sources[END_REF][START_REF] Martel | Uniqueness of weak extremal solutions of nonlinear elliptic problems[END_REF][START_REF] Mignot | Sur une classe de problèmes non linéaires avec non linéairité positive, croissante, convexe[END_REF][START_REF] Mignot | Solution radiale singulière de -∆u = λe u[END_REF].

From the technical point of view, one of the basic tools in the analysis of ( 2) is the maximum principle. As pointed out in [START_REF] Arioli | A semilinear fourth order elliptic problem with exponential nonlinearity[END_REF], in general domains the maximum principle for ∆ 2 with Dirichlet boundary condition is not valid anymore. One of the reasons to study [START_REF] Arioli | Entire solutions for a semilinear fourth order elliptic problem with exponential nonlinearity[END_REF] in a ball is that a maximum principle holds in this situation, see [START_REF] Boggio | Sulle funzioni di Freen d'ordine m[END_REF]. In this simpler setting, though there are some similarities between the two problems, several tools that are well suited for [START_REF] Arioli | A semilinear fourth order elliptic problem with exponential nonlinearity[END_REF] no longer seem to work for [START_REF] Arioli | Entire solutions for a semilinear fourth order elliptic problem with exponential nonlinearity[END_REF].

where the constant N 2 (N -4) 2 /16 is known to be optimal. The proof of Theorem 1.3 is based on the observation that if u * is singular then λ * e u * ∼ 8(N -2)(N -4)|x| -4 near the origin. But 8(N -2)(N -4) > N 2 (N -4) 2 /16 if N ≤ 12 which would contradict the stability condition [START_REF] Baraket | Singular limits for 4-dimensional semilinear elliptic problems with exponential nonlinearity[END_REF].

In view of Theorem 1.3, it is natural to ask whether u * is singular in dimension N ≥ 13. If a = b = 0, we prove Theorem 1.4. Let N ≥ 13 and a = b = 0. Then the extremal solution u * to (1) is unbounded.

For general boundary values, it seems more difficult to determine the dimensions for which the extremal solution is singular. We observe first that given any a, b ∈ R, u * is the extremal solution of (1) if and only if u * -a is the extremal solution of the same equation with boundary condition u = 0 on ∂B. In particular, if λ * (a, b) denotes the extremal parameter for problem [START_REF] Arioli | Entire solutions for a semilinear fourth order elliptic problem with exponential nonlinearity[END_REF], one has that λ * (a, b) = e -a λ * (0, b). So the value of a is irrelevant. But one may ask if Theorem 1.4 still holds for any N ≥ 13 and any b ∈ R. The situation turns out to be somewhat more complicated : Remark 1.6.

• We have not investigated the case b < -4.

• If follows from item a) that for b ∈ [-4, 0], the extremal solution is singular if and only if N ≥ 13. • It also follows from item a) that there exist values of b for which N min > 13.

We do not know whether u * remains bounded for 13 ≤ N < N min .

Our proof of Theorem 1.4 is related to an idea that Brezis and Vázquez applied for the Gelfand problem and is based on a characterization of singular energy solutions through linearized stability (see Theorem 3.1 in [START_REF] Brezis | Blow-up solutions of some nonlinear elliptic problems[END_REF]). In our context we show Proposition 1.7. Assume that u ∈ H 2 (B) is an unbounded weak solution of (1) satisfying the stability condition

λ B e u ϕ 2 ≤ B (∆ϕ) 2 , ∀ϕ ∈ C ∞ 0 (B). ( 7 
)
Then λ = λ * and u = u * .

We do not use Proposition 1.7 directly but some variants of it -see Lemma 2.6 and Remark 2.7 in Section 2 -because we do not have at our disposal an explicit solution to the equation [START_REF] Arioli | Entire solutions for a semilinear fourth order elliptic problem with exponential nonlinearity[END_REF]. Instead, we show that it is enough to find a sufficiently good approximation to u * . When N ≥ 32 we are able to construct such an approximation by hand. However, for 13 ≤ N ≤ 31 we resort to a computer assisted generation and verification.

Only in very few situations one may take advantage of Proposition 1.7 directly. For instance for problem [START_REF] Arioli | Entire solutions for a semilinear fourth order elliptic problem with exponential nonlinearity[END_REF] with a = 0 and b = -4 we have an explicit solution ū(x) = -4 log |x| associated to λ = 8(N -2)(N -4). Thanks to Rellich's inequality [START_REF] Boggio | Sulle funzioni di Freen d'ordine m[END_REF] the solution ū satisfies condition [START_REF] Brezis | Blow-up for ut -∆u = g(u) revisited[END_REF] when N ≥ 13. Therefore, by Theorem 1.3 and a direct application of Proposition 1.7 we obtain Theorem 1.4 in the case b = -4.

In [START_REF] Arioli | A semilinear fourth order elliptic problem with exponential nonlinearity[END_REF] the authors say that a radial weak solution u to (1) is weakly singular if lim r→0 ru ′ (r) exists.

For example, the singular solutions U σ of [START_REF] Arioli | A semilinear fourth order elliptic problem with exponential nonlinearity[END_REF] verify this condition. As a corollary of Theorem 1.2 we show Proposition 1.8. The extremal solution u * to (1) with b ≥ -4 is always weakly singular.

A weakly singular solution either is smooth or exhibits a log-type singularity at the origin. More precisely, if u is a non-smooth weakly singular solution of (1) with parameter λ then (see [START_REF] Arioli | A semilinear fourth order elliptic problem with exponential nonlinearity[END_REF])

lim r→0 u(r) + 4 log r = log 8(N -2)(N -4) λ , lim r→0 ru ′ (r) = -4.
In Section 2 we describe the comparison principles we use later on. Section 3 is devoted to the proof of the uniqueness of u * and Propositions 1.7 and 1.8. We prove Theorem 1.3, the boundedness of u * in low dimensions, in Section 4. The argument for Theorem 1.4 is contained in Section 5 for the case N ≥ 32 and Section 6 for 13 ≤ N ≤ 31. In Section 7 we give the proof of Proposition 1.5.

Notation.

• B R : ball of radius R in R N centered at the origin. B = B 1 .

• n: exterior unit normal vector to B R • All inequalities or equalities for functions in L p spaces are understood to be a.e.

Comparison principles

Lemma 2.1. (Boggio's principle, [START_REF] Boggio | Sulle funzioni di Freen d'ordine m[END_REF])

If u ∈ C 4 (B R ) satisfies    ∆ 2 u ≥ 0 in B R u = ∂u ∂n = 0 on ∂B R then u ≥ 0 in B R . Lemma 2.2. Let u ∈ L 1 (B R ) and suppose that BR u∆ 2 ϕ ≥ 0 for all ϕ ∈ C 4 (B R ) such that ϕ ≥ 0 in B R , ϕ| ∂BR = 0 = ∂ϕ ∂n | ∂BR . Then u ≥ 0 in B R . Moreover u ≡ 0 or u > 0 a.e. in B R .
For a proof see Lemma 17 in [START_REF] Arioli | A semilinear fourth order elliptic problem with exponential nonlinearity[END_REF].

