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Surface effects in color superconducting strangelets and strange stars
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LUTH, Observatoire de Paris, CNRS, Université Paris Diderot, 5 place Jules Janssen, 92195 Meudon, France

Michael Urban
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Surface effects in strange-quark matter play an important role for certain observables which have
been proposed in order to identify strange stars, and color superconductivity can strongly modify
these effects. We study the surface of color superconducting strange-quark matter by solving the
Hartree-Fock-Bogoliubov equations for finite systems (“strangelets”) within the MIT bag model,
supplemented with a pairing interaction. Due to the bag-model boundary condition, the strange-
quark density is suppressed at the surface. This leads to a positive surface charge, concentrated in a
layer of ∼ 1 fm below the surface, even in the color-flavor locked (CFL) phase. However, since in the
CFL phase all quarks are paired, this positive charge is compensated by a negative charge, which
turns out to be situated in a layer of a few tens of fm below the surface, and the total charge of
CFL strangelets is zero. We also study the surface and curvature contributions to the total energy.
Due to the strong pairing, the energy as a function of the mass number is very well reproduced by
a liquid-drop type formula with curvature term.

PACS numbers: 21.65.Qr,12.39.Ba,26.60.-c

I. INTRODUCTION

From rather general arguments it is expected that at
low temperatures and high densities quark matter is in
a color superconducting state [1]. More recently [2, 3]
it has been suggested that the diquark pairing gaps for
quark matter at densities of several times nuclear mat-
ter saturation density could be of the order of ∼ 100
MeV. Since this could have important phenomenologi-
cal consequences in particular for the interior of compact
stars, this has triggered much work on color supercon-
ductivity in dense quark matter (for reviews, see, e.g.,
Ref. [4]). These investigations of the QCD phase di-
agram have revealed a very rich phase structure with
many different possible pairing patterns, depending on
external conditions such as, for instance, electrical neu-
trality or quark masses. The largest diquark pairing gaps
arise from scalar condensates, leading either to the two-
flavor (2SC) phase or to the color-flavor-locked (CFL)
phase [5, 6]. The latter pairing pattern involves strange
(s) quarks, in addition to the two light quark flavors, up
(u) and down (d).

If color superconducting quark matter exists in nature,
the most likely place to find it is the interior of com-
pact stars because matter is compressed there to densi-
ties much higher than nuclear matter saturation density.
However, it has been argued that strange-quark matter
(SQM) might be absolutely stable [7]. Under this hy-
pothesis, even pure strange stars should exist [8], i.e.,
stars entirely composed of SQM. Also small lumps of
SQM, called “strangelets,” might be stable. Because of
their low charge to baryon number ratio Z/A, strangelets
have been proposed to populate ultra high energy cosmic
rays [9].

In SQM without pairing, the density of strange quarks
is supposed to be smaller than that of light quarks be-

cause of their higher mass. Consequently, SQM and
strangelets are positively charged and the charge neutral-
ity of strange stars has to be achieved via the presence
of electrons. At the surface an atmosphere of electrons
forms [8] which can potentially be detected [10, 11] via
the emission of electron-positron pairs from an extremely
strong electric field at the surface.

Recently another possible picture of the surface of a
strange star has been proposed [12]: there could be a
“crust” composed of strangelets emerged in an electron
gas. Similar to an ordinary neutron star, there could be
an interface between the crust and the interior in form
of the famous “pasta phases.” Within this scenario the
electric field at the surface would be strongly reduced.
Obviously, surface effects for the strangelets play an im-
portant role for the description of this scenario. For in-
stance, there is a critical surface tension deciding whether
a homogeneous phase or the droplet phase is favored [13].
Another question for which surface effects should be con-
sidered is the formation of a strange star in a supernova
explosion. Before the explosion the original star contains
hadronic matter. During the formation of the star, nucle-
ation of strangelets sets in, leading then to a conversion
of the entire star to SQM. For the nucleation process the
properties of small strangelets are important.

Pairing tends to reduce the differences in density of dif-
ferent quark species. For bulk quark matter in the CFL
state, requiring color neutrality, all quarks are paired.
The densities are thus equal and CFL quark matter is
electrically neutral on its own, i.e. without any elec-
trons [14]. This would suggest dramatic changes in the
properties of strangelets and SQM inside compact stars.
For instance, the electrosphere at the surface of a strange
star could completely disappear. But, the presence of
the surface can modify this picture since it can lead to
a non-zero surface charge which remains even for large
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objects. For example, the boundary condition of the
MIT bag model suppresses the density of the massive
strange quarks at the surface, resulting in a positive sur-
face charge [15]. Within this scenario, the total charge
of a strangelet, following roughly Z ≈ 0.3A2/3, is drasti-
cally reduced with respect to “normal” strangelets. For
strange stars, this requires the presence of electrons [16].
However, pairing has not been treated self-consistently
in previous work (see, e.g., Ref. [15]). Within this pa-
per we will therefore reinvestigate finite-size strangelets
with pairing by considering quark matter in a color su-
perconducting spherical bag, solving the Hartree-Fock-
Bogoliubov (HFB) equations. We will show, in particu-
lar, that there exist CFL type solutions where all quarks
are paired and the total charge of the strangelet strictly
vanishes.

The outline of the paper is as follows. In section II we
will present our model for treating color superconduct-
ing quark matter in a finite volume. In section III we
will show numerical results. In section III A we discuss
the possibility of qualitatively different configurations. In
section III B we concentrate on the charge-density distri-
butions of the CFL like solutions. In section III C we
discuss a liquid-drop like mass formua for the CFL-like
solutions and calculate the surface tension. Finally, in
section IV we will summarize our results.

