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Abstract

The present paper is devoted to the numerical modeling of roughness effects on laminar flow in
microchannels. 3D numerical simulations were initially performed and, based on their solutions, a
roughness model is proposed. This one-dimensional model is inspired by a discrete-element
approach due to Taylor et al. (1985, 1989). In this model, the channel consists in a clear medium
adjacent to a porous medium layer where the interactions between the stream and the roughness
elements are directly computed by the discrete-element method. Empirical correlations based on 2D
numerical simulations of cross-flow through a bank of rods are used for modeling the local drag
coefficient and the local Nusselt number of the roughness elements. The appropriate determination
of these important parameters allows solving the momentum and energy equations in order to
obtain the velocity and temperature profiles. The 1D model solutions are then compared with the
3D numerical solutions showing a very good agreement. The present study shows that roughness
significantly influences both the Poiseuille number and the global Nusselt number. The relative
increase of the pressure drop is found to be much faster than that of the heat transfer coefficient
when the roughness height is increased. Two microchannels were produced with the same three-
dimensional roughness arrangement as in the 3D numerical model and experiments were performed
with deionized water as the working fluid. The height of microchannels was 106 um and 153 pum
with relative roughness of 16% and 14% respectively. Comparison between experiments conducted
in isothermal conditions and model solutions shows the good ability of the numerical models to
predict the pressure drop in the rough microchannels, which were tested.

Nomenclature

Cd  drag coefficient Rep porous Reynolds number
C; resistance factor (=uDKmx0‘5 V)
Da  Darcy number Res  roughness Reynolds number (=upd/v)
H channel height m B porosity
d roughness element size m 0 dimensionless temperature
K permeability m
k roughness element height m subscripts
ke thermal conductivity for fluid W/mK
kg thermal conductivity for solid W/mK 3 axial
L, roughness element spacing in x b bulk

direction m D Darcy
I roughness element spacing in y £ fluid, friction

direction m max maximal
Nu  global Nusselt number (Eq. 21) p pressure
Nup  porous Nusselt number (=hK"”/ky) g solid

Nug roughness Nusselt number (=hd/k¢) top  top surface
Po  Poiseuille number W wall



1. Introduction

Recent advances in ever faster and smaller electronic equipments have entailed the development of
efficient cooling systems. This has stimulated a strong current of research on flows in
microchannels. However many published papers present a strong dispersion of results and no
definitive tendency is observed concerning the friction factor and the heat transfer coefficient in
microflows. Measurements in microchannels are very difficult and require careful accounting for
phenomena that are often negligible in standard flows. Recent experimental works accurately
evaluated the uncertainty of measurements and their results are now consistent with the
conventional theory. For example, Kohl et al. (2004) experimentally investigated laminar water
flow through smooth microchannels with hydraulic diameter ranging from 25 to 100 um. They used
internal pressure measurements to avoid entrance effects. The average value of their results exhibits
an increase by only 4% above the theoretical value, whereas the uncertainty is 11%. The authors did
not observe an early transition to turbulence. They concluded that the large inconsistencies in
previously published data are probably due to instrumentation errors. The same conclusion was
drawn by Baviere et al. (2005) from experiments in smooth microchannels ranging from 4.5 to 21

um.

Some researchers proposed that a possible explanation of the friction factor increase above
conventional values could be an effect of Electrical Double Layer. However, a recent work of
Phares and Smedley (2004) shows that electroviscous effects are not observed in 150 pm
microtubes. They examined also the effect of surface roughness and they concluded that it plays an
important role in laminar flow through microtubes. They reported an increase in Poiseuille number
values by up to 17% for a relative surface roughness equal to 2.5%. No measurable effect of
viscosity was detected for three mixtures of different viscosities.

Judy et al. (2002) performed extensive measurements of pressure losses for laminar flow through
different microtubes (two different materials and two different shapes) in the range 15 —150 um.
After a careful examination of possible errors they reported that the uncertainties in the Poiseuille
number are as high as 10 —15% for smooth fused silica and 20 — 21.5% for rough steel microtubes.
They did not observe significant deviation from Stokes theory, however they concluded that the
detection of additional phenomena arising in microflows is very difficult since their influence is
below experimental errors at microscales.