Lemma 2.3. If u ∈ H 2 (B R ) is radial, ∆ 2 u ≥ 0 in B R in the weak sense, that is BR ∆u∆ϕ ≥ 0 ∀ϕ ∈ C ∞ 0 (B R ), ϕ ≥ 0 and u| ∂BR ≥ 0, ∂u ∂n | ∂BR ≤ 0 then u ≥ 0 in B R .
Proof. We only deal with the case R = 1 for simplicity. Solve

   ∆ 2 u 1 = ∆ 2 u in B 1 u 1 = ∂u 1 ∂n = 0 on ∂B 1 in the sense u 1 ∈ H 2 0 (B 1 ) and B1 ∆u 1 ∆ϕ = B1 ∆u∆ϕ for all ϕ ∈ C ∞ 0 (B 1 ). Then u 1 ≥ 0 in B 1 by Lemma 2.2. Let u 2 = u -u 1 so that ∆ 2 u 2 = 0 in B 1 . Define f = ∆u 2 .
Then ∆f = 0 in B 1 and since f is radial we find that f is constant. It follows that u 2 = ar 2 + b. Using the boundary conditions we deduce a + b ≥ 0 and a ≤ 0, which imply u 2 ≥ 0.

Similarly we have

Lemma 2.4. If u ∈ H 2 (B R ) and ∆ 2 u ≥ 0 in B R in the weak sense, that is BR ∆u∆ϕ ≥ 0 ∀ϕ ∈ C ∞ 0 (B R ), ϕ ≥ 0 and u| ∂BR = 0, ∂u ∂n | ∂BR ≤ 0 then u ≥ 0 in B R .
The next lemma is a consequence of a decomposition lemma of Moreau [START_REF] Moreau | Décomposition orthogonale d'un espace hilbertien selon deux cônes mutuellement polaires[END_REF]. For a proof see [START_REF] Gazzola | Critical dimensions and higher order Sobolev inequalities with remainder terms[END_REF][START_REF] Gazzola | Hardy inequalities with optimal constants and remainder terms[END_REF]. Lemma 2.5. Let u ∈ H 2 0 (B R ). Then there exist unique w, v ∈ H 2 0 (B R ) such that u = w + v, w ≥ 0, ∆ 2 v ≤ 0 in B R and BR ∆w∆v = 0.

We need the following comparison principle.

Lemma 2.6. Let u 1 , u 2 ∈ H 2 (B R ) with e u1 , e u2 ∈ L 1 (B R ). Assume that ∆ 2 u 1 ≤ λe u1 in B R in the sense BR ∆u 1 ∆ϕ ≤ λ BR e u1 ϕ ∀ϕ ∈ C ∞ 0 (B R ), ϕ ≥ 0, (8) 
and ∆ 2 u 2 ≥ λe u2 in B R in the similar weak sense. Suppose also

u 1 | ∂BR = u 2 | ∂BR and ∂u 1 ∂n | ∂BR = ∂u 2 ∂n | ∂BR .
Assume furthermore that u 1 is stable in the sense that

(9) λ BR e u1 ϕ 2 ≤ BR (∆ϕ) 2 , ∀ϕ ∈ C ∞ 0 (B R ).
Then

u 1 ≤ u 2 in B R .
Proof.Let u = u 1 -u 2 . By Lemma 2.5 there exist w, v ∈ H 2 0 (B R ) such that u = w + v, w ≥ 0 and ∆ 2 v ≤ 0. Observe that v ≤ 0 so w ≥ u 1 -u 2 .

By hypothesis we have for all

ϕ ∈ C ∞ 0 (B R ), ϕ ≥ 0, BR ∆(u 1 -u 2 )∆ϕ ≤ λ BR (e u1 -e u2 )ϕ ≤ λ BR∩[u1≥u2]
(e u1 -e u2 )ϕ and by density this holds also for w:

(10) BR (∆w) 2 = BR ∆(u 1 -u 2 )∆w ≤ λ BR∩[u1≥u2]
(e u1 -e u2 )w = λ BR (e u1 -e u2 )w, where the first equality holds because BR ∆w∆v = 0. By density we deduce from ( 9):

(11) λ BR e u1 w 2 ≤ BR (∆w) 2 .
Combining [START_REF] Crandall | Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems[END_REF] and [START_REF] Dávila | Comparison results for PDEś with a singular potential[END_REF] we obtain BR e u1 w 2 ≤ BR (e u1 -e u2 )w.

Since u 1 -u 2 ≤ w the previous inequality implies

(12) 0 ≤ BR (e u1 -e u2 -e u1 (u 1 -u 2 ))w.
But by convexity of the exponential function e u1 -e u2 -e u1 (u 1 -u 2 ) ≤ 0 and we deduce from [START_REF] Djadli | Existence of conformal metrics with constant Q-curvature[END_REF] that (e u1 -e u2 -e u1 (u 1 -u 2 ))w = 0. Recalling that u 1 -u 2 ≤ w we deduce that u 1 ≤ u 2 .

Remark 2.7. The following variant of Lemma 2.6 also holds:

Let u 1 , u 2 ∈ H 2 (B R ) be radial with e u1 , e u2 ∈ L 1 (B R ). Assume ∆ 2 u 1 ≤ λe u1 in B R in the sense of (8) and ∆ 2 u 2 ≥ λe u2 in B R . Suppose u 1 | ∂BR ≤ u 2 | ∂BR and ∂u1 ∂n | ∂BR ≥ ∂u2
∂n | ∂BR and that the stability condition (9) holds. Then

u 1 ≤ u 2 in B R .
Proof. We solve for ũ ∈ H 2 0 (B R ) such that

BR ∆ũ∆ϕ = BR ∆(u 1 -u 2 )∆ϕ ∀ϕ ∈ C ∞ 0 (B R ).
By Lemma 2.3 it follows that ũ ≥ u 1 -u 2 . Next we apply the decomposition of Lemma 2.5 to ũ, that is ũ = w + v with w, v ∈ H 2 0 (B R ), w ≥ 0, ∆ 2 v ≤ 0 in B R and BR ∆w∆v = 0. Then the argument follows that of Lemma 2.6.

Finally, in several places we will need the method of sub and supersolutions in the context of weak solutions. Lemma 2.8. Let λ > 0 and assume that there exists ū ∈ H

2 (B R ) such that e ū ∈ L 1 (B R ), BR ∆ū∆ϕ ≥ λ BR e ūϕ for all ϕ ∈ C ∞ 0 (B R ), ϕ ≥ 0 and ū = a, ∂ ū ∂n ≤ b on ∂B 1 .
Then there exists a weak solution to (1) such that u ≤ ū.

The proof is similar to that of Lemma 19 in [START_REF] Arioli | A semilinear fourth order elliptic problem with exponential nonlinearity[END_REF].

3. Uniqueness of the extremal solution: proof of Theorem 1.2

Proof of Theorem 1.2. Suppose that v ∈ H 2 (B) satisfies ( 4), ( 5) and v ≡ u * . Notice that we do not need v to be radial. The idea of the proof is as follows :

Step 1. The function

u 0 = 1 2 (u * + v)
is a super-solution to the following problem

       ∆ 2 u = λ * e u + µηe u in B u = a on ∂B ∂u ∂n = b on ∂B (13) 
for some

µ = µ 0 > 0, where η ∈ C ∞ 0 (B), 0 ≤ η ≤ 1 is a fixed radial cut-off function such that η(x) = 1 for |x| ≤ 1 2 , η(x) = 0 for |x| ≥ 3 4 .
Step 2. Using a solution to [START_REF] Ferrero | The Dirichlet problem for supercritical biharmonic equations with power-type nonlinearity[END_REF] we construct, for some λ > λ * , a super-solution to [START_REF] Arioli | Entire solutions for a semilinear fourth order elliptic problem with exponential nonlinearity[END_REF]. This provides a solution u λ for some λ > λ * , which is a contradiction. Proof of Step 1. Observe that given 0 < R < 1 we must have for some

c 0 = c 0 (R) > 0 v(x) ≥ u * (x) + c 0 |x| ≤ R. (14) 
To prove this we recall the Green's function for ∆ 2 with Dirichlet boundary conditions