II. MODEL

Since it is not possible to describe strangelets or SQM
with a surface from first principles (QCD), we will use a
quark model which allows to describe finite-size objects.
For this purpose we will use here the simplest version of
the MIT bag model [17]. The MIT boundary condition
ensures that there is no particle flux across the surface
of the (spherical) bag with radius R and can be written,
for the quark field ψ, as

−ier · γψ = ψ|r=R . (1)

This boundary condition, Eq. (1), leads to a suppres-
sion of the wave functions of massive particles at the
surface. This means that the strange quark density will
a priori be suppressed at the surface with respect to the
light quark densities. We will work with quark masses
mu = md = 0 and ms = 120 MeV.

In order to include pairing, we will supplement the bag
model with a pairing interaction. Throughout this paper,
we will consider only scalar color antitriplet diquark con-
densation, i.e., condensates of the form

sAA′(x) = −〈ψ̄T (x)τAλA′ψ(x)〉 , (2)

where τA, λA′ represent SU(3) matrices in flavor and
color space, respectively. We follow the convention
that capital letters A,A′ indicate that we are restricting
{A,A′} to be antisymmetric, i.e., in terms of the Gell-
Mann matrices, {A,A′} ∈ {2, 5, 7}. By ψT we denote

the time-reversed conjugate of ψ,

ψT (x) = γ5Cψ̄
T (x) , (3)

with C being the charge conjugation matrix. In uniform
infinite matter and for an exact SU(3) flavor symmetry,
the CFL phase is characterized by nonzero values s22 =
s55 = s77, whereas the 2SC state has only s22 6= 0. If
we want to generalize this concept to a finite system, we
have to consider the possibility that the condensates can
be position dependent.

For simplicity we choose a pairing interaction of the
form

Lqq = H
∑

A,A′

(ψ̄iγ5τAλA′Cψ̄T )(ψTCiγ5τAλA′ψ) . (4)

This Lagrangian describes a four-point interaction with
a dimensionful coupling constant H . It corresponds to
a scalar quark-quark interaction in the color and flavor
antitriplet channel, needed for giving rise to the diquark
condensates sAA.

The HFB equations are obtained from the Lagrangian
by minimizing the energy in mean field approximation,
i.e., linearizing the interaction under the assumption of
nonzero values of the condensates sAA. For our problem,
the HFB equations read (for more details see Appendix B
and Ref. [18] where the “Dirac-Hartree-Bogoliubov” ap-
proximation was developped for finite nuclei):

(

h ∆
∆ −h

)(

Uα(r)
γ0Vα(r)

)

= ǫα

(

Uα(r)
γ0Vα(r)

)

, (5)

where h is the Dirac single-particle Hamiltonian, h =
−iα · ∇ + mfγ

0 − µfc. Here, mf denotes the mass for
quarks of flavor f ∈ {u, d, s} and µfc is the chemical po-
tential for flavor f and color c ∈ {r, g, b} (we will denote
the three colors by red, green, and blue). The spinors Uα

and Vα describe the particle- and hole-like components
of the quark fields, respectively [see Eq. (B1)]. In writing
Eq. (5) we implicitly assumed that the pairing field ∆ can
be chosen real, which is the case for the pairing pattern
we consider. It is related to the condensates, Eq. (2), by
the self-consistency condition

∆(r) =2H
∑

A=2,5,7

sAA(r)τAλA

=2H
∑

A=2,5,7

∑

β(ǫβ<0)

V̄β(r)τAλAUβ(r) . (6)

In practice, this expression is divergent and it is nec-
essary to introduce a cutoff in order to obtain a finite
result. Since in a finite system the levels are discrete, a
sharp cutoff would generate discontinuities as a function
of the system’s size. We therefore introduce a smooth
cutoff function f(p/Λ) (see Appendix C for details). In
the following discussion we will use Λ = 600 MeV. An-
other practical problem arises from antiparticle contri-
butions. However, since the chemical potentials µfc are
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large and positive and pairing involves mostly the states
near the Fermi surface, we assume that the antiparticle
contributions are not important and can be neglected.
We checked this approximation (analogous to the “no-sea
approximation” in nuclear physics [18]) in infinite mat-
ter and found that the effect of antiparticle states can be
absorbed in a readjustment of the coupling constant by
∼ 20 %.

The chemical potentials, µfc, are adjusted to achieve
color neutrality, i.e., equal numbers of quarks for each
color, and beta equlibrium. In an infinite homogeneous
system the condition for beta equilibrium gives just a
relation between the chemical potentials1

µdc = µsc = µuc + µe for all c . (7)

In a small system this is slightly different. First, even if
there are any electrons (i.e., if the strangelet is charged),
they are not localized inside the strangelet, but they form
a large cloud like in ordinary atoms and hence their che-
mical potential µe is approximately equal to the electron
mass and can be neglected. The second difference comes
from the fact that particle numbers are discontinuous
functions of the chemical potentials. The term beta equi-
librium should now be replaced by beta stability, which
means that the system does not gain energy by perform-
ing a beta decay, inverse beta decay, or electron capture,
i.e., transforming an up- into a down- or strange quark
or vice versa, accompanied by the corresponding leptons.
To achieve beta stability, we therefore compare the en-
ergies of adjacent strangelets with the same total quark
number, differing only in the number of up-, down-, and
strange quarks, respectively. Of course, in the case of
large particle numbers, the minimum energy configura-
tion fulfils approximately the condition (7).

