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Abstract

From Hamilton’s principle of stationary action, we derive governing equa-
tions of two-fluid mixtures and extend the model to the dissipative case without
chemical reactions. For both conservative and dissipativecases, an algebraic
identity connecting equations of momentum, mass, energy and entropy is ob-
tained by extending the Gibbs identity in dynamics. The obtained system is
hyperbolic for small relative velocity of the phases.

1 Introduction

The knowledge of governing equations for fluid mixtures is scientifically and indus-
trially an important challenge. Many authors derived the governing system by using
axioms of balance of mass, momentum, energy and second law ofthermodynamics
[1]. The mixtures were considered as a collection of different media co-existing in
the physical space. For example, the balance law of momentumis given in the form :

∂

∂t

∫

D
ρα uα dD +

∫

∂D
ρα uα uαn dσ =

∫

∂D
Tα n dσ +

∫

D
bα dD, α = 1, 2 (1)

whereD is a fixed volume,∂D is its boundary,n is the unit normal to∂D, ρα

are the densities of components,uα are the associated velocities,uαn are the normal
part of the velocities at∂D, Tα are the stress tensors andbα are the volume forces
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associated with internal forces and interaction between components. The principle of
material frame-indifference requires thatTα and bα depend on the thermodynamic
parameters of the mixture and on the relative velocityw = u2 − u1. To include
the added mass effect into consideration, one should be supposed thatTα andbα

depend also on accelerations of phases. The structure of this dependence which is an
important source of interaction, is not clear: should it be frame-indifferent or simply
Galilean invariant? The method of balance laws (1) does not give a definite answer
to this question.
It exists a different approach based on Hamilton’s principle [2]-[4] which is used
for construction of conservative (non-dissipative) mathematical models of continu-
ous media with complex internal structure. The terms including interaction between
different components of the mixtures do not require constitutive postulates difficult to
interpret experimentally. They come from the direct knowledge of a unique potential
for the mixture. According to [5], we call ahomogeneous mixtureif each component
of the mixture occupies the whole volume of the physical space, and aheterogeneous
mixtureif each component occupies only a part of the mixture volume.In this paper,
we consider only homogeneous binary mixtures, but the method can be extended to
the case of heterogeneous mixtures [6]. The plan for the article is as follows :

In section 2, we formulate an extended form of Hamilton’s principle of stationary
action allowing us to obtain the governing equations of motion. The Lagrangian is
the difference between the kinetic energy depending on the reference frame and a
thermodynamic potential which is a Galilean invariant. Theequations of motion in-
troduce two new vector fields different from the velocity fields by taking into account
the relative velocity of the components. They play the same role as the velocity field
does in the case of a single fluid.

In section 3, the governing equations are extended to the dissipative case without
chemical reactions. An algebraic identity connecting equations of momentum, equa-
tions of mass, energy equation and equations of entropy is obtained. This identity
can be considered as the dynamic form of the Gibbs identity.

In section 4, we justify the compatibility of the governing equations with the
second law of thermodynamics.

In section 5, Fick’s law is derived. We prove that Fick’s law is not yet a linear
phenomenological law but a direct consequence of governingequations and Stokes
drag force hypothesis.

In Section 6, we check the properties of hyperbolicity of thegoverning system
for small relative velocity of phases.

As a convention, in the following we shall use asterisk′′⋆′′ to denoteconjugate
mappings orcovectors(vector lines); subscriptsα = 1, 2 indicate the parameters
of the αth component; the symbolI indicates the identity;∇ means the gradient
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operator-line;∇⋆ means the gradient operator-column;a⋆ b means thescalar prod-
uctof vectorsa, b (the vector line is multiplied by the vector column);a b⋆ means
the tensor productof vectors a, b (the vector column is multiplied by the vector
line); A a means the product of the mappingA by a vector a ; b⋆ A means the
covector c⋆ defined by the rulec⋆ = (A⋆ b)⋆; div A denotes the divergence of a
linear transformationA which is a covector defined as follows: for any vectora,

div (A a) = (divA) a + tr

(

A
∂a

∂x

)

.