       ∆ 2 x G(x, y) = δ y x ∈ B G(x, y) = 0 x ∈ ∂B ∂G ∂n (x, y) = 0 x ∈ ∂B,
where δ y is the Dirac mass at y ∈ B. Boggio gave an explicit formula for G(x, y) which was used in [START_REF] Grunau | Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions[END_REF] to prove that in dimension N ≥ 5 (the case 1 ≤ N ≤ 4 can be treated similarly)

G(x, y) ∼ |x -y| 4-N min 1, d(x) 2 d(y) 2 |x -y| 4 (15)
where

d(x) = dist(x, ∂B) = 1 -|x|.
and a ∼ b means that for some constant C > 0 we have C -1 a ≤ b ≤ Ca (uniformly for x, y ∈ B). Formula (15) yields

G(x, y) ≥ cd(x) 2 d(y) 2 (16)
for some c > 0 and this in turn implies that for smooth functions ṽ and ũ such that ṽ -ũ ∈ H 2 0 (B) and ∆ 2 (ṽ -ũ) ≥ 0,

ṽ(y) -ũ(y) = ∂B ∂∆ x G ∂n x (x, y)(ṽ -ũ) -∆ x G(x, y) ∂(ṽ -ũ) ∂n dx + B G(x, y)∆ 2 (ṽ -ũ) dx ≥ cd(y) 2 B (∆ 2 ṽ -∆ 2 ũ)d(x) 2 dx.
Using a standard approximation procedure, we conclude that

v(y) -u * (y) ≥ cd(y) 2 λ * B (e v -e u * )d(x) 2 dx. Since v ≥ u * , v ≡ u * we deduce (14). Let u 0 = (u * + v)/2.
Then by Taylor's theorem

e v = e u0 + (v -u 0 )e u0 + 1 2 (v -u 0 ) 2 e u0 + 1 6 (v -u 0 ) 3 e u0 + 1 24 (v -u 0 ) 4 e ξ2 (17) 
for some u 0 ≤ ξ 2 ≤ v and

e u * = e u0 + (u * -u 0 )e u0 + 1 2 (u * -u 0 ) 2 e u0 + 1 6 (u * -u 0 ) 3 e u0 + 1 24 (u * -u 0 ) 4 e ξ1 (18) 
for some u * ≤ ξ 1 ≤ u 0 . Adding ( 17) and ( 18) yields

1 2 (e v + e u * ) ≥ e u0 + 1 8 (v -u * ) 2 e u0 . ( 19 
)
From ( 14) with R = 3/4 and [START_REF] Martel | Uniqueness of weak extremal solutions of nonlinear elliptic problems[END_REF] we see that u 0 = (u * + v)/2 is a super-solution of (13) with µ 0 := c 0 /8. Proof of Step 2. Let us show now how to obtain a weak super-solution of (1) for some λ > λ * . Given µ > 0, let u denote the minimal solution to [START_REF] Ferrero | The Dirichlet problem for supercritical biharmonic equations with power-type nonlinearity[END_REF]. Define ϕ 1 as the solution to

       ∆ 2 ϕ 1 = µηe u in B ϕ 1 = 0 on ∂B ∂ϕ 1 ∂n = 0 on ∂B,
and ϕ 2 be the solution of

       ∆ 2 ϕ 2 = 0 in B ϕ 2 = a on ∂B ∂ϕ 2 ∂n = b on ∂B.
If N ≥ 5 (the case 1 ≤ N ≤ 4 can be treated similarly), relation ( 16) yields

ϕ 1 (x) ≥ c 1 d(x) 2 for all x ∈ B, (20) 
for some c 1 > 0. But u is a radial solution of ( 13) and therefore it is smooth in

B \ B 1/4 . Thus u(x) ≤ M ϕ 1 + ϕ 2 for all x ∈ B 1/2 , (21) 
for some M > 0. Therefore, from ( 20) and ( 21), for λ > λ * with λ -λ * sufficiently small we have

( λ λ * -1)u ≤ ϕ 1 + ( λ λ * -1)ϕ 2 in B. Let w = λ λ * u -ϕ 1 -( λ λ * -1)ϕ 2 .
The inequality just stated guarantees that w ≤ u. Moreover

∆ 2 w = λe u + λµ λ * ηe u -µηe u ≥ λe u ≥ λe w in B and w = a ∂w ∂n = b on ∂B.
Therefore w is a super-solution to (1) for λ. By the method of sub and supersolutions a solution to (1) exists for some λ > λ * , which is a contradiction.

Proof of Proposition 1.7. Let u ∈ H 2 (B), λ > 0 be a weak unbounded solution of (1). If λ < λ * from Lemma 2.6 we find that u ≤ u λ where u λ is the minimal solution. This is impossible because u λ is smooth and u unbounded. If λ = λ * then necessarily u = u * by Theorem 1.2.

Proof of Proposition 1.8. Let u denote the extremal solution of (1) with b ≥ -4.

If u is smooth, then the result is trivial. So we restrict to the case where u is singular. By Theorem 1.3 we have in particular that N ≥ 13. We may also assume that a = 0. If b = -4 by Theorem 1.2 we know that if N ≥ 13 then u = -4 log |x| so that the desired conclusion holds. Henceforth we assume b > -4 in this section. For ρ > 0 define

u ρ (r) = u(ρr) + 4 log ρ, so that ∆ 2 u ρ = λ * e uρ in B 1/ρ . Then du ρ dρ ρ=1,r=1 = u ′ (1) + 4 > 0.
Hence, there is δ > 0 such that

u ρ (r) < u(r) for all 1 -δ < r ≤ 1, 1 -δ < ρ ≤ 1.
This implies

u ρ (r) < u(r) for all 0 < r ≤ 1, 1 -δ < ρ ≤ 1. ( 22 
)
Otherwise set

r 0 = sup { 0 < r < 1 | u ρ (r) ≥ u(r) }.

This definition yields

u ρ (r 0 ) = u(r 0 ) and u ′ ρ (r 0 ) ≤ u ′ (r 0 ). ( 23 
) Write α = u(r 0 ), β = u ′ (r 0 ). Then u satisfies      ∆ 2 u = λe u on B r0 u(r 0 ) = α u ′ (r 0 ) = β. (24)
Observe that u is an unbounded H 2 (B r0 ) solution to [START_REF] Wei | Asymptotic behavior of a nonlinear fourth order eigenvalue problem[END_REF], which is also stable. Thus Proposition 1.7 shows that u is the extremal solution to this problem. On the other hand u ρ is a supersolution to [START_REF] Wei | Asymptotic behavior of a nonlinear fourth order eigenvalue problem[END_REF], since u ′ ρ (r 0 ) ≤ β by [START_REF] Rellich | Halbbeschränkte Differentialoperatoren höherer Ordnung[END_REF]. We may now use Theorem 1.2 and we deduce that u(r) = u ρ (r) for all 0 < r ≤ r 0 , which in turn implies by standard ODE theory that u(r) = u ρ (r) for all 0 < r ≤ 1, a contradiction with [START_REF] Moreau | Décomposition orthogonale d'un espace hilbertien selon deux cônes mutuellement polaires[END_REF]. This proves estimate [START_REF] Moreau | Décomposition orthogonale d'un espace hilbertien selon deux cônes mutuellement polaires[END_REF].