Within the bag model, the quark pressure in the bag
is counterbalanced by the bag pressure B. Formally this
can be written as

dE

dV
= 0 , (8)

where E = Eq +BV is the total energy, Eq is the energy
of the quarks in the bag (including the interaction energy,
which in our case comes from the pairing interaction) and
V = 4πR3/3 is the volume of the bag. Eq. (8) determines
the radius of the strangelet for given bag pressure, inter-
action strength and particle number. We can get an idea
of the value of the bag pressure if we look at the stability
of bulk quark matter. Non-strange quark matter should
be energetically less favored than normal hadronic mat-
ter, whereas SQM should be stable if for some baryon
number A > Ac strangelets become stable and conse-
quently strange stars can exist. This means that we want
the energy per baryon of SQM to be less than 931 MeV,

1 Here we assume that neutrinos are not trapped, i.e., they can
freely leave the system

TABLE I: Values of the bag constants for different values
of the coupling constant H , resulting in color and electri-
cally neutral SQM with electrons in beta equilibrium with an
energy per baryon of E/A = 900 MeV. The corresponding
baryon densities ρB, electron densities ρe, and pairing gaps
in infinite matter are also displayed.

HΛ2 B1/4

(MeV)

ρB

(fm−3)

ρe

(fm−3)

∆2

(MeV)

∆5 = ∆7

(MeV)

0 152.03 0.329 7.3×10−6 0 0

1.5 152.44 0.339 9.7×10−5 27.7 0

1.75 153.97 0.367 0 35.1 34.5

2 156.26 0.395 0 50.6 49.7

2.25 159.46 0.427 0 67.2 66.0

2.5 163.46 0.463 0 84.6 83.1

the energy per baryon of the most stable nucleus, 57Fe.
On the other hand, the energy per baryon of non-strange
quark matter should be larger than the nucleon mass.
Without interaction the window for the values of the bag
constant is then 148 MeV < B1/4 < 157 MeV. These
values change as a function of the interaction strength
H . To better compare the results, we will readjust for
each coupling strength the bag constant in order to get
E/A = 900 MeV. The corresponding values are listed in
Table I, together with other properties of infinite mat-
ter. Non-strange quark matter is unstable with these pa-
rameter values. Note that for the weakest non-vanishing
coupling constant given in Table I, SQM is in the 2SC
phase and not in the CFL phase. For the larger cou-
pling constants, the CFL phase is preferred. Note that,
due to the mass difference of light and strange quarks,
the flavor SU(3) symmetry is not exact and the gap ∆2

is different from ∆5 and ∆7. However, since the CFL
phase is electrically neutral, and we have mu = md = 0,
the isospin SU(2) symmetry in the up- and down-quark
sector is exact and therefore ∆5 = ∆7.

In addition to the strong interaction, the quarks will
exhibit electromagnetic interactions which, due to their
long range, become in particular important for large ob-
jects. We will include only the direct (Hartree) term of
the Coulomb interaction, which is given by

A0(r) = e

∫

d3r′
ρch(r′)

|r − r′| , (9)

where ρch = (2ρu − ρd − ρs)/3 is the charge density (di-
vided by e), ρf being the number density of quarks of
flavor f .

It would be in the spirit of the bag model to include also
the gluon exchange in a perturbative way, i.e., as a first
approximation, in the same way as the photon. However,
this goes beyond the scope of the present paper and will
be postponed to a forthcoming publication.
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FIG. 1: Quark number density profiles of the strangelet A =
108, Z = 24 in the case of vanishing pairing interaction (free

quarks in a bag) and B1/4 = 152.03 MeV.

III. RESULTS

A. Different types of solutions

We will first discuss the qualitatively different con-
figurations we find. In small strangelets, the effect of
Coulomb interaction is in general very small, such that
the general features discussed within this section are not
modified if we include the Coulomb term. We will there-
fore present here for simplicity results switching off the
Coulomb interaction. Coulomb interaction will become
important when we discuss the charge density distribu-
tions of large objects in section III B.

Let us start by discussing a small strangelet (A = 108,
Z = 24) without any pairing interaction (HΛ2 = 0).
The quark numbers and other relevant information are
listed in Table II. As expected, due to the finite size of
the bag, the energy per baryon (E/A = 931.5 MeV) is
much higher than that of color neutral infinite matter
with µuc = µdc = µsc

2 (E/A = 899.5 MeV). This ef-
fect will be discussed in more detail in section III C. The
density profiles of light and strange quarks are shown in
Fig. 1. As expected, due to the boundary condition, the
strange-quark density is strongly suppressed at the sur-
face, contrary to the densities of the light quarks. For
comparison we mention that for the same value of the
bag constant, the densities in color neutral infinite mat-
ter with µuc = µdc = µsc are: ρu = ρd = 0.355 fm−3,
ρs = 0.274 fm−3. We see that not only the strange-
quark density, but also the densities of the light quarks
are quite different from these values and depend strongly
on r because of the existence of discrete levels in the bag.

Now we switch on the pairing interaction. In the case
of HΛ2 = 1.5, SQM is in the 2SC phase, i.e., only up

2 As discussed below Eq. (7), it is more appropriate to compare a
small strangelet with this kind of matter rather than with elec-
trically neutral matter with electrons in beta equilibrium.
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FIG. 2: Quark number density profiles of the strangelet A =
108, Z = 24 in the case of HΛ2 = 1.5 and B1/4 = 152.44
MeV.
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FIG. 3: Gap ∆2(r) of the strangelet A = 108, Z = 24 in the

case of HΛ2 = 1.5 and B1/4 = 152.44 MeV.

and down quarks of two colors (red and green in our no-
tation) are paired. This is also true in a finite strangelet.
Therefore it is clear that the strange-quark density pro-
file remains the same as without pairing. The oscilla-
tions of the densities of the light quarks, however, are
much weaker now than in the case without pairing, since
pairing washes out the occupation numbers. This can
be seen in Fig. 2. In this 2SC-like solution, only one of
the gaps, ∆2, is non-zero. Since ∆2 involves only the
wave functions of up and down quarks, which are not
suppressed at the surface, it extends up to the surface
of the bag, as shown in Fig. 3. As a function of r, it
is almost constant and quite close to the corresponding
value in infinite matter with µuc = µdc = µsc, which is
∆2 = 29.2 MeV.