2 Governing equations in conservative case

In paper [7], we considered a puremechanicalcase (without entropy). Now we con-
sider the general case. We take the Lagrangian of the binary system in the following
form:

L =
2

∑

α=1

1

2
ρα u2

α − ραΩα − W (ρ1, ρ2, s1, s2,w) (2)

where in the whole paper the summation is over fluid components (α = 1, 2) and ρα

are the densities of components,sα are the specific entropies,uα are the velocities,
w = u2 − u1 is the relative velocity,Ωα are the external force potentials,W is a
potential per unit volume of the mixture. The dependance ofW with respect to the
relative velocity is analog to take into account the added mass effect in heterogeneous
two-fluid theory as it was done by Geurst [3]. The fact thatW depends on two
entropies is classically adopted in the literature [2, 4, 8,9]. The potential W is
related with the internal energyU of the mixture through the transformation

U = W −
∂W

∂w
w (3)

so that the total energy of the system is [7]:

ε =
2

∑

α=1

1

2
ραu2

α + ραΩα + U

Let us note that to define the internal energy of one-velocitymedia it is useful to con-
sider a moving coordinate system in which the elementary volume of the continuum
is at rest. The total energy of the continuum with respect to this system is called
the internal energy of the medium. For a two-velocity medium, there is no reference
frame in which any motion could be disregarded. This is the reason why the stan-
dard definition of internal energy is dependent on the relative motion of components.
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The formula (3) implies that the internal energyU is a Galilean invariant. The de-
pendence ofU (or W ) on w is an important property of multicomponent fluid
mixtures.
Let x be the Eulerian coordinates,t be the time,Xα be the Lagrangian coordi-
nates of each component. The mass and the entropy conservation laws in the Eulerian
coordinates are:

∂ρα

∂t
+ div (ρα uα) = 0 ,

∂

∂t
(ρα sα) + div (ραsα uα) = 0 . (4)

In the Lagrangian coordinates, equations (4) are equivalent to:

ρα det Fα = ρα0 (Xα) , sα = sα0 (Xα), (5)

where

Fα =
∂x

∂Xα

(6)

is the deformation gradient atXα; ρα0 (Xα) and sα0 (Xα) do not depend ont.
The relation between the Eulerian and Lagrangian coordinates is given by the local
diffeomorphism x = φα (Xα, t), whereφα (Xα, t) is the solution of the Cauchy
problem :

dφα

dt
= u (φα, t) , φα (Xα, 0) = Xα

Let Xα = ψα (x, t) be its inverse mapping (φα ◦ ψα = I). We define the virtual
motion of the mixture such that [4, 10]:

x = Φα (Xα, t, εα) , Xα = Ψα (x, t, εα) , Φα ◦ Ψα = I

Φα (Xα, t, 0) = φα (Xα, t) , Ψα (x, t, 0) = ψα (x, t),

whereεα belong to a vicinity of zero. The Lagrangian and Eulerian virtual displace-
ments are defined respectively as :

δXα =
∂ Ψα

∂εα
(x, t, εα) | εα=0 , δαx =

∂Φα

∂εα
(Xα, t, εα) | εα=0 . (7)

The definitions (6-7) imply the following relation betweenδXα and δαx [4]:

δαx = − Fα δXα (8)

The variations ofuα (t,x), ρα (t,x) and sα (t,x) are deduced from (6) - (7) and
from the definition of the Lagrangian coordinatesXα :

dαXα

dt
= 0 ,

dα

dt
=

∂

∂t
+ u⋆

α ∇⋆.
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We obtain in Appendix A the values ofδuα (x, t), δρα (x, t) andδsα (x, t), where
δf(t,x) means the variation off whent, x are fixed anddivα(δXα) means the di-
vergence with respect to the coordinatesXα. We note that in [7] we used different but
equivalent expressions for these variations. Using the definition (2) of the Lagrangian
L as a function ofρα,uα, sα, we introduce the following quantities:























