From [START_REF] Moreau | Décomposition orthogonale d'un espace hilbertien selon deux cônes mutuellement polaires[END_REF] we see that

du ρ dρ ρ=1 (r) ≥ 0 for all 0 < r ≤ 1. (25) But du ρ dρ ρ=1 (r) = u ′ (r)r + 4 for all 0 < r ≤ 1
and this together with (25) implies

du ρ dρ (r) = 1 ρ (u ′ (ρr)ρr + 4) ≥ 0 for all 0 < r ≤ 1 ρ , 0 < ρ ≤ 1. ( 26 
)
which means that u ρ (r) is non-decreasing in ρ. We wish to show that lim ρ→0 u ρ (r) exists for all 0 < r ≤ 1. For this we shall show

u ρ (r) ≥ -4 log(r) + log 8(N -2)(N -4) λ * for all 0 < r ≤ 1 ρ , 0 < ρ ≤ 1. (27) Set u 0 (r) = -4 log(r) + log 8(N -2)(N -4) λ * .
and suppose that (27) is not true for some 0 < ρ < 1. Let

r 1 = sup { 0 < r < 1/ρ | u ρ (r) < u 0 (r) }.
Observe that

λ * > 8(N -2)(N -4). ( 28 
)
Otherwise w = -4 ln r would be a strict supersolution of the equation satisfied by u, which is not possible by Theorem 1.2. In particular, r 1 < 1/ρ and

u ρ (r 1 ) = u 0 (r 1 ) and u ′ ρ (r 1 ) ≥ u ′ 0 (r 1 ). It follows that u 0 is a supersolution of        ∆ 2 u = λ * e u in B r1 u = A on ∂B r1 ∂u ∂n = B on ∂B r1 , (29) 
with A = u ρ (r 1 ) and B = u ′ ρ (r 1 ). Since u ρ is a singular stable solution of (29), it is the extremal solution of the problem by Proposition 1.7. By Theorem 1.2, there is no strict supersolution of (29) and we conclude that u ρ ≡ u 0 first for 0 < r < r 1 and then for 0 < r ≤ 1/ρ. This is impossible for ρ > 0 because u ρ (1/ρ) = 4 log ρ and u 0 (1/ρ) < 4 log ρ + log( 8(N -2)(N -4) λ *

) < u ρ (1/ρ) by ( 28). This proves (27). By ( 26) and ( 27) we see that v(r) = lim ρ→0 u ρ (r) exists for all 0 < r < +∞, where the convergence is uniform (even in C k for any k) on compact sets of R N \{0}.

Moreover v satisfies ∆ 2 v = λ * e v in R N \ {0}. ( 30 
)
Then for any r > 0

v(r) = lim ρ→0 u ρ (r) = lim ρ→0 u(ρr) + 4 log(ρr) -4 log(r) = v(1) -4 log(r).
Hence, using equation (30) we obtain

v(r) = -4 log r + log 8(N -2)(N -4) λ * = u 0 (r).
But then We will show first Lemma 4.1. Suppose that the extremal solution u * to (1) is singular. Then for any σ > 0 there exists 0 < R < 1 such that

u ′ ρ (r) = u ′ (ρr)ρ → -4,
u * (x) ≥ (1 -σ) log 1 |x| 4 , ∀ |x| < R. (32)
Proof. Assume by contradiction that (32) is false. Then there exists σ > 0 and a sequence x k ∈ B with x k → 0 such that

u * (x k ) < (1 -σ) log 1 |x k | 4 . (33) Let s k = |x k | and choose 0 < λ k < λ * such that max B u λ k = u λ k (0) = log 1 s 4 k . (34) Note that λ k → λ * , otherwise u λ k would remain bounded. Let v k (x) = u λ k (s k x) log( 1 s 4 k ) x ∈ B k ≡ 1 s k B. Then 0 ≤ v k ≤ 1, v k (0) = 1, ∆ 2 v k (x) = λ k s 4 k log( 1 s 4 k ) e u λ k (s k x) ≤ λ k log( 1 s 4 k ) → 0 in B k by (34). By elliptic regularity v k → v uniformly on compact sets of R N to a function v satisfying 0 ≤ v ≤ 1, v(0) = 1, ∆ 2 v = 0 in R N
.By Liouville's theorem for biharmonic functions [START_REF] Huilgol | On Liouville's theorem for biharmonic functions[END_REF] we conclude that v is constant and therefore v ≡ 1.

Since

|x k | = s k we deduce that u λ k (x k ) log( 1 s 4 k ) → 1,
which contradicts (33).

Proof of Theorem 1.3. We write for simplicity u = u * , λ = λ * . Assume by contradiction that u * is unbounded and 5 ≤ N ≤ 12. If N ≤ 4 the problem is subcritical, and the boundedness of u * can be proved by other means : no singular solutions exist for positive λ (see [START_REF] Arioli | A semilinear fourth order elliptic problem with exponential nonlinearity[END_REF])-though in dimension N = 4 they can blow up as λ → 0, see [START_REF] Wei | Asymptotic behavior of a nonlinear fourth order eigenvalue problem[END_REF].

For ε > 0 let ψ = |x| 4-N 2 +ε and let η ∈ C ∞ 0 (R N ) with η ≡ 1 in B 1/2 and supp(η) ⊆ B. Observe that (∆ψ) 2 = (H N + O(ε))|x| -N +2ε , where H N = N 2 (N -4) 2 16 
.

Using a standard approximation argument as in the proof of Lemma 2.6, we can use ψη as a test function in [START_REF] Cohen | Some positone problems suggested by nonlinear heat generation[END_REF] and we obtain

B (∆ψ) 2 + O(1) ≥ λ B e u ψ 2 ,
since the contribution of the integrals outside a fixed ball around the origin remains bounded as ε → 0 (here O(1) denotes a bounded function as ε → 0). This implies

λ B e u |x| 4-N +2ε ≤ (H N + O(ε)) B |x| -N +2ε = ω N H N 2ε + O(1) (35) 
where ω N is the surface area of the unit N -1 dimensional sphere S N -1 . In particular B e u |x| 4-N +2ε < +∞.

For ε > 0 we define ϕ = |x| 4-N +2ε . Note that away from the origin

∆ 2 ϕ = εk N |x| -N +2ε , where k N = 4(N -2)(N -4) + O(ε). (36) Let ϕ j solve    ∆ 2 ϕ j = εk N min(|x| -N +2ε , j) in B ϕ j = ∂ϕ j ∂n = 0 on ∂B. ( 37 
)
Then ϕ j ↑ ϕ as j → +∞. Using (35) and (37)

εk N B u min(|x| -N +2ε , j) = B u∆ 2 ϕ j = λ B e u ϕ j ≤ λ B e u ϕ ≤ ω N H N 2ε + O(1)
where O( 1) is bounded as ε → 0 independently of j. Letting j → +∞ yields

εk N B u |x| -N +2ε ≤ ω N H N 2ε + O(1), (38) 
showing that the integral on the left hand side is finite. On the other hand, by (32)

εk N B u |x| -N +2ε ≥ εk N ω N (1 -σ) 1 0 log( 1 r 4 )r -1+2ε dr = k N ω N (1 -σ) 1 ε . (39)
Combining ( 38) and (39) we obtain

(1 -σ)k N ≤ H N 2 + O(ε).
Letting ε → 0 and then σ → 0 we have

8(N -2)(N -4) ≤ H N = N 2 (N -4) 2 16 .
This is valid only if N ≥ 13, a contradiction.