Recent experimental research suggests that surface roughness is mainly responsible for deviation
from conventional theory in microchannels. Guo and Li (2003) stated that for rough wall
microchannels, the form drag of rough elements is predominant and could be regarded as one
reason leading to increase in the friction factor. Thus there is a strong interest to explore this effect
precisely and to develop simple models which could accurately predict the influence of roughness
on fluid flow and heat transfer. Following the conclusion of Judy et al. (2002) about the relative
importance of microscale effects and experimental uncertainties, numerical simulation seems to be
an adequate tool for exploring the influence of a particular phenomenon on microflows. This was
the idea behind a recent study of Croce et al. (2005), who investigated numerically the effects of 3D
roughness on microchannel heat transfer and pressure drop. They found a 16% increase in the
Poiseuille number and a much smaller increase of heat transfer coefficient for a relative roughness
height equal to 2.65%. In their study, conically shaped roughness elements were periodically
distributed on the walls of a smooth channel. The numerical study of Hu et al. (2003) reports
extensive results about the surface roughness impact on pressure drop in microchannels for cubic
shaped roughness elements. They proposed an empirical model which accounts for additional
pressure drop in terms of a relative channel height reduction. In other words, the apparent pressure
drop is accounted for by the conventional value of the Poiseuille number used with a reduced



channel height. However, the proposed formulas suffer from limitations and cannot be used with
other shapes of roughness elements.

Koo and Kleinstreuer (2003) proposed that the roughness region could be modeled by an equivalent
porous medium layer (PML hereafter). They modeled the additional viscous forces due to rough
elements in terms of the Darcy number and they used a nonlinear term to account for inertia forces.
By means of these additional source terms introduced into the Navier — Stokes equation, they were
able to reproduce the experimental results of Guo and Li (2003). However, in spite of good
agreement between PML model and experimental results they did not relate the Darcy number to
the geometrical parameters of roughness. In a next paper, Koo and Kleinstreuer (2005) extended
their PML model to heat transfer phenomena in rough wall microconduits. They proposed a one-
equation model to account for heat transfer increase due to rough elements. However, such a one-
equation model seems to be inadequate for cases where convection heat transfer is predominant so
that the temperature distribution in rough elements strongly differs from that in the fluid. In such
cases the use of two-equations models is advisable as illustrated by Kim and Kim (1999).

Taylor et al. (1985 and 1989) presented a discrete-element method for predicting skin friction and
heat transfer in turbulent flows. This approach is based on a volume averaging technique and
considers separately the form drag due to roughness elements and the shear drag at the flat part of
the surface. The information about the roughness element shape and size is directly introduced into
the momentum equation by the drag coefficient when it is correctly estimated. This approach was
used in the work of Baviere et al. (2005), where the resistance coefficient due to rough elements
was based on the formula for the drag force on very slender prolate spheroids in creeping flow. The
additional constants were adjusted to fit the results of the analytical model to those of numerical
simulations.

The current study is devoted to the investigation of the surface roughness effect on fluid flow and
heat transfer in microchannels by means of numerical modelling. The geometrical model of
roughness follows the details of the model developed by Hu et al. (2003). The paper presents
successively 3D numerical simulations and the PML model. The latter one is based on an extended
Darcy equation for fluid flow and two equations for heat transfer. The control factors, i.e. the
permeability and the local Nusselt number, are determined by means of the numerical simulations
and are related to the geometrical parameters. It is shown that 2D simulations, relative to cross —
flow through an array of rods, are sufficient to determine the drag force and the local Nusselt
number on the rough elements.

2. Numerical model

2.1.  Geometrical model of roughness, computational domain and boundary conditions

The surface roughness is represented by blocks distributed on the smooth walls of a plane
microchannel. The simplified present model assumes that the roughness elements are periodically
distributed either in aligned or staggered arrangements as presented in Figure 1. The roughness
elements are parallelepipeds of square cross—section of side length d and height £. The wall region
is then characterized by a constant

porosity 8 =1—d?/L.1 . The choice of a

regular pattern of roughness elements allows

using periodical boundary conditions and

reduces the computational domain to one period

as depicted by dashed lines in Figure 1. The

other advantage of periodicity is the possibility

Figure 1. Arrangements of rough elements; left: ~ to use volume averaging in order to establish
aligned, right: staggered. the governing equations for the PML model.



A Since the PML model principles are the same for
staggered and aligned arrangements, the presentation
is restricted to the latter one.