If we increase the coupling constant to HΛ2 = 1.75, we
obtain three qualitatively different solutions which have
comparable energies. The most stable one is still of the
2SC type, although in infinite matter the CFL phase is
preferred. In this case, the strangelet still has Z = 24 and
the density profiles are almost identical to those shown
in Fig. 2. The main difference is that now the value of
the gap is larger.

In the two other solutions, also strange quarks partic-
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TABLE II: Parameters and properties of the strangelets discussed in section III A: B = bag constant, H = coupling constant
of the pairing interaction, A = baryon number, Z = charge, Nfc = number of quarks of flavor f and color c, E/A = energy
per baryon, R = radius of the bag, ∆A(0) = value of the gap at r = 0.

B1/4

(MeV)

HΛ2

(MeV)
A Z

(

Nur Nug Nub

Ndr Ndg Ndb

Nsr Nsg Nsb

)

E/A

(MeV)

R

(fm)

∆2(0)

(MeV)

∆5(0) = ∆7(0)

(MeV)

152.03 0 108 24
(

44 44 44

44 44 44

20 20 20

)

931.5 4.36 0 0

152.44 1.5 108 24
(

44 44 44

44 44 44

20 20 20

)

929.7 4.31 33.0 0

153.97 1.75 108 24
(

44 44 44

44 44 44

20 20 20

)

933.0 4.24 49.6 0

153.97 1.75 108 10
(

38 39 41

39 38 41

31 31 26

)

934.6 4.21 41.6 24.9

153.97 1.75 108 0
(

38 35 35

35 38 35

35 35 38

)

934.8 4.17 33.8 37.0
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FIG. 4: Density profiles of the strangelet A = 108, Z = 10 in
the case of HΛ2 = 1.75 and B1/4 = 153.97 MeV.

ipate in pairing (∆5 = ∆7 6= 0). These two solutions
have charge Z = 10 and Z = 0, respectively. Let us
first discuss the case Z = 10. In this case, there are a
couple of u and d quarks which remain unpaired. The
wave function of the unpaired level is mainly localized
near the surface of the bag, as can be seen in Fig. 4,
where the density profiles are shown. In the inner part,
the densities of up, down, and strange quarks are al-
most equal, while near the surface, where the strange
quark density is suppressed due to the boundary condi-
tion, there is an excess of up and down quarks. This
excess is due to the unpaired quarks. The fact that one
level of u and d quarks does not participate in pairing
means that the occupation number of this level is equal
to 1. At the same time, the corresponding level, i.e., with
the same quantum numbers j and κ (see Appendix A) of
the strange quarks has an occupation number equal to 0
(in the present case this level has j = 9/2, κ = −5). In a
certain sense this situation is analogous to the “breached
pairing” phase of infinite matter [19]. The charge Z is
equal to the degeneracy 2j+1 of the unpaired level. The
gaps ∆A as functions of r corresponding to this solution
are displayed in Fig. 5.
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FIG. 5: Gaps ∆A as functions of r for the strangelet A = 108,
Z = 10 in the case of HΛ2 = 1.75 and B1/4 = 153.97 MeV.

In the third solution, all quarks are paired. As a con-
sequence, the numbers of up, down, and strange quarks
are equal, and the total charge is Z = 0. This is analo-
gous to the CFL phase in the infinite system. Since the
strange quark density is suppressed near the surface, but
the number of strange quarks is equal to those of up and
down quarks, it is clear that the strange-quark density
must be larger than the up- and down-quark densities in
some other part of the system. This is indeed the case,
as can be seen in Fig. 6. We also see that the excess of
the light-quark densities over the strange-quark density
is reduced as compared with the case Z = 10 discussed
above (cf. Fig. 4). We will discuss the charge-density
distribution in detail in section III B. The gaps, shown
in Fig. 7, are much closer to the gaps in infinite matter
(cf. Table I) than in the case Z = 10.

For the larger values of the coupling constant we con-
sidered (HΛ2 =2, 2.25,2.5), it is always the CFL-type
solution (Z = 0) which has the lowest energy. We do not
show any figures because in all these cases the results are
analogous to those shown in Figs. 6 and 7, (just the va-
lues of the gaps change, they are close to those given in
Table I for infinite matter).
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FIG. 6: Density profiles of the strangelet A = 108, Z = 0 in
the case of HΛ2 = 1.75 and B1/4 = 153.97 MeV.
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FIG. 7: Gaps ∆A as functions of r for the strangelet A = 108,
Z = 0 in the case of HΛ2 = 1.75 and B1/4 = 153.97 MeV.

It should be mentioned that the fully paired solutions
with Z = 0 are very robust as soon as the coupling con-
stant is sufficiently large, i.e., we find this type of so-
lution for arbitrary numbers of quarks3. This solution
is in contrast to previous findings (see, e.g., Ref. [15]),
where it was supposed that the CFL matter should be
neutral in the bulk with just a thin positively charged
surface layer with an excess of up and down quarks be-
cause of the boundary condition. In fact, this idea cor-
responds roughly to our solution with unpaired up and
down quarks near the surface. This solution is, however,
very fragile and exists only for certain values of parame-
ters and mass numbers, since it requires the existence
of a suitable level of light and strange quarks near the
respective Fermi surfaces which can serve as unpaired
level. Nevertheless, even in the case of strong coupling
constants we encountered some exceptional cases where
this kind of solution is energetically favored over the fully
paired one.

