
EUCLIDEAN DYNAMICS

BRIGITTE VALLÉE

Abstract. We study a general class of Euclidean algorithms which compute
the greatest common divisor [gcd], and we perform probabilistic analyses of
their main parameters. We view an algorithm as a dynamical system restricted
to rational inputs, and combine tools imported from dynamics, such as transfer
operators, with various tools of analytic combinatorics: generating functions,
Dirichlet series, Tauberian theorems, Perron’s formula, quasi-powers theorems.
Such dynamical analyses can be used to perform the average-case analysis of
algorithms, but also (dynamical) analysis in distribution.

1. Introduction

Computing Greatest Common Divisor [Gcd] –on integers or polynomials– is a cen-
tral problem in computer algebra, and all the gcd algorithms are based on main
principles due to Euclid. See for instance [113] or [110] for a description of use of
Gcd Algorithms in Computer Algebra. According to Knuth [56], “we might call
Euclid’s method the granddaddy of all algorithms, because it is the oldest nontriv-
ial algorithm that has survived to the present day.” Indeed, Euclid’s algorithm is
currently a basic building block of computer algebra systems and multi-precision
arithmetic libraries, and, in many such applications, most of the time is spent in
computing gcd’s. However, the Euclidean algorithms have not yet been completely
analyzed, and it is the purpose of this paper to provide such an analysis.

1.1. Various divisions. All the basic Gcd algorithms can be described as a se-
quence of divisions, and the Gcd Algorithms mainly depend on what kind of division
is used.

On polynomials, there exist two possible divisions: the first one is directed by
leading monomials (i.e., monomials of highest degree) and deals with decreasing
degrees. The second one is directed by monomials of lowest degree and deals with
increasing valuations. In fact, the probabilistic behaviours of the two associated
gcd algorithms are similar, since the execution of the first algorithm on the pair
(u, v) coincides with the execution of the second algorithm on the mirror pair (u, v)
formed with the mirrors u, v of u, v.

On integer numbers, there exist many different divisions: on a pair (u, v) of integers,
a division performs a decomposition of the form v = m·u+r, with a quotient m and
a remainder r. Here, all the integers are written in base 2, and we work with their
Most Significant Bits (MSB’s) [i.e., the bits on the left of the binary expansion] or
with their Least Significant Bits (LSB’s) [i.e., the bits on the right of the binary
expansion]. The choice of pair (m, r) can be directed by the MSB’s of the integers
u, v or by their LSB’s; for instance, the usual division, which is directed by the
MSB’s, aims to combine v with a multiple of u, of the form m · u in order to create
zeroes on the MSB’s [i.e., on the left]: then, the remainder r has a smaller absolute
value than u. On the contrary, the LSB division is directed by the Least Significant
Bits: it aims to combine v with a multiple of u, of the form m′ ·u in order to create

Date: October 17, 2005.

1

2 BRIGITTE VALLÉE

zeroes on the LSB’s [i.e., on the right]; then, the remainder r has more zeroes on
the right than u: the 2–adic absolute value of r is smaller than the 2–adic absolute
value of u. Here, what we call a “direction” or a “decision” is related to the choice
of the pair (m, r). However, after this choice, all the computations [multiplication
of u by m, subtraction r := v − m · u are the usual ones, and are performed, as
usual, from the right to the left. The carry propagates also from the right to the
left. This explains that all these algorithms have not the same behaviour, because
of the carry propagation, which may play a different rôle in these various divisions.
In particular, the mirror property of polynomials is lost for integers.

These integer divisions, and thus the Euclidean algorithms based on these divisions,
can be gathered into four groups, or four types:

The MSB Group [or Type 1] contains all the divisions which choose the quotient ac-
cording to the MSB’s : it is the analogue, for the numbers, of the decreasing–degree
algorithms for polynomials. It contains of course the (Standard) Euclid algorithm,
but also its possible variants, according to the position of remainder r [Centered
division, By-Excess division, α–division, as described in [19]], or the parity of quo-
tient m [Odd division, Even division]. Finally the Subtractive Algorithm does not
perform any divisions, only subtractions. [See Figure 1].

It is also interesting to consider divisions which choose the quotient according to
the LSB’s. The LSB Group [or Type 4], is the integer analogue to increasing–
valuation gcd algorithm for polynomials. Such a gcd algorithm is described in [98]
for instance. In fact, there are two LSB divisions, the Plain LSB division and the
Centered LSB division, according to the position of the quotient [non centered or
centered].

There exist also two mixed groups which operate a sort of transition between these
two extremal groups; the mixed divisions are directed by both MSB’s and LSB’s,
in order to create zeroes both on the right and on the left. However, the dominant
rôle can be played by the MSB’s or LSB’s.
For some divisions, the decision is mostly made by the MSB’s, and the LSB’s play
only an auxilliary rôle; these divisions form the MLSB Group [or Type 2] which
contain the so–called pseudo–Euclidean Algorithms, introduced by Shallit [88] and
Vallée [106], [107]. Roughly speaking, a pseudo–division is just a MSB division
where powers of two are removed from the remainder, after the division: This
means that the pair (m, r) is chosen according to the MSB’s, and, after this, there
is a binary shift a on r directed by the LSB’s which creates an odd pseudo-remainder
s which satisfies r := 2a · s. Pseudo–divisions give rise to algorithms which only
deal with odd numbers, and they are well–adapted to computing the Jacobi symbol
[52] [61], for instance [the Quadratic Reciprocity law being only true for a pair of
odd integers].
For the Binary division of Stein [96] described in [56] and the Plus-Minus division,
of Brent and Kung [15], the main decision is made by the LSB’s; the MSB’s play
only an auxilliary rôle, and only decide when the exchange has to be done: these
two algorithms form the LMSB Group [or Type 3]

Finally, polynomial divisions form their own type, [Type 0], which contains the two
divisions previously described.

1.2. A general framework for gcd algorithms. Any gcd algorithm performs
a sequence of steps. Each step is formed with a division, (possible) binary shifts
(uniquely for numbers), and (possible) sign changings. The total operation per-
formed in each step is called a division step. Such a step is followed by an exchange.
We will see in the following that the probabilistic behaviour of a gcd algorithm heav-
ily depends on the division-step which will be used. For the moment, in this Section,

EUCLIDEAN DYNAMICS 3

we describe the general framework for all the gcd algorithms which are studied in
this paper.

For all types, each division–step can be written as

u = 2a · u′, v = m · u′ + ǫ · 2b · r′.
It performs (before the next division) a first binary shift equal to some integer a ≥ 0
on divisor u, then the division itself, which produces a remainder shifted by a shift
equal to some integer b ≥ 0. Remark that the shift b is produced by the division
itself. This remainder has also a sign ǫ = ±1. Here u, v,m, u′, r′ are integers1. The
division uses a “digit” d = (m, ǫ, a, b), and changes the old pair (u, v) into the new
pair (r′, u′) and can be written as a matrix transformation

(1.1)

(
u
v

)
= M[d]

(
r′

u′

)
, M[d] :=

(
0 2a

ǫ 2b m

)
.

For Types 0 and 1, there are no binary shifts to be used, and the two exponents a
and b equal 0. For Type 2, the shift a is possibly not zero, while b equals 0. For
Type 3, a equals 0, while the shift b is always non zero. Finally, for Type 4, the
two exponents a and b are equal and non zero.
Instead of “integer” pairs (u, v), (r′, u′), we consider “rationals” [the old rational
x = u/v, and the new rational y = r′/u′], and we wish to describe the relation
induced by the division on x, y: For each digit d = (m, ǫ, a, b), there exists a linear
fractional transformation (LFT) h[d], associated to the matrix M[d] of Eqn (1.1) for
which

x = h[d](y) with h[d](y) =
2a

m+ ǫ 2by
.

Remark that the absolute value | deth[d]| of the determinant of the LFT h[d] is

equal to 2a+b and thus involves the total number a+b of binary shifts that are used
in the division-step.

Any execution of a gcd algorithm can be described as follows. On the input pair
(u, v) = (u1, u0), it will be of the form

(1.2)

u1 := 2−a1u1, u0 = m1 u1 + ǫ1 2b1 u2,
u2 := 2−a2u2, u1 = m2 u2 + ǫ2 2b2 u3,

. . . , . . .
ui := 2−aiui, ui−1 = mi ui + ǫi 2biui+1

. . . , . . .

,

and uses the sequence of digits di := (mi, ǫi, ai, bi). It stops at the p–th iteration
with up+1 = η · up. Then gcd(u, v) = up. Very often, the final value η equals 0,
but, in some cases, η may be equal to 1.

On an input (u, v) whose gcd is d, the execution (1.2) creates a matrix product of
the form

(1.3)

(
u
v

)
= M1 ·M2 · . . . ·Mp

(
ηd
d

)
= M

(
ηd
d

)
with Mi := M[di],

and also a continued fraction expansion (CFE) of the form

(1.4)
u

v
=

e0

m1 +
e1

m2 +
e2

. . . +
ep−1

mp + ep η

= h1 ◦ h2 ◦ . . . hp(η) = h(η).

1“integer” with quote has here a generic meaning; it denotes integer (numbers) or polynomials
while “rationals” denote rational numbers or rational fractions.

4 BRIGITTE VALLÉE

Alg., X. η Division Set of LFT’s Conditions on J or F .

(G) [0, 1], 0
v = mu+ r

0 ≤ r < u
G = {

1

m+ x
, m ≥ 1} F = G

T
{m ≥ 2}

(M) [0, 1], 1
v = mu− r

0 ≤ r < u
M = {

1

m− x
, m ≥ 2} F = M

T
{m ≥ 3}

(K) [0, 1/2], 0

v = mu+ ǫr

ǫ = ±1, (m, ǫ) ≥ (2,+1)

0 ≤ r < u
2

K = {
1

m+ ǫx
, ǫ = ±1,

(m, ǫ) ≥ (2,+1)}
F = K

T
{ǫ = 1}

(E) [0, 1], 1
v = mu+ ǫr

m even, ǫ = ±1, 0 < r < u
E = {

1

m + ǫx
,m even, ǫ = ±1} F = E

T
{ǫ = 1}

(O) [0, 1], 0
v = mu+ ǫr

m odd, ǫ = ±1, 0 ≤ r < u

O = {
1

m + ǫx
,m odd, ǫ = ±1,

(m, ǫ) ≥ (1, 1)}
F = O

T
{m ≥ 3, ǫ = 1}

(T) [0, 1], 0 v = u+ r T = {q =
1

1 + x
, p =

x

1 + x
} Finishes with pq

Figure 1. The six Euclidean algorithms of the MSB Class.

Here, the LFT’s hi are defined as hi := h[di] and the numerators ei which appear
in the CFE are defined as

(1.5) ei := ǫi · 2bi+ai+1 , with ǫ0 = 1, b0 = ap+1 = 0.

Remark that h in (1.4) is a LFT, and M in (1.3) is an integer matrix of the form

h(x) =
αx+ β

γx+ δ
, M =

(
α β
γ δ

)
with α, β, γ, δ coprime integers.

When the algorithm performs p iterations, it gives rise to a continued fraction of
depth p [the depth of a continued fraction equals its number of levels].

For each algorithm, we define a pair (u, v) to be valid if the rational u/v satisfies
the same conditions as the ouput rational r′/u′ created by the division. We choose
as the set of inputs of the algorithm, the set of valid pairs. In this way, the first
step of the algorithm will resemble any other step of the algorithm. Quite often,
each particular algorithm defines a precise subset H of LFT’s which it uses at each
iteration [except perhaps for the first and the final steps where it may use some
slightly different sets J and F]. See Figure 1 for examples of such a situation for
the MSB Class [Type 1]. Then, Relation (1.4) [summarized by u/v = h(η)] defines
a bijection between the set Ω of valid coprime inputs (u, v) of the algorithm and
the set of LFT’s I · H⋆ · F where H⋆ denotes the semi-group ∪k≥0Hk.

For Algorithms of Type 2, the valid inputs are restricted to be odd. Since, for this
type, the shift b is zero, there is a relation between parity of the quotient mi at
step i and the exponent ai+1 at the beginning of the i + 1-th step: if mi is odd,
then the remainder is even, and thus ai+1 satisfies ai+1 ≥ 1; if mi is even, then the
remainder is odd, and thus ai+1 equals 0. We then consider two states: the 0–state,
which means “the previous quotient of (v, u) is even” (or equivalently the previous
remainder is odd), i.e., the present shift a equals 0; the 1–state, which means “the
previous quotient of (v, u) is odd” (or equivalently the previous remainder is even),
i.e., the present shift a satisfies a ≥ 1. Then, the processus is of a Markovian type,
and it uses four different sets H<i|j>, where H<i|j> brings rationals from state i

EUCLIDEAN DYNAMICS 5

to state j. The initial state is always the 0–state and the final state is always the
1–state. See Figure 14 for instances of such a situation.

1.3. Main parameters. The main parameters which describe the execution of the
algorithm on the input (u, v), namely the digits and the continuants, can be read
on the continued fraction of u/v. The mi’s are called the quotients, the triples
di = (mi, ǫi, ai, bi) are the digits. The continuants are defined when one “splits”
the CFE (1.4) of u/v at depth i, or when one splits the matrix product (1.3) at
step i; one obtains two CFE’s defining a rational number [or two matrix products
defining an integer vector]. The first one defines the beginning rational pi/qi, [with
coprimes pi, qi]. The pair Qi := (pi, qi) is called the i-th beginning continuant. Pair
(pi, qi) is defined, from (1.4) or (1.3), as

(1.6)
pi

qi
:=

e0

m1 +
e1

m2 +
e2

m3 +
e3

. . . +
ei−1

mi

= h1 ◦ h2 ◦ . . . ◦ hi(0),

or, with the matrix point of view,

(1.7) Qi =

(
pi

qi

)
= M1 ·M2 · . . . ·Mi

(
0
1

)

Rationals pi/qi are often called convergents, and they are useful for approximating
the rational u/v. The beginning continuants are closely related to Bezout sequences
that appear in the Extended Euclidean Algorithms which compute not only the gcd
but also the Bezout coefficients.
The second CFE defines the ending rational ti/vi with coprimes ti, vi, The i-th
ending continuant is the pair Vi := (ti, vi). Pair (ti, vi) is defined, from (1.4) or
(1.3), as

(1.8)
ti
vi

:=
2ai+1

mi+1 +
ei+1

mi+2 +
ei+2

mi+3 +
ei+3

. . . +
ep−1

mp + ǫp2bpf

= hi+1 ◦h2 ◦ . . .◦hp(η).

or, with the matrix point of view,

(1.9) Vi =

(
ti
vi

)
= Mi+1 ·Mi+2 · . . . ·Mp

(
η
1

)

The ending continuants are closely related to the remainder pairs Ui := (ui+1, ui)
that appear in the execution (1.2) of the Euclidean algorithms on input (u, v), via
the relation Ui = gcd(u, v) Vi.

1.4. Probabilistic analyses. Here, we are interested in the probabilistic be-
haviour of each algorithm: it is mainly described by the probabilistic behaviour
of digits and continuants, which play here the rôle of observables. As it is usual in
complexity studies, we consider the set formed of the valid inputs (u, v) of a gcd
algorithm and we first define both an absolute value and a size on it.

In fact, we consider two sets Ω and Ω̃: the second is formed with all the valid inputs
of the algorithm [the notion of valid inputs is defined in Section 1.2], while the first
one only contains the coprime valid inputs. We mainly deal with the set Ω. It may
seem strange –at least from an algorithmic point of view– to study sets of inputs
for which the answer of the algorithm is trivial! However, we shall prove that this

6 BRIGITTE VALLÉE

(trivial) set is in a sense generic, and it will be easy to transfer the results on Ω to

the (more natural) set Ω̃ [see Section 1.6 for a first explanation of this fact].

We first define the absolute value of an “integer” u. In the polynomial case [Type 0],
the absolute value of a non zero polynomial u of Fq[Z] is |u| := qdeg u, while its size
ℓ(u) is ℓ(u) := 1+deg u. In the integer case [all the other types], the absolute value
is the usual (archimedean) one, and the size of a (non-zero) integer u is its binary
length, equal to ℓ(u) := 1 + ⌊log2 |u|⌋. In both cases, the size ℓ(u) is Θ(log |u|).
We wish to define the absolute value of a pair (u, v) as a function of the absolute
values of u and v. There are two main cases, according to the type [Type 4, or all
the other types].

Case (a). For all the algorithms [except Type 4], the absolute value of remainder
r′ is less than the absolute value of u′. This means that any valid input (u, v)
satisfies |u| ≤ |v|, and it is adequate to choose as the absolute value of the input
pair (u, v) the maximum of the absolute values |u| and |v|, which equals |v|. Finally,
the absolute value |(u, v)| of the pair (u, v) and its size L(u, v) are

(1.10) |(u, v)| := max(|u|, |v|) = |v|, L(u, v) := ℓ(|(u, v)|) = ℓ(|v|),
Moreover, using the equality u/v = h(η) —where η is the final rational value of
the algorithm, and h is the LFT built by the algorithm [see (1.4)] — entails the
important relation, valid for any coprime input pair (u, v),

(1.11) |(u, v)| = |v| = D[h](η), where η is the final value of the algorithm,

which involves the denominator function D[h] of the LFT h, defined by

D[h](x) := |γx+δ|, for h(x) :=
αx + β

γx+ δ
with α, β, γ, δ coprime integers.

Case (b). For the LSB Group [Type 4], it is no longer true that the absolute value
of remainder r′ is less than the absolute value of u′. The set of rationals u/v related
to valid inputs (u, v) is no longer a subset of a compact interval of R. Then, it is
convenient to deal with the Euclidean norm and to choose as the absolute value
|(u, v)| of the input pair (u, v) the Euclidean norm (u2 + v2)1/2. Then, the absolute
value |(u, v)| of the pair (u, v) and its size L(u, v) are

(1.12) |(u, v)| := (u2 + v2)1/2, L(u, v) := ℓ(|(u, v)|) =
1

2
ℓ(u2 + v2).

Moreover, for any coprime input pair (u, v), the final pair of the LSB algorithm is
(0, 1), and using the equality (u, v) = M(0, 1) entails the relation

(1.13) (u2 + v2) = ||(u, v)||2 = ||M(0, 1)||2,
where M is the matrix built by the algorithm [see (1.3)].

Finally, for all types, the sets

(1.14) ΩN := {(u, v) ∈ Ω; L(u, v) = N} , Ω̃N :=
{
(u, v) ∈ Ω̃; L(u, v) = N

}

gathers valid inputs of size N and are endowed with uniform probabilities denoted

by PN , P̃N . We denote by EN , ẼN the associate expectations.

1.5. Main parameters. We wish to analyze the probabilistic behavior of the main
observables (as digits or continuants) on the set ΩN , when the size N of the input

(u, v) becomes large. We then (easily) come back to Ω̃N . Sometimes, for distribu-
tional analysis, we work on the set

Ω+
N :=

⋃

M≤N

ΩM , Ω̃+
N :=

⋃

M≤N

Ω̃M .

EUCLIDEAN DYNAMICS 7

The complexity analysis of each algorithm first aims to study the number of iter-
ations that are performed during the execution (1.2). More generally, we wish to
study three kinds of parameters: digit-costs, continuants and bit–complexity.

Digit-costs. These are general additive parameters which (only) depend on the
sequence of the digits di = (mi, ǫi, ai, bi). More precisely, we consider the set D of
the possible digits, and we define a cost c(d) relative to each digit d. Since the LFT
h[d] only depends on digit d, this cost can also be defined on H, via c(h) := c(d)
for h = h[d]. We can extend this cost to the semi-group H∗ in an additive way, and
deal with “additive” costs where the total cost is the sum of elementary costs of
each step. We then attach to the execution (1.2) of the gcd algorithm on the input
(u, v) the total cost C(u, v) defined by

(1.15) C(u, v) :=

p∑

i=1

c(di) = c(h) if
u

v
= h(η).

We consider a large class of digit-costs c, and in particular the so–called costs of
moderate growth where digit-cost c is O(ℓ) where ℓ is the size [of a digit]. This class
contains in particular some particular parameters which are are of great algorithmic
interest. For instance, if c = 1, then C is the number of iterations. If c is the
characteristic function of some particular quotient m0, then C is the number of
occurrences of this particular quotient during the execution of the algorithm. If c
is the size ℓ(d) of the digit d, then C is the length of the binary encoding of the
continued fraction.