The computational domain extends over one
wavelength in the x and z directions and over the half

$ kg channel height (H/2) in the y direction normal to the
U 4 wall (Figure 2). The longitudinal and transverse
" M dimensions are thus equal to the rough element
1% 7 / : By spacing. The microchannel wall consists of a block of
02 — A ‘y thickness H,, heated at uniform heat flux qO“ on the
i f;.' / 3 . . .
cv L g/ x external side. The computational domain was treated
—— as the central part of an extremely long chanqel SO
o that the flow was considered as fully developed in the
i oy ey longitudinal direction and the heat flux distortion due
i " LR . .
ql * 9a Ga/ 4 to axial conduction at the channel ends was assumed
s ks 4 to be negligible. As a result, the flow properties are
v . / /e periodic in the x direction. This assumption allows
L o o applying periodic boundary conditions on the
Le opposite sides of the domain in the longitudinal
Figure 2. Computational domain direction. The periodic boundary condition for any
flux may be written:
(:)(x,y,z):(:)(x+Lr,y,z) (D)

Due to periodicity, state variables as pressure and temperature can be written as the sum of a linear
gradient and a periodic component:

ol5.3:2)- 2w 5x3:2) @

The term dp/dx relates only to the fluid domain and is a priori known in our computations while
the term d7/dx is determined by the energy conservation in the fluid and solid domains. It was

r

p

where M is the mass

then assumed that d7/dx in the solid and fluid phases is equal to 9o

flow rate. Since d7'/dxequally contributes to the temperature field in both domains, we can

T(xy,2)-T,x)
q, 2H/k,

0(x,y,z)z9(x+L,,,y,z). 3)

T (x) is the mean wall temperature aty — 0. The boundary condition as given by equation (1)

introduce the dimensionless temperature (x, y,z) = which is periodic:

relates to the fluid and solid phases. For the fluid domain, @ stands for the velocity vector while in
the solid block it stands for the heat flux in axial direction g, . The axial heat flux in the solid
block results from the constant temperature gradient d7'/dx and is then expressed by

. 90 ) =

q. =k, M—Cpl 4)
where 7 is the unit vector in x direction.
For a large conductivity ratio k, / k ., the axial heat flux in the fluid was assumed to be negligible.

For the sake of symmetry, the velocity and heat flux gradient normal to the lateral sides and top
plane of the computational domain were assumed to be zero. The symmetrical boundary conditions
are presented in the form: Ve.i=0, OG-0, V@ii=0 (5)
where 7 is the vector in the direction normal to the symmetry surface.



The system of boundary conditions is completed by the no—slip velocity condition and continuity of
the temperature at all fluid/solid interfaces. The flow is characterized by the bulk velocity u,. The
Reynolds number is defined by Re =u,2H/vand the dimensionless pressure drop is represented by

2
the Poiseuille number Po = _ld_p 2H

Mdx u,

. The Prandtl number is fixed to Pr = 7.

2.2. Equations

Modelling the flow as laminar, steady and incompressible, the governing equations consist of the
following system.
Continuity equation: Vi =0 @)

Momentum equation: P Vi) =—-Vp+ uV’i (7)
A further simplification assumes that viscous dissipation can be neglected in the energy equation
for the fluid phase which is written as follows:
pc,@iNT)=k VT (8)
and for the solid phase:
VT=0 9)

2.3. Numerical scheme

Numerical computations of the flow were carried out by using the commercial code Fluent 6. 1.22.
The equations were discretized by means of a second order upwind finite volume method. As these
equations are non-linear, a SIMPLEC (Semi Implicit Pressure Linked Equations Consistent)
algorithm was used. This algorithm is based on a prediction-correction method, which allows the
equations to be linearized and solved iteratively. The pressure under-relaxation factor was set to 0.5.
The calculations were performed by means of a double precision solver until the level of

normalized residuals decreased below10™"* . Computations were performed on orthogonal grids
generated by Gambit 2. 1.2.

2.4. Numerical accuracy

Grid-convergence tests were performed to verify the mesh accuracy. The tests were conducted with
three grids having a number of mesh nodes equal to 32 x 40 x 32, 48 x 60 x 48, 64 x 80 x 64 in the
x, ¥, z directions respectively. The pressure gradient was chosen as the control parameter during the
computations. The difference in the results as given by the intermediate and the fine grids was
0.7%. Furthermore the estimation of accuracy by means of Richardson extrapolation was
performed. Using the Richardson extrapolation in form:

T3:71+(711_T2)/((h2/h1)2_1) (10)
and disposing two approximations 7; and 7, for two mesh size A; (fine grid) and 4, (coarse grid)
respectively one can estimate a third approximation 7% whose principal term of error is higher order
than that for 7 or 7,. The difference between the pressure gradient obtained for the mesh 48 x 60 x
48 and that obtained from the Richardson extrapolation was lower than 2% and this mesh was
adopted. The theoretical values for the fully developed laminar flow, Poy=24 and Nu;,=8.235 were
recovered with excellent accuracy.