3 If the number of quarks is odd, it it impossible to pair all quarks
and one or several state(s) should be “blocked” by the unpaired
quark(s). At present, we have not included this effect in our
calculation.

B. Charge density distribution

Within this section we will discuss the charge density
distributions for the different configurations mentioned in
the previous section. As expected, in all cases except the
2SC phase, pairing drastically reduces the total charge Z.
Because of surface effects, the local charge density does,
however, not vanish, even within the CFL-type solution
which has Z = 0. Due to the suppression of the strange-
quark wave function at the surface, a positively charged
surface layer remains with an extension of ∼ 1 fm, as has
already been pointed out in Ref. [15].

Within the configuration with some unpaired light
quarks at the surface, the total charge of the strangelet
results from this positive surface charge, the interior of
the strangelet has almost zero charge density. The to-
tal charge is here reduced compared with a strangelet
without pairing, for example the A = 108 strangelet has
Z = 10 within this paired configuration, whereas the
corresponding unpaired strangelet has Z = 24. A sys-
tematic study of the total charge of strangelets in this
configuration will not be discussed here since this con-
figuration is rather fragile with respect to the details of
the single-particle spectra and thus difficult to realize for
many different particle numbers.

Let us therefore concentrate on the CFL-type solution,
which exists for arbitrary particle numbers. Since all
quarks are paired, we have equal numbers of up-, down-,
and strange quarks such that the total charge of these
strangelets is zero. The positive surface charge is mainly
compensated by an excess of negative charge concen-
trated at around 1-3 fm below the surface. In addition,
neglecting Coulomb interaction, we find an almost homo-
geneously negatively charged interior. Since the surface
charge remains almost constant and the surface grows as
R2, whereas the volume grows as R3, we expect the den-
sity of the negatively charged interior to decrease roughly
as 1/R. This is indeed the case, at least as long as the
strangelet is not too large. Of course, one should ask,
what will be the effect of electromagnetic interactions
on this picture. Within our model, this concerns a pure
Coulomb interaction. We have, however, to keep in mind,
that in principle the mixing of the photon with one of the
gluons should be considered. Below we will briefly com-
ment on this issue.

In order to study the effect of the Coulomb interaction,
we consider the CFL-type solution for strangelets of dif-
ferent mass numbers A from A = 108 to A = 90000, for
one particular value of the coupling constant, HΛ2 = 2.
The direct (Hartree) term of the Coulomb interaction is
now included. In order to reduce the considerable nu-
merical effort, we use for the large strangelets (starting
from A = 15000) the condition (7) with µe = 0 (and as a
consequence, the quark numbers for each flavor and color
are not integers) instead of looking for the true energy
minimum with respect to beta decay. In addition, we do
not minimize the energy with respect to the radius, but
we simply estimate the volume of the bag by dividing the
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mass number A by the baryon density ρB bulk of infinite
matter. These two approximations are very accurate for
such large strangelets. Already in the case of A = 3000,
the quark numbers and the radius are very well repro-
duced within these approximations: the full minimiza-
tion results in quark numbers Nur = Ndg = Nsb = 1052,
Nug = Ndr = Nub = Nsr = Ndb = Nsg = 974, and
a radius R = 12.23 fm, while the approximations lead
to Nur = 1051.8, Ndg = 1051.7, Nsb = 1051.1, Nug =
Ndr = 973.8, Nub = Nsr = 974.4, Ndb = Nsg = 974.5,
and R = 12.19 fm.

Our results are shown in Figs. 8 and 9. We see that the
Coulomb interaction pushes the negative charge towards
the surface. Let us quantify this effect. If the system was
semi-infinite with a plane surface at z = 0 (the system
being situated at z < 0), we would expect the charge
density to go to zero exponentially if one goes away from
the surface. This can be seen as follows: We know that
in the medium with Debye screening the (static) Poisson
equation for the Coulomb potential is replaced by

(

∇
2 − 1

λ2

)

A0 = 0 , (10)

where λ is the screening length. Taking the Laplacian of
this equation, we see that the charge density obeys the
analogous equation

(

∇
2 − 1

λ2

)

ρch = 0 . (11)

The solution of this equation which goes to zero for
z → −∞ reads ρch ∝ exp(z/λ). Near the surface, of
course, there would be deviations from this behavior due
to Friedel-like oscillations. Generalizing this idea to a
spherical system and solving Eq. (11), we expect that
the behavior of the charge density, far away from the
surface, will be

ρch ∝ sinh(r/λ)

r/λ
. (12)

Fitting λ to our solutions, we find that the fitted value
for λ is indeed approximately the same for all large
strangelets (A ≥ 15000), namely λ = 7.71 . . .7.76 fm).
This value is of the same order of magnitude as the
photon Debye mass calculated from perturbative QCD,
which reads, for the CFL phase, m2

D,γγ = 1/λ2 =

4 21−8 ln 2
54 e2Nfµ

2/(6π2) [20]. For typical values of the
chemical potential this gives λ ≈ 10 fm.