Continuants. Second, we wish to describe the evolution of the size L(Qi), L(Vi) of
the beginning or ending continuants, together with the size L(Ui) of the remainder
pairs Ui. These parameters are central in the study of the extended gcd algorithms,
and also in the so–called interrupted gcd algorithms which stop as soon as the size
L(Ui) of the i-th remainder becomes smaller than a given proportion of the input
size L(U0).

Bit-complexities. Third, the bit–complexity is the most possible precise complexity
measure of a gcd–algorithm; It is is defined as the sum of the binary costs of each
division-step, and the binary cost of a division of the form v = mu+ ǫr is equal to
ℓ(m) · ℓ(u). Then, the bit-complexity B of a gcd algorithm, is defined as

B(u, v) :=

p∑

i=1

ℓ(di) · L(Ui),

and involves parameters of both types. This is the same situation for the bit–
complexity of the extended gcd algorithm

B̂(u, v) := B(u, v) +B(u, v) with B(u, v) :=

p∑

i=1

ℓ(di) · L(Qi),

which involves all the various kinds of parameters. Remark that such costs, even
if they are written as a sum of elementary costs, are no longer additive, since [for
instance] the term ℓ(di) · L(Qi) involves the i-th continuant Qi which depends on
all the previous steps.

We wish to provide probabilistic analyses for all these parameters: the first study
aims to exhibit their average–case behaviour [expectation, and more generally, mo-
ments of higher order], while the second study, much more precise, aims to describe
their asymptotic distribution, when the size N of the inputs becomes large.

8 BRIGITTE VALLÉE

1.6. The main steps of a “dynamical analysis”. Until 95, the methods em-
ployed in Euclidean Analysis are rather disparate, and their applicability to new
situations is somewhat unclear. See Section 9 for an historical account. Then,
during the last ten years, the Caen Group designed a unifying framework for the
analysis of Euclidean Algorithms that additionally provided new results, for the
average–case analysis as well for distributional analysis. All the analyses which
will be described here are instances of this methodology, the so–called dynamical
analysis, where one proceeds in three main steps: First, the (discrete) algorithm is
extended into a continuous process, which can be defined in terms of a dynamical
system, where executions of the gcd algorithm are then described by particular
trajectories [i.e., trajectories of “rational” points]. Second, the main parameters of
the algorithm are extended and studied in this continuous framework: the study of
particular trajectories is replaced by the study of generic trajectories. Finally, one
operates a transfer “from continuous to discrete”, and proves that the probabilistic
behaviour of gcd algorithms [related to “rational” trajectories] is quite similar to
the behaviour of their continuous counterparts [related to generic trajectories].

1.7. The Dirichlet moment generating functions. Our main tool is, as it is
generally the case in analysis of algorithms, generating functions. The crucial rôle
of generating functions in the analysis of data structures and algorithms is well
described in books by Flajolet and Sedgewick [33, 34].

We consider a general parameter R defined on Ω, Ω̃, and we wish to study its distri-
bution on ΩN , when endowed with the uniform probability. Our final probabilistic
tool [for distributional analyses] is the sequence of moment generating functions
EN [exp(wR)],

(1.16) EN [exp(wR)] =
Φw(N)

Φ0(N)
, with Φw(N) :=

∑

(u,v)∈ΩN

exp[wR(u, v)].

If we restrict ourselves to average-case analysis, we aim studying all the moments
of order k, namely

EN [Rk] =
1

Φ0(N)
· ∂k

∂wk
Φw(N)|w=0 =

1

Φ0(N)
·

∑

(u,v)∈ΩN

Rk(u, v).

We first consider the whole set Ω of inputs and our strategy consists in encapsulat-
ing all the moment generating functions EN [exp(wR)] in a unique Dirichlet series
SR(s, w),

(1.17) SR(s, w) :=
∑

(u,v)∈Ω

1

|(u, v)|2s
exp[wR(u, v)],

which deals with the absolute values of inputs (u, v) defined in (1.10) or in (1.12)
according to the type [Type 4, or not]. Remark that our main object of interest, the
moment generating functions EN [exp(wR)] can be easily recovered with coefficients
of series SR(s, w): if φw(n) denotes the cumulative value of cost exp[wR] on pairs
(u, v) whose absolute value equals n,

φw(n) :=
∑

(u,v);|(u,v)|=n

exp[wR(u, v)],

then the series SR(s, w) is of the form

(1.18) SR(s, w) :=
∑

n≥1

φw(n)

n2s
, with

∑

n;ℓ(n)=N

φw(n) = Φw(N).

EUCLIDEAN DYNAMICS 9

[Here, ℓ is the size [defined in Section 1.4] and Φw(N) is defined in (1.16)].
Then, Equations (1.16) and (1.18) show that the moment generating function
EN [exp(wR)] is a ratio, where numerators and denominators are sums of coeffi-
cients of the Dirichlet series SR(s, w).
The series SR(s, w) is a generating function, of Dirichlet type with respect to the
variable s. It is important to notice that, in the polynomial case, it is also a power
series with respect to z = q−2s, denoted by TR(z, w),

(1.19) TR(z, w) :=
∑

(u,v)∈Ω

zdeg v exp[wR(u, v)].

Parameters s or z “mark” the size, while the parameter w “marks” the cost R.

We can adopt the same strategy for each moment of order k, and we obtain a

Dirichlet Series S
[k]
R (s) with respect to the unique variable s, which is the k-th

derivative of w 7→ SR(s, w) at w = 0,

(1.20) S
[k]
R (s) :=

∂k

∂wk
SR(s, w)|w=0 =

∑

(u,v)∈Ω

1

|(u, v)|2s
Rk(u, v).

As previously, these series are of Dirichlet type with respect to the variable s;
moreover, they are power series with respect to z = q−2s in the polynomial case,

(1.21) T
[k]
R (z) :=

∑

(u,v)∈Ω

zdeg v Rk(u, v).

And, in the same vein as above, the moment EN [Rk] of order k can be easily

recovered with coefficients of series S
[k]
R (s): if φ[k](n) denotes the cumulative value

of cost Rk relative to pairs (u, v) whose absolute value equals n,

φ[k](n) :=
∑

(u,v);|(u,v)|=n

Rk(u, v),

then the series S
[k]
R (s) is of the form

S
[k]
R (s) :=

∑

n≥1

φ[k](n)

n2s
, with EN [Rk] =

Φ[k](N)

Φ[0](N)
, Φ[k](N) :=

∑

n;ℓ(n)=N

φ[k](n).

Then, the previous equations show that each moment EN [Rk] of order k is a ratio,
where numerators and denominators are sums of coefficients of the Dirichlet series
S

[k]
R (s).

We look for alternative expressions for the bivariate generating functions SR(s, w).
[Note that these expressions can be easily transfered to the univariate generating

functions S
[k]
R (s)]. From these alternative expressions, the position and the nature

of the (dominant) singularity of SR(s, w) become apparent. These informations
will be transfered to informations about the asymptotics of coefficients, and pro-
vide distributional analyses [if we can work with the bivariate generating functions
SR(s, w)] or only average-case analysis [if it is only possible to deal with univariate

functions S
[k]
R (s)].

Since the natural set of inputs is the set Ω̃ defined in (1.14), it would be convenient

to directly deal with the tilde series S̃R(s, w) and S̃
[k]
R (s) relative to set Ω̃, and deal

with the tilded objects in the same way as with the untilded objects. However, it
is easier to work with untilded versions, and, for the particular costs to be studied
[additive costs C associated to digit costs c, or continuant lengths], there exists a

10 BRIGITTE VALLÉE

simple relation between SR(s, w) and its tilde version. In the case when R = C or
R = log(|Qi|), log(|Vi|), one has R(du, dv) = R(u, v), which entails the equality

(1.22) S̃R(s, w) = ζ(2s) · SR(s, w)

where ζ(s) is the Zeta series of possible gcd’s. In the case when R = log(Ui), the
relation R(du, dv) = log d+R(u, v) entails the equality

(1.23) S̃R(s, w) = ζ(2s− 2w) · SR(s, w).

Taking the derivatives with respect to w in (1.22) or in (1.23) provides relations

between the series S
[k]
R (s) and its tilde version. With well–known properties of

the zeta function, it will be easy to transfer properties of the untilded generating
functions to tilded generating functions. This is why it will be sufficient to study
coprime inputs, as we already said in Section 1.4.

Plan of the paper. The plan of the paper will follow the main steps of Dynam-
ical Analysis, as described in Section 1.5. Section 2 describes the main notions
on dynamical systems which will be used here, namely random dynamical sys-
tems, transfer operators, induction method, etc. . . Section 3 builds the dynamical
systems which extend the gcd algorithms. Then, in Section 4, we describe the
behaviour of the main parameters along generic [truncated] trajectories, with the
help of transfer operators. After that, Section 5 returns to the discrete case and
gcd algorithms themselves. We introduce our main tools, generating functions to-
gether with new extensions of transfer operators, which play the rôle of generating
operators. We establish a fundamental relation between these two objects. Then,
we perform average-case analysis [Section 6] and finally distributional analysis [Sec-
tion 7]. Section 8 describes the general framework of functional analysis which is
needed. Section 9 provides historical and bibliographic references, describes related
works and states numerous open problems.

Acknowledgements. This survey summarizes the activity of the Caen Group
during the last ten years. I wish to thank all the persons who participated to this
group [in the alphabetic order]: Ali Akhavi, Jérémie Bourdon, Julien Clément,
Benôıt Daireaux, Hervé Daudé, Charlie Lemée, Loick Lhote, Damien Stehlé, An-
tonio Vera. On the otherside, this new framework which mixed two domains —
analytic combinatorics and dynamical systems— could not have been elaborated
without the parallel influence and help of specialists in each of these domains: many
thanks to Viviane Baladi, Philippe Flajolet, Véronique Maume, Bernard Schmitt.

2. Dynamical Systems.

As we already mention it in Section 1.6, the first step aims to find a continuous
counterpart to the gcd algorithms, and dynamical systems [or iterated functions
systems] will provide such continuous extensions. In the sequel of the paper, the
data size plays an important rôle in generating functions, and we have to build
dynamical systems for which transfer operators may be used for generating data
sizes.

2.1. Various dynamical systems. We recall some facts about various kinds of
dynamical systems, and we define our main notations.

Plain complete dynamical systems. Recall that a (plain) dynamical system is a pair
formed by a compact set X and a mapping V : X → X for which there exists a
(finite or denumerable) set D, (whose elements are called digits), and a topological
partition {Xd}d∈D of the set X in subsets Xd such that the restriction of V to each
element Xd of the partition is C2 and invertible.

EUCLIDEAN DYNAMICS 11

Here, we are led to so–called complete dynamical systems, where the restriction
V |Xd

: Xd → X is surjective. A special rôle is played by the set H of branches of
the inverse function V −1 of V that are also naturally numbered by the index set
D: we denote by h[d] the inverse of the restriction V |Xd

, so that Xd is exactly the
image h[d](X). Since V is a mapping V : X → X , the mapping V can be iterated,
and the study of dynamical systems aims describing iterations of mapping V . The
set Hk is the set of the inverse branches of the iterate V k; its elements are of the
form h[d1] ◦ h[d2] ◦ · · · ◦ h[dk] and are called the inverse branches of depth k. The set

H⋆ := ∪kHk is the semi-group generated by H.

Given an initial point x in X , the sequence V(x) := (x, V x, V 2x, . . .) of iterates
of x under the action of V forms the trajectory of the initial point x. The map
σ : X → D whose restriction to Xd is constant and equal to d is useful to encode
the trajectory V(x) with an (infinite) sequence of digits,

(2.1) D(x) := (d1(x), d2(x), . . . , di(x), . . .) with di(x) = σ(V i−1x).

Markovian dynamical systems. We have already observed that most algorithms of
Type 2 are Markovian with two states. They will give rise to Markovian dynamical
systems (with two states), which we now describe. In this case, X is the union of
two sets X<0> and X<1>; when one is in X<j> , one is in state j. Each X<j> has
a topological partition {X<j>,d}d∈D<j>

, and, for j = 0, 1, there exists a mapping
V<j> : X<j> → X . Each set D<j> of digits admits a partition into two subsets
D<i|j> , and, for any d ∈ D<i|j>, the restriction V<j>|X<j>,d

is a surjection onto
X<i>. The set of inverse branches of V<j> is denoted by H<j>, and there are four
sets H<i|j>, each of them is the set of inverse branches of the restriction of V<j>

to the union ∪d∈D<i|j>
X<j>,d. See Figure 14 for instances of such a situation.

Random dynamical systems and iterated functions systems. Here, we mainly deal
with random dynamical systems. Consider a compact setX , a sequence of mappings
V(1), V(2), . . . , V(k), . . ., and a probability π defined on N+. At each step of the
process, one chooses the dynamical system (X,V(k)) with probability πk. Now,
the trajectory V(x) and the encoding D(x) become random variables, since they
depend on the random choices that are made at each step of the process. Finally,
at each step of the process, there are two different choices: first, one chooses the
mapping V(k) according to probability πk, then the position of x with respect to
the topological partition of V(k) determines the branch of the mapping V(k) which
will be used in the process.
A dynamical system with only one branch is not a priori very interesting, because it
describes a process which always performs the same operation. However, a random
dynamical system where each dynamical system (X,V(k)) has only one branch may
be interesting, since there remains one random choice in this process, namely the
choice related to probability π: such a system is called a system of iterated functions
[(IFS) in short].

Finally, we will use in the sequel three kinds of dynamical processes: Two kinds of
processes, where there is only one source of randomness for choosing the operation
of the algorithm (and thus the inverse branch used),

— (deterministic) dynamical systems (possibly markovian), where the random-
ness is only due to the position of x ∈ X [governed by the most significant bits].
This situation arises for Types 0 and 1.

— or systems of iterated functions, where the randomness is only due to the
probability π (governed by the least significant bits). This situation arises for Type
4.

12 BRIGITTE VALLÉE

The third kind of process, which is the random dynamical system (possibly markov-
ian), contains two sources of randomness, due to the position x ∈ X and probability
π. This happens for mixed types [Types 2 and 3].

2.2. Euclidean algorithms and dynamical systems. The main (and simple)
idea aims to relate each algorithm to a dynamical system (X,V), such that the
execution of the algorithm on the input (u, v) is closely related to the trajectory
V (u/v). Then the set X must contain the set of valid “rationals”, i.e., the set of
all “rationals” u/v related to valid input pairs (u, v), the topology which endows X
must be “compatible” with the main choices of the algorithm, and the set formed
with the “rationals” of X must be dense in X for this topology. In this way, it is
possible to get extensions for each LFT used for building continued fractions. And
the set of the inverse branches of V must coincide with the set of such extensions
of LFT’s.

We recall that our final tools are generating functions, defined in Section 1.7, [bi-

variate as SR(s, w) or univariate as S
[k]
R (s)] for which we aim to obtain alternative

expressions. Our first task is to generate, with these continuous extensions, the
inputs, and more precisely the absolute value of the input sizes. Then, we would
like the topology on X to be compatible with the notion of size.

For the first two types, the topology on X is clearly compatible with the notion of
size: Type 0 [polynomial case] is totally ultrametric [both, topology on X and size
are ultrametric], while Type 1 [MSB class] is totally archimedean. For these first
two Types, we are then led to deterministic dynamical systems.
This compatibility no longer holds for the other types, and there is a conflict be-
tween the size and the topology: the size remains archimedean, whereas the topol-
ogy is no more totally archimedean. The topology of Type 4 is a priori totally
dyadic, and for mixed types [Types 2 and 3], the extension should be a double
extension, both archimedean (for dealing with operations on most significant bits)
and dyadic (for dealing with operations on least significant bits). For all these types
[Types 2, 3, 4], we need a double extension, both archimedean and dyadic, where
both input sizes and operations performed by the algorithms can be easily gener-
ated and extended. Finally, we shall decide to mainly work with real extensions,
well–adapted for generating input sizes, and the dyadic topology only translates in
a probabilistic way: we shall deal with random dynamical systems, where the par-
tition of X is defined by the most significant bits, whereas probability π is related
to the dyadic topology (and the least significant bits). Since Type 4 is not governed
at all by the MSB’s, there is only one branch for each dynamical system, and we
are led to a system of iterated functions.

2.3. The transfer operator. The main study in dynamical systems concerns it-
self with the interplay between properties of the transformation V and properties of
trajectories [or encoded trajectories defined in (2.1)] under iteration of the transfor-
mation. The behaviour of typical trajectories of dynamical systems is more easily
explained by examining the flow of densities. In each case, there exists on X a Haar
measure (normalized), and the set X is endowed with some initial distribution rel-
ative to some density f = f0.
The time evolution governed by the map V modifies the density, and the successive
densities f0, f1, f2, . . . , fn, . . . describe the global evolution of the system at time
t = 0, 1, 2, For each inverse branch h, the component operator H[h] defined as

(2.2) H[h][f](x) = |h′(x)| · f ◦ h(x).
expresses the part of the new density which is brought when one uses the branch h.
(Here |.| denotes the absolute value on X , i.e. the ultrametric absolute value [Type

EUCLIDEAN DYNAMICS 13

0] or the archimedean absolute value [for all other types]). Then, if the dynamical
system is generic, the operator

(2.3) H :=
∑

h∈H

H[h]

is the density transformer, or the Perron-Frobenius operator which expresses the
new density f1 as a function of the old density f0 via the relation f1 = H[f0].
It proves convenient to add a (complex) parameter s, and introduce the component
operator

(2.4) Hs,[h][f](x) = |h′(x)|s · f ◦ h(x).
The transfer operator Hs, defined as

(2.5) Hs :=
∑

h∈H

Hs,[h]

can be viewed as an extension of the density transformer, since the equality H1 = H
holds. It admits the following general form

(2.6) Hs[f](x) :=
∑

h∈H

|h′(x)|s · f ◦ h(x).

For Markovian dynamical systems with two states 0 and 1, the set H<i> denotes
the set of inverse branches used in the state i, and the set H<i|j> “brings” the
system from state j to state i. If Hs,<i|j> [resp Hs,<i>], denotes the transfer
operator associated to set H<i|j> [resp. H<i>] the transfer operator Hs relative to
this Markovian system is a “matrix operator”,

(2.7) Hs =

(
Hs,<0|0> Hs,<0|1>

Hs,<1|0> Hs,<1|1>

)
with Hs,<i|j> :=

∑

h∈H<i|j>

Hs,[h],

that operates on pairs f = (f<0>, f<1>) of functions. In the same vein as previously,
the transfer operator is an extension of the density transformer H, defined as equal
to H1.

Until now, we have only defined the transfer operator in the case of deterministic
dynamical systems. In the case of a random dynamical defined by a compact set
X , a sequence of mappings V(k) and a probability π, the formula (2.3) extends to

H :=
∑

k≥1

πk · H(k)

where H(k) is the density transformer relative to the dynamical system (X,V(k)).
Then, for a random dynamical system, the transfer operator will be defined as

Hs[f](x) :=
∑

k≥1

πs
k

∑

h∈H(k)

|h′(x)|s · f ◦ h(x).

It is easy to get a formula of the same vein in the case of a random Markov dynamical
system,

These transfer operators are a central tool for studying dynamical systems.

2.4. Transfer operator and generation of inputs. Dynamical analysis also
uses the transfer operator; however, it uses it (in a non classical way) for generat-
ing absolute values of the inputs which appear in a central way in the generating
functions [see Section 1.7]. Transfer operators can be viewed as “generating oper-
ators” since they generate themselves . . . generating functions.
Remind that Section 1.4 explained why there are two main cases for defining abso-
lute values of input pairs (u, v): case (a), relative to all types except Type 4, where
it is defined in (1.10), and case (b), relative to Type 4, where it is defined in (1.12).

14 BRIGITTE VALLÉE

(a) For all types except Type 4, the absolute value |(u, v)| = |v| of an input of Ω is
closely related to the denominator function D[h](x) taken at the final value x := η
[see (1.11)]. Since all the inverse branches are LFTs, the denominator function is
itself related to the derivative, via the relation

1

D[h](x)2s
= δs

h · |h′(x)|s with δh :=
1

| deth| ,

so that the general term of the Dirichlet series SR(s, 0) defined in Equation 1.18
can be written as

(2.8)
1

|(u, v)|2s
= δs

h · |h′(η)|s, with δh :=
1

| deth| .