3. Porous medium layer model

As mentioned before, Koo and Kleinstreuer (2003) determined the flow resistance (Darcy number)
by using the experimental results of Guo and Li (2003). Because of the lack of information about



the distribution and shape of the experimental roughness, they could not relate the flow resistance
factor to geometrical parameters. The present PML model considers the same geometrical model of
roughness as the numerical analysis. The current section describes the model and its extension to
heat transfer phenomena.

3.1. Momentum equation

The present model combines ideas from the PML model of Koo and Kleinstreuer (2003) and from a
discrete-element approach proposed by Taylor et al. (1985) to compute the rough-wall skin friction
in turbulent flows. The approach considers control volumes (CV) of infinitesimal thickness in the
direction normal to the wall. It directly accounts for the drag forces exerted on the roughness
elements by means of volume averaging inside CV as depicted in Figure 2. The momentum
equation in the roughness region results from the balance of forces inside CV

dp d 2d d’u,

e I e

where 7_, p,, and p; are respectively the shear stress, the windward and leeward pressures acting on

an

the portion CV; of the rough element included in CV. The model uses the Darcy velocity up(y)
defined by

1
u = —— |ulx, v, z)dxdz 12
») L,,l,,CIV( »z) (12)
Applying the state variable decomposition as given by equation (2) allows rewriting the momentum
equation (11) in form:

d*u, dp 1, d
—=—p+—pu,\Cd, +Cd,)—. 13
: dy’ dxﬁ 2’ D( ? f)Lrl,, ()
p.,— D 2 . .
where Cd, :PW_P; and Cd, = % — are the pressure and friction drag coefficients
0.5pu;, 0.5pu;,

respectively. Their sum represents the total drag coefficient Cd.
3.2. Energy equations

As for hydrodynamics, the volume averaging technique is applied in order to derive the energy
equation. A two—equation model is applied in order to account for the convective heat exchange
between the rough element surface and the surrounding fluid. The energy balance inside CV leads
to the following energy equation for the fluid phase:

d’T,
dy’

and is complemented by the energy equation inside the rough element CV;

d’T . 4d
k \1— L= 15
,(1=8) e ) (15)
where ¢ (y)is the heat flux exchanged by CV; with the stream. The temperatures 75 and 7yare the

effective solid and fluid temperatures averaged respectively over the area occupied by the solid and
the area open for flow.

Ts(y)% Ii(x,y,z)dxdz and Tf(y):
cv,

dT d’r,
—pe o, —+k (1- k,p—L =0 14
p P Ddx s( ﬁ) fﬁ dy2 ( )

-
Ll —-d

The products (1- )7, = TSD and g7, =T 7, represent the average temperatures over the total area

Iff (x, v, z)dxdz (16)

cv-cv,

of CV and their sum can be regarded as the Darcy temperature 7, (y)= TSD (y)+71 P (v). Tp has to



be used in order to assure the continuity of average temperature at rough/clear interface.
Substituting the left-hand term of equation (15) into equation (14) and eliminating 77 results in:

d*T q, 1 4 k
k=2 =pcu 2o Ny, —|1-—L|(T -T, )k 17
f dy2 P P DMCP dLrlr( ks J( s D) f ( )
where Nu,(y) = (Tq—Td)kiS the local Nusselt number in the sense of the PML model, in fact the
s Ibp f

global Nusselt number for a slice of rough element CV.
3.3. Drag coefficient modelling