In principle, in color superconducting phases, the pho-
ton can mix with one of the gluons. In the CFL phase,
in bulk matter, one linear combination of photon and
gluon stays massless. This means that at large distances
d ≫ 1/∆, i.e., at distances much larger than the size of
the Cooper pairs, the Debye screening for the “rotated”
photon [21, 22] does not work, since the Cooper pairs are

neutral with respect to the rotated charge Q̃. Within the
simple model we use for the moment, there are no gluons,

-0.02
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FIG. 8: Charge density profiles of the fully paired (HΛ2 = 2)
strangelets A =108, 3000, 15000, 45000, and 90000 (from left
to right).
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FIG. 9: Zoom into the part of Fig. 8 where the charge density
behaves as given by Eq. (12). For a better visibility the charge
densities have been divided by their respective values at r = 0.

such that the mixing cannot be studied. It could be taken
into account, as mentioned at the end of Section II, by
including the gluons in the same way as the photon, i.e.,
on the Hartree level. We expect that if we included the
gluons in this way, we would find an even faster decrease
of the charge if we go away from the surface, since in
addition to the electromagnetic force we would have the
color forces, which try to push the color charges to the
surface, and in the CFL phase color neutrality goes hand
in hand with electrical neutrality. Therefore, this is not
in contradiction with the fact that the rotated photon is
massless, but it is just a consequence of the fact that the
combination of photon and gluon which is orthogonal to
the rotated photon is massive (in fact, it is even heavier
than the other gluons [22]). This means that in a large
object, like a strange star, all the negative charge will be
concentrated within a layer of a thickness of at most a
few tens of fm below the surface. However, before draw-
ing any firm conclusion, one should study this problem
in more detail. This will be left for future work.
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TABLE III: Fitted liquid-drop parameters for the CFL-type
neutral strangelets (Z = 0). The surface tension σ corre-
sponding to the fitted value of aS is also given.

B1/4

(MeV)

HΛ2

(MeV)

aS

(MeV)

aC

(MeV)

σ

(MeV/fm2)

156.26 2 107 289 11.9

159.46 2.25 109 297 12.8

163.46 2.5 112 306 13.9

C. Liquid-drop type expansion

The advantage of the present approach is that finite
size effects are correctly implemented. For large num-
bers of particles, this becomes, however, rather cumber-
some and asymptotic expansions such as a liquid-drop
type approach can be very useful. We will discuss here
the determination of the parameters, such as the surface
tension, of a liquid-drop type formula for the energy per
baryon as a function of the baryon number A, including
a surface and a curvature term,

E

A
=

(

E

A

)

bulk

+
aS

A1/3
+

aC

A2/3
, (13)

from our results.
As explained below Eq. (7), (E/A)bulk should be the

energy per baryon of infinite matter with µe = 0 rather
than that of beta stable infinite matter. However, as
in the preceding section, we restrict our discussion to
the CFL-type solution, such that this distinction is ir-
relevant. Hence, for our chosen parameter sets, we have
(E/A)bulk = 900 MeV. Since for the neutral strangelets
the Coulomb interaction has only a negligible effect on
the total energies, it will be neglected in this section. The
result of the fitted coefficients aS and aC for the different
parameter sets are listed in Table III. As an example, in
order to show the accuracy of the asymptotic expansion,
we display in Fig. 10 some results for the energy per
baryon together with the liquid-drop formula, Eq. (13).
The dashed line corresponds to the liquid-drop formula
without the curvature term (aC = 0). From this figure it
becomes clear that the liquid-drop formula with curva-
ture term works extremely well, much better than in the
case without pairing [23]. The reason is that shell effects
are completely washed out because of the strong pairing
(note that, contrary to the situation in ordinary nuclei,
the pairing gap is larger than the spacing between neigh-
boring shells). Another interesting observation is that
the curvature term is very important, even for rather
large mass numbers A.

The coefficient aS is closely related to a very interesting
quantity, namely the surface tension. As explained in
Ref. [24], the surface tension is obtained as

σ =
ES

4πR2
0

, (14)

 900
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 940

 950

 0  1000  2000  3000  4000  5000

E
/A

   
(M

eV
)

A

FIG. 10: Energy per baryon as a function of baryon number
for HΛ2 = 2 and B1/4 = 156.26 MeV. The exact results are
indicated by the crosses, the fitted liquid-drop formula by the
solid line. The dashed line corresponds to the liquid-drop
formula without the curvature term.

where

ES = E −A

(

E

A

)

bulk

(15)

is the energy excess due to the surface and R0 is an ef-
fective radius defined by

A = ρB bulk

4πR3
0

3
, (16)

which is actually very close to R for not too small
strangelets. On the one hand, using the liquid-drop for-
mula (13) for E in Eq. (14), one would obtain a surface
tension which depends on A because of the curvature
term. Therefore it is clear that one has to use Eq. (14)
in the limit A→ ∞, where the curvature term vanishes,
i.e.,

σ =
aSρ

2/3
B bulk

(36π)1/3
. (17)

The corresponding numbers are given in the last column
of Table III. They are of the same order of magnitude
as the estimate σ ∼ (70 MeV)3 = 8.8 MeV/fm2 for SQM
without color superconductivity [25]. On the other hand,
the fact that the curvature term is very strong implies
that the knowledge of the surface tension alone might not
be sufficient in order to determine, e.g., the possibility of
mixed phases, the size of droplets, etc.

IV. SUMMARY

Within this paper we have investigated finite lumps
of color superconducting strange quark matter. To that
end we have solved the HFB equations. This allows to
correctly include finite size effects for pairing, too.

Our main result is that, although the strange quark
density is suppressed at the surface, the total charge of
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the CFL type solution, as in bulk matter, is zero due to
pairing. Including Coulomb effects, the positive surface
charge on a length of approximately 1 fm is compen-
sated by a negatively charged layer below the surface on
a length scale of a few tens of fm. (This number will prob-
ably be strongly decreased if the gluons are included in a
perturbative way similar to the photon). It remains to be
investigated in which the way this changes the traditional
picture of the surface of a strange star and the detectabil-
ity of smaller strangelets in current experiments such as
AMS-02 or LSSS [26].