We are then led to deal with (possibly random) dynamical systems where the set of
branches h with | deth| = D is chosen with probability 1/D. Then, the component
operator Hs,[h] of such a random dynamical system is

(2.9) Hs,[h][f](x) = δs
h · |h′(x)|s · f ◦ h(x) = |D[h](x)|−2s · f ◦ h(x),

and the transfer operator Hs defined in (2.5) or in (2.7) can be used for generating
input data.

(b) For Type 4, the absolute value |(u, v)| of an input of Ω equals the Euclidean
norm ||(u, v)||, which coincides with the Euclidean norm of the vectorM(0, 1) where
M is the matrix built by the execution of the algorithm [remind that the final pair
is (0, 1)]. [see Eqn (1.13)]. More generally, we aim generating the ratios

(2.10)
||(a, b)||2

||M(a, b)||2 .

The LFT g associated to matrix M defines a bijection of the projective line. Denote
by θ an angle of the torus J := R/πZ which can be identified with the interval
]− π/2,+π/2[(where the two points −π/2 and +π/2 are the same), and by Ψ the
“tangent” map. Consider the map g : J → J which is conjugate of g by Ψ and

defined as g := Ψ−1◦g◦Ψ. For a vector (a, b) parallel to (y, 1) with y = a/b = tan θ,
one has

g(θ) = arctan[g(y)] = arctan

(
αy + β

γy + δ

)
,

and the derivative g′(θ) satisfies, with D := | det g|,

g′(θ) = D · 1 + y2

(αy + β)2 + (γy + δ)2
= D · ||(a, b)||2

||M(a, b)||2 .

Now, for an input (u, v) which equals M(0, 1), one has

1

|(u, v)|2 =
||(0, 1)||2

||M(0, 1)||2 ,

and finally

(2.11)
1

|(u, v)|2s
= δs

g · |g′(0)|s with δg :=
1

| det g| .

We are then led to deal with a dynamical process where branches h := g are the
conjugates of the LFT’s g produced by the Euclidean algorithm with the tangent
map. This will be a random dynamical process where each branch h := g relative
to | det g| = D is chosen with probability 1/D. Then, with δg := δg = 1/| det g|,
the component operator Hs,[h] relative to such a random process is

(2.12) Hs,[h][f](x) = δs
h · |h′(x)|s · f ◦ h(x)

and the transfer operator Hs defined in (2.5) can be used for generating input data.

EUCLIDEAN DYNAMICS 15

(P1) Uniform contraction of inverse branches.

ρ :=
`
max{|h′(x)|;h ∈ Hn, x ∈ X}

´1/n
< 1.

(P2) Bounded distortion.

∃K > 0, ∀h ∈ H,∀x ∈ X, |h′′(x)| ≤ K · |h′(x)|.

(P3) Convergence on the left of s = 1.

∃σ0 < 1,∀σ > σ0,
X

h∈H

δσ
h · sup

x∈X
|h′(x)|σ <∞

Figure 2. Good properties of the set H of inverse branches

In both cases (a) and (b), the Dirichlet series SR(s, 0) can be generated with the
help of a transfer operator related to a [possibly] random system, as we see from
Equations (2.8) or (2.11). However, there is an important difference between these
two random processes. The first one [case (a), for all types except Type 4] is a
(possibly random) dynamical system, while the second one [case (b), only for Type
4] is a system of iterated functions. In case (a), the set of LFT’s h with | deth| = D
is the set of inverse branches of a dynamical system, and this dynamical system is
chosen with probability 1/D. Then, if the set X is endowed with some density f ,
the set h(X) is a proper subset of the set X , and the probability that an inverse
branch h [of any depth] is chosen is

(2.13) P[h is chosen] =
1

| deth|

∫

h(X)

f(u)du = δh

∫

h(X)

f(u)du.

In case (b), each LFT g with a given determinant D [or its conjugate h := g] is
chosen with probability 1/D. Each function h is a bijection h : X → X , with
X := J , and finally, if the set X is endowed with some density f , the probability
that a function h [of any depth] is chosen is

(2.14) P[h is chosen] =
1

| deth| = δh

∫

h(X)

f(u)du.

Then, the formulae (2.13) or (2.14) are of the same vein, and define a common
framework of use.

2.5. Three main classes. It is well-known that the long time behaviour of tra-
jectories is closely related to expansion properties of mapping V , or contracting
properties of the set H of inverse branches of V . More precisely, we introduce three
important properties of set H in Figure 2.

For dynamical systems of Types 3 and 4, the rôle of LSB’s is too important to give
rise to smooth archimedean dynamical systems. This explains why Property (P1)
does not hold. There are four algorithms of types 3 or 4 : the Binary Algorithm,
the Plus-Minus Algorithm and the two versions of the LSB Algorithm. We do
not succeed at all analyzing the Plus-Minus Algorithm: we have built a dynamical
system, but we do not know how to deal with it. For the other three algorithms
which form the so–called Difficult Class, the situation is different: we obtain some
important results, even if we do not answer all the main questions concerning the
analysis of these algorithms.

Dynamical Systems of Type 0, 1, and 2 are easier to analyze (at least a priori), and
they form the Easy Class; however, the behaviour of the set H of inverse branches
[with respect to Properties (P1, P2, P3)] depends on the algorithms. This gives
rise to a partition of Types 0, 1, 2 into two main classes. The first class, which is
called the Good Class gathers all the Euclidean Dynamical Systems which satisfy

16 BRIGITTE VALLÉE

Figure 3. Chaotic Orbit [Good Class], Intermittent Orbit [Bad Class].

(P1, P2, P3), and all the associated gcd algorithms of the Class will be “fast”. The
Second class, called the Bad Class, gathers the other algorithms, that are in fact
almost contracting, since the only problem for (P1) is due to the existence of an
indifferent point....The gcd algorithms of the Bad Class will be “slow”. The good
dynamical systems give rise to chaotic behaviour of trajectories, while, for the slow
ones, the trajectories present an intermittency phenomenon. [See Figure 3]

2.6. The Good Class versus the Bad Class. Induced dynamical systems.
For dynamical systems of the Good Class, the density transformer H acts on C1(X)
functions; furthermore, it has a unique dominant eigenvalue λ = 1, with an asso-
ciated dominant eigenfunction ψ which is also an invariant function. Moreover,
there is a spectral gap, and the rest of the spectrum lies in a disk of radius < 1.
Furthermore, with the condition

∫
X
ψ(t)dt = 1, [where dt is the Haar measure on

X], the function ψ is unique too.

Two constants will play a crucial rôle in the sequel. The entropy α of such a system
is well–defined, with the help of Rohlin’s formula which can be written here as

(2.15) α = −
∑

h∈H

δh log δh −
∫

X

log |V ′(t)|ψ(t)dt.

The average µ(c) of a digit-cost c of moderate growth with respect to measure
ψ(t)dt,

(2.16) µ(c) =
∑

h∈H

δh · c(h) ·
∫

h(X)

ψ(t)dt

plays also an important rôle in the paper.
The situation is quite different for the algorithms of the Slow Class: The invariant
function ψ is singular at the point η which is the stopping value for the algorithm.
The reason is that this point η is indifferent under the action of V : it is a fixed
point for V with a derivative whose absolute value is equal to 1 (i. e. V (η) =
η, |V ′(η)| = 1). See Figure 10. Then, the typical trajectory admits a quite different
form, since, when it arrives near this point, it passes many times near it. As this
point η is (weakly) repulsive, the rational trajectories that eventually finish at this
point η, will attain it after a long time. Then it is (at least intuitively) clear that
the relative Euclidean algorithms will be “slow”.

However, the induced dynamical system which “forgets” all the sub-trajectories
that stay near the indifferent point η admits typical trajectories that again exhibit
a chaotic behaviour. The notion of induction was introduced by Bowen [13]. Be-

ginning with a dynamical system (X,V), the induced system (X̃, Ṽ) is defined in
a more formal way as follows: If p denotes the “bad” inverse branch that contains

EUCLIDEAN DYNAMICS 17

the indifferent point η and Q denotes the set H \ p of good inverse branches, the

interval X̃ is defined as

X̃ := X \ p(X) =
⋃

h∈Q

h(X).

The induced shift mapping Ṽ : X → X is then defined from the first iterate of V

that returns into X̃ : if n(x) is the smallest integer k ≥ 0 such that V k(x) ∈ X̃ ,

then we let Ṽ (x) := V n(x)+1(x). This means that Ṽ (x) equals V (x) for x ∈ X̃

while, for x 6∈ X̃, Ṽ (x) equals V (y) where y is the first iterate of x that belongs to

X̃. Then the trajectory (x, Ṽ x, Ṽ 2x, . . .) is exactly the trajectory (x, V x, V 2x, . . .)
which forgets all the sub-trajectories that stay near the indifferent point η, whereas

the set H̃ of inverse branches is exactly the set H̃ = p⋆Q where one groups a
sequence of bad LFTs with a good one. Now, the following result will be very
important for the sequel:

For any algorithm of the Slow class, the set H̃ satisfies properties (P1, P2, P3) of
Figure 2, and the induced system is good.

Consider the operators Qs,Ps relative to the sets {p},Q,

Qs :=
∑

h∈Q

Hs,[h], Ps := Hs,[p]

which satisfy Ps + Qs = Hs, and consider, as in [82], the transfer operator H̃s of
this induced dynamical system. It involves the operators Qs,Ps under the form

(2.17) H̃s =
∑

k≥0

Qs◦Pk
s = Qs ◦(I−Ps)

−1, so that H̃s◦(I− Ps) = Qs.

Since the operator H admits an invariant density ψ which satisfies
H[ψ] = P[ψ] + Q[ψ] = ψ,

the function g := Q[ψ] = (I − P)[ψ] satisfies

H̃[g] = H̃ ◦ (I − P)[ψ] = Q[ψ] = g,

so that (I − P)[ψ] is an invariant function for H̃.

Furthermore, the semigroup H⋆ can be written as H̃⋆ · p⋆. However, the rational
trajectories stop as soon as they reach the stopping value η. Since η is a fixed
point for the bad branch p, the rational trajectories only use the LFT’s which

do not finish with p, and they use exactly the semi-group H̃⋆. Consequently, we
may replace in our study the quasi-inverse (I − Hs)

−1[1][η) by its induced form

(I − H̃s)
−1[1][η), and this helps a lot since the tilde operator, relative to set H̃ has

now good properties.

2.7. Transfer operators viewed as generating operators. Finally, in each
case, the transfer operator is written as a sum of operators Hs,[h] taken over some
set, H in (2.5), sets Hi|j for (2.7). In each case, the n-th iterate of the operator has
exactly the same expression as the operator itself, except that the sum is now taken

over the n–th power of the initial set, namely Hn in (2.5), sets H[n]
i|j for (2.7) [which

bring data from state i to state j in n steps]. This fact is due to the multiplicative
properties of derivatives, denominators, matrices, probabilities, determinants.... In
a very general sense, the n-th iterate of the transfer operator describes the data after
n iterations. Then, the evolution of data during all the possible executions of the
algorithm, correspond to the semi–group H⋆ for generic algorithms. For Markovian

algorithms, it is related to the four sets H[⋆]
i|j [which bring data from state i to

state j in an arbitrary (but finite) number of steps]. We are led to work with the

18 BRIGITTE VALLÉE

Name Definition of component operator

Hs δs
h · |h′(x)|s · f ◦ h(x)

Plain bHs δs
h · |h′(x)|s · F (h(x), y)

Hs δs
h · |h′(x)|s · F (h(x), h(y))

Hs,w,(c) δs
h · exp[wc(h)] · |h′(x)|s · f ◦ h(x)

Weighted bHs,w,(c) δs
h · exp[wc(h)] · |h′(x)|s · F (h(x), y)

Hs,w δs−w
h · |h′(x)|s · |h′(y)|−w · F (h(x), h(y))

H
(c)
s := (∂/∂w)Hs,w|w=0 δs

h · c(h) · |h′(x)|s · f ◦ h(x)

Various bH(c)
s := (∂/∂w) bHs,w|w=0 δs

h · c(h) · |h′(x)|s · f ◦ h(x)

Derivatives ∆Hs := (d/ds)Hs δs
h · (log |h′(x)|+ log δh) · |h′(x)|s · f ◦ h(x)

∆Hs := (∂/∂w)Hs,w|w=0 −δs
h · (log δh + log |h′(y)|) · |h′(x)|s · F (h(x), h(y))

Figure 4. Definition of operators via their component operators. [re-
mark that f denotes a function of one variable, and F a function of two
variables]

Total costs Beginning Ending Bit-Complexity

continuants continuants

Real Trajectories H1,w,(c) H1,w ————- ———

(Section 4)

Rational Trajectories Hs , H
(c)
s

bHs,Hs,0 Hs Hs, H
(ℓ)
s

(average) (Sections 5 and 6) bH(ℓ)
s ,Hs,0

Rational Trajectories Hs,w,(c)
bHs,Hs,w Hs−w,Hs ———-

(distribution) (Section 7)

Figure 5. Main transfer operators used in the analyses.

quasi-inverse of the transfer operators. Each of these quasi–inverses generates all
the possible iterations, and, in a quite general framework, the operator

(I − Hs)
−1[1](η) [η is the final value of the algorithm]

will generate all the input sizes. This is why these quasi-inverse will play a central
rôle in our study.

In the following, we use extensions of the various transfer operators introduced
in (2.5, 2.7) [see Figure 4]. When we wish to study a parameter R relative to
a Euclidean Algorithm, we add an extra parameter [called w] inside a transfer
operator Hs in order to obtain a weighted transfer operator of the form Hs,w,(c)

[which operates on functions of one variable]. For continuants, we will also deal

with an underlined version Hs,w and, also sometimes, with an “hat” version Ĥs,w

of the transfer operator. Note that these last two versions of the transfer operator
operate on functions of two variables, even if the “hat” version does not modify the
second variable y.

2.8. The nine Theorems. In this paper, we state nine Theorems, numbered from
1 to 9 [cf Figure 6]. The first two Theorems [Theorems 1 and 2], stated in Section

EUCLIDEAN DYNAMICS 19

Additive costs Beginning Ending Bit-Complexity

continuants continuants

Real Trajectories Thm 1 Thm 2 ————- ———

(Section 4)

Rational Trajectories Thms 3 and 4 Thm 5 Thm 5 Thm 6

(average) (Sections 5 and 6)

Rational Trajectories Thm 7 Thm 8 ——– Thm 9

(distribution) (Section 7)

Figure 6. The subject of the nine theorems

4, describe the behaviour of generic truncated trajectories, from the digit–point of
view [Theorem 1] or from the continuant point of view [Theorem 2]. Then Sections
5 and 6 perform the average–case analysis of Euclidean Algorithms, and then study
the average behaviour of the particular rational trajectories. Here, four Theorems
are stated [Theorems 3, 4, 5, 6]. Theorems 3 and 4 are relative to the average–case
analysis of additive costs, whereas Theorem 5 provides an average case analysis of
the continuants [ending or beginning] at a given fraction of the depth. Theorem 6
is devoted to the average-case analysis of the bit–complexity cost. Finally, Section
7 performs distributional analysis of additive costs [Theorem 7] and continuants
[Theorem 8], and finally states results on the distributional analysis of the bit–
complexity cost [Theorem 9].
Figure 6 summarizes the subject of the nine theorems. Figure 7 describes the
constants which intervene in the dominant terms of the various expectations and
variances studied in these theorems. It exhibits the crucial rôle played by the
pressure function Λ(s, w) [which is the logarithm of the dominant eigenvalue λ(s, w)
of the transfer operator Hs,w], since all the constants of the paper involve its first
five derivatives (two derivatives of order 1 and three derivatives of order two).
Sections 4, 5, 6, 7 will describe, for each analysis, the convenient operator: it
depends on the parameter to be studied, but also on the whole framework: contin-
uous or discrete, average-case analysis or distributional analysis. Figures 4 and 5
summarize the operators used and the context of their use.
Figures 8 and 9 describe the main properties of the operator which are needed for
the various analyses performed in the paper. Section 8, and particularly Figure
21 of Section 8, will provide the convenient functional spaces F [depending on the
algorithms] where such properties will be proven to hold.

3. First Step: Building the Euclidean dynamical Systems.

We are now ready for performing the first step of dynamical analysis: we aim
building, for each Euclidean Algorithm, a dynamical system which extends the op-
erations of the algorithms, and whose transfer operator can be used as a generating
operator. We describe here, in this Section, the characteristics of the dynamical
system relative to each Euclidean Algorithm. Even if these systems share important
properties –for instance, all their branches are LFT’s–, their main characteristics
may vary in a significant way. The class of Euclidean systems contains in fact
quite different systems, whose analysis does not seem [a priori] to be performed in
a common framework.

3.1. The Euclidean dynamical systems for Type 0. As we already mentioned
it in Section 1.1, there are two divisions on polynomials; the first one is directed
by leading monomials (i.e., monomials of highest degree) and deals with decreasing

20 BRIGITTE VALLÉE

Constants for the expectations

µ(c) = Λ′
w(1, 0), α = |Λ′

s(1, 0)|.

Alternative forms for these constants are given in (2.15) and (2.16).

Theorem 1 µ(c)

Theorem 2 α/2

Theorem 3 and 7 bµ := (2 log 2)/α

Theorem 4, 6, 7, 9 bµ(c) = bµ · µ(c)

Theorem 5 and 8 δ

Constants for the variance

γ := Λ′′
s2(1, 0), ρ(c) = Λ′′

w2 (1, 0), χ(c) = Λ′′
sw(1, 0).

No alternative form is known for these constants.

Theorem 1 ρ(c)

Theorem 2 γ/4

Theorem 7 bρ := 2 log 2 · (γ/α3)

Theorems 7 and 9 bρ(c) := µ2(c) · bρ2 + bµ · ρ2(c) + bµ2µ(c) · χ(c)

Theorem 8 δ(1 − δ) · (γ/α)

Figure 7. Constants in the dominant terms of the expectation and
variance. Λ(s, w) is the pressure, i.e., Λ(s, w) := log λ(s,w), where
λ(s,w) is the dominant eigenvalue of the transfer operator Hs,w

UDE Unique Dominant Eigenvalue at (1, 0)

SG Spectral Gap at (1, 0)

Anw(1, 0) The map w 7→ H1,w is analytic at w = 0

Ans(s, 0) The map s 7→ Hs,0 is analytic for ℜs > σ0 with σ0 < 1

Ans,w(s, 0) The map (s, w) 7→ Hs,w is analytic for ℜs > σ0 and w near 0, with σ0 < 1

SM Strict Maximum on the Vertical Line attained at s = σ

∀σ(real),∀t 6= 0, R(σ + it, 0) < R(σ, 0)

US Uniform Estimates on Vertical Strips :

∀ξ > 0,∃M > 0, t0 > 0, such that ∀n,∀(σ, ν)(real) near (1, 0)

∀s = σ + it, w = ν + iτ, |t| > t0, ||Hn
s,w||1,t ≤M · γn · |t|ξ

SLCw Strict log convexity of w 7→ log λ(1, w) at 0

SLC Strict log convexity of w 7→ log λ(1 + qw, rw) at 0 for any (q, r) 6= (0, 0)

Figure 8. Main analytical properties of the operator Hs,w, its domi-
nant eigenvalue λ(s,w) and its spectral radius R(s,w) (on a convenient
functional space). Note that ||.||1,t is some norm (depending on the
imaginary part t of s) described in Section 7.

EUCLIDEAN DYNAMICS 21

Average-case Distribution

Truncated UDE + SG UDE + SG

real trajectories + Anw(1, 0) + SLCw

Rational UDE + SG UDE + SG

trajectories + Ans(1, 0) + SM + Ans,w(1, 0) + US + SLC

Figure 9. Properties of the transfer operator useful for analyzing trajectories.

degrees. The second one is directed by monomials of lowest degree and deals with
increasing valuations.

The first gcd algorithm on polynomials with coefficients in the finite field Fq with
q elements is based on the Eucldean division (with decreasing degrees) on a pair
(u, v) of polynomials with deg v > deg u,

v = m · u+ r, with r = 0 or deg r < deg u.

The analogue of the ring Z is the ring Fq[Z], and the field Fq(Z) plays the same
rôle as the field Q of rational numbers. We work on the completion of Fq[Z] with
respect to the (ultrametric) absolute value |.| defined as |u| := qdeg u: this is the
field of Laurent formal power series Fq((1/Z)) where each element f has a Hensel
expansion

(3.1) f =
∑

n≥n0

fn (1/Z)n, with fn ∈ Fq and n0 ∈ Z.