Remark 4.2. The conclusion of Theorem 1.3 can be obtained also from Proposition 1.8. However that proposition depends crucially on the radial symmetry of the solutions, while the argument in this section can be generalized to other domains.

The extremal solution is singular in large dimensions

In this section we take a = b = 0 and prove Theorem 1.4 for N ≥ 32. The idea for the proof of Theorem 1.4 is to to estimate accurately from above the function λ * e u * , and to deduce that the operator ∆ 2 -λ * e u * has a strictly positive first eigenvalue (in the H 2 0 (B) sense). Then, necessarily, u * is singular. Upper bounds for both λ * and u * are obtained by finding suitable sub and supersolutions. For example, if for some λ 1 there exists a supersolution then λ * ≥ λ 1 . If for some λ 2 one can exhibit a stable singular subsolution u, then λ * ≤ λ 2 . Otherwise λ 2 < λ * and one can then prove that the minimal solution u λ2 is above u, which is impossible. The bound for u * also requires a stable singular subsolution.

It turns out that in dimension N ≥ 32 we can construct the necessary subsolutions and verify their stability by hand. For dimensions 13 ≤ N ≤ 31 it seems difficult to find these subsolutions explicitly. We adopt then an approach that involves a computer assisted construction of subsolutions and verification of the desired inequalities. We present this part in the next section. Proof. Define ū(x) = -4 log |x|. Then ū satisfies

       ∆ 2 ū = 8(N -2)(N -4)e ū in R N ū = 0 on ∂B 1 ∂ ū ∂n = -4 on ∂B 1
Observe that since ū is a supersolution to (1) with a = b = 0 we deduce immediately that λ * ≥ 8(N -2)(N -4).

In the case λ * = 8(N -2)(N -4) we have u λ ≤ ū for all 0 ≤ λ < λ * because ū is a supersolution, and therefore u * ≤ ū holds. Alternatively, one can invoke Theorem 3 in [START_REF] Arioli | A semilinear fourth order elliptic problem with exponential nonlinearity[END_REF] to conclude that we always have λ * > 8(N -2)(N -4).

Suppose now that λ * > 8(N -2)(N -4). We prove that u λ ≤ ū for all 8(N -2)(N -4) < λ < λ * . Fix such λ and assume by contradiction that u λ ≤ ū is not true. Note that for r < 1 and sufficiently close to 1 we have u λ (r) < ū(r) because

u ′ λ (1) = 0 while ū′ (1) = -4. Let R 1 = inf{ 0 ≤ R ≤ 1 | u λ < ū in (R, 1) }. Then 0 < R 1 < 1, u λ (R 1 ) = ū(R 1 ) and u ′ λ (R 1 ) ≤ ū′ (R 1 ). So u λ is a super-solution to the problem (40)        ∆ 2 u = 8(N -2)(N -4)e u in B R1 u = u λ (R 1 ) on ∂B R1 ∂u ∂n = u ′ λ (R 1 ) on ∂B R1
while ū is a subsolution to (40). Moreover it is stable for this problem, since from Rellich's inequality (6) and 8(N -2)(N -4) ≤ N 2 (N -4) 2 /16 for N ≥ 13, we have

8(N -2)(N -4) BR 1 e ūϕ 2 ≤ N 2 (N -4) 2 16 R N ϕ 2 |x| 4 ≤ R N (∆ϕ) 2 ∀ϕ ∈ C ∞ 0 (B R1 ).
By Remark 2.7 we deduce ū ≤ u λ in B R1 which is impossible.

An upper bound for λ * is obtained by considering again a stable, singular subsolution to the problem (with another parameter, though): Lemma 5.2. For N ≥ 32 we have

λ * ≤ 8(N -2)(N -4)e 2 . ( 41 
)
Proof. Consider w = 2(1 -r 2 ) and define

u = ū -w where ū(x) = -4 log |x|. Then ∆ 2 u = 8(N -2)(N -4) 1 r 4 = 8(N -2)(N -4)e ū = 8(N -2)(N -4)e u+w ≤ 8(N -2)(N -4)e 2 e u .
Also u(1) = u ′ (1) = 0, so u is a subsolution to (1) with parameter λ 0 = 8(N -2)(N -4)e 2 .

For N ≥ 32 we have λ 0 ≤ N 2 (N -4) 2 /16. Then by [START_REF] Boggio | Sulle funzioni di Freen d'ordine m[END_REF] u is a stable subsolution of (1) with λ = λ 0 . If λ * > λ 0 = 8(N -2)(N -4)e 2 the minimal solution u λ0 to (1) with parameter λ 0 exists and is smooth. From Lemma 2.6 we find u ≤ u λ0 which is impossible because u is singular and u λ0 is bounded. Thus we have proved (41) for N ≥ 32.

Proof of Theorem 1.4 in the case N ≥ 32.

Combining Lemma 5.1 and 5.2 we have that if N ≥ 32 then λ * e u * ≤ r -4 8(N -2)(N -4)e 2 ≤ r -4 N 2 (N -4) 2 /16. This and [START_REF] Boggio | Sulle funzioni di Freen d'ordine m[END_REF] show that inf

ϕ∈C ∞ 0 (B) B (∆ϕ) 2 -λ * B e u * ϕ 2 B ϕ 2 > 0 which is not possible if u * is bounded.
6. A computer assisted proof for dimensions 13 ≤ N ≤ 31 Throughout this section we assume a = b = 0. As was mentioned in the previous section, the proof of Theorem 1.4 relies on precise estimates for u * and λ * . We present first some conditions under which it is possible to find these estimates. Later we show how to meet such conditions with a computer assisted verification.

The first lemma is analogous to Lemma 5.2.

Lemma 6.1. Suppose there exist ε > 0, λ > 0 and a radial function

u ∈ H 2 (B) ∩ W 4,∞ loc (B \ {0}) such that ∆ 2 u ≤ λe u for all 0 < r < 1 |u(1)| ≤ ε, ∂u ∂n (1) ≤ ε u ∈ L ∞ (B) λe ε B e u ϕ 2 ≤ B (∆ϕ) 2 for all ϕ ∈ C ∞ 0 (B). (42) Then λ * ≤ λe 2ε . Proof. Let ψ(r) = εr 2 -2ε (43) so that ∆ 2 ψ ≡ 0, ψ(1) = -ε, ψ ′ (1) = 2ε and -2ε ≤ ψ(r) ≤ -ε for all 0 ≤ r ≤ 1. It follows that ∆ 2 (u + ψ) ≤ λe u = λe -ψ e u+ψ ≤ λe 2ε e u+ψ .
On the boundary we have u(1) + ψ(1) ≤ 0, u ′ (1) + ψ ′ (1) ≥ 0. Thus u + ψ is a singular subsolution to the equation with parameter λe 2ε . Moreover, since ψ ≤ -ε we have λe 2ε e u+ψ ≤ λe ε e u and hence, from (42) we see that u + ψ is stable for the problem with parameter λe 2ε . If λe 2ε < λ * then the minimal solution associated to the parameter λe 2ε would be above u + ψ, which is impossible because u is singular. Lemma 6.2. Suppose we can find ε > 0, λ > 0 and u ∈ H

2 (B) ∩ W 4,∞ loc (B \ {0}) such that ∆ 2 u ≥ λe u for all 0 < r < 1 |u(1)| ≤ ε, ∂u ∂n (1) ≤ ε.
Then

λe -2ε ≤ λ * .
Proof. Let ψ be given by ( 43). Then u -ψ is a supersolution to the problem with parameter λe -2ε .