We also compared our results for the energy per baryon
of finite strangelets with a liquid-drop like formula. It
turned out that, due to pairing, shell effects are strongly
suppressed and the liquid-drop like formula is very pre-
cise. However, the curvature term is very large and its
inclusion is crucial to reproduce the correct energies.
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APPENDIX A: SPINORS IN A SPHERICAL

CAVITY

In this appendix we recall basic properties of free Dirac
spinors in a spherical cavity (see, e.g., Ref. [27]). They
can be written as

ψfjκmn(r) =

(

gfjκn(r)Ym
jl (Ω)

i ffjκn(r)Ym
jl′ (Ω)

)

, (A1)

where Y are spinor spherical harmonics [28]. We have
the following relations between the angular momentum
quantum numbers

κ = j +
1

2
→ l = j +

1

2
, l′ = j − 1

2

κ = −(j +
1

2
) → l = j − 1

2
, l′ = j +

1

2
. (A2)

For the solutions of the free Dirac equation, the functions
f and g are given as follows in terms of the spherical

Bessel functions (ξfjκn =
√

p2
fjκn +m2

f )

gfjκn(r) =Cfjκn jl(pfjκnr)

ffjκn(r) =Cfjκnsgn(κn)

√

ξfjκn −mf

ξfjκn +mf
jl′(pfjκnr) ,

(A3)

where the Cfjκn are normalisation coefficients which can
be determined from the normalization

∫ R

0

drr2
∫

dΩψ†(r)ψ(r) = 1 . (A4)

The momenta pfjκn are obtained from the boundary con-
dition. The boundary condition of the MIT bag model,
Eq. (1), translates into the following equation

ffjκn(R) = −gfjκn(R) , (A5)

or, explicitly,

jl(pfjκnR) = sgn(κn)

√

ξfjκn −mf

ξfjκn +mf
jl′(pfjκnR) , (A6)

where we number by n > 0 the positive-energy (particle)
states and by n < 0 the negative-energy (antiparticle)
states. In practice, we will keep only the states with
positive eigenvalues and neglect the antiparticle contri-
butions. The latter can approximately be absorbed into
a redefintion of the coupling constant.

APPENDIX B: HFB EQUATIONS

In this appendix we will give some details about the
HFB equations. Their derivation is analogous to the
derivation of the Dirac-Hartree-Bogoliubov equations in
finite nuclei, which is given in Ref. [18].

The HFB equations are derived from the Lagrangian
by minimizing the energy in the mean field approxima-
tion, i.e., linearizing the interaction under the assump-
tion of nonzero expectation values for the condensates
sAA′(x), Eq. (2). Due to the inhomogeneities of a fi-
nite system, the Green’s functions become nondiagonal
in momentum. In the stationary case, it is convenient to
work in r space for the spacial coordinates but to perform
the Fourier transformation for the time variable. Then
the Green’s functions take the following general form in
Nambu-Gorkov space:

S(x,y;ω) =

(

G(x,y;ω) F (x,y;ω)

F̃ (x,y;ω) G̃(x,y;ω)

)

=
∑

α(ǫα>0)

(

Uα(x)

Vα(x)

)

1

ω − ǫα + iη
(Ūα(y), V̄α(y))

+
∑

β(ǫβ<0)

(

Uβ(x)

Vβ(x)

)

1

ω + ǫβ + iη
(Ūβ(y), V̄β(y)) ,

where G, G̃ and F, F̃ are normal and anomal Green’s
functions, respectively. The spinors Uα,β and Vα,β corre-
spond to the particle- and hole-like components, respec-
tively.

All the necessary expectation values in mean-field ap-
proximation (like densities, particle numbers, total en-
ergy, etc.) can easily be expressed in terms of the U and
V functions. To that end, it is sufficient to express the
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expectation values in terms of the Green’s functions, e.g.

sAA = −〈ψ̄T (x)τAλAψ(x)〉
= i lim

t→0+
trF (0, r; t, r)τAλA

= −
∑

β,ǫβ<0

V̄β(r)τAλAUβ(r) (B1)

By minimizing the total energy with respect to the U
and V functions, one obtains the HFB equations, [see
Eq. (5)]:

HWα = ǫαWα , (B2)

with Wα = (Uα, Vα)T .
For homogeneous infinite systems the matrix elements

of H are diagonal in momentum space and solutions to
the HFB equations are known for many cases. For finite
systems, in general, these equations are solved numeri-
cally by diagonalizing the matrix H in some convieniently
chosen basis. Here, we are working in the basis which di-
agonalizes hfc (at least as long as the Coulomb interac-
tion is neglected), see Appendix A, and the eigenvectors
Uα(r) and Vα(r) are developped within this basis.

The matrix elements of the pairing fields ∆A(r) (and
of the Coulomb field eA0(r), if it is included) are com-
puted in the usual way. For illustration, we give here
the explicit expression for the matrix elements of ∆2(r),
which connects up (u) and down (d) quarks, in the basis
described in Appendix A:

(∆2)jκnn′ =

∫

d3r ψ†
ujκmn(r)∆2(r)ψdjκmn′ (r)

=

∫

drr2∆2(r)(gujκn(r)gdjκn′ (r)

+ fujκn(r)fdjκn′ (r)) . (B3)

Note that, due to spherical symmetry, all matrices are
diagonal in j and κ and proportional to the unit matrix
with respect to m. The function ∆2(r) is related to s22(r)
via the gap equation, Eq. 6, i.e., it depends on the U and
V functions. We therefore have to solve a self-consistency
problem.