This expansion is parallel to the binary expansion of a real [replace Z by 2]. From
the Hensel expansion (3.1), it is possible to define the function integer part, denoted
by ⌊.⌋, and the function fractional part, denoted with {.}, with

⌊f⌋ :=
0∑

n=n0

fn (1/Z)n {f} :=
∑

n≥1

fn (1/Z)n.

The convenient set X is the unit open ball Xq of Fq((1/Z)), which is also the set
of elements with zero integer part, and the shift V : Xq → Xq is defined by

V (x) =
1

x
−

⌊
1

x

⌋
=

{
1

x

}
. for x 6= 0, V (0) = 0.

The set D of digits is

D := {m ∈ Fq[Z]; |m| > 1} = {m ∈ Fq[Z]; degm > 0}.
This dynamical systems is precisely described for instance in [11].

The second gcd algorithm on polynomials is based on the division (with increasing
valuations) on a pair (u, v) of polynomials with valu > val v = 0. If a denotes the
valuation of u, the division step can be written as

u := Za · u′, v = m · u+ r, with r = 0 or val r > valu, r := Za · r′,
and the new pair is (u′, r′). This division on (u, v) gives rise exactly to the Euclidean
division on the mirror pair (v, u) defined by

v(Z) := Zn · v(1

Z
), u(Z) := Zn · u(1

Z
) with n := max(deg v, deg u)

These two divisions are “conjugated” via the mirror application, and their associ-
ated dynamical systems have exactly the same properties. We shall see that the
situation is quite different for integers.

22 BRIGITTE VALLÉE

The Euclidean dynamical system possesses, in the polynomial case, very particular
properties. The density transformer, and its extension the transfer operator, mainly
deals with the absolute values |h′(x)| of derivatives of inverse branches h, for x ∈ Xq.
And, in the polynomial case, thanks to the ultrametric topology on Xq, this absolute
value |h′[m](x)| is constant on Xq and equals to |m|−2. Then, when applied to

uniform density f0 = 1, the transfer operator Hs transforms it into a constant
function

Hs[1] =
∑

m∈D

1

|m|2s
=

∑

m∈D

1

q2s deg m
.

This Dirichlet series is in fact a power series in z = q−2s. It coincides with the
(usual) generating function D(z) of the set D, which gathers all the non constant
polynomials of Fq(Z),

Hs[1] = D(z) =
∑

m∈D

zdeg m = (q − 1)
∑

n≥1

qnzn =
q(q − 1)z

1 − qz
=

q − 1

q2s−1 − 1
.

. The entropy of the dynamical system is equal to 1 − (1/q).
Of course, it is easier to deal with power series than with Dirichlet series. This
is why the polynomial case is easier than the number case [as it is usual in the
mathematical life, since there are no carries for polynomials . . .].

3.2. The Euclidean dynamical systems for Type 1. The main features of
MSB-gcd’s are described in Figure 1. All the continuous extensions of the MSB-
gcd’s lead to dynamical systems where X is a real compact interval endowed with
the usual absolute value [see Figure 10]. For surveys on dynamical systems on a
real interval, see [17], [22].
For Type 1, there are many different possible generalizations for the integer part
function which can be defined from the binary expansion of a real number. Such
possible generalizations are described in Figure 3. All the mappings V [except for
the Subtractive algorithm] are of the form

V (x) :=
1

x
−A

(
1

x

)
,

for some function A [See Figure 11], which generalizes the integer part function.
The Subtractive Dynamical system is defined on the unit interval X ; it has two
branches

V (x) =
x

1 − x
, or V (x) =

1 − x

x
,

according as (1 − x)/x belongs to X or not, and its two inverse branches are

(3.2) p(x) =
1

1 + x
, q(x) =

x

1 + x
.

See Figure 12 for a description of Subtractive Algorithm.

Transfer operators relative to some algorithms of Type 1 are very classical. For
instance, the transfer operator associated to the Standard Euclidean Algorithm
was introduced by Gauss himself; it can be written as

Hs[f](x) :=
∑

m≥1

(
1

m+ x

)2s

· f
(

1

m+ x

)

For the subtractive algorithm, one has:

Hs[f](x) :=

(
1

1 + x

)2s

·
[
f

(
1

1 + x

)
+ f

(
x

1 + x

)]

EUCLIDEAN DYNAMICS 23

There are three algorithms of Type 1 [the Classical Algorithm (G), the Centered
Algorithm (K), and the Odd Algorithm (O)] which belong to the Good Class (they
correspond to the left column of Figure 10), and three algorithms of Type 1 [the
Even Algorithm (E), the By-Excess Algorithm (M), and the Subtractive Algorithm
(T)] which belong to the Bad Class (they correspond to the right column of Figure
10). As we already explained in Section 2.6, in the case of algorithms of the Bad
Class, we consider the induced dynamical systems. Figure 13 describes the main

properties of the induced Dynamical systems (M̃), (Ẽ), (T̃). Note that system (T̃)
is exactly the Classical Euclidean System (G).
For all these systems, the invariant density is explicit, and given in Figures 11 and
12. Then, with Rohlin’s Formula [see Equation (2.15)], the entropy is also explicit
(when it exists), and this is the same for the entropy of the induced dynamical
systems [cf Figures 11,12,13].

3.3. The Euclidean dynamical systems for Types 2 and 3: generalities.
How to obtain extensions for gcd’s of the mixed groups? In fact, these gcd algo-
rithms work partly with LSB’s, but the size remains archimedean. Then, (as we
already announced it), we choose to mainly work with real extensions, where the
influence of LSB’s leads to a probabilistic framework.
We consider first the behaviour of a step of the gcd algorithm when the total
binary shift a + b [see Equation (1.1)] equals k, and we extend it to real numbers
of X : this defines a dynamical systems (X,V(k)), where all the reals behave as if
they use a total shift equal to k. In this case, the set of the inverse branches of
(X,V(k)) is denoted by H(k), and the absolute value of the determinant of any LFT

of H(k) equals 2k. For a further extension, we need to extend the total shift on real
numbers of X . We have already explained (in Section 2.4) why it is convenient to
extend it in a probabilistic way, into a random variable on X , according to the law
P[k = d] = 2−d (for d ≥ 1).

Finally, the whole process gives rise to a probabilistic dynamical system (X, V̆)
defined as follows. At each time t, one chooses first the random binary shift k
according to the previous law P[k = d] = 2−d (for d ≥ 1), then we choose V(k) as

the mapping for this step, and, for any x ∈ X , the next point is V̆ (x) := V(k)(x).

The set H̆ of all possible inverse branches is then the (disjoint) union of sets H(k)

for k ≥ 1. In such a way, we extend a deterministic gcd algorithm into a random
algorithm, and we can define (random) continued fraction for real numbers. Remark
that now rational numbers themselves have random continued fraction expansions,
and, amongst all these expansions, one can find the finite continued fraction of the
rational.

Now, we make precise this probabilistic extension for each type [first Type 2, then
Type 3].

3.4. The Euclidean dynamical systems for Type 2. [106] [107]. Consider
four Euclidean divisions of Type 12, namely the standard division (G), the centered
division (K), the Odd Division (O) and the By Excess division (M). Each of them
can be slightly modified in the following way: the Euclidean division is performed
as usual, and, after the division [or, more exactly, before the following division], the
powers of two are removed from the remainder, in order to obtain an odd value for

2for the remaining two divisions, the situation is different, since the pseudo-version of the
Subtractive Algorithm will be the Binary Algorithm, which belongs to Type 3, and the pseudo-
version of the Even division coincides with the Even Division.

24 BRIGITTE VALLÉE

Figure 10. The six Euclidean Dynamical systems of the MSB Group
[Type 1] ; on the left, Standard (G), Odd (O), Centered(K); on the
right, By-Excess (M), Even (E), Subtractive (T). Note the presence of
an indifferent point for each system on the right column: η = 1 for (M)
and (E) – η = 0 for (T).

u′. Each pseudo-division step can be written as

u := 2a · u′, v = m · u′ + ǫr, r′ := r,

and the LFT h relative to this division is

h(x) :=
2a

m+ ǫx
.

The pseudo-Euclidean Algorithms are described in Figure 15. We recall that
pseudo-Euclidean algorithms deal with odd inputs, and create a binary shift b equal
to 0 [see Section 1]. Then, they are of Markovian type, since there is a relation
between parity of the quotient mi at step i and the exponent ai+1 at the beginning

EUCLIDEAN DYNAMICS 25

Alg. Function A(x) Invariant function ψ Entropy Bad LFT p Class.

(G) Integer part of x
1

log 2

1

1 + x

π2

6 log 2
——- Good

(M) Smallest integer at least equal to x
1

1 − x
Not defined.

1

2 − x
Bad

(K) Nearest integer to x
1

log φ
[

1

φ+ x
+

1

φ2 − x
].

π2

6 log φ
——- Good

(E) Even integer nearest to x
1

1 − x
+

1

1 + x
Not defined

1

2 − x
Bad

(O) Odd integer nearest to x
1

φ− 1 + x
+

1

φ2 − x

π2

9 log φ
——- Good

Figure 11. The first five Euclidean dynamical systems [Type 1]. Here,
the shift mapping V and the encoding mapping σ are defined from func-

tion A, with the formula V (x) := |
1

x
− A(

1

x
)|, σ(x) := A(

1

x
) .

Alg. Function V (x) Inv. funct. ψ Entropy Bad LFT p Class.

(T) V (x) :=

8
>>>>><
>>>>>:

x

1 − x
for 0 ≤ x ≤ 1/2;

1 − x

x
for 1/2 ≤ x ≤ 1

1

x
Not defined

x

1 + x
Bad.

Figure 12. The dynamical system relative to the Subtractive Algorithm.

Induced Alg. Invariant function eψ Entropy h(eH)

(fM)
1

log 2

1

2 − x

π2

3 log 2

(eE)
1

log 3
[

1

3 − x
+

1

1 + x
]

π2

2 log 3

(eT)= (G)
1

log 2

1

1 + x

π2

6 log 2

Figure 13. The induced dynamical systems relative to the three
“bad” systems of Type 1.

of the i+1-th step: if mi is odd, then the remainder is even, and thus ai+1 satisfies
ai+1 ≥ 1; if mi is even, then the remainder is odd, and thus ai+1 equals 0. We then
consider two states: the 0–state, which means “the previous quotient of (v, u) is
even” (or equivalently the previous remainder is odd), i.e., the present shift a equals
0; the 1–state, which means “the previous quotient of (v, u) is odd” (or equivalently
the previous remainder is even), i.e., the present shift a satisfies a ≥ 1. Then, the
processus uses four different sets H<i|j>, where H<i|j> brings rationals from state
i to state j. The initial state is always the 0–state and the final state is always the
1–state.
In State 1, the mapping of a pseudo–Euclidean Algorithm is defined from the map-
ping V of the related Euclidean Algorithm with V(k)(x) := V (x/2k), so that the set

26 BRIGITTE VALLÉE

Alg., X, η Division Set of LFT’s Conditions on J or F .

(Ŏ) [0, 1], 0

v = mu+ ǫ2k s

m odd, ǫ = ±1, s odd

k ≥ 1, 0 ≤ 2ks < u

Ŏ(k) = {
2k

m+ ǫx
, ǫ = ±1, m odd,

(m, ǫ) ≥ (2k,+1)}

J = O

(Ğ) [0, 1], 0

v = mu+ 2ks

s = 0 or s odd, k ≥ 0

0 ≤ 2ks < u

Ğ<0> = G, Ğ<1> =
[

k≥1

Ğ<1>,(k)

Ğ<1>,(k) = {
2k

m+ x
,m ≥ 2k}

Ğ<i|j> = Ğ<j> ∩ {m ≡ i mod 2}

I = Ğ<0>

F = Ğ<1>

(M̆) [0, 1], 1

v = mu− 2ks

s odd, k ≥ 0

0 ≤ 2ks < u

M̆<0> = M, M̆<1> =
[

k≥1

M̆<1>,(k)

M̆<1>,(k) = {
2k

m− x
,m > 2k}

M̆<i|j> = M̆<j> ∩ {m ≡ i mod 2}

I = M̆<0>

F = M̆<1>

(K̆) [0, 1/2], 0

v = mu+ ǫ2k s

s = 0 or s odd, k ≥ 0

0 ≤ 2ks < u
2

K̆<0> = K, K̆<1> =
[

k≥1

K̆<1>,(k)

K̆<1>,(k) = {
2k

m+ ǫx
,

ǫ = ±1, (m, ǫ) ≥ (2k+1,+1)}

K̆<i|j> = K̆<j> ∩ {m ≡ i mod 2}

I = K̆<0>

F = K̆<1>

Figure 14. The four pseudo-Euclidean algorithms.

H(k) of the inverse branches of V(k) is

H(k) = {g; g(x) := 2kh(x) with h ∈ H such that 2kh(X) ⊂ X },
and its elements are of determinant 2k.
There are three algorithms of Type 2 which belong to the Good Class, and these
algorithms are the pseudo-versions of the “good” algorithms of Type 1, namely
(Ğ), (K̆), (Ŏ). On the otherside, the algorithm (M̆) belongs to the Bad Class. Re-
mind that the pseudo-version of the Even Algorithm coincides with its plain version
[because all the remainders are always odd]. We will see that the pseudo-version of
the Subtractive Algorithm is the Binary Algorithm, which we now describe.

3.5. The Euclidean dynamical systems for Type 3. For the LMSB Group
which contains two divisions, the Binary division or the Plus-Minus Division, the
main decision is taken by the LSB’s.

The Binary algorithm operates on pairs of odd integers that belong to the set

Ω̃ := {(u, v), u, v odd, 0 < u ≤ v}. The binary division creates zeroes on the left
of v, and builds a quotient m such that r := v −m · u is strictly smaller than u: it
is directed both by the least significant bits (for creating zeroes on the left) and by
the most significant bits (for deciding the moment of the exchange). The Binary
Algorithm is described in Figure 16.

The Binary division corresponds to each inner loop and is performed on associated
rationals as follows: For a pair (u, v) formed with odd integers, the rational 1/x =
v/u ∈ [0, 1] has a 2-adic norm equal to 1: It belongs to the set U2 of 2-adic units.
Then the 2-adic valuation b of z := (1/x) − 1 satisfies b ≥ 1 and y := 2−bz again
belongs to U2 and is positive. There are now two cases: if y ≤ 1 then V(b)(x) := y,

EUCLIDEAN DYNAMICS 27

State 0 State 1

State 0

State 1

State 0

State 1

State 0 State 1

State 0 State 1

State 0

State 1

State 0 State 1

State 0

State 1

Figure 15. Two examples of Euclidean Dynamical Systems relative

to Type 2. Above, Algorithm Ğ [Pseudo-Standard] with k = 1 and

k = 2. Below, Algorithm K̆ [Pseudo-Centered] with k = 1 and k = 2.

Input: (u, v) ∈ Ω̃ := {(u, v), u, v odd, 0 <
u ≤ v};
While u 6= v do

While u < v do
b := val2 (v−u); v := (v − u)/2b;

Exchange u and v;

Output: u (or v).

Figure 16. Description of the Binary Algorithm

else V(b)(x) := 1/y. Finally, the dynamical system ([0, 1], V(b)) has two branches

V(b)(x) = 2b x

1 − x
if x ≤ 1

2b + 1
, V(b)(x) =

1

2b

1 − x

x
if x ≥ 1

2b + 1
,

and its inverse branches can be defined by means of inverse branches of the Sub-
tractive Algorithm

(3.3) p(b)(x) = p
(x

2b

)
=

x

x+ 2b
, q(b)(x) = q

(
2bx

)
=

1

1 + 2bx
,

so that the Binary Algorithm is a pseudo-version of the Subtractive Algorithm;
however the mixing between the binary shift and branches p, q of the Subtractive
System is more involved than above [See Figure 17]. The density transformer H of
the Binary Euclidean System, defined as

(3.4) H[f](x) :=
∑

b≥1

(
1

1 + 2bx
)2 f(

1

1 + 2bx
) +

∑

b≥1

(
1

x+ 2b
)2 f(

x

x+ 2b
),

28 BRIGITTE VALLÉE

was introduced by Brent [14] in his study of the binary gcd, but it is not easy to
deal with. This is why the “induced version” of the transfer operator has been
further introduced by Vallée [105].

Between two exchanges, there is a sequence of internal loops (composed with sub-
tractions and binary shifts) that can be written as

v = u+2b1v1, v1 = u+2b2v2, v2 = u+2b3v3, . . . vℓ−1 = u+2bℓvℓ,

with vℓ < u. Then, we let r′ := vℓ and we exchange u and r′. Formally, this
sequence can also be written as

u/v = p(b1) ◦ p(b2) ◦ . . . ◦ p(bℓ−1) ◦ q(bℓ)(vℓ/u),

[where p(b) and q(b) are inverse branches of shift V(b) defined in (3.3)]. Note that
we use here the operation of induction described in Section 2.6, with respect to the
“bad” inverse branch p : we form sequences of branches p followed with the “good”
inverse branch q. An elementary step of this induced process is summarized by the
relation v = mu+ 2kvℓ where m is an odd integer equal to

m = 1 + 2b1 + 2b1+b2 + 2b1+b2+b3 + . . .+ 2b1+b2+b3+...+bℓ−1 ,

while the exponent k is equal to k = b1 + b2 + b3 + . . . + bℓ−1 + bℓ. If x = x0

denotes the rational u/v at the beginning of an internal loop, the global result of
an elementary step of this induced process is the rational x1 = vℓ/u, defined by
(3.5)

x0 = h(x1) with h(x) :=
1

m+ 2kx
, with m odd, 1 ≤ m < 2k, and k ≥ 1.

The transfer operator relative to the induced process is then

(3.6) H̃[f](x) :=
∑

k≥1

∑

m odd,

1≤m<2k

(
1

m+ 2kx

)2

f

(
1

m+ 2kx

)

The Plus-Minus division is similar; it is just a refinement of the Binary Division.
For any x ∈ U2, amongst

V−(x) :=
1

x
− 1, V+(x) :=

1

x
+ 1,

there is exactly a unique ǫ = ±1 for which Vǫ(x) has a valuation b that satisfies
b ≥ 2, and we choose this Vǫ(x) as our y. For any (ǫ, b), with ǫ = ±1 and b ≥ 2, we
build a dynamical system ([0, 1], V[ǫ,b]) which has two branches of the form

V(ǫ,b)(x) = 2b x

1 − ǫx
if x ≤ 1

2b − ǫ
, V(ǫ,b)(x) =

1

2b

1 − ǫx

x
if x ≥ 1

2b − ǫ
.

This modelisation appeared for the first time in [23].
Remark that the image of the unit interval by the branch V(−,b) equals [21−b, 1],
so that the Dynamical System is no longer complete. . . : this is a main difference
between the two algorithms of Type 3. [See Figure 17 below]. As previously, the
induced system can be built. Between two exchanges, there is a sequence of internal
loops (composed with subtractions, additions and binary shifts) that can be written
as

v = ǫ1 u+ 2b1v1, v1 = ǫ2 u+ 2b2 v2, . . . vℓ−1 = ǫℓ u+ 2bℓ vℓ,

with vℓ < u. Then, we let r′ := vℓ and we exchange u and r′. An elementary step
of this induced process is summarized by the relation v = mu+2kvℓ where m is an
odd integer equal to

m = ǫ1 + ǫ2 2b1 + ǫ3 2b1+b2 + . . .+ ǫℓ 2b1+b2+b3+...+bℓ−1 ,

EUCLIDEAN DYNAMICS 29

Figure 17. The Euclidean Dynamical Systems relative to Type 3.
Above, the Binary Algorithm, with b = 1, b = 2, then b = 1 and b = 2 on
the same figure. Below, the Plus-Minus Algorithm, with ǫ = −1, b = 2,
ǫ = −1, b = 3, then b = 2 and b = 3 on the same figure.

while the exponent k is equal to k = b1 + b2 + b3 + . . . + bℓ−1 + bℓ. If x = x0

denotes the rational u/v at the beginning of an internal loop, the global result of
an elementary step of this induced process is the rational x1 = vℓ/u, defined by

(3.7) x0 = h(x1) with h(x) :=
1

m+ 2kx
,

where the possible values of “digits” (m, k) are

D = {d = (m, k), k ≥ 2 and m odd , |m| ≤ m(k)} ,

where m(k) equals (2k − 1)/3 if k is even and (2k − 5)/3 if k is odd.