Rα ≡
∂L

∂ρα

=
1

2
u2

α −
∂W

∂ρα

− Ωα,

K⋆
α ≡

1

ρα

∂L

∂uα

= u⋆
α −

(−1)α

ρα

∂W

∂w
,

ρα θα ≡ −
∂L

∂sα

=
∂W

∂sα

(9)

We note that a best set of independent variables is :ρα, jα = ραuα, ραsα. However,
in this case, the corresponding derivation should be given in four-dimensional space
[11]. For the sake of simplicity we use the first set of independent variables. The
last formula defines the thermodynamic temperatureθα of each component which is
now a dynamical quantity depending on the relative velocityof the components.
Let ω = D × [t1 , t2] be the domain in the four-dimensional space(x, t) andωα

be its image in the(Xα, t)-space. Here[t1, t2] is a time interval andD is a fixed
domain. We consider Hamilton’s principle in the form,

δαa ≡ δα

∫

ω
L dω = 0

under constraints (4) whereδαa are variations ofa associated with the variation of

Xα = Ψα(x, t, εα). It means thatδαa =
da

dεα
|εα

= 0. We have to emphasis on the

fact that the domainD is fixed in the physical space. This particularity is relatedto
the impossibility to have material volume in general motionof the mixture. Taking
into account formulae (8), variations in Appendix A and definitions (9), we get

δαa =

∫

ω

(

Rαδρα + ρα K⋆
αδuα − ραθαδsα

)

dω

=

∫

ωα

(

Rα divα(ρα0δXα) − ρα0 K⋆
α Fα

∂

∂t
(δXα) − ρα0 θα

∂sα0

∂Xα

δXα

)

dωα.

In the last expression all quantities are considered as functions of (Xα, t). Hence,

δαa =

∫

ωα

ρα0

(

−
∂Rα

∂Xα

+
∂

∂t
(K⋆

α Fα) − θα

∂sα0

∂Xα

)

δXα dωα
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+

∫

ωα

Divα(ρα0 G) dωα = 0

where G = (Rα δXα, −K⋆
α Fα δXα) and Divα is the divergence operator in the

4-dimensional spaceωα associated with(Xα, t). All the functions are assumed to
be smooth enough in the domainωα and δXα = 0 on ∂ωα. Then, we obtain the
equations of motion for each component in Lagrangian coordinates:

∂

∂t
(K⋆

α Fα) −
∂Rα

∂Xα

− θα
∂sα0

∂Xα

= 0 (10)

Taking into account the identity
dαFα

dt
−
∂uα

∂x
Fα = 0, we rewrite (10) in Eulerian

coordinates in the form :
dαK

⋆
α

dt
+ K⋆

α

∂uα

∂x
=

∂Rα

∂x
+ θα

∂sα

∂x
(11)

If u1 = u2 = u , then Kα = u and (10) is equivalent to

du

dt
+ ∇⋆ (h + Ω) = θ ∇⋆s ,

d

dt
=

∂

∂t
+ u⋆ ∇⋆

whereh is the enthalpy andΩ is an external potential [10]. Conservations of the
total momentum and the total energy are a consequence of the governing equations
(4), (11):

2
∑

α=1

∂ρα K⋆
α

∂t
+ div

(

ρα uα K⋆
α +

(

ρα
∂W

∂ρα

− W
)

I

)

+ ρα
∂Ωα

∂x
= 0 (12)

2
∑

α=1

∂

∂t

(

ρα

(

1

2
u2

α + Ωα

)

+ U

)

+ div
(

ραuα (K⋆
α uα −Rα)

)

− ρα

∂Ωα

∂t
= 0

(13)
The covectorK⋆

α is an essential quantity; indeed,ραKα (but not ραuα ) is the im-
pulse for theαth component of the mixture. Morever, for adiabatic motions, the defi-
nition of potential flows for two-component mixtures is associated with rotKα = 0
and not with rot uα = 0. For potential motion, equation (11) yields additional
conservation laws [7, 11]:

∂K⋆
α

∂t
+ ∇ (K⋆

α uα −Rα) = 0

In the particular case of bubbly liquids, Geurst was the firstto carry out a term analog
to Kα [3]. Moreover, if rotKα 6= 0, the system of governing equations is not
conservative in terms ofKα, ρα and sα (the number of conservation laws admitted
by the system is less than the number of unknown variables); but, nevertheless the
system can be rewritten in conservative form if we add the gradient tensorFα as
unknown variable [7].
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3 Governing equations in the dissipative case and dynamic
Gibbs identity

The conservative fluid mixture model presented in section 2 is relevant to thefirst
gradient theory[12]: the forces applied to the continuous medium are divided into
volume forces and surface forces. In fluid mixture flows it is reasonable to neglect
the surface friction forces compared to galilean invariantalgebraic volume forces.
The virtual work δTα of dissipative forces applied to theαth component is in the
form δTα = f⋆

α δαx. For the same virtual displacement of two components,

δx = δαx1 = δαx2 , the total virtual work of dissipative forces isδT =
2

∑

α=1

f⋆
α δx.

For a solid displacement, the workδT is equal to zero and consequently
2

∑

α=1

f⋆
α =

0. We specify later the behavior of forcesf⋆
α . Let us introduce the quantities

Mα, Bα, S andE such that:

M⋆
α = ρα

dαK
⋆
α

dt
+ ρα K⋆

α

∂uα

∂x
− ρα

∂Rα

∂x
− ρα θα

∂sα

∂x
− f⋆

α

Bα =
∂ρα

∂t
+ div(ραuα)

S =
2

∑

α=1

ρα θα

dαsα

dt
+ f⋆

α uα

E =
2

∑

α=1

∂

∂t

(

ρα (
1

2
u2

α +Ωα)+U

)

+div

(

ρα uα (K⋆
α uα − Rα)

)

−ρα
∂Ωα

∂t

We prove in AppendixB the following property:

Theorem: For any motion of the mixture, we have the identity

E −
2

∑

α=1

(

M⋆
α uα + (K⋆

α uα − Rα) Bα

)

− S ≡ 0

This relation is the most general expression of theGibbs identity in dynamics. Anal-
ogous identities were obtained earlier for thermocapillary mixtures [4] and bubbly
liquids [13]. For each component of the mixture, equation ofmomentum and equa-
tion of mass are in the form

M⋆
α = 0, Bα = 0 (14)
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The Gibbs identity impliesS = E. Hence, the equation of the entropyS = 0,

2
∑

α=1

ρα θα

dαsα

dt
+ f⋆

α uα = 0 (15)

is equivalent to the equation of the energyE = 0. We note also that the equations
M⋆

α = 0 and Bα = 0 imply conservation of the total momentum of the mixture
M = 0 (see (12))

4 The second law of thermodynamics

In conservative case, the system with two different entropies is closed by (4). In
dissipative case we need additional arguments to obtain equations for each entropy
sα which could replace equations (4). We take these equations in the form :

ρα θα
dαsα

dt
+ fα

⋆ (uα − u) + qα = 0 (16)

which must be compatible with (15). Hereρu =
2

∑

α=1

ραuα is the total momentum,

ρ

2
∑

α=1

ρα and
2

∑

α=1

qα = 0. The last relation means that we have only internal heat

exchanges between components. Consequently, if

2
∑

α=1

f⋆
α

θα

(uα − u) +
qα

θα

≤ 0, (17)

we obtain the entropy inequality [8, 9]

2
∑

α=1

ρα
dαsα

dt
≥ 0

Let us note that relation (17) is verified if

f1 = k (
u2 − u

θ2
−

u1 − u

θ1
) , f2 − f1 , k > 0

and

q1 = κ (
1

θ2
−

1

θ1
), q1 = −q2, κ > 0

The fact that the inverse temperatures (coldness) appear inthe closure relations play
an important role in other applications [14].
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5 Fick’s law as a consequence of the governing equations

The governing equations for each component are :

M⋆
α ≡ ρα

dαK
⋆
α

dt
+ ρα K⋆

α

∂uα

∂x
− ρα

∂Rα

∂xα

− ρα θα

∂sα

∂x
− f⋆

α = 0

For slow isothermal motions (θ1 = θ2 = θ0 = const), we can rewrite these equations
in the following approximate form:

M⋆
α ≃ ρα

∂

∂x

∂W

∂ρα

− ρα θ0
∂sα

∂x
− f⋆

α = 0

or

M⋆
α ≃ ρα

∂µα

∂x
− f⋆

α = 0

whereµα =
∂W

∂ρα

− θ0 sα is the chemical potential for theαth phase. Considering

the differenceM⋆
2
− M⋆

1
we obtain :

∇µ =
f⋆
2

ρ2

−
f⋆
1

ρ1

≡
ρ f⋆

ρ1ρ2

(18)

wheref⋆ = − f⋆
1

and µ = µ2 − µ1. Equation (18) is the general form of Fick’s
law. So, Fick’s law is not a linear phenomenological law but adirect consequence of
equations of motion and the Stokes drag hypothesis which waspreviously noticed by
Bowen with an other model [1].

6 Hyperbolicity of the two-fluid mixture model

The hyperbolicity of governing equations is very importantbecause it implies well-
posedness of the Cauchy problem. In mechanical case (when weneglect the equa-
tions of entropies) we are back to our previous study [7, 11].The only difference is
the right-hand side algebraic termsfα due to the Stokes-like drag forces. Obviously,
they do not affect the hyperbolicity analysis. The potential W is then a function of
ρ1, ρ2 andw = |w|. The Lagrangian is (withΩα = 0)

L =
2

∑

α=1

1

2
ρα u2

α −W (ρ1 , ρ2 , w)

We gave a sufficient condition of the hyperbolicity of system(4), (12) in the multi-
dimensional irrotational case whererot Kα = 0. Recall the main results we
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obtained in this case: after a change of variables, system((4),(12)) takes the form

∂

∂t

(

∂G

∂σα

)

− div

(

∂

∂σα

( 2
∑

β=1

σβ jβ

) )

= 0, (19)

∂

∂t

(

∂G

∂jα

)

− div

(

∂

∂jα

( 2
∑

β=1

σβ jβ

) )

= 0. (20)

where

G(σ1, σ2, j1, j2) L(ρ1, ρ2, j1, j2) −
2

∑

α=1

σα ρα, with σα =
∂L

∂ρα

The function G is a partial Legendre transformation ofL (ρ1, ρ2, j1, j2) with
respect to the variablesρα:

∂G

∂σα

= − ρα,
∂G

∂jα
= K∗

α,

and the system (19), (20) can be rewritten in a symmetric form[15, 16, 17]

A
∂u

∂t
+ Bi ∂u

∂xi
= 0 , A = A∗, Bi = (Bi)∗, i = 1, 2, 3 (21)

where

u∗ = (σ1 , σ2 , j∗1, j∗2) , A =
∂2G

∂u2

and the matricesBi can be obtained from (19), (20). IfA is positive definite,
system (21) is hyperbolic. We proved in [7, 11] that the conditions

∂2W

∂w2
< 0 ,

∂2W

∂ρ2

1

> 0,
∂2W

∂ρ2

1

∂2W

∂ρ2

2

−

(

∂2W

∂ρ1∂ρ2

)

2

> 0 (22)

guarantee the hyperbolicity of our system for small relative velocity of phases. Due
to relation (3), the inequalities (22) mean the convexity ofthe internal energyU that
corresponds to a natural condition of stability. Finally, we established that the sta-
bility implies the hyperbolicity of the governing equations for small relative velocity
w, provided thatrotKα = 0 (condition always fulfilled for one-dimensional flows).
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continus,Journal de Ḿecanique, 1973,12, 235-275.

[13] Gavrilyuk, S. L., Shugrin, S.M., Media with equations of state that depends on
derivatives,J. Appl. Mech. Techn. Physics, 1996,37, 2, 177-189.

[14] Ruggeri, T., Relativistic extended thermodynamics in: A. Anile, Y. Choquet-
Bruhat (Eds),Relativistic Fluid Dynamics, Springer, Berlin, 1987.