The next result is the main tool to guarantee that u * is singular. The proof, as in Lemma 5.1, is based on an upper estimate of u * by a stable singular subsolution. Lemma 6.3. Suppose there exist ε 0 , ε > 0, λ a > 0 and a radial function

u ∈ H 2 (B) ∩ W 4,∞ loc (B \ {0}) such that ∆ 2 u ≤ (λ a + ε 0 )e u for all 0 < r < 1 (44) ∆ 2 u ≥ (λ a -ε 0 )e u for all 0 < r < 1 (45) |u(1)| ≤ ε, ∂u ∂n (1) ≤ ε (46) u ∈ L ∞ (B) (47) β 0 B e u ϕ 2 ≤ B (∆ϕ) 2 for all ϕ ∈ C ∞ 0 (B), (48) 
where

β 0 = (λ a + ε 0 ) 3 (λ a -ε 0 ) 2 e 9ε . ( 49 
)
Then u * is singular and

(λ a -ε 0 )e -2ε ≤ λ * ≤ (λ a + ε 0 )e 2ε . ( 50 
)
Proof. By Lemmas 6.1 and 6.2 we have (50). Let

δ = log λ a + ε 0 λ a -ε 0 + 3ε.
and define

ϕ(r) = - δ 4 r 4 + 2δ.
We claim that

u * ≤ u + ϕ in B 1 . (51) 
To prove this, we shall show that for λ < λ *

u λ ≤ u + ϕ in B 1 . (52) Indeed, we have ∆ 2 ϕ = -δ2N (N + 2) ϕ(r) ≥ δ for all 0 ≤ r ≤ 1 ϕ(1) ≥ δ ≥ ε, ϕ ′ (1) = -δ ≤ -ε and therefore ∆ 2 (u + ϕ) ≤ (λ a + ε 0 )e u + ∆ 2 ϕ ≤ (λ a + ε 0 )e u = (λ a + ε 0 )e -ϕ e u+ϕ ≤ (λ a + ε 0 )e -δ e u+ϕ . (53) 
By (50) and the choice of δ

(λ a + ε 0 )e -δ = (λ a -ε 0 )e -3ε < λ * . ( 54 
)
To prove (52) it suffices to consider λ in the interval (λ a -ε 0 )e -3ε < λ < λ * . Fix such λ and assume that (52) is not true. Write

ū = u + ϕ and let R 1 = sup{ 0 ≤ R ≤ 1 | u λ (R) = ū(R) }. Then 0 < R 1 < 1 and u λ (R 1 ) = ū(R 1 ). Since u ′ λ (1) = 0 and ū′ (1) < 0 we must have u ′ λ (R 1 ) ≤ ū′ (R 1 ). Then u λ is a solution to the problem        ∆ 2 u = λe u in B R1 u = u λ (R 1 ) on ∂B R1 ∂u ∂n = u ′ λ (R 1 ) on ∂B R1
while, thanks to (53) and (54), ū is a subsolution to the same problem. Moreover ū is stable thanks to (48) since, by Lemma 6.1,

λ < λ * ≤ (λ a + ε 0 )e 2ε (55) 
and hence λe ū ≤ (λ a + ε 0 )e 2ε e 2δ e u ≤ β 0 e u .

We deduce ū ≤ u λ in B R1 which is impossible, since ū is singular while u λ is smooth. This establishes (51).

From (51) and (55) we have λ * e u * ≤ β 0 e -ε e u and therefore inf

ϕ∈C ∞ 0 (B) B (∆ϕ) 2 -λ * e u * ϕ 2 B ϕ 2 > 0.
This is not possible if u * is a smooth solution.

For each dimension 13 ≤ N ≤ 31 we construct u satisfying (44) to (48) of the form

u(r) = -4 log r + log 8(N -2)(N -4) λ for 0 < r < r 0 ũ(r) for r 0 ≤ r ≤ 1 (56)
where ũ is explicitly given. Thus u satisfies (47) automatically.

Numerically it is better to work with the change of variables

w(s) = u(e s ) + 4s, -∞ < s < 0 which transforms the equation ∆ 2 u = λe u into Lw + 8(N -2)(N -4) = λe w , -∞ < s < 0 where Lw = d 4 w ds 4 + 2(N -4) d 3 w ds 3 + (N 2 -10N + 20) d 2 w ds 2 -2(N -2)(N -4)

dw ds

The boundary conditions u(1) = 0, u ′ (1) = 0 then yield

w(0) = 0, w ′ (0) = 4.
Regarding the behavior of w as s → -∞ observe that

u(r) = -4 log r + log 8(N -2)(N -4) λ for r < r 0 if and only if w(s) = log 8(N -2)(N -4) λ for all s < log r 0 .
The steps we perform are the following:

1) We fix x 0 < 0 and using numerical software we follow a branch of solutions to

         L ŵ + 8(N -2)(N -4) = λe ŵ , x 0 < s < 0 ŵ(0) = 0, ŵ′ (0) = t ŵ(x 0 ) = log 8(N -2)(N -4) λ , d 2 ŵ ds 2 (x 0 ) = 0, d 3 ŵ ds 3 (x 0 ) = 0
as t increases from 0 to 4. The numerical solution ( ŵ, λ) we are interested in corresponds to the case t = 4. The five boundary conditions are due to the fact that we are solving a fourth order equation with an unknown parameter λ.

2) Based on ŵ, λ we construct a C 3 function w which is constant for s ≤ x 0 and piecewise polynomial for x 0 ≤ s ≤ 0. More precisely, we first divide the interval [x 0 , 0] in smaller intervals of length h. Then we generate a cubic spline approximation g f l with floating point coefficients of d 4 ŵ ds 4 . From g f l we generate a piecewise cubic polynomial g ra which uses rational coefficients and we integrate it 4 times to obtain w, where the constants of integration are such that d j w ds j (x 0 ) = 0, 1 ≤ j ≤ 3 and w(x 0 ) is a rational approximation of log(8(N -2)(N -4)/λ). Thus w is a piecewise polynomial function that in each interval is of degree 7 with rational coefficients, and which is globally C 3 . We also let λ be a rational approximation of λ. With these choices note that Lw + 8(N -2)(N -4) -λe w is a small constant (not necessarily zero) for s ≤ x 0 .

3) The condition (44) and (45) we need to check for u are equivalent to the following inequalities for w

Lw + 8(N -2)(N -4) -(λ + ε 0 )e w ≤ 0, -∞ < s < 0 (57) Lw + 8(N -2)(N -4) -(λ -ε 0 )e w ≥ 0, -∞ < s < 0. ( 58 
)
Using a program in Maple we verify that w satisfies (57) and (58). This is done evaluating a second order Taylor approximation of Lw +8(N -2)(N -4)-(λ+ε)e w at sufficiently close mesh points. All arithmetic computations are done with rational numbers, thus obtaining exact results. The exponential function is approximated by a Taylor polynomial of degree 14 and the difference with the real value is controlled.