3.6. The Euclidean dynamical systems for Type 4. The LSB algorithms op-

erate on pairs of integers that belong to the set Ω̃ := {(u, v), v odd, u even}. If a is
the number of zeroes on the left of u [i.e., a := Val2(u)], then u′ := 2−a · u is odd.
The LSB division creates zeroes on the left of v, and builds a quotient m such that
r := v −m · u′ has a number b of zeroes on the left strictly greater than a. Then r
and u are both multiples of 2a, and the relations u′ := 2−a · u, r′ := 2−a · r defines

an integer pair (u′, r′) which will be an element of Ω̃ and the new pair for the next
step. It is easy to see that this (plain) quotient m satisfies the three conditions :
m odd, m ≥ 1, m < 2a+1. It is of course possible to center the quotient m, so that
this (centered) quotient m satisfies the three conditions: m odd, |m| < 2a [see Line
(*) in Figure 18].
The algorithms are then completely governed by the least significant bits. Figure
18 describes two gcd algorithms; each algorithm is relative to a LSB division, the
plain LSB division or the centered LSB division. The centered LSB algorithm was
introduced in [98], because the plain LSB division does not always terminate. It
loops forever for instance on integer pairs of the form (u, v) = (−2v, v). However,
we shall prove in the sequel that the average number of iterations is finite.

The (plain) LSB algorithm uses the set M of matrices,

(3.8) M :=

{(
0 2a

2a m

)
; a ≥ 1,m odd , |m| < 2a

}
,

30 BRIGITTE VALLÉE

Input: (u, v) ∈ Ω;

Repeat
a := Val2 (u); u := 2−a · u; b := 0;m := 0
While b ≤ a do

k := Val2 (v − u); v := (v − u)/2k;
m := m+ 2b; b := b + k;

(*) If m > 2a, then [m := m− 2a+1; v := v + 2a+1 · u;]
Exchange u and v;

until u = 0.

Output: v .

Figure 18. Description of the LSB Algorithms. The line (∗) is only
executed for the centered LSB algorithm.

while the (centered) LSB algorithm uses the set M̌ of matrices,

(3.9) M̌ :=

{(
0 2a

2a m

)
; a ≥ 1, m odd , 1 ≤ m < 2a+1

}
.

Each algorithm uses a set G [resp Ǧ] of LFT’s of the form g(x) = 2a/(m + 2ax),
where the odd m satisfies the plain condition 1 ≤ m < 2a+1 [for G] or the centered
condition |m| < 2a [for Ǧ]. As we already explained in Section 2.4, we are then led
to work with a system H [resp. Ȟ] of iterated functions, defined as

L := {h := g; g ∈ G}, Ȟ := {h := g; g ∈ Ǧ}

where the underline is the conjugaison with the Tangent map, and G [resp. Ǧ] is
the set of LFT’s relative to set M [resp. M̌] of matrices used by the LSB algorithm.
Then, each inverse branch h of the form

h(θ) = arctan

(
2a

m+ 2a tan θ

)

is chosen with probability 2−2a. Finally, the transfer operator which will be used
in the analysis is

(3.10) H[f](θ) :=
∑

k≥1

∑

m odd
|m|<2k

1 + tan2 θ

22k + (m+ 2k tan θ)2
· f

(
arctan

(
2k

m+ 2k tan θ

))
,

in the case of the LSB centered algorithm, for instance.
Here, the entropy α of this system of iterative functions is related to a Lyapounov
exponent β. Consider the set M of matrices defined in (3.8) or in (3.9), where
a matrix M relative to a valuation a is chosen with probability δM := 2−2a, and
remind the definition of the Lyapounov exponent β,

β :=
1

n
lim

n→∞
E [log ||M1 ·M2 · . . . ·Mn||],

[when each matrix M is independently drawn in M with probability δM]. Then
α = 8 log 2 − 2β [see [25] for a proof].

3.7. Final Classification of all the Euclidean Dynamical systems. Figure
19 provides a list of all the algorithms which are studied in this paper, with their
main characteristics: their type (defined by a number between 0 and 4), if they are
generic or markovian, if they are pure or mixed, easy or difficult, fast or slow, etc
. . . . Figure 20 shows what Theorems are valid for each Class [see Section 2.8 for a
description of the main nine theorems of this paper].

EUCLIDEAN DYNAMICS 31

Group Type Generic or Pure or Good, Bad or Name

Markovian Mixed Difficult

Po 0 Ge Pure [U] Good Standard [PoG]

Good Standard [G]

Good Odd [O]

MSB 1 Ge Pure [A] Good Centered [K]

Bad By-Excess [M]

Bad Even [E]

Bad Subtractive [T]

MLSB 2 Ma Mixed Good Pseudo- Standard [Ğ]

Good Pseudo-Odd [Ŏ]

Good Pseudo-Centered [K̆]

Bad Pseudo-By-Excess [M̆]

LMSB 3 Ge Mixed Difficult Binary [B]

Not studied Plus-Minus [PM]

LSB 4 Ge Mixed Difficult Plain LSB [L]

Difficult Centered LSB [Ľ]

Figure 19. Main features of the Euclidean Dynamical Systems. A
means Archimedean, U means ultrametric.

Class Proven Theorems

Good All

Bad 3,6

Difficult 1,3,4,5,6

Fast Class Good Class
S

Difficult Class.

Slow Class Bad Class

Easy Class Good Class
S

Bad Class

Figure 20. Proven Theorems. Various Classes

4. Main results: Generic truncated trajectories

Here, we describe the second step of Dynamical Analysis, where generic trajectories
are studied. Under some precise conditions, and for a set of algorithms which will
be described further, we shall prove that our main parameters, the total cost Cn, or
the size of continuants ℓn follow asymptotically a Gaussian law. We provide precise
central limit theorems for variables Cn, ℓn, with an optimal speed of convergence.
Furthermore, we give explicit formulae for the mean and the variance. Analog
results can be found in [17] or [22]. However, the general framework is not exactly
the same.

4.1. Generic truncated trajectories versus rational trajectories. We re-
call that our final goal is to study the execution of a gcd algorithm. These
executions correspond to rational trajectories (x, V x, V 2x, ...) of the Dynamical
System which meet the final value η. If P (x) is the first index i for which
V i(x) = η, the algorithm stops at the P (x) step, and produces a stopping trajectory
V(x) := (x, V x, V 2x, . . . V P (x)x). We first replace this study [rational trajectories]

32 BRIGITTE VALLÉE

by a slightly different one, which will be easier. We recall that such a transform
constitutes the Second Step in a Dynamical Analysis.
We consider for x ∈ X the trajectory V(x) = (x, V x, V 2x, ...), we choose some
integer n, which will be fixed in the whole Section, and we truncate [ourselves]
the trajectory at the n–th step: we obtained a truncated trajectory Vn(x) :=
(x, V x, V 2x, . . . V n−1x) which depends both on n (which will be fixed) and x (which
will be chosen at random in X): more precisely, we fix a “smooth” probability mea-
sure on X , we denote by E[·] the corresponding expectation, and we wish to study
the probabilistic behaviour of these truncated trajectories. We consider that X is
endowed with some probability absolutely continuous with respect to the Haar mea-
sure on X . For mixed Types, we recall that the Dynamical System is probabilistic,
so that the trajectories also depend on random choices.
Such a truncated trajectory can be encoded as

(d1(x), d2(x), . . . dn(x)), with di(x) = σ(V i−1x),

and it uses the inverse branch h := h[d1] ◦ h[d2] ◦ . . . ◦ h[dn] of depth n. The main
observables, which are now the total costCn and the n-th continuant qn, are random
variables defined on X , which we now describe.
The total cost Cn is defined as

Cn(x) :=

n∑

i=1

c(di(x)), with di(x) = σ(V i−1x).

Since the digit–cost only depends on the digit d, it depends only on the inverse
branch h = h[d] which is used. Then, the cost c is also defined on the set H
of inverse branches, and it can be extended to a cost on the semi-group H⋆ by
additivity. The total cost can be alternatively defined as

(4.1) Cn(x) :=
n∑

i=1

c(h[di]) = c(h[d1] ◦ h[d2] ◦ . . . ◦ h[dn]),

and we are interested in the asymptotic distribution of cost Cn (for n→ ∞).
The truncated trajectory Vn(x) builds a continued fraction of depth n: It is the
truncation of the continued fraction (of infinite depth) which corresponds to the
complete trajectory V(x). It is defined by the LFT h[d1] ◦ h[d2] ◦ . . . ◦ h[dn] and the
rational

pn

qn
(x) := h[d1] ◦ h[d2] ◦ . . . ◦ h[dn](0)

is called the n–th convergent of x. The pair Qn := (pn, qn), defined as

Qn =

(
pn

qn

)
= M[d1] ·M[d2] · . . . ·M[dn]

(
0
1

)

is a random variable which is called the continuant of order n, and we wish to study
its size ℓ(|Qn|), where ℓ is the size, and the absolute value is defined in (1.10, 1.12).
In fact, in the number case, we replace the binary size by the plain logarithm, and
we define in all the cases

ℓn := log∗(|Qn|),

where the logarithm log∗ is logq in polynomial case, and log2 in the number case.
It is of great (algorithmic) interest to study the asymptotic distribution of random
variable ℓn.

EUCLIDEAN DYNAMICS 33

4.2. The Quasi-Powers Theorem. How to obtain an asymptotic Gaussian law?
We consider a sequence of random variables Rn defined on the same probabilistic
space, and we wish to prove that the limit law of variable Rn is the Gaussian law.
To establish such an asymptotic gaussian law, it is standard to use the moment
generating function, i.e., the expectation E[exp(wRn)], for w complex. In proba-
bilistic i.i.d. situations, E[exp(wRn)] is the n-th power of some expectation. In our
setting, and for each parameter Rn = Cn or Rn = ℓn, a quasi-powers approximation
(with uniform remainder term) will be be obtained for E[exp(wRn)]. In this case,
the following Quasi-Powers Theorems of Hwang [47, 48, 49] will be used and this
will lead to the asymptotic gaussian law. This theorem is a compact and versatile
statement, which encapsulates the consequences of the Lévy continuity theorem
and the Berry-Esseen inequality.

Theorem A [Quasi-Powers Theorem.] Assume that the moment generating func-
tions E[exp(wRn)] for a sequence of functions Rn are analytic in a complex neigh-
borhood W of w = 0, and satisfy

(4.2) E[exp(wRn] = exp[βnU(w) + V (w)]
(
1 +O(κ−1

n)
)
,

with βn, κn → ∞ as n→ ∞, U(w), V (w) analytic on W and the O–term uniform
in W . Then, the mean and the variance satisfy

E[Rn] = U ′(0) · βn + V ′(0) +O(κ−1
n) , V[Rn] = U ′′(0) · βn + V ′′(0) + O(κ−1

n) .

Furthermore, if U ′′(0) 6= 0, the distribution of Rn is asymptotically Gaussian, with

speed of convergence O(κ−1
n + β

−1/2
n),

Pν

[
x

∣∣ Rn(x) − U ′(0)n√
U ′′(0)n

≤ Y

]
=

1√
2π

∫ Y

−∞

e−y2/2 dy +O(κ−1
n + β−1/2

n) .

4.3. Relating moment generating functions to n–th powers of transfer
operators. We now provide an alternative expression of moment generating func-
tions of our main parameters which relate them to some extensions of the density
transformer.

Digit-costs. We relate this expectation E[exp(wCn)] to the n–th iterate of the
operator H1,w,(c) defined in Figure 4. This weighted transfer operator H1,w,(c) will
be our main tool. It is defined as a perturbation of the density transformer H1: we
multiply the component operator H1,[h] by the factor exp[wc(h)]. We then obtain
a weighted component operator

H1,w,[h],(c) = δh · exp[wc(h)] · |h′(x)| · f ◦ h(x)
and the “total” weighted transfer operator is defined as in (2.5) or in (2.7),

(4.3) H1,w,(c)[f](x) =
∑

h∈H

δh · exp[wc(h)] · |h′(x)| · f ◦ h(x)

for generic types. For Markovian systems [Type 2], we perform this transformation
in each component of each coefficient of the matrix in (2.7). Then, additive prop-
erties of costs and multiplicative properties of derivatives [or denominators] entail
a nice formula for the n-th iterate of the operator H1,w,(c), for instance,

(4.4) Hn
1,w,(c)[f](x) =

∑

h∈Hn

δh exp[wc(h)] · |h′(x)| · f ◦ h(x) ,

for generic types.
We now relate the expectation E[exp(wCn)] to the n–th iterate of the operator
H1,w,(c). Remark that the cost Cn(x) is equal to c(h) on the “fundamental” set
h(X). A fundamental set is just the image h(X) of X by an element h ∈ H⋆; When

34 BRIGITTE VALLÉE

the depth of h equals n, such a set is exactly the subset of x ∈ X for which the first
n digits of x are fixed and equal to digits of the rational h(η). Remind that a LFT
h ∈ H is chosen with a probability equal to

P[h is chosen] = δh ·
∫

h(X)

f(u)du = δh

∫

X

|h′(x)|f ◦ h(x)dx.

Then,

(4.5) E[exp(wCn)] =
∑

h∈Hn

exp[wc(h)] · P[h is chosen] =

∫

X

Hn
1,w,(c)[f](x) dx

For Markovian types, instead of Hn
1,w,(c)[f](u), we have a matrix relation, of the

form
(
1 1

)
Hn

1,w,(c)

(
f [0]

f [1]

)
(u).

Continuants. The moment generating function E[exp(2wℓn)] of ℓn can be ex-
pressed in terms of the n–th iterate of the operator H1,w. This operator is defined
by its component operators H1,w,[h] which operate on functions F of two real vari-
ables x and y as follows:

(4.6) H1,w,[h][F](x, y) = δ1−w
h · |h′(x)| · |h′(y)|−w · F (h(x), h(y)) ,

Then, the total transfer operator is defined as in (2.5) [for generic types] or as in
(2.7) for Markovian types. Remark that, on the diagonal x = y, one has

H1,w[F](x, x) =
∑

h∈H

δ1−w
h · |h′(x)|1−w · F (h(x), h(x)).

Then, the operator H1,w is related to the (plain) transfer operator Hs defined in
(2.5) or in (2.7), in the sense that H1,w can be viewed as an “extension” of H1−w

to functions of two variables. It can be also viewed as an “extended” perturbation
of H1.
In all the cases, the relation |Q−2

n (x)| = δh ·|h′(0)| [which relates the point x and the
inverse branch of depth n which is relative to the beginning CFE of x] is the key
for the alternative expression for the moment generating function of E[exp(2wℓn)]
as a function of Hn

1,w,

(4.7) E[exp(2wℓn)] =
∑

h∈Hn

δ−w
h · |h′(0)|−w · P[h is chosen] =

∫

X

Hn
1,w[F](u, 0)du,

with F (x, y) := f(x), where f is the density chosen on X .

Finally, Relations (4.7) and (4.5) show that the moment generating functions of
interest are closely related to powers of transfer operators H1,w,(c) or H1,w.

4.4. Functional analysis. We first describe a set of conditions on a general opera-
tor Gw, and we will prove that these conditions are sufficient to entail a quasi-power
behaviour of the n–th power of this transfer operator Gw, and thus a quasi-power
behaviour for related moment generating functions.

Conditions (A). There exists a functional space F where the following is true:

[Anw(1, 0)]. The operator Gw acts on F when w is (complex) near 0 and the map
w 7→ Gw is analytic at w = 0.
[UDE and SG]. The operator G0 : F → F has a unique dominant eigenvalue λ = 1,
and a spectral gap: the rest of the spectrum lies in a disk whose radius is < 1.
[SLCw]. The pressure map ΛG(w) := logλG(w) has a second derivative which is
not zero at w = 0.

Theorem AA. Suppose that Conditions (A) hold for an operator Gw. Then the
hypotheses of Theorem A [Quasi-Powers Theorem] are fulfilled for all the variables

EUCLIDEAN DYNAMICS 35

Rn whose moment generating function is “closely” related to the n-th power Gn
w,

applied to some function F of F .

Proof. Elementary perturbation theory [53] implies that Gw inherits the dominant
eigenvalue property and the spectral gap when w is near 0. This proves that the
n–th iterate Gn

w of the operator behaves as a uniform quasi–power where the main
term involves the n–th power of the dominant eigenvalue λG(w) of the operator
Gw, so that U(w) = logλG(w)) and βn = n. Finally, the condition U ′′(0) 6= 0 is
exactly Condition [SLCw].

4.5. Generic truncated trajectories: Study of digit–costs. When the cost c
is of moderate growth [i.e., c(d) is O(ℓ(d)], and the gcd algorithm is any element of
the Fast Class, then Conditions (A) are fullfilled for the weighted transfer operator
Gw := H1,w,(c) defined in Figure 4. These facts will be proven in Section 8, where
the convenient functional space F will be described.
In both cases, relation (4.5) and Theorem (AA) entail that the Quasi-Powers The-
orem can be applied. This leads to an asymptotic Gaussian Law for the total cost
Cn. We provide a quite precise central limit theorem for variable Cn, with an op-
timal speed of convergence. Furthermore, we give explicit formulae for the mean
and the variance.

Theorem 1. Consider any gcd algorithm which belongs to the Fast Class, together
with a non constant digit cost of moderate growth. Consider any probability P on
X with a smooth density f ∈ F with respect to the Haar measure on X . Then,
there are µ(c) and ρ(c) so that for any n, and any Y ∈ R

P

[
x

∣∣ Cn(x) − µ(c)n

ρ(c)
√
n

≤ Y

]
=

1√
2π

∫ Y

−∞

e−y2/2 dy +O

(
1√
n

)
.

Furthermore, if r1 is the subdominant spectral radius of the density transformer
H, for any θ which satisfies r1 < θ < 1, one has :

E [Cn] = µ(c) · n+ µ1(c) +O(θn) , V [Cn] = ρ2(c) · n+ ρ1(c) +O(θn) .

Moreover, the constants µ(c) and ρ2(c) admit expressions which involve the pressure
function Λ(1, w) := logλ(1, w) relative to the weighted transfer operator H1,w,(c)

defined in (4.3),

µ(c) = Λ′
w(1, 0) = λ′w(1, 0), ρ2(c) = Λ′′

w2(1, 0) = λ′′w2(1, 0) − λ′2w(1, 0).

Finally, µ(c) involves the invariant density ψ,

µ(c) =
∑

h∈〈

δh · c(h)
∫

h(X)

ψ(t) dt .

4.6. Generic trajectories for the Good Class: Study of continuants. For
the good Euclidean dynamical systems, then Conditions (A) are fullfilled for the
transfer operator Gw := H1,w defined in Figure 4. This will be proven in Section 8.
Then, relation (4.7) and Theorem (AA) entail that the Quasi-Powers Theorem can
be applied. This leads to an asymptotic Gaussian Law for the size of continuants
ℓn. We provide a quite precise central limit theorem for variable ℓn, with an optimal
speed of convergence. Furthermore, we give explicit formulae for the mean and the
variance.
Remark that, for algorithms of the Difficult Class, the transfer operator Gw := H1,w

does not seem to satisfy Conditions (A) [see Section 8]. Finally, we have proven:

36 BRIGITTE VALLÉE

Theorem 2. Consider any gcd algorithm of the Good Class. Denote by ℓn the
logarithm of the n–th continuant Qn (in the number case) or degQn (in the poly-
nomial case). Consider any probability P on X with a smooth density f . Then,
there are β and γ so that for any n, and any Y ∈ R

P

[
x

∣∣ 2ℓn(x) − αn

γ
√
n

≤ Y

]
=

1√
2π

∫ Y

−∞

e−y2/2 dy +O

(
1√
n

)
.

Furthermore, if r1 is the subdominant spectral radius of the density transformer
H, for any θ which satisfies r1 < θ < 1, one has :

E [ℓn] =
α

2
· n+ α1 +O(θn) , V [Cn] =

γ2

4
· n+ γ1 +O(θn) .

Moreover, the constants α and γ admit expressions which involve derivatives of
w 7→ Λ(1 − w) at w = 0, where Λ(s) := logλ(s) is the pressure function of the
weighted transfer operator Hs defined in (2.5) or in (2.7),

α = |Λ′(1)| = −λ′(1), γ2 = Λ′′(1) = λ′′(1) − λ′2(1)

We recall that α is the entropy of the dynamical system and can be expressed with
the invariant function ψ,

α = −
∑

h∈H

δh log δh −
∫

X

log |V ′(t)|ψ(t)dt.