11



[15] Godunov, S.K., An interesting class of quasilinear systems,Sov. Math. Dokl.,
1961,2 , 947-949.

[16] Friedrichs, K.O., Lax, P.D., Systems of conservation laws with a convex exten-
sion,Proc. Nat. Acad. Sci. U.S.A., 1971,68 , 1686-1688.

[17] Boillat, G., Non-linear hyperbolic fields and waves in:T. Ruggeri (Ed),Recent
Mathematical Methods in Nonlinear Wave Propagation, Springer, Berlin, 1996,
1-47.

Appendix A.

The definition of the Lagrangian coordinatesXα implies
∂Xα

∂t
+
∂Xα

∂x
uα = 0.

Taking the derivative with respect toεα at zero, we obtain the following equation :

∂δXα

∂t
+

∂δXα

∂x
uα +

∂Xα

∂x
δuα = 0, δuα (x, t) = − Fα

dα

dt
(δXα)

Equation (5) yields :

δρα (x, t) det Fα (x, t) + ρα δ (det Fα) =
∂ρα0

∂Xα

δXα (23)

Using the Euler-Jacobi identity,δ(det Fα) = det Fα (x, t) tr

(

F−1

α δFα

)

and δFα (x, t) = − Fα (x, t) δF−1 (x, t) Fα (x, t) , δF−1 (x, t) =
∂δXα

∂x
,

we deduce :

δ (det Fα )(x, t) = − det Fα tr

(

δF−1 Fα

)

= − det Fα tr

(

∂ δXα

∂Xα

)

. Or,

δ detFα = − det Fα divα(δXα) (24)

Substituting (24) into (23) we obtain :

δρα(x, t) = ρα divα(δXα) +
ρα

ρα0

∂ρα0

∂Xα

δXα =
divα(ρα0 δXα)

detFα

δsα (x, t) =
∂sα0

∂Xα

δXα
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Appendix B.

The proof of the Gibbs identity is obtained by summing the following algebraic iden-
tities a− f :
For dissipative terms,
a.

f⋆
1 u1 + f⋆

2 u2 − f⋆
1 u1 − f⋆

2 u2 ≡ 0

For the external potentialsΩα,
b.

∂

∂t
ραΩα + div (ραΩαuα) − ρα

∂Ωα

∂x
uα − BαΩα − ρα

∂Ωα

∂t
≡ 0

For the velocity fieldsuα,

c.
∂

∂t

(

1

2
ρα u2

α

)

+ div

(

ρα uα (u2

α −
1

2
u2

α)

)

−Bα

(

u2

α −
1

2
u2

α

)

−

(

ρα

dαu
⋆
α

dt
+ ρα u⋆

α

∂uα

∂x
− ρα

∂

∂x
(

1

2
u2

α)

)

uα ≡ 0

Let us introducei⋆ = −
∂W

∂w
. Then the expression,

∂U

∂t
≡

∂

∂t

(

W −
∂W

∂w
w

)

=
∂ i⋆

∂t
w +

2
∑

α=1

(

∂W

∂ρα

∂ρα

∂t
+ ρα θα

∂sα

∂t

)

and the three following identitiesd− f prove the formula.
d.

2
∑

α=1

∂W

∂ρα

∂ρα

∂t
+div

(

∂W

∂ρα

ρα uα

)

−ρα
∂

∂x

(

∂W

∂ρα

)

uα−
∂W

∂ρα

(

∂ρα

∂t
+ div (ρα uα)

)

≡ 0

e.
2

∑

α=1

ρα θα

∂sα

∂t
+ ρα θα

∂sα

∂x
uα − ρα θα

dαsα

dt
≡ 0

f.

∂i⋆

∂t
w +

2
∑

α=1

div

(

(−1)α
(

i⋆

ρα

uα

)

ραuα

)

−

(

ρα

dα

dt

(

(−1)α
i⋆

ρα

)

+ ρα(−1)α
i⋆

ρα

∂uα

∂x

)

uα

− (−1)α
(

i⋆

ρα

uα

) (

∂ρα

∂t
+ div (ρα uα)

)

≡ 0
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