In spite of the spherical symmetry, the matrix to be
diagonalized is still huge, limiting the number of particles
which can be calculated with reasonable computational
effort. It is therefore important to reduce the size of
the actual matrix to be diagonalized. By means of an
orthogonal transformation

H̃ = SHST , W̃ = SW, SST = 1 (B4)

in color, flavor, and Nambu-Gorkov space, the matrix
can actually be block-diagonalized (see, e.g., Ref. [29])

containing seven blocks. Six of them, H̃B,...G, are 2 ×
2 matrices in Nambu-Gorkov space, describing mutual
pairing of two particles, such as for example red down
quarks (dr) with green up quarks (ug):

H̃B =

(

hug ∆2

∆2 −hdr

)

, (B5)

where hfc is the single particle Hamiltonian for flavor
f and color c. Since we have in addition the pairwise
relations, H̃B,C,D = −H̃E,F,G, only three of these 2 × 2
matrices have to be diagonalized in practice. The seventh
matrix, H̃A, is 6×6 in Nambu Gorkov space and describes
pairing between red up, green down and blue strange
quarks

H̃A =



















hur 0 0 0 ∆2 ∆5

0 hdg 0 ∆2 0 ∆7

0 0 hsb ∆5 ∆7 0

0 ∆2 ∆5 −hur 0 0

∆2 0 ∆7 0 −hdg 0

∆5 ∆7 0 0 0 −hsb



















. (B6)

APPENDIX C: CUTOFF FOR THE GAP

EQUATION

As mentioned in section II, the divergent gap equation
is regularized with the help of a smooth cutoff function

f(p/Λ) =
1

1 + c1 exp(c2a(p/Λ − 1))
, (C1)

where c1 =
√

2 − 1, c2 = 1/(4 − 2
√

2), and a = 22.58
have been chosen such that f2(p/Λ) approximates the
cutoff function g(p/Λ) used in Ref. [30], but our function
has the advantage to fall off more rapidly at very high
momenta, which allows us to truncate the basis at a lower
energy.

This function is used in the following symmetric way.
First, when calculating sAA(r), and second, when calcu-
lating the matrix elements of ∆A(r) in the basis of the
spinors defined in Appendix A. It should be noted that
the diagonalization of the HFB matrix does not directly
provide us with the eigenfunctions Uα(r) and Vα(r), but
with their respective expansion coefficients in the basis
of the spinors defined in Appendix A. When calculating
sAA(r) according to Eq. (6), the coefficients have to be
multiplied with the corresponding basis functions, and in
this step the factor f(pfjκn/Λ) is attached to each basis
function. Second, when calculating the matrix elements
of the gap ∆A, we again attach a factor f(pfjκn/Λ) to
each basis function.
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470, 189 (1999); T. Schäfer, Nucl. Phys. B 575, 269
(2000); N.J. Evans, J. Hormuzdiar, S.D.H. Hsu, and M.
Schwetz, Nucl. Phys. B 581, 391 (2000).

[7] A.R. Bodmer, Phys. Rev. D 4, 1601 (1971); E. Witten,
Phys. Rev. D30, 272 (1984).

[8] C. Alcock, E. Farhi, and A. Olinto, Astrophys. J. 310,
261 (1986); P. Haensel, J.L. Zdunik, and R. Schaeffer,
Astron. Astrophys. 160, 121 (1986).

[9] J. Madsen and J.M. Larsen, Phys. Rev. Lett. 90, 121102
(2003); M. Rybczynski, Z. Wlodarczyk, and G. Wilk,
Nucl. Phys. Proc. Suppl. 151, 341 (2006).

[10] V.V. Usov, Phys. Rev. Lett. 80, 230 (1998).
[11] D. Page and V.V. Usov, Phys. Rev. Lett.89, 131101

(2002).

[12] P. Jaikumar, S. Reddy and A.W. Steiner, Phys. Rev.
Lett. 96,041101 (2006).

[13] M.G. Alford, K. Rajagopal, S. Reddy, and A.W. Steiner,
Phys. Rev. D 73, 114016 (2006).

[14] K. Rajagopal and F. Wilczek, Phys. Rev. Lett. 86, 3492
(2001).

[15] J. Madsen, Phys. Rev. Lett. 87, 172003 (2001).
[16] V.V. Usov, Phys. Rev. D 70, 067301 (2004).
[17] A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, and V.F.

Weisskopf, Phys. Rev. D 9, 3471 (1974).
[18] B.V. Carlson and D. Hirata, Phys. Rev. C 62, 054310

(2000).
[19] W.V. Liu and F. Wilczek, Phys. Rev. Lett. 90, 047002

(2003).
[20] A. Schmitt, Q. Wang and D.H. Rischke, Phys. Rev. D

69, 094017 (2004).
[21] M.G. Alford, J. Berges, and K. Rajagopal, Nucl. Phys.

B 571, 269 (2000)
[22] D.F. Litim and C. Manuel, Phys. Rev. D 64, 094013

(2001).
[23] E.P. Gilson and R.L. Jaffe, Phys. Rev. Lett. 71, 332

(1993).
[24] B.C. Parija, Phys. Rev. C 48, 2483 (1993).
[25] E. Farhi and R.L. Jaffe, Phys. Rev. D 30, 2379 (1984).
[26] J. Madsen, arXiv:astro-ph/0612784 (2006).
[27] R.K. Bhaduri, Models of the Nucleon: From Quarks to

Soliton (Addison-Wesley, Redwood City 1988)
[28] D.A. Varshalovich, A.N. Moskalev, and V.K. Kherson-

skii, Quantum Theory of Angular Momentum (World Sci-
entific, Singapore 1988).

[29] M.G. Alford, J. Berges, and K. Rajagopal, Nucl. Phys.
B 558, 219 (1999).

[30] S. Yasui and A. Hosaka, Phys. Rev. D 74, 054036 (2006).