More precisely, we write

f (s) = Lw + 8(N -2)(N -4) -(λ + ε 0 )e w , f (s) = Lw + 8(N -2)(N -4) -(λ + ε 0 )T (w),
where T is the Taylor polynomial of order 14 of the exponential function around 0. Applying Taylor's formula to f at y j , we have for s ∈ [y j , y j+h ],

f (s) ≤ f (y j ) + |f ′ (y j )|h + 1 2 M h 2 ≤ f (y j ) + | f ′ (y j )|h + 1 2 M h 2 + |f (y j ) -f (y j )| + |f ′ (y j ) -f ′ (y j )|h ≤ f (y j ) + | f ′ (y j )|h + 1 2 M h 2 + E 1 + E 2 h,
where

M is a bound for |f ′′ | in [y j , y j + h] E 1 is such that (λ + ε 0 )|e w -T (w)| ≤ E 1 in [y j , y j + h] E 2 is such that (λ + ε 0 )|(e w -T ′ (w))w ′ | ≤ E 2 in [y j , y j + h].
So, inequality (57) will be verified on each interval [y j , y j + h] where w is a polynomial as soon as

f (y j ) + | f ′ (y j )|h + 1 2 M h 2 + E 1 + E 2 h ≤ 0. (59)
When more accuracy is desired, instead of (59) one can verify that

f (x i ) + | f ′ (x i )| h m + 1 2 M ( h m ) 2 + E 1 + E 2 h m ≤ 0,
where (x i ) i=1...m+1 are m + 1 equally spaced points in [y j , y j + h].

We obtain exact values for the upper bounds M, E 1 , E 2 as follows. First note that f ′′ = Lw ′′ -(λ+ ε 0 )e w ((w ′ ) 2 + w ′′ ). On [y j , y j + h], we have w(s) = 7 i=0 a i (s-y j ) i and we estimate |w(s)| ≤ 7 i=0 |a i |h i for s ∈ [y j , y j + h]. Similarly,

d ℓ w ds ℓ (s) ≤ 7 i=ℓ i(i -1) . . . (i -ℓ + 1)|a i |h i-ℓ for all s ∈ [y j , y j + h] (60)
The exponential is estimated by e w ≤ e 1 ≤ 3, since our numerical data satisfies the rough bounds -3/2 ≤ w ≤ 1. Using this information and (60) yields a rational upper bound M . E 1 is estimated using Taylor's formula : 15 15! .

E 1 = (λ + ε 0 ) (3/2)
Similarily, E 2 = (λ + ε 0 ) (3/2) 14 14! B 1 where B 1 is the right hand side of (60) when ℓ = 1.

4)

We show that the operator ∆ 2 -βe u where u(r) = w(log r) -4 log r, satisfies condition (48) for some β ≥ β 0 where β 0 is given by (49). In dimension N ≥ 13 the operator ∆ 2 -βe u has indeed a positive eigenfunction in H 2 0 (B) with finite eigenvalue if β is not too large. The reason is that near the origin

βe u = c |x| 4 ,
where c is a number close to 8(N -2)(N -4)β/λ. If β is not too large compared to λ then c < N 2 (N -4) 2 /16 and hence, using (6), ∆ 2 -βe u is coercive in H 2 0 (B r0 ) (this holds under even weaker conditions, see [START_REF] Dávila | Comparison results for PDEś with a singular potential[END_REF]). It follows that there exists a first eigenfunction ϕ 1 ∈ H 2 0 (B) for the operator ∆ 2 -βe u with a finite first eigenvalue µ 1 , that is

∆ 2 ϕ 1 -βe u ϕ 1 = µ 1 ϕ 1 in B ϕ 1 > 0 in B ϕ 1 ∈ H 2 0 (B). Moreover µ 1 can be characterized as µ 1 = inf ϕ∈C ∞ 0 (B) B (∆ϕ) 2 -βe u ϕ 2
B ϕ 2 and is the smallest number for which a positive eigenfunction in H 2 0 (Ω) exists. Thus to prove that (48) holds it suffices to verify that µ 1 ≥ 0 and for this it is enough to show the existence of a nonnegative ϕ ∈ H

2 0 (B), ϕ ≡ 0 such that        ∆ 2 ϕ -βe u ϕ ≥ 0 in B ϕ = 0 on ∂B ∂ϕ ∂n ≤ 0 on ∂B. (61) 
Indeed, multiplication of (61) by ϕ 1 and integration by parts yields

µ 1 B ϕϕ 1 + ∂B ∂ϕ ∂n ∆ϕ 1 ≥ 0.
But ∆ϕ 1 ≥ 0 on ∂B and thus µ 1 ≥ 0. To achieve (61) we again change variables and define φ(s) = ϕ(e s ) -∞ < s ≤ 0.

Then we have to find φ ≥ 0, φ ≡ 0 satisfying

     Lφ -βe w φ ≥ 0 in -∞ < s ≤ 0 φ(0) = 0 φ ′ (0) ≤ 0. (62) 
Regarding the behavior as s → -∞, we note that w is constant for -∞ < s < x 0 , and therefore, if

Lφ -βe w φ ≡ 0 -∞ < s ≤ x 0
then φ is a linear combination of exponential functions e -αs where α must be a solution to

α 4 -2(N -4)α 3 + (N 2 -10N + 20)α 2 + 2(N -2)(N -4)α = βe w(x0)
where βe w(x0) is close to 8(N -2)(N -4)β/λ. If N ≥ 13 the polynomial

α 4 -2(N -4)α 3 + (N 2 -10N + 20)α 2 + 2(N -2)(N -4)α -8(N -2)(N -4)
has 4 distinct real roots, while if N ≤ 12 there are 2 real roots and 2 complex conjugate. If N ≥ 13 there is exactly one root in the interval (0, (N -4)/2), 2 roots greater than (N -4)/2 and one negative. We know that ϕ(r) = φ(log r) ∼ r -α is in H 2 , which forces α < (N -4)/2. It follows that for s < x 0 , φ is a combination of e -α0s , e -α1s where α 0 > 0, α 1 < 0 are the 2 roots smaller than α < (N -4)/2. For simplicity, however we will look for φ such that φ(s) = Ce -α0s for s < x 0 where C > 0 is a constant. This restriction will mean that we will not be able to impose φ ′ (0) = 0 at the end. This is not a problem because φ ′ (0) ≤ 0. Notice that we only need the inequality in (62) and hence we need to choose α ∈ (0, N -4/2) such that

α 4 -2(N -4)α 3 + (N 2 -10N + 20)α 2 + 2(N -2)(N -4)α ≥ βe w(x0) .
The precise choice we employed in each dimension is in a summary table at the end of this section.

To find a suitable function φ with the behavior φ(s) = Ce -α for s < x 0 we set φ = ψe -αs and solve the following equation

T α ψ -βe w ψ = f
where the operator T α is given by

T α ψ = d 4 ψ ds 4 + (-4α + 2(N -4)) d 3 ψ ds 3 + (6α 2 -6α(N -4) + N 2 -10N + 20) d 2 w ds 2 + (-4α 3 + 6α 2 (N -4) -2α(N 2 -10N + 20) -2(N -2)(N -4)) dψ ds + (α 4 -2α 3 (N -4) + α 2 (N 2 -10N + 20) + 2α(N -2)(N -4))ψ
and f is some smooth function such that f ≥ 0, f ≡ 0. Actually we choose β > β 0 (where β 0 is given in (49)) find ᾱ satisfying approximately

ᾱ4 -2(N -4)ᾱ 3 + (N 2 -10N + 20)ᾱ 2 + 2(N -2)(N -4)ᾱ = βe w(x0) .
We solve numerically T ᾱ ψβe w ψ = f x 0 < s < 0 ψ(x 0 ) = 1, ψ′′ (x 0 ) = 0, ψ′′′ (x 0 ) = 0 ψ(0) = 0 Using the same strategy as in 2) from the numerical approximation of d 4 ψ ds 4 we compute a piecewise polynomial ψ of degree 7, which is globally C 3 and constant for s ≤ x 0 . The constant ψ(x 0 ) is chosen so that ψ(0) = 0. We use then Maple to verify the following inequalities ψ ≥ 0 x 0 ≤ s ≤ 0 T α ψ -βe w ψ ≥ 0 x 0 ≤ s ≤ 0 ψ ′ (0) ≤ 0 where β 0 < β < β and 0 < α < (N -4)/2 are suitably chosen.