In order to resolve equation (13) it is necessary to model the pressure and friction drag coefficients.
The 3D numerical simulations were used in order to yield all the necessary data. Figure 3 presents

distributions of Cd(y) as a function of the local Reynolds number Re,(y)=u,(y)d/v for several

values of the geometrical parameters. It clearly shows that the drag coefficient Cd is inversely
proportional to Re,. The proportionality factor C, (resistance coefficient hereafter) varies neither
with the mass flow rate nor with the relative roughness height & =k/0.5H. This advantage results
from applying the pressure decomposition as given by equation (2), after which the pressure drag
coefficient Cd, accounts only for forces due to the periodic component of pressure. A slight
increase of the resistance coefficient C, at low Re; number is observed whatever the roughness
considered. It could be explained by inadequately predicted pressure forces at the vicinity of the
smooth bottom wall where velocity and pressure forces tend to zero. In fact, pressure forces are
overestimated by the pressure interpolation scheme which leads to variations of C, when
approaching the smooth bottom wall. This uncertainty in pressure forces estimation is however of
weak importance for the global results because it occurs in a region where the contribution of drag
forces is very small like the velocity. It is then justified to assume that the coefficient C, is constant
along the roughness element height. Figure 3 shows that C, only depends on the porosity £ and
increases when [ is decreased. Thus, it suggests to model the coefficient C, by means of 2D
numerical simulations instead of computationally expansive 3D simulations. For 2D cross — flow
through an array of rods and after applying the relation C, = CdRe, the momentum equation (13) is

reduced to
ap , H
0=Lp+ 18
fﬁ s (18)

whereK = 2L .1 /C, is the permeability (in the numerical model, ., = /. = 2um). Equation (18) is

similar in form to the conventional Darcy equation, except that the porosity £ appears after applying
the pressure decomposition.

10 T Al T _10 T T T T T a
B=075k=04,Re=10 M 10 =099 [J
. B=075.k'=04.Re=200 [J 098 @
B=075k'=08,Re=200 O i 8'22 ; ]
10° B B=094.k'=04, Re=200 @ - 10 075 X
. | B=0.44,k'=04,Re=200 O — 061 O
- RN E 02 L 044 X —
@] N = [H T
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Figure 3. Distribution of drag coefficient along rough Figure 4. Variation of permeability with the porous
element Reynolds number for several values of porosity



' ' ' 1 Figure 4 shows the variation of K as a function of

B=099 []
0.98 : the Reynolds number Rep for several values of
08 M porosity. The numerical results are approximated
Lol b 8;2? é = byK =a+ bRe,, . The values of K, = a were used
QQ 044%5 ,,,,,,,,, to define a length scale in the definition of Rep

number Re, =u,.K,./v. Regardless the

porosity, a slight variation of K with Rep appears
when Rep exceeds a value of order O(10). In fact,
, laminar microchannel flows are characterized by
very small values of the permeability, so that Rep
does not reach this high-range for moderate
Figure 5. Porous Nusselt number vs. porous roughness height. Thus it is expected that the drag
Reynolds number for several values of porosity  forces due to surface roughness are proportional to
the mean velocity. This is consistent with our 3D
simulations and with the study of Croce et al. (2005) where the variations of Po with Re were
negligible. However, the 2D modelling suppresses the influence of recirculation zones induced by
the flow upon the rough elements which could be stronger for other roughness geometry, in
particular like in flows over 2D ribs as reported by Croce and D'Agaro (2004). In such cases a
stronger dependence of Po with Re is expected.

3.4. Nusselt number modelling

The Nusselt number Nu; occurring in equation (17) is modelled by means of 2D numerical
simulations. Since the model uses the temperature average in the sense of Darcy 7p, the heat

transfer coefficient is defined by #=¢" /(7. —7, ). This definition misses the usual meaning of the

h coefficient where the fluid bulk temperature 7} is used instead of 7p. This drawback results from
the volume averaging technique which does not allow using 7} in the energy equation. This issue
will be again discussed about the results.

The 2D simulations already used for the estimation of permeability, were extended to the heat
transfer problem. The boundary condition inside solid elements was supposed to be uniform volume
source heating. Figure 5 shows the variations of Nup as a function of Rep for the same set of
porosity as presented in Figure 4. The permeability K was used as the length scale for Nup,

i.e. Nu, = Nu,~K /d . Contrary to the permeability, the Nup number does not exhibit a continuous

drop when the porosity is decreased but one can observe a minimum value of Nup for f = 0.75.
Comparison of Figure 4 and Figure 5 shows that /4 is more sensitive than K to Rep. It may be
probably attributed to the value of the Prandtl number Pr = 7 used in the current study, which
means that the thermal boundary layers developing on the roughness surface are thinner than the
corresponding velocity boundary layers.