5. Back to the Euclidean Algorithms.

With this Section, we begin the third step of Dynamical Analysis. As it is often
the case, the discrete problem is more difficult than its continuous counterpart.
An execution of a Euclidean algorithm on the input (u, v) formed with two integers
u, v such that u/v = x gives rise to a rational trajectory V(x) which stops at
the P (x)–step when it meets η, and, we work with the stopping trajectory V(x).
When we worked previously [in Section 4] with (generic) truncated trajectories, the
truncation degree n was chosen by us, and we are led to study n-th powers of transfer
operators, with respect to the reference parameter n. For a rational trajectory V(x)
corresponding to an input (u, v), the truncation degree is in a sense automatic [it
is no longer chosen], and the reference parameter is now the size L(u, v) of the
input (u, v). On inputs on size N , the reference probability measure PN is now the

uniform discrete measure on the (finite) sets ΩN , Ω̃N of inputs of size N defined in
(1.14).
We then proceed in two steps: First, we work with all possible inputs of Ω, which
build all the rational trajectories [these which meet η]. Since we have to consider
LFT’s with any depth, we wil be led to study quasi–powers of transfer operator
[This first step will be performed in this Section]. Second, later on, in Sections
6 and 7, we restrict ourselves to a given size N , and we have to “extract” these
particular inputs.

5.1. Parameters of interest. We now describe the new parameters of interest.
First, the total cost of the trajectory, relative to a digit–cost c, is

(5.1) C(u, v) :=

P (u,v)∑

i=1

c(di(
u

v
)) .

Second, we are also interested in the behaviour of the remainder pair Ui :=
(ui+1, ui). More precisely, we wish to study the Interrupted Algorithm which stops
as soon as the absolute value of the remainder pair Ui becomes smaller than some
power of the absolute value |U0| of the input pair, and we are led to describe the

EUCLIDEAN DYNAMICS 37

behaviour of the continuant at a fraction of the depth P (u, v) [the depth P is the
depth of the continued fraction or the number of iterations of the algorithm]. We
consider a parameter δ ∈ [0, 1], and we define the remainder at the fraction δ as

a random variable U[δ] on Ω, Ω̃. More generally, we wish to study the behaviour
of (beginning and ending) continuants at a fraction of the depth. The definition
of beginning and ending continuants are given in Section 1. 3 [See Equations (1.6,
1.8)]. It is then natural to let, for X ∈ {U, V,Q},
(5.2) X[δ](u, v) = X⌊δP (u,v)⌋(u, v), LX[δ](u, v) := log∗(|X[δ](u, v)|)
where, as previously, log∗ is log2 in the number case or logq for polynomials in
Fq[Z].

Third, the bit–complexities of the (plain) algorithm (which only computes the gcd)
or of the extended algorithm (which also computes the Bezout Coefficients) on an
input (u, v), defined as

(5.3) B(u, v) :=

P (u,v)∑

i=1

ℓ(di) · L(Ui), B(u, v) :=

P (u,v)∑

i=1

ℓ(di) · L(Qi)

involve parameters of various types.

Remark. On a coprime input (u, v), the Euclid algorithm “writes” the result
u/v = h(0). We remark that the last step of a Euclid algorithm is particular [see
Figure 1 for some instances]. As an example, the standard Euclidean algorithm
cannot use the quotientm = 1 in its last step. Then, the LFT used by the algorithm
belongs to H⋆ ×F where F is the set of LFT’s used in the last step. In fact, in this
case, any rational admits two CFE’s, the first one, built by the Euclid Algorithm,
is the proper one: its sequence of digits ends with an element of F . The second one
is the improper one and does not end with an element of F : it cannot be produced
by the Algorithm, but this is a possible CFE for the rational u/v. We consider
here these two CFE’s which generate together the whole set H⋆, and we do not
study exactly costs defined as in (5.1,5.2,5.3) but their “smoothed version” which
takes into account the two possible CFE’s: it is the average between the cost on
the proper extension and the cost on the improper one. For all the costs R which

are studied here, whose growth is at most moderate, it is clear that R̃n − Rn is
O(1). It is then sufficient to study the smoothed version, and we shall denote by

SR the Dirichlet series relative to this smoothed version R̃.

5.2. Relating Dirichlet series to quasi-inverses of transfer operators:
Digit–cost. The fundamental fact is the existence, for all the types, of a sim-
ple relation between SC(2s, w) and the quasi-inverse (I −Hs,w,(c))

−1 of a weighted
transfer operator Hs,w,(c) (which depends on two parameters s and w).
For all types, the transfer operator Hs,w,(c) is defined via its components operators
[see Figure 4]

(5.4) Hs,w,[h],(c)[f](x) = δs
h · exp[wc(h)] · |h′(x)|s · f ◦ h(x) .

For any generic type, the operator Hs,w,(c) is the sum of all its component opera-
tors, while, for Markovian Type 2, the extension is made, as previously, on all the
components of the coefficients of the matrix defining Hs in (2.7). Note that this
operator is a simultaneous extension of the three operators H1,H1,w,(c),Hs defined
previously. Remark also, as previously, that the n-th iterate of this operator has a
nice form; for instance, for generic types, one has

(5.5) Hn
s,w,(c)[f](x) =

∑

h∈Hn

δs
h · exp[wc(h)] · |h′(x)|s · f ◦ h(x) .

38 BRIGITTE VALLÉE

Let us explain why such a relation exists between SC(s, w) and the quasi–inverse
of Hs,w. We recall that, for any (u, v) ∈ Ω, there exists a unique h ∈ H⋆ for which
u/v = h(η) [η is the stopping value of the gcd algorithm]3. This entails a bijection
between the set of coprime valid inputs Ω and the semi group H⋆. Then, the sum
which defines SC(s, w) can be completely expressed by means of LFT h ∈ H⋆,

SC(s, w) :=
∑

(u,v)∈Ω

1

|(u, v)|2s
exp[wC(u, v)] =

∑

h∈H⋆

δs
h · |h′(η)|s · exp[wc(h)]

=
∑

k≥0

∑

h∈Hk

δs
h · |h′(η)|s · exp[wc(h)] =

∑

k≥0

Hk
s,w,(c)[1](η).

Here, we used the alternative expression of |(u, v)|−2s given in (2.8, 2.11) and the
fact that C(u, v) equals c(h), due to Equations (5.1, 4.1). Finally,

(5.6) SC(s, w) = (I − Hs,w,(c))
−1[1](η).

An analog relation holds in Markovian cases.

When derivating with respect to w Equation (5.6), one relates the generating func-

tion S
[1]
C (s) defined in (1.20) to the quasi-inverse (I − Hs)

−1 together with its

weighted version H
(c)
s defined in Figure 4 via the relation

(5.7) S
[1]
C (s) = (I − Hs)

−1 ◦ H(c)
s ◦ (I − Hs)

−1[1](η).

For the second moment, with a supplementary derivation, one gets

(5.8) S
[2]
C (s) = (I − Hs)

−1 ◦ H(c2)
s ◦ (I − Hs)

−1[1](0)+

+2(I − Hs)
−1 ◦ H(c)

s ◦ (I − Hs)
−1 ◦ H(c)

s ◦ (I − Hs)
−1[1](0).

We observe that all these Dirichlet series have the same structure: quasi–inverses
of the form (I − Hs)

−1, and between these quasi-inverses, operators which involve

various weights, i.e., operators of the form H
(ci)
s . Let us consider the weighting

operator W(c) which operates on transfer operators and weights with cost c(h) each
component of a transfer operator. It satisfies

W(c)Hs = H(c)
s =

∂

∂w
Hs,w|w=0, W i

(c)Hs = W(ci)Hs = H(ci)
s =

∂i

∂wi
Hs,w|w=0.

Furthermore, we adopt shorthand notations where we omit the quasi-inverses, the
zeta function, the function 1, and the point η: we only take into account the
operators “between” the quasi inverses. For instance, equations (5.7, 5.8) can be
re-written as [here, we omit the index (c) in the operator W]

S
[1]
C = [W], S

[2]
C = [W 2] + 2[W,W].

Any series S
[k]
C (s) can be expressed with involved expression which contains iterates

of the weighting operator W . For costs of moderate growth, we will see that the
“dominant” term of the series S[k](s) is

(5.9) S
[k]
C ≍ [W,W,W, . . . ,W] (k times)

while, for costs of large growth, the “dominant term” will be

(5.10) S
[k]
C (s) ≍ [W k]

3we suppose here (for simplicity) that the initial set J and the final set F coincide with the
total set H. This has been justified at the end of Section 5.1.

EUCLIDEAN DYNAMICS 39

5.3. Relating Dirichlet series to quasi-inverses of transfer operators: Con-
tinuants at a fraction of the depth. We study the parameters LX[δ] for
X ∈ {U, V,Q}. As previously, we consider the Dirichlet moment generating func-
tion series SLX[δ]

(s, w) of LX[δ], defined as

SLX[δ]
(s, w) :=

∑

(u,v)∈Ω

1

|(u, v)|2s
|X⌊δP (u,v)⌋|2w.

Consider an input (u, v) of Ω on which the algorithm performs p iterations. There
exists a unique LFT h of depth p such that u/v = h(η). One can decompose h in
two LFT’s g and r of depth ⌊δp⌋ and p−⌊δp⌋ such that h = g ◦ r. In this case, one
has

δg◦r · |(g ◦ r)′(η)| = |U0|−2, δr · |r′(η)| = |Ui|−2, δg · |g′(0)| = |Qi|−2.

Ending continuants [X = U or X = V]. Remark that the two variables U and
V coincide on the set Ω of valid coprime inputs. The general term of the series
SLU [δ](s, w) decomposes as

|Ui|2w

|U0|2s
= δ−w

r · |r′(η)|−w · δs
g◦r|(g ◦ r)′(η)|s = [δs−w

r · |r′(η)|s−w] · [δs
g · |g′(r(η))|s].

Now, when (u, v) varies in the set of coprime inputs of Ω with a given height p, we
obtain

(5.11)
∑

(u,v)∈Ω

P (u,v)=p

|Ui|2w

|U0|2s
= Hp−i

s−w ◦ Hi
s[1](η),

and finally, with all depths

SLU[δ]
(s, w) =

∑

p≥0

H
p−⌊δp⌋
s−w ◦H⌊δp⌋

s [1](0)

 .

Now, if δ is a rational of the form δ = c/(c+ d), then

(5.12) SLU [δ](s, w) =

c+d−1∑

j=0

H
j−⌊δj⌋
s−w ◦

∑

k≥0

Hdk
s−w ◦ Hck

s

 ◦ H⌊δj⌋

s [1](0).

The central part of the previous formula defines the so–called pseudo–quasi-inverse
Hs,w, namely

(5.13) Hs,w :=
∑

k≥0

Hdk
s−w ◦ Hck

s .

Of course, since Hs and Hs,w do not commute, this is not a “true” quasi-inverse.
However, we study this operator when w is near to 0, and we can hope that the
properties of Hs,w will be close to properties of a true quasi-inverse. We see that
this is true in Section 7.

Beginning continuants [X = Q]. The general term of the series SLQ[δ]
(s, w) decom-

poses as

|Qi|2w

|U0|2s
= δ−w

g ·|g′(0)|−w ·δs
g◦r|(g ◦ r)′(η)|s = [δs−w

g ·|g′(0)|−w ·|g′(r(η))|s]·[δs
r ·|r′(η)|s].

Now, when (u, v) varies in the set of all inputs of Ω with a given height p, we obtain

(5.14)
∑

(u,v)∈Ω

P (u,v)=p

|Qi|2w

|U0|2s
= Ĥp−i

s ◦ Hi
s,w[1](η, 0),

40 BRIGITTE VALLÉE

where the (new) operator Ĥs is defined via its components Ĥs,[h] in Figure 4. We
consider, as previously, an integer i of the form i = ⌊δP ⌋, with a rational δ ∈ [0, 1]
of the form δ = c/(c+ d). Thus, P = (c+ d)k+ j, with j < c+ d, and a summation
over p gives

(5.15) SLQ[δ]
(s, w) =

c+d−1∑

j=0

Ĥj−⌊δj⌋
s ◦

∑

k≥0

Ĥdk
s ◦ Hck

s,w

 ◦ H⌊δj⌋

s,w [1](η, 0).

In the same vein as previously, for the ending coontinuants, there appears a pseudo-

quasi-inverse Ĥs,w, defined as

Ĥs,w :=
∑

k≥0

Ĥdk
s−w ◦ Hck

s ,

which can be expected to be close to a true quasi-inverse.

5.4. Relating Dirichlet series to quasi-inverses of transfer operators: Bit–
complexity. The bit-complexity is more involved to study . . . and was studied for
the first time in [2], then in [108]. Remind that it is defined via costs B,B [See
(5.3)]. Here, we only obtain an alternative expression for the Dirichlet expectation
series

S
[i]
R (s) :=

∑

(u,v)∈Ω

R(u, v)

|(u, v)|2s

when R is equal to B or B and i = 1, 2.
We first deal with the elementary costs

ℓ(mi) · |Ui|w, ℓ(mi) · |Qi|w,
for some (small) w and fixed index i with 1 ≤ i ≤ p. The corresponding Dirichlet
generating functions are obtained by an easy modification of series involved in (5.11)
or (5.14), namely

∑

p≥i

Hp−i
s−w ◦ H(ℓ)

s ◦ Hi−1
s [1](η),

∑

p≥i

Ĥp−i−1
s ◦ Ĥ(ℓ)

s ◦ Hi
s,w[1](η, 0),

where the operators H
(ℓ)
s , Ĥ

(ℓ)
s are defined as in Figure 4, with an associated digit-

cost c := ℓ, the binary length of an integer. Now, the generating Dirichlet series
of B and B are just obtained with taking the sum over all the indices i between 1
and p, and taking the derivative with respect to w (at w = 0). We obtain, after
the first step [i.e., taking the sum over indices i]

(I −Hs−w)−1 ◦H(ℓ)
s ◦ (I −Hs)

−1[1](η), (I − Ĥs)
−1 ◦ Ĥ(ℓ)

s ◦ (I −Hs,w)−1[1](η, 0),

and, after the second step,

(5.16) S
[1]
B (s) = (I − Hs)

−1 ◦ ∆Hs ◦ (I − Hs)
−1 ◦ H(ℓ)

s ◦ (I − Hs)
−1[1](η)

(5.17) S
[1]

B
(s) = (I − Ĥs)

−1 ◦ Ĥ(ℓ)
s ◦ (I − Hs)

−1 ◦ ∆Hs ◦ (I − Hs)
−1[1](η, 0).

Let us consider the derivation operator (with respect to s), denoted by ∆, which
operates on transfer operators and use the similar shorthand notations as in Section
5.2, with omitting the index ℓ in the weighting operator W . Then, we have, for

instance, S
[1]
B = [∆,W].

For the moment of order 2, we first deal with the elementary costs

ℓ(mi) · ℓ(mj) · |Ui|w · |Uj |t, ℓ(mi) · ℓ(mj) · |Qi|w · |Qj|t,
for some (small) w, t and fixed index i, j with 1 ≤ i, j ≤ p, and it is easy to obtain an
alternative expression for the corresponding Dirichlet series, at least for the ending

EUCLIDEAN DYNAMICS 41

continuants. If we are only interested by the “dominant” terms, i.e., the terms
which bring at least four quasi–inverses, we have

1

2
S

[2]
B ≍ 2[∆,∆,W,W] + [∆,W,∆,W] + [∆2,W,W] + [∆,∆W,W] + [∆,∆,W 2].

6. Average–case analysis of Euclidean Algorithms.

Here we perform an average–case analysis, and we wish to obtain the asymptotic
behaviour of the mean EN [R] of our main parameters, and more generally some
hints on the moments EN [Rk] of order k. Our strategy is as follows. We have
obtained alternative expressions of SR(s, w) [from which we can obtain expressions

for S
[k]
R (s) by taking derivatives with respect to w at w = 0], or directly expressions

for S
[k]
R (s). The series S

[k]
R (s) are Dirichlet generating series, and they gather all

the input data (u, v) ∈ Ω marked with their size. We now “extract” coefficients of
these Dirichlet series in order to obtain probabilistic behaviours on ΩN .

6.1. Particularities of the polynomial case. In this case, both size and topol-
ogy are ultrametric. The series SR(s, w) is a power series with respect to w and

z = q−2s [denoted by TR(z, w)], and the series S
[k]
R (s) is a power series with respect

to z = q−2s, denoted by T
[k]
R (z),

TR(z, w) :=
∑

(u,v)∈Ω

zL(u,v) exp[wR(u, v)], T
[k]
R (z) =

∑

(u,v)∈Ω

zL(u,v)Rk(u, v).

If we denote by [zn]A(z) the coefficient of zn inside the power series A(z), the
moment EN [Rk] of order k, or the moment generating function EN [wR] are defined
by

EN [exp(wR)] =
[zN]TR(z, w)

[zN]TR(z, 0)
, EN [Rk] =

[zN]T
[k]
R (z)

[zN]TR(z, 0)
,

and are easily extracted by methods of analytic combinatorics [33][34]. This study of
Euclidean Algorithms on polynomials can be entirely done with classical generating
functions, at least when a uniform probability is chosen on ΩN . This is due to the
fact that, for Type 0, both the topology and the size are ultrametric. Since all the
analyses deal with power series, the extraction is simpler and can be done more
precisely than in our general framework, where we deal with Dirichlet series. See
[38, 57] for instance.

6.2. Coming back to the number case. In the number case, the series S
[k]
R (s)

are Dirichlet series which can be written as

S
[k]
R (s) =

∑

(u,v)∈Ω

Rk(u, v)

|(u, v)|2s
=

∑

n≥1

R
[k]
n

ns
with R[k]

n =
∑

(u,v)∈Ω,

|(u,v)|2=n

Rk(u, v),

We wish to evaluate

(6.1) EN [Rk] =

∑22N

n=22N−1 φ[k](n)
∑22N

n=22N−1 φ[0](n)
,

where, as in Section 1.7, φ[k](n) are the coefficients of the Dirichlet series

S
[k]
R (s) =

∑

(u,v)∈Ω

Rk(u, v)

|(u, v)|2s
.

Remark that, in all the cases, the series S
[0]
R (s) are related to ζ functions associated

to valid inputs of the algorithm.

42 BRIGITTE VALLÉE

It is then sufficient to obtain an asymptotic behaviour for the sum of coefficients
of a Dirichlet series. This is why the following Tauberian Theorem [27] [99] will be
an essential tool in this Section.

Theorem B. [Tauberian Theorem]. [Delange] Let F (s) be a Dirichlet series with
non negative coefficients such that F (s) converges for ℜ(s) > σ > 0. Assume that
(i) F (s) is analytic on ℜ(s) = σ, s 6= σ, and
(ii) for some γ ≥ 0, one has F (s) = A(s)(s − σ)−γ−1 + C(s), where A,C are
analytic at σ, with A(σ) 6= 0.
Then, as K → ∞,

∑

n≤K

an =
A(σ)

σΓ(γ + 1)
Kσ logγ K [1 + ǫ(K)], ǫ(K) → 0.

We will see that such a Theorem will be easy to use in our framework. In particular,
the sums which appear in the numerator and denominator of EN [Rk] [see (6.1)] can
be easily evaluated with this Theorem, via the estimates

22N∑

n=22N−1

an = C(σ, γ) · 22Nσ Nγ · [1 + ǫ(N)], ǫ(N) → 0,

with C(σ, γ) :=
A(σ)

σΓ(γ + 1)
(1 − 2−σ) (2 log 2)γ .

However, the Tauberian Theorem does not provide any remainder term, and this
is why it will be no longer useful for distributional analyses. This is also a main
difference with the study of the polynomial case, where use of power series easily
allows to obtain remainder terms.

6.3. Functional analysis. We first describe a set of conditions, and we will prove
that these conditions are sufficient to entail that hypotheses of Tauberian Theorem
are valid.

Conditions (B). There exists a functional space F where some operator Gs

satisfies the following:

[Ans(s, 0)]. The operator Gs acts on F when s satisfies ℜs > σ with σ < 1 and the
map s 7→ Gs is analytic on ℜs > σ.
[UDE and SG]. The density transformer G := G1 has a unique dominant eigenvalue
λ = 1, and a spectral gap: the rest of the spectrum lies in a disk of radius < 1.
[SM]. The spectral radius R(s) of Gs is strictly less than 1 on ℜs = 1, except at
s = 1.