At the URLs: http://www.lamfa.u-picardie.fr/dupaigne/ http://www.ime.unicamp.br/~msm/ we have provided the data of the functions w and ψ defined as piecewise polynomials of degree 7 in [x 0 , 0] with rational coefficients for each dimension in 13 ≤ N ≤ 31. We also give a rational approximation of the constants involved in the corresponding problems.

We use Maple to verify that w and ψ (with suitable extensions) are C 3 global functions and satisfy the corresponding inequalities, using only its capability to operate on arbitrary rational numbers. These operations are exact and are limited only by the memory of the computer and clearly slower than floating point operations. We chose Maple since it is a widely used software, but the reader can check the validity of our results with any other software (see e.g. the open-source solution pari/gp).

The tests were conducted using Maple 9. Remark 6.4. 1) Although we work with λ rational, in the table above we prefer to display a decimal approximation of λ.

Summary of parameters and results

N

2) In the previous table we selected a "large" value of ε 0 in order to have a fast verification with Maple. By requiring more accuracy in the numerical calculations, using a smaller value of ε 0 and using more subintervals to verify the inequalities in the Maple program it is possible to obtain better estimates of λ * . For instance, using formulas (50), we obtained The verification above, however, required to check 1500 subintervals of each of the 4500 intervals of length 0.002, which amounts to substantial computer time.

Proof of Proposition 1.5

Throughout this section, we restrict, as permitted, to the case a = 0. a)Let u denote the extremal solution of (1) with homogeneous Dirichlet boundary condition a = b = 0. We extend u on its maximal interval of existence (0, R).

  Proposition 1.5. a) Fix N ≥ 13 and take any a ∈ R. Assume b ≥ -4. There exists a critical parameter b max > 0, depending only on N , such that the extremal solution u * is singular if and only if b ≤ b max . b) Fix b ≥ -4 and take any a ∈ R. There exists a critical dimension N min ≥ 13, depending only on b, such that the extremal solution u * to (1) is singular if N ≥ N min .
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 4 as ρ → 0. and therefore, with r = 1 ρu ′ (ρ) → -4 as ρ → 0. (31) Proof of Theorem 1.3
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 51 Assume N ≥ 13. Then u * ≤ ū = -4 log |x| in B 1 .
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Lemma 7.1. R < ∞ and u(r) ∼ log( R -r) -4 for r ∼ R.

Proof. The fact that R < ∞ can be readily deduced from Section 2 of [START_REF] Arioli | Entire solutions for a semilinear fourth order elliptic problem with exponential nonlinearity[END_REF]. We present an alternative (and more quantitative) argument. We first observe that (63) u ′′ -1 r u ′ > 0 for all r ∈ [1, R).

Integrate indeed (1) over a ball of radius r to conclude that

If r = 1, since u is nonnegative in (0, 1) and u(1) = u ′ (1) = 0, we must have u ′′ (1) ≥ 0. In fact, u ′′ (1) > 0. Otherwise, we would have u ′′ (1) = 0 and u ′′′ (1) > 0 by (64), contradicting u > 0 in (0, 1). So, we may define

and we just need to prove that R = R. Assume this is not the case, then u ′′ (R)

This contradicts (64) and we have just proved (63). In particular, we see that u is convex increasing on (1, R).

Since u is radial, (1) reduces to (65)

Multiply by u ′ :

which we rewrite as

By (63), it follows that for r ∈ [1, R),

Integrating, we obtain for some constant A

Using this information in (66), dropping nonpositive terms and integrating, we obtain for some constant B,

which after multiplication by u ′ and integration provides positive constants c, C such that (u ′ ) 4 ≥ c(e u -Au 2 -Bu -C). At this point, we observe that since u is convex and increasing, u converges to +∞ as r approaches R. Hence, for r close enough to R and for c > 0 perhaps smaller,

. By Gronwall's lemma, R is finite and

It remains to prove that u ≥ -4 log( R -r) -C. This time, we rewrite (1) as

We multiply by r N -1 (∆u) ′ and obtain :

Hence, for r close to R and C perhaps larger, ((∆u) ′ ) 2 ≤ Ce u ∆u and so √ ∆u(∆u) ′ ≤ Ce u/2 ∆u ≤ C ′ e u/2 u ′′ ≤ C ′ (e u/2 u ′ ) ′ , where we have used (63). Integrate to conclude that

Solving for ∆u and multiplying by (u ′ ) 1/3 , we obtain in particular that

Integrating again, it follows that (u ′ ) 4/3 ≤ Ce u/3 , i.e.

It then follows easily that (for r close to R)

Proof of Proposition 1.5 a). Given N ≥ 13, let b max denote the supremum of all parameters b ≥ -4 such that the corresponding extremal solution is singular. We first observe that b max > 0.

In fact, it follows from Sections 5 and 6 that the extremal solution u associated to parameters a = b = 0 is strictly stable :

Extend u as before on its maximal interval of existence (0, R). Choosing R ∈ (1, R) close to 1, we deduce that (67) still holds on the ball B R . In particular, letting v(x) = u(Rx) -u(R) for x ∈ B, we conclude that v is a singular stable solution of (1) with a = 0 and b = Ru ′ (R) > 0. By Proposition 1.7, we conclude that b max > 0. We now prove that b max < ∞.

Assume this is not the case and let u n denote the (singular) extremal solution associated to b n , where b n ր ∞. We first observe that there exists ρ n ∈ (0, 1) such that u ′ n (ρ n ) = 0. Otherwise, u n would remain monotone increasing on (0, 1), hence bounded above by u n (1) = 0. It would then follow from (1) and elliptic regularity that u n is bounded. Let v n (x) = u n (ρ n x) -u n (ρ n ) for x ∈ B and observe that v n solves (1) with a = b = 0 and some λ = λ n . Clearly v n is stable and singular. By Proposition 1.7, v n coincides with u, the extremal solution of ( 1) with a = b = 0. By standard ODE theory, v n = u on (0, R). In addition,

Letting n → ∞, we conclude that u is stable on B R. This clearly contradicts Lemma 7.1.

We have just proved that b max is finite. It remains to prove that u * is singular when -4 ≤ b ≤ b max . We begin with the case b = b max . Choose a sequence (b n ) converging to b max and such that the corresponding extremal solution u n is singular. Using the same notation as above, we find a sequence ρ n ∈ (0, 1) such that 1

Taking subsequences if necessary and passing to the limit as n → ∞, we obtain for some ρ ∈ (0, 1) 

If N is sufficiently large, depending on b, we have λ 0 < N 2 (N -4) 2 /16. Then by [START_REF] Boggio | Sulle funzioni di Freen d'ordine m[END_REF] u is a stable subsolution of (1) with λ = λ 0 . As in Lemma 5.2 this implies λ * ≤ λ 0 .

Thus for large enough N we have λ * e u * ≤ r -4 8(N -2)(N -4)e (4+b)/2 < r -4 N 2 (N -4) 2 /16. This and [START_REF] Boggio | Sulle funzioni di Freen d'ordine m[END_REF]