3.5. Boundary conditions

After volume averaging, the problem of fluid flow and heat transfer in rough wall microchannels
reduces to a system of second order ordinary differential equations. It can be solved numerically
under appropriate boundary conditions. It was assumed that the fluid and solid temperature are
equal (6,=6p) and the velocity is equal to zero at the bottom wall (y=0). Symmetry boundary
conditions were used at the channel symmetry plane (y=0.5H). The continuity of temperature 7p
and Darcy velocity up is satisfied in the whole computational domain. The boundary condition at
the PML/clear region interface raises a particular problem. The development of velocity and
thermal boundary layers on the rough elements top surface contributes to the discontinuity of shear



stress and heat flux at the PML/clear region interface in the volume averaging approach. In order to
account for these discontinuities the present model considers a control volume CVy defined
byk <y <k+ d where the momentum and energy balances are written. Since K and Nup are

mostly modelled by means of 2D numerical simulations, it was necessary to assume that the
developing velocity and thermal boundary layers on the side and top surfaces of roughness elements
are similar. As a consequence, the shear stress at the rough elements top surface is deduced from the
value of the average friction drag coefficient Cdr which was found at the side surfaces of rough
elements. In the same way, the second boundary condition for the energy equation in the solid
phase assumes identical convection heat transfer coefficient h for the top surface and the side
surface of rough element. The dimensionless system of governing equations is:

* 2k
O:ﬁPo u +a’u

8 Da dy”
2 * * EY) k
0<y" <k* a0, :u——NuDd—(HS—HD)H— ——L
dy? 4 \Da Ll k,
2 * %2
a is :NuDd—(Hs_HD)H_*Q !
dy JDa da? k,

(19)

kS
o dw
dy™

k' +o0y" <y" <1 Y

d*o, B £

dy? 4
and boundary conditions:
y' =0 u =0, 6 =6,
yi=k uwkT)=uT (k) 6,(kT)=6,(k™)
y*=1 du*:defzo

dy dy
2L [

where: Da = o and Nu,,, = (2.25— B)Nu , are the Darcy number, the

(H/z)z’Daf Cd Re,(H /2)
friction component of Darcy number and the Nusselt number at the rough element top surface
respectively. The lengths are normalized by H/2 and the dimensionless velocity is defined
as:u” —u,/u,. The relation Nu,, = (2.25—- B)Nu,, results from the hypothesis that the heat

transfer coefficient / at the top and side surfaces of rough elements is equal. This empirical relation
takes into account the fact that in cases of dense packed rough elements (small f) convection heat
transfer takes place almost only at the side walls. The relation is valid when the convective heat
transfer in porous layer is predominant. The system of equations (19) was discretized and solved by
means of a first order finite difference method using Matlab.
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Figure 6. Dimensionless velocity profiles at constant Figure 7. Fluid and solid dimensionless temperature
mass flow rate profiles. Continuous lines: PML model; symbols: 3D
simulations

4. Results

Figure 6 shows velocity profiles at constant mass flow rate for three different thicknesses of PML
while the Darcy number was kept constant (constant porosity  of PML). The velocity profile for
k*= 0.2 is compared with the 3D numerical solution, showing excellent agreement of the results. As
it was expected, the velocity profiles strongly depend on the PML thickness. The apparent velocity
gradient immediately above the PML corresponds to the overall pressure gradient.

Figure 7 shows the profiles of the fluid &rand solid &, temperatures defined by equations (16), for
the same PML thickness and Darcy number as in Figure 6. As for the velocity profiles, a very good
agreement is found between 3D and PML model solutions. The apparent discontinuity of fluid
temperature & results from the discontinuity of porosity £ and from the strong heat flux at the top
surface of rough elements. The observed differences between fluid and solid temperatures indicate
that in the case of strong convection the assumption of thermal equilibrium is not appropriate. The
rough elements of high thermal conductivity when compared to the conductivity of water
(k/ks=5.1*107 in the current study), conduct heat directly towards the region of higher velocities.
Since the highest heat sink occurs in the central part of the channel, the conductive heat transfer rate
in solid elements increases with the roughness height. The heat rate is mostly conducted through the
rough elements causing a small temperature gradient both in the fluid and solid phases because the
heat flux through the fluid is small and the thermal conductivity is high in the solid phase. It is then
clear why the temperature profiles showed in Figure 7 become flatter when the PML thickness
increases. The observed small temperature gradient is in agreement with the assumption reported by
Qu et al. (2000). In the current study it leads however to the opposite conclusion, namely that
roughness contributes to increase the convective heat transfer so that the modified Nu relationship
proposed by Qu et al. (2000) is refuted by the current work. In fact, heat transfer is then enhanced
thanks the efficiency of conduction along the roughness elements as in the study of Sahiti et al.
(2005). Figure 8 presents the influence of roughness on Po and the global Nu number at constant
flow rate and constitutes the synthesis of the present results. The Poiseuille number has been
already introduced in section 2.2 and the Nu number is equal to Nu =1/0, where 6, is the

dimensionless bulk temperature defined as follows:
1
%= h [0,y () (20)