Theorem BB. Suppose that Conditions (B) hold for a transfer operator Gs.
Denote by A the set of operators A that act on transfer operators, and for which
the operator AG acts on the Banach space L1(I). Then the hypotheses of Theorem
B [Tauberian Theorem] are fulfilled for all the Dirichlet Series F (s) denoted by an
expression [A1, A2, . . . Ak] where each Ai belongs to A. More precisely, F (s) has a
pôle of order k + 1 at s = 1, and it admits, at s = 1, an expansion of the form

F (s) =
a0

(s− 1)k+1
+

a1

(s− 1)k
+

Moreover, the “dominant” coefficient a0 can be expressed as

(6.2) a0 =
1

log 2
· 1

λ′(1)k+1
·

k∏

i=1

I[AiG] where I[H] :=

∫

I

H[ψ](t)dt

EUCLIDEAN DYNAMICS 43

involves the dominant eigenfunction ψ of the operator G and λ′(1) is the derivative
of the dominant eigenvalue λ(s) at s = 1.

Then, the dominant constant a0 depends only on the subset {A1, A2, . . . Ak} and
does not depend on the order of the sequence (A1, A2, . . . , Ak). Moreover, if Gs,w

is a weighted transfer operator relative to a dynamical system (X,V) and a digit-
cost of moderate growth, the integrals I[AG], for A := W[c] or A := ∆, admit
alternative expressions

I[∆G] =

∫

X

∆G[ψ](t)dt = λ′s(1, 0), I[W[c]G] =
∑

h∈H

c(h)·
∫

h(X)

ψ(t)dt = λ′w(1, 0),

which involve the derivatives of the dominant eigenvalue λ(s, w) at (1, 0). [We have
already considered such expressions in Equations (2.15, 2.16)].

Proof. Elementary perturbation theory [53] implies that Gs inherits the dominant
eigenvalue property and the spectral gap when s is (complex) near 1, so that Gs

decomposes as Gs = λ(s) · Ps + Ns, where λ(s) is the dominant eigenvalue of
Gs, Ps is the projection on the dominant eigensubspace, and Ns is the operator
relative to the remainder of the spectrum. The previous decomposition extends to
any power Gn

s = λ(s)n ·Ps + Nn
s , and to the quasi–inverse

(I − Gs)
−1 = λ(s)

Ps

1 − λ(s)
+ (I − Ns)

−1.

Since G1 has a dominant eigenvalue equal to 1, its dominant eigenfunction is the
invariant density denoted by ψ. Finally, for any strictly positive function f , one
has

(I − Gs)
−1[f](x) ∼ −1

λ′(1)
ψ(x) ·

∫

X

f(t)dt when s→ 1.

Finally, hypothesis (ii) of Tauberian Theorem is satisfied at s = 1 for any Dirichlet
series of the form [A1, A2, . . . Ak] with γ = k, and the dominant constant a0 has
the described form.
On the otherside, Condition SM proves that hypothesis (i) of Tauberian Theorem
is satisfied.

6.4. Number of steps. [105, 106, 107, 108]. For algorithms of the Fast Class [we
recall that the Fast Class is the union of the Good Class and the Difficult Class],
the operator Hs satisfies Conditions (B). [See Section 8]. Then, Relation (5.7)
applied to the particular case c = 1,

S[1](s) = (I − Hs)
−1 ◦ Hs ◦ (I − Hs)

−1[1](η)

entails that Tauberian Theorem can be applied at s = 1 with an exponent γ = 1
for the expectation EN [P]. More generally, Relation (5.9) entails that Tauberian
Theorem can be applied at s = 1 and γ = k for the moment EN [P k] of order k.
Theorem (BB) proves that the moment of order k is asymptotic to the k-th power
of the mean value. In particular, the variance is of order o(N).

For algorithms of the Bad Class, the transfer operator H̃s of the induced dynamical
system [see Section 2.6] satisfies Conditions (B) [see Section 8 for a proof]. The

operator Hs can be viewed as the operator H̃
(c0)
s relative to the cost c0(d) = d.

Since c0 is a cost of large growth, Hs brings a supplementary pôle of order 1 at
s = 1. Then, Relation (5.7) applied to this particular case

S[1](s) = (I − H̃s)
−1 ◦ H̃(c0)

s ◦ (I − H̃s)
−1[1](η)

entails that Tauberian Theorem can be applied at s = 1 with an exponent γ = 2
for the expectation EN [P]. Now, for the moment EN [P k] of order k, the operator

44 BRIGITTE VALLÉE

H̃
(ck

0)
s has a dominant pôle at s = k. Then, Relation (5.10) shows that the moment

EN [P k] of order k is of exponential order.

Theorem 3. [Number of steps.] For any algorithm of the Fast Class, the expec-
tation EN [P] of the number P of steps on the valid inputs of sizeN is asymptotically
linear with respect to size N ,

EN [P] ∼ µ̂ ·N, where µ̂ :=
2 log 2

α

where α is the entropy of the dynamical system. The standard deviation is o(N),
and, consequently the random variable P satisfies the concentration of distribution
property.
Any Euclidean Algorithm associated to a dynamical system of the Bad Class per-
forms an average number of steps on valid rationals of size N that is quadratic with
respect to size N ,

EN [P] ∼ log2 2

ζ(2)
N2,

where ζ(s) is the Zeta function relative to valid inputs. For any integer k ≥ 2, the
k–th moment of total number of steps is of exponential type

EN [P k] = Θ[2N(k−1)].

In particular the standard deviation is Θ(2N/2).

6.5. Digit–costs of moderate growth. [108] For algorithms of the Fast Class,
the operator Hs satisfies Conditions (B). Moreover, for a cost c of moderate growth,

the operator H
(c)
s defined in Figure 4 is analytic on ℜs ≥ 1.[see Section 8]

Theorem 4. [Total cost.] Consider any algorithm of the Fast Class, together
with a cost c of moderate growth. The expectation EN [C] of the total cost C on
the valid inputs of sire N is asymptotically linear with respect to size N ,

EN [C] ∼ µ̂(c) ·N, with µ̂(c) :=
2 log 2

α
· µ(c), EN [Ck] ∼ (EN [C])

k

where α is the entropy of the dynamical system, and µ(c) the average value of cost
c with respect to the density defined by the invariant function ψ [see (2.15, 2.16)].
The standard deviation is o(N), and, consequently the random variable expressing
the total cost C satisfies the concentration of distribution property.

It is possible to obtain a more general theorem for costs of large growth and/or
algorithms of Bad Class. (See [108]).

Remark. Comparing Theorems 1, 3 and 4 shows that, for any algorithm of the
Fast class, and any cost c of moderate growth, one has µ̂(c) = µ̂ · µ(c), so that

(6.3) EN [C] ∼ µ(c) · EN [P],
EN [C]

EN [P]
∼ E[Cn]

n
.

This proves that executions of Euclidean Algorithms [which correspond to rational
trajectories] in the Fast Class behave on average similarly to the way truncated real
trajectories behave on average.

EUCLIDEAN DYNAMICS 45

6.6. Continuants at a fraction of the depth. Here, our starting point are

Relations (5.12, 5.15). For X ∈ {U, V,Q}, the Dirichlet series S
[1]
LX[δ]

(s) is obtained

by taking the derivative (with respect to w) of SLX[δ]
(s, w) at w = 0. For X ∈

{U, V }, and for Algorithms of the Fast Class, it has a dominant pole at s = 1 of
order 2. Then, Tauberian Theorem can be applied at s = 1 with γ = 1. The series

S
[k]
LU[δ]

(s) relative to moments of order k has a dominant pole at s = 1 of order k+1.

This analysis appears under a different form in [24].

For X = Q, the situation is more involved. For algorithms of the Good Class, the
operator Hs has good dominant spectral properties, closely related to these of the
operator Hs; this is due, in particular, to the property (P2) of Figure 2, which
was called “Bounded Distortion Property” . Then, the analyses for the beginning
and ending continuants are similar. For the algorithms of the Difficult Class, the
behaviour of the operator Hs may be quite involved, and the behaviour of the
beginning continuants is more difficult to study. It is not the same a priori as for
the ending continuants.

Theorem 5. For any algorithm of the Fast Class, the expectation of the size of
the (ending) continuant at a fraction δ on the set of valid inputs with size N is
asymptotically of the form

EN [LU[δ]] ∼ (1 − δ) ·N.

The standard deviation is o(N). Consequently the random variable LU[δ] satisfies
the concentration of distribution property.
For any algorithm of the Good Class, the expectation of the size of the (beginning)
continuant at a fraction δ on the set of valid inputs with size N is asymptotically
of the form

EN [LQ[δ]] ∼ δ ·N.
The standard deviation is o(N). Consequently the random variable ℓ[δ] satisfies the
concentration of distribution property.

Remark. Comparing Theorems 2, 3 and 5 shows that, for any algorithm of the
Good Class, the behaviour of beginning continuants is the same [on average] for
rationals and for reals, one has

(6.4) EN [LQ[δ]] ∼
α

2
· EN [δP],

EN [LQ[δ]]

EN [δP]
∼ E[ℓn]

n
.

6.7. Bit–complexity. Here, our starting point are Relations (5.16, 5.17). For
algorithms of the Fast Class, the operator Hs satisfies Conditions (B). Moreover,

since the size–cost ℓ is of moderate growth, the operator H
(ℓ)
s defined in Figure 4

is analytic on ℜs ≥ 1. Then Tauberian Theorem can be applied to Dirichlet series

S
[1]
B (s), at s = 1 and γ = 2. This analysis can be found in [2], [108]. Theorem (BB)

also proves that the moment of order two is asymptotic to the square of the mean.
For the Bad Class, the induced system satisfies Condition (B), while the operator

H
(ℓ)
s brings a supplementary pole at s = 1. See [108] for more details.

Theorem 6. For any algorithm of the Fast Class, the average bit-complexity of
the algorithm on the set of valid inputs with size N is asymptotically of quadratic
order

EN [B] ∼ log 2

α
· µ(ℓ) ·N2, EN [B2] ∼ (EN [B])

2
.

46 BRIGITTE VALLÉE

Here α is the entropy of the dynamical system relative to the algorithm and µ(ℓ)
denotes the average value of digit–size ℓ defined in (2.16). The standard devia-
tion is o(N4). Consequently the random variables B satisfy the concentration of
distribution property.
For any algorithm of the Good Class, the same is true for the variable B.
For any Algorithm of the Bad Class, the average bit-complexity on the set of valid
inputs with size N is asymptotically of order three

EN [B] ∼ EN [B] = Θ(N3)

For any integer k ≥ 2, the k–th moment of bit–complexity is of exponential type.

7. Main results: Distribution Analysis of Euclidean Algorithms of

the Good Class.

The previous dynamical approach exhibits two main facts for algorithms of the
Good Class.

(i) First, the various parameters of interest –additive costs, size of continuants
at a fraction of the depth, bit complexity– satisfy the concentration property, i.e.,

EN [Rk] ∼ (EN [R])
k
. Then, we already know that the variance VN [R] is o(EN [R2]).

However, since Tauberian Theorems do not provide remainder terms, we did not
obtain a precise asymptotic behaviour for the variance. Now, we are interested in
obtaining such a result for all our parameters of interest.

(ii) Second, truncated real trajectories exhibit gaussian behaviour [Section 4]
and executions of Euclidean Algorithms [which correspond to rational trajectories]
in the Fast Class behave on average similarly to the way truncated real trajectories
behave on average. [See remarks at the end of Sections 6.5 and 6.6, together with
Equations (6.3,6.4)]. It is then natural to ask whether this analogy extends to
distributions: Is it true that the distribution of the total cost C(u, v) on an input
(u, v) of size N is asymptotically Gaussian (when N tends to ∞)? Is it true that
the size LU[δ] of the ending continuant at a fraction of the depth of a input (u, v)
of size N is asymptotically Gaussian (when N tends to ∞)? Is it true that the bit-
complexity follows an asymptotic gaussian law? How to compare the distribution
of some parameter R on truncated real trajectories and on rational trajectories?

We will provide a precise answer to all these questions for all the algorithms of the
Good Class and our three parameters of interest, the total cost relative to a digit–
cost of moderate growth, the size of the ending continuant U at a fraction δ of the
depth, the bit–complexity. These results appeared in [7][5] for the total cost C and
Good algorithms of Type 1. They are generalized here to all the Algorithms of the
Good Class [even those of Type 2]. Results about continuants and bit–complexity
can be found in [69].
Note that the distributional analysis in polynomial case is relatively easy to deal
with: Since we work with powers series, Cauchy Formula is used on compact do-
mains instead of [not compact] strips, and uniformity estimates are easier to obtain
[see [57]].

Our method is not the same for the three parameters. For R = C and R = LU[δ],
we use a dynamical approach. In the study of bit-complexity, we adopt an indirect
approach, where we apply the previous results.

We first work in Ω+
N ,Ω̃+

N defined as

Ω+
N :=

⋃

M≤N

ΩM , Ω̃+
N :=

⋃

M≤N

Ω̃M ,

Ω+
N := {(u, v) ∈ Ω ;L(u, v) ≤ N}, Ω̃+

N := {(u, v) ∈ Ω̃ ;L(u, v) ≤ N}.

EUCLIDEAN DYNAMICS 47

For the first two parameters, we perform a distributional analysis, and our strategy
consists to mainly use the two expressions that relate the Dirichlet moment gener-
ating series SC(s, w) or SLU[δ]

(s, w) to the operators Hs,w,Hs−w [See (5.6, 5.12].

and we recall that, for a general cost R, coefficients of series SR(s, w) are closely
related to the moment generating functions E+

N [exp(wR)]

(7.1) E+
N [exp(wR)] :=

Φ+
w(N)

Φ+
0 (N)

,

where Φ+
w(N) is the cumulative value of exp(wR) on Ω+

N , i.e., Φ+
0 (N) = |Ω+

N |, and

(7.2) Φ+
w(N) :=

∑

(u,v)∈Ω+
N

exp[wR(u, v)] =
∑

(u,v)∈Ω
L(u,v)≤N

exp[wR(u, v)].

If we succeed expressing these MGF’s as uniform quasi-powers, we can apply the
Quasi-Powers Theorem [our Theorem A of Section 4] and obtain a limit gaussian
law.
If we only wish to obtain a precise information on E+

N [Rk], we recall that

(7.3) E+
N [Rk] :=

Φ+
[k](N)

Φ+
[0](N)

,

where Φ+
[k](N) is the cumulative value of Rk on Ω+

N ,

(7.4) Φ+
[k](N) :=

∑

(u,v)∈Ω+
N

Rk(u, v) =
∑

(u,v)∈Ω
L(u,v)≤N

Rk(u, v) , Φ+
[0](N) = |Ω+

N | .

7.1. Perron’s Formula. Tauberian theorems are now insufficient for extracting
coefficients from a Dirichlet series, since they do not provide remainder terms; We
need a more precise “extractor” of coefficients, and the Perron formula [of order 2]
is well-suited to this purpose. The Perron Formula of order two (see [31]) is valid
for a Dirichlet series F (s) =

∑
n≥1 ann

−s and a vertical line ℜs = D > 0 inside the
domain of convergence of F .

Ψ(T) :=
∑

n≤T

an(T − n) =
1

2iπ

∫ D+i∞

D−i∞

F (s)
T s+1

s(s+ 1)
ds ,

Distributional analysis. Applying it to the Dirichlet series S(s, w) =
∑

n φw(n) ·
n−s, we find

(7.5) Ψw(T) :=
∑

n≤T

φw(n) · (T − n) =
1

2iπ

∫ D+i∞

D−i∞

S(2s, w)
T 2s+1

s(s+ 1)
ds .

Thus, Perron’s formula gives us information on Ψw(2N), which is just a Cesaro sum
of the Φ+

w(Q) [defined in (7.2)]

Ψw(2N) =
∑

Q<N

∑

n;ℓ(n)≤Q

φw(n) =
∑

Q<N

Φ+
w(Q) .

We shall explain later (in Section 7.5) how to transfer information from Ψw to Φ+
w .

Study of the moments of higher order. We apply the Perron Formula to Dirichlet
series S[k](s) =

∑
n φ

(k](n) · n−s, and we find

(7.6) Ψ[k](T) :=
∑

n≤T

c(k]
n (T − n) =

1

2iπ

∫ D+i∞

D−i∞

S(k](s)
T 2s+1

s(s+ 1)
ds .

48 BRIGITTE VALLÉE

Thus, Perron’s formula gives us information on Ψ[k](2
N), which is just a Cesaro

sum of the Φ+
[k](Q) [defined in (7.4)]

Ψ[k](2
N) =

∑

Q<N

Φ+
[k](Q) .

7.2. US Properties. We first discuss the choice of D. For all the parameters of

interest [R = C,R = LU[δ], R = B], the Dirichlet series S
[k]
R (s) have a singularity

at s = 1, which is in fact a pôle. In the same vein, for R = C or R = LU[δ], the
Dirichlet series SR(s, w) has a singularity at s = σR(w), which is in fact a pôle:

– In the case of a digit cost of moderate cost, there is a unique value σ(w) =
σC(w) of s near 1 for which the dominant eigenvalue λ(s, w) of Hs,w equals 1.

– In the case of ending continuants, there is a unique value σLU[δ]
(w) of s near 1

for which the dominant eigenvalue λ(s) of Hs satisfies λ(s− w)dλ(s)c = 1.

These assertions are clear consequences of the Implicit Function Theorem [see Prop-
erty 7 of Section 8.5] which defines an analytic function σR(w) near 0 which satisfies
σR(0) = 1.

It is next natural to modify the integration contour ℜs = D into a contour con-
taining σR(w) as a unique pole of SR(2s, w). and it is thus useful to know that the
following Properties US [Uniform Estimates on Strips] hold. In fact, we consider
two properties US, the first one US(s) is adapted for univariate Dirichlet series,
whereas the second property US(s, w) is convenient for bivariate series S(s, w).

Property US(s) There is α > 0 for which the following is true:

(i) S(s) admits s = 1 as a unique pole in the strip |ℜs− 1| ≤ α.
(ii) On the left vertical line ℜs = 1 − α, the Dirichlet series S(s)) is O(|ℑs|ξ),

with a small ξ,

Property US(s, w) There is α > 0 and a neighborhood W of 0 for which the
following is true:

(i) for all w ∈ W , SR(s, w) admits s = σR(w) as a unique pole in the strip
|ℜs− 1| ≤ α.

(ii) On the left vertical line ℜs = 1−α, the Dirichlet series SR(s, w) is O(|ℑs|ξ),
with a small ξ, and a uniform O-term (with respect to w).

With the US(s) Property, it is possible to control the integral (7.6) on the left
vertical line ℜs = 1 − α, and spectral properties of Hs inherited from H1 give the
desired expansion for Ψ[k](2

N).
With US(s, w) Property, it is possible to control the integral (7.5) on the left vertical
line ℜs = 1 − α, and spectral properties of Hs,w or Hs−w inherited from H1 give
the desired uniform quasi-power expansion for Ψw(2N).

It is important to remark that the first assertion of Condition US(s) does not
always hold, even in simpler cases, when the series S(s) is just the quasi inverse
(I −Hs)

−1[1](η). Consider now the case of a dynamical system of the unit interval
[0, 1] with two affine complete branches of respective slopes p and q [p + q = 1].
There are two cases:

(a) if log p/ log q ∈ Q, then there are infinitely many poles of (I −Hs)
−1 on the

line ℜs = 1, and this set of poles is of the form 1 + iZa for some non zero real
number a.

(b) if log p/ log q 6∈ Q, there is a unique pole of (I − Hs)
−1 on the line ℜs = 1,

at s = 1. However, there is an accumulation of poles on the left of the line ℜs = 1.
Then Condition US (s) is never satisfied for Complete Dynamical Systems with
two affine branches. On the otherside, the second assertion of Condition US(s) is

EUCLIDEAN DYNAMICS 49

often very difficult to obtain; such a property for the Riemann ζ function is closely
related to the Prime Numbers Theorem (see [31]).