It should be reminded here that the PML model based on volume averaging uses and reports 6())
which is the mean dimensionless temperature instead of the local bulk temperature so it does not
account appropriately for the enthalpy rate convected by the fluid when the velocity varies in x and
z directions. The presence of roughness introduces such variations of velocity so that Nu based on
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the definition given by equation (20) could be

10 . :
B=8/71451 Ao Pop A 1 overestimated. This uncertainty introduced by
0.0 = T {1 the model in the Nusselt number increases with
p=044 A - M | the roughness height and could be very
075 [ - Nuw/Nuy, i . .
094 O — important for high values of k& . Figure 8 shows
10t b an increase of Po over the theoretical value. Po

Po/Po,, Nu/Nu,

strongly increases for small values of Da as
expected. On the other hand Nu increases with

the PML thickness not as much as Po. As for Po
the growth of Nu depends on the Darcy number.
However, in the lower range of Da this
. dependency is not much pronounced. The
results of the PML model agree very well with
the results obtained from the 3D numerical
simulations. This again confirms the consistency
of the PML model with the 3D numerical
simulations. The results show that the ratio Nu/Po decreases when the PML thickness is increased
and this trend is more pronounced for small Da.

10

Figure 8. Increase of Po and Nu with the relative
roughness height. Continuous lines: PML model,
symbols: 3D simulations

The present results were compared with experiments performed on water flows through semi-rough
rectangular microchannels. Two test-sections with the same geometrical arrangements of roughness
as in the model were investigated (Figure 9). The rough wall was obtained by etching a silicon
wafer at a depth k& using a mask reproducing the design of the roughness arrangement. The
microchannel height was obtained by etching a pyrex plate at the depth H-k. The wafer and the
pyrex cover were then anodically bounded to make a microchannel of height A with a rough wall
on one side and a smooth wall on the other side. The microchannels investigated were 106 um or
153 wm in height, 3 mm in width and 32 mm in length. The relative roughness (£/0.5H) was 16%
and 14% respectively. Both microchannels were tested in a closed-loop circuit. The pressure drop
was measured by two pressure transducers placed upstream-downstream of the test-section. The
flow rate was measured by high-accuracy flowmeters (Gao et al., 2002). The PML model was run
with boundary conditions corresponding to a semi-rough channel. Empirical parameters of
equations (19) were obtained by means of 2D simulations for the flow and heat transfer through the
banks of rods in the staggered arrangement. Figure 10 shows an excellent agreement between the
measured Poiseuille number and the predictions of the PML model. The measurements and the
model are in consistency to show that

1) Po is independent of Re (no inertia effect) in the laminar regime ( Re < 2000)

i) The pressure drop is significantly increased (about 20%) for a relative roughness of

about 15%

An extension of the experimental study to heat transfer measurements is planned.

50

H=153 um (k =14%) O
45 | H=106 um (k =16%) O i
PML (H=153 fm) s

PML (H=106 ftm) ===+

o r Po=24 ---m-mme- & T

Blasius law

35+

Po

100 1000
Re
Figure 10. Variation of Po with Re — comparison
between experimental results and model predictions

Figure 9. Roughness elements etched in
silicon wafer (L,=l=16,um)
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5. Conclusions

The 3D and PML models were adapted and developed in order to predict the influence of roughness
on laminar flow in microchannels. In spite of its simplicity, the PML model is able to predict the
pressure drop and heat transfer increase due to surface roughness. It was shown that the control
parameters i.e. the local Nu number and the permeability only depend on the porosity and can then
be efficiently modeled by means of simple 2D numerical simulations. This is confirmed by the
agreement observed between results of the PML model and 3D numerical simulations. The PML
model reports an increase of Po with the PML thickness while the increase of Nu is much weaker.
This result is in agreement with the conventional fins theory.
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