7.3. UNI Conditions. If we wish Conditions US to be true, we have then to ex-
clude dynamical systems with affine branches, or systems which are “like” dynam-
ical systems with affine branches. This is why Dolgopyat introduces a “distance”
∆ between two inverse branches h et k of same depth,

(7.7) ∆(h, k) = inf
x∈I

|Ψ′
h,k(x)|, with Ψh,k(x) = log

|h′(x)]
|k′(x)|

and he asks this distance not to behave as in dynamical systems which are C2

conjugated to a system with affine branches. What kind of properties does this
distance ∆(h, k) satisfy in the case of a system which is C2 conjugated to a system
with affine branches? In this case, there exists f > 0 of class C1 such that, for any
n, and for any h ∈ Hn, there is a constant d(h) for which |h′(x)|f ◦h(x) = d(h)f(x)

for any x ∈ X . Then, taking the logarithm, differentiating, and putting f̂ := log f ,
we get

Ψ′
h,k(x) = h′(x) · f̂ ′ ◦ h(x) − k′(x) · f̂ ′ ◦ k(x).

Then, there exists A > 0, for which ∆(h, k) satisfies

∆(h, k) ≤ Aρn, ∀n, ∀h ∈ Hn, ∀k ∈ Hn,

where ρ is the contraction ratio defined in Figure 8 which satisfies ρ < 1 for all the
algorithms of the Good Class [see Property (P1) of Section 2.5].

Conditions UNI [introduced by Dolgopyat] express that the behaviour of the dis-
tance ∆(h, k) must be not the same as for systems (X,V) which are C2 conjugated
to systems with affine branches: the inverse branches of the Dynamical system are
required to have not all “the same form”, [i.e., their derivatives must be “not too
often too close” (with respect to ∆)]. There are two different conditions UNI, the
Weak Condition UNI, and the strong Condition UNI.

Weak Condition UNI. There exists some η > 0 and an integer n0 such that, for
any integer n ≥ n0, there are two elements h, k ∈ Hn for which ∆(h, k) ≥ η.

Strong Condition UNI. For any a, 0 < a < 1, the probability that two inverse
branches h, k of Hn satisfy ∆(h, k) ≤ ρan is O(ρan), with a uniform O–term (with
respect to n, a).

More precisely, for h in Hn, and η > 0, we denote by J(h, η) the union of the
fundamental intervals k(I), where k ∈ Hn ranges over the ∆-ball of center h and
radius η,

J(h, η) :=
⋃

k∈Hn,∆(h,k)≤η

k(I),

Condition UNI expresses that, for any a, 0 < a < 1, the Lebesgue measure of
J(h, ρan) (for h ∈ Hn) is O(ρan), with a uniform O–term (with respect to h, n, a).

All the Dynamical Systems of the Good Class satisfy Condition UNI: Good Al-
gorithms of Type 1 satisfy the Strong Condition UNI [This is due to the good
properties of their “dual” systems. See [7] for a proof]. It is also easy to see that
Good Algorithms of Type 2 satisfy the Weak Condition UNI.

50 BRIGITTE VALLÉE

7.4. UNI Conditions imply US Property. First, we have previously seen that
a system which satisfies Condition UNI is not C2 conjugated to a dynamical system
with affine branches. In fact, Dolgopyat [29] proved that the UNI Condition is
sufficient to also imply that the quasi-inverse of the transfer operator satisfies US(s)
–at least, in the case of one–variable transfer operators Hs which are related to
dynamical systems with a finite number of branches. Then, Baladi and Vallée have
adapted and generalized Dolgopyat’s result. In fact, there are two different results.
The first result [7, 5] shows that the Strong Condition UNI implies the US(s, w)
Property for the quasi–inverse of the transfer operator, even for dynamical systems
with an infinite number of branches, and for weighted transfer operators relative to
costs of moderate growth. The second result [6], whose proof is more involved and
less natural, shows that the Weak Condition UNI implies the US(s) Property for the
quasi–inverse of the transfer operator, even for dynamical systems with an infinite
number of branches. It can be generalized in order to prove that Weak Condition
UNI also implies the US(s, w) Condition for weighted transfer operators relative to
costs of moderate growth. These various proofs are closely based on estimates on
the following type which generalize analogue bounds due to Dolgopyat:

Theorem. [Dolgopyat-type estimates]. Consider a Good Euclidean Dynamical
System, with contraction ratio ρ, and let Hs, Hs,w be its transfer operator and
its weighted transfer operator [relative to a cost of moderate growth]. For any
ξ > 0, there is a real neighborhood Σ1 ×W1 of (1, 0), and there are two constants
M > 0 and γ < 1, such that, for all n ≥ 1, for all s = σ + it, w = ν + iτ with
(σ, ν) ∈ Σ1 ×W1 and |t| ≥ 1/ρ2,

(7.8) ||Hn
s−w||1,t ≤M · |t|ξ · γn, ||Hn

s,w||1,t ≤M · |t|ξ · γn.

[Here the norm ||.||1,t is defined by ||f ||1,t := sup |f | + (1/t) sup |f ′|.
A work in progress (by Lhote and Vallée) seems to prove that (7.8) also holds for
the underlined operator Hs,w (in the case of the Good Class), with a norm || · ||1,t

adapted to functions F of two variables.

7.5. Applying Perron’s Formula [distributional analysis]. Perron’s Formula
(7.5) combined with fundamental relations (5.6, 5.12, 5.15), together with Property
US(s, w) will provide the following estimate for the Cesaro sum Ψw of Φ+

w , as
T → ∞,

(7.9) Ψw(T) :=
∑

n≤T

cn(w)(T−n) =
ER(w)

σR(w)(2σR(w) + 1)
T 2σR(w)+1 [1+O(T−2τ)] ,

where ER(w) is the residue of SR(s, w) at the pole s = σR(w), τ is some positive
constant, and the O–term is uniform on W when T → ∞. Note that σR and ER

are analytic on a complex neighborhood of w = 0.

7.6. Asymptotic normality and Quasi-Power estimates. It does not seem
easy to transfer the information (7.9) on Ψw(T) to estimates on Φ+

w(T); we proceed
in three steps to prove asymptotic normality of parameter R for R = C or R =
LX[δ]:

First Step. We introduced a smoothed model: we associate to function ǫ(T) =

T−2τ the probabilistic models (Ω
+

N (ǫ),P
+

N (ǫ)) as follows: For any integer N , set

Ω
+

N (ǫ) = Ω+
N ; next, choose uniformly an integer Q between N − ⌊Nǫ(N)⌋ and N ,

and draw uniformly an element (u, v) of Ω+
Q. Slightly abusing language, we refer to

the function R in the model (Ω
+

N (ǫ),P
+

N (ǫ)) as the “smoothed parameter”. Now,
we appeal to a classical result that is often used in number theory contexts, and

EUCLIDEAN DYNAMICS 51

we then deduce from (7.9) the following quasi-power estimates for the moment
generating function of the “smoothed” version of the parameter R,

(7.10)
E

+

N [exp(wR)]

[1 +O(2−τN)]
= exp

(
2 log 2[σR(w) − σR(0)]N + log

ER(w)

ER(0)σR(w)

)
,

where the O-term is uniform in w.

Second Step. Now, we are again in the framework of Theorem A of Section 4 [the
Quasi-Powers Theorem] , and we get that the smoothed version of cost R follows

an asymptotic Gaussian distribution, with a speed of convergence in O(1/
√
N),

together with precise informations about the asymptotic behavior of the expectation

E
+

N [R] and the variance V
+

N [R]. The function U(w) of the Quasi-Powers Theorem
[See Section 3] is

U(w) = 2 log 2[σR(w) − σR(0)]

and the constants of the expectation and variance involve the first two derivatives
of U which can be computed with the Implicit function Theorem and the definition
of σR. [See the beginning of Section 6.2].

Third Step. We prove that the distributions of R on Ω
+

N (ǫ) and on Ω+
N are ǫ(N)–

close, i.e.,

|P+
N (u, v) − P

+

N (u, v)| = O(ǫ(N))

so that the distribution of R on ΩN is also asymptotically Gaussian, with a speed
of convergence in O(1/

√
N). The closeness of distributions, together with the

worst–case polynomial complexity of the algorithms of Good Class also provides
precise information about the asymptotic behavior of the expectation E+

N [R] and

the variance V+
N [R]. Finally, it is possible to return in (ΩN ,PN).

7.7. Distributional analysis of total cost. The first result of this Section proves
that, for any algorithm of the Good Class, and any digit–cost of moderate growth,
the total cost on ΩN follows an asymptotic Gaussian, with an optimal speed of
convergence. [See [7] or [5]]

Theorem 7. [Central Limit Theorem for total cost.] For a Euclidean algorithm of
the Good Class, and any cost c of moderate growth,
(a) The distribution of the total cost C on ΩN is asymptotically Gaussian, with

speed of convergenceO(1/
√
N), i.e., there exist two constants µ̂(c) > 0 and ρ̂(c) > 0

such that, for any N , and any y ∈ R

PN

[
(u, v);

C(u, v) − µ̂(c)N

ρ̂(c)
√
N

≤ y

]
=

1√
2π

∫ y

−∞

e−x2/2 dx+O

(
1√
N

)
.

(b) The mean and the variance satisfy

EN [C] = µ̂(c)N + µ̂1(c) +O(2−Nτ), VN [C] = ρ̂2(c)N + ρ̂1(c) +O(2−Nτ),

where τ is a strictly positive constant that does not depend on cost c.
(c) Let Λ(s) denote the pressure function. In the special case c ≡ 1, denoting
µ̂ := µ̂(1), ρ̂2 := ρ̂2(1), we have

µ̂ =
2 log 2

|Λ′(1)| =
2 log 2

α
> 0, ρ̂2 = 2 log 2

|Λ′′(1)|
|Λ′(1)3| > 0 .

In the general case,

µ̂(c) = µ̂ · µ(c) , ρ̂2(c) = µ2(c) · ρ̂2 + µ̂ · ρ2(c) + µ̂2 · µ(c) · χ(c) > 0 ,

where µ(c) > 0 and ρ2(c) ≥ 0 are given in Theorem 1, and χ(c) = Λ′′
sw(1, 0).

Claims (a), (b), and (c) also hold for P̃N on Ω̃N .

52 BRIGITTE VALLÉE

7.8. Distributional analysis of continuants. The second result of this Section
proves that, on Ω+

N , for any algorithm of the Good Class, the sizes of ending contin-
uants at a fraction of the depth follow an asymptotic Gaussian law, with an optimal
speed of convergence. This is a result obtained in [69].

Theorem 8. [Central Limit Theorem for size of ending continuants at a fraction
of the depth.] For a Euclidean algorithm of the Good Class, and for any rational
δ ∈]0, 1[,
(a) The distribution of LU[δ] on ΩN is asymptotically Gaussian, with speed of

convergence O(1/
√
N): there exist two constants µ[δ] and ρδ], such that, for any

N , and any y ∈ R

PN

[
(u, v);

LU[δ](u, v) − µ[δ]N

ρ[δ]

√
N

≤ y

]
=

1√
2π

∫ y

−∞

e−x2/2 dx+O

(
1√
N

)
.

(b) The mean and the variance satisfy

EN [LU[δ]] = µ[δ] ·N + ν[δ] +O(2−Nτ), VN [LU[δ]] = ρ[δ] ·N + η[δ] +O(2−Nτ),

where where τ is a strictly positive constant that depends on rational δ.

(c) One has:

µ[δ] = 1 − δ, ρ[δ] = δ(1 − δ)
|Λ′′(1)|
|Λ′(1)|

Claims (a), (b), and (c) also hold for P̃N on Ω̃N .

7.9. Distributional analysis of bit complexity. The third result proves that
the total bit–complexity of the Extended Algorithm also follows an asymptotic
Gaussian law. However, this result, described in [69] is not directly obtained with
Dynamical Methods: it is a consequence of Theorem 7 applied to size–cost ℓ, and
the speed of convergence is probably not optimal.

The main idea is the decomposition of the extended bit-complexity B̂ as

B̂(u, v) = L(u, v) · C0(u, v) + Y (u, v),

where L is the size defined in Section 1.4, C0 is the total cost relative to the digit
-cost ℓ, and Y is a “remainder” cost where EN [Y] = o(N2),VN [Y] = o(N3). Then,
since the variable L · C0 follows an asymptotic gaussian law, it is the same for the

variable B̂, with

EN [B̂] = µ̂(ℓ) ·N2 + o(N2), VN [B̂] = ρ̂(ℓ) ·N3 + o(N3).

However, this method does not provide an optimal speed of convergence, and, at this
moment, we do not know how to obtain a speed of convergence of order O(N−1/2).

Theorem 9. [Central Limit Theorem for bit–complexity.] For a Euclidean algo-

rithm of the Good Class, the distribution of total bit complexity B̂ := B+B of the
Extended Algorithm on ΩN is asymptotically Gaussian, with speed of convergence
O(1/ N1/3): For any N , and any y ∈ R, one has

PN

[
(u, v);

B̂(u, v) − µ̂(ℓ) ·N2

ρ̂(ℓ) ·N3/2
≤ y

]
=

1√
2π

∫ y

−∞

e−x2/2 dx+O

(
1

N1/3

)
,

where µ̂(ℓ) and ρ̂(ℓ) are the constants of Theorem 7 relative to the size–cost ℓ.

EUCLIDEAN DYNAMICS 53

7.10. Subdominant constants “à la Porter”. The same tools [Perron’s for-
mula, UNI Conditions] applied to Ψ[k](T) defined in (7.6) give access to an as-

ymptotic expansion for EN [Rk], for all our parameters of interest. In particular,
they give access to subdominant constants of the expectations and variances, and
relate them to spectral objects of the transfer operator. For instance, the constant
µ̂1(1) of Theorem 7 is the Porter constant, and our study provides an alternative
expression of this constant, as a function of spectral objects of the transfer operator
[67]

8. Functional Analysis.

Here, we explain how to obtain functional spaces F where the main properties of
transfer operators described in Figure 8 may hold. We recall that the properties
needed for the analyses depend both on the kind of analysis [rational trajectories
or real trajectories, average-case analysis or distributional analysis, see Figure 9].
All the transfer operators which are used in our analyses are summarized in Figure
5, and Figure 4 recalls the definition of the component operator in each case.

Any density transformer H acts on the Banach space L1(X): this is due to the
inequality ∫

X

|H[f](t)|dt ≤
∫ 1

0

|f(t)|dt.

But the space L1(X) seems too large to be used here, since the spectrum of H
when acting on L1(X) is very often continuous: the essential property “Spectral
Gap” does not hold. The main difficulty is to find a convenient functional space
where all the Properties of Figure 8 hold. This functional space must be sufficiently
“large” so that H acts on it, and sufficiently “small” so that there is a spectral gap.
Property UDE is true under quite general “positivity” hypotheses (for instance,
theorems due to Krasnoselski [58], or cone methods as described in Baladi’s book
[4]), and very often true for systems with complete branches [as soon as they are
topologically mixing]. In contrast, Property SG is both central and not so easy to
obtain in a quite general framework. [See [65] for a nice introduction to Spectral
Theory].

There are two classes of operators for which it is easy to prove that spectrum
exhibits a spectral gap : the compact operators, whose spectrum is discrete (except
an accumulation point at zero) or the quasi-compact operators. We recall now this
notion: For an operator L, denote by R(L) its spectral radius, i.e., the supremum
of moduli |λ| when λ is an element of Sp(L), and by Re(L) its essential spectral
radius, i.e., the smallest positive number r such that any eigenvalue λ of Sp(L)
with modulus |λ| > r is an isolated eigenvalue of finite multiplicity. For compact
operators, the essential radius equals 0. An operator L is quasi-compact if the strict
inequality Re(L) < R(L) holds. Then, except for the part of the spectrum inside
the closed disk of radius Re(L), the operator behaves just like a compact operator
(in the sense that its spectrum consists of isolated eigenvalues of finite multiplicity).
In order to prove that Property SG holds, we have to exhibit a functional space
where the density transformer acts and is compact or quasi–compact.

8.1. Compacity and analytic spaces. There exist results due to Schwartz [87],
Shapiro and Taylor [92], Shapiro [91] which exhibit sufficient conditions under which
transfer operators are compact on a functional space of analytic functions defined
on some disk M. The operator Hs is the sum of the component operators Hs,[h],
and each component operator Hs,[h] is a so–called composition operator of the form
f 7→ g · f ◦ h, where the inverse branch h is an analytic function which maps M
inside M, and g an analytic function defined on M. It is then possible to relate

54 BRIGITTE VALLÉE

the properties of the operator and the position of the image h(M) with respect to
the boundary of M. More precisely, there are two distinct situations, according as
the image h(M) lies strictly inside M or not.

First Situation. The image h(M) lies strictly inside M.
More precisely, suppose that there exists an open disk M such that
(i) every LFT h ∈ H has an analytic continuation on M, and maps the closure M
of disk M inside M;
(ii) For each h ∈ H, there exists δ(h) < 1 for which the analytic continuation of

the function |h′|, denoted by h̃, satisfies 0 < |h̃(z)| ≤ δ(h) for all z ∈ M
(iii) the series

∑
h∈H δ(h)

s/2 · [det h]−s/2 converges on the plane ℜ(s) > α for some
α < 1.
Then, the convenient functional space will be the space A∞(M) of all functions
f that are holomorphic in the domain M and are continuous on the closure M.
Endowed with the sup-norm,

||f || = sup {|f(u)|; u ∈ M},
A∞(M) is a Banach space. Under previous conditions, the transfer operator oper-
ator Hs acts on A∞(M) for ℜ(s) > σ and is compact. It is moreover nuclear of
order 0 (in the sense of Grothendieck [40], [41]). Property (i) is essential here, and
it is necessary that the closure M of disk M is mapped inside M.
Mayer [72, 73, 71] deeply studied the transfer operator Hs relative to the Classical
Euclidean Dynamical System [often called the Ruelle-Mayer operator] and proved
that Hs satisfies properties (i), (ii), (iii) for some disk M. He deduced the nucle-
arity of such an operator on A∞(M). These properties were generalized to any
good algorithm of Type 1 in [107]. For algorithms of the Bad Class, it will be the

same for the transfer operator H̃s relative to the induced system : see [106], [107].
Then, for all the algorithms of the Easy Class, it is possible to work with compact
operators on sets A∞(M) of analytical functions, for a convenient disk M.

Second Situation. The image h(M) lies inside M, but the frontier of h(M) may
“touch” the frontier of M.
More precisely, suppose that there exists an open disk M such that every LFT
h ∈ H has an analytic continuation on M, and maps the disk M inside M;
Then the convenient space will be the Hardy space H2(M). We consider a disk M
whose frontier is denoted by δ. We then consider the space of functions defined in
M, that are analytic inside M and such that the quantity

||f ||22 :=
1

2πρ

∫

δ

|f(z)|2 |dz|

is finite. This space is classically denoted by H2(M) and is called the Hardy space
of order two associated to the disk M. The quantity ||f ||2 defined above is a
norm which endows H2(M) with a structure of Banach space, even more of Hilbert
space. Each component operator Hs,[h] is a composition operator which acts on

H2(M) and is compact as soon as h maps the disk M inside M. As previously, it
is moreover nuclear of order 0 (in the sense of Grothendieck [40], [41]. When the
series which defines Hs as a sum of component operators Hs,[h] is convergent in

H2(M), the same properties hold for the operator Hs.

This framework is well adapted for the induced version H̃ of the Binary Algorithm,
which is defined in (3.6) : see [105].

8.2. Quasi–compacity. The following theorem, due to Hennion [43] is a generali-
sation of previous theorems due to Ionescu-Tulcea and Marinescu, or Lasota-Yorke.
It gives sufficient conditions that entail that an operator is quasi–compact. It deals

EUCLIDEAN DYNAMICS 55

with some Banach space F endowed with two norms, a weak norm |.| and a strong
norm ||.||, for which the unit ball of (F , ||.||) is precompact in (F , |.|).
Theorem [Hennion, Ionescu-Tulcea and Marinescu, Lasota-Yorke]. Suppose that
the Banach space F is endowed with two norms |.| and ||.||, and the unit ball of
(F , ||.||) is precompact in (F , |.|). Let L be a bounded operator on (F , ||.||). Assume
that there exist two sequences {rn} and {tn} of positive numbers such that, for all
n ≥ 1, one has

(8.1) ||Ln[f]|| ≤ rn · ||f || + tn · |f |.
Then, the essential spectral radius of the operator L on (F , ||.||) satisfies

Re(L) ≤ r := lim
n→∞

inf (rn)1/n.

If, moreover, the spectral radius R(L) in (F , ||.||) satisfies R(L) > r, then the
operator L is quasi-compact on (F , ||.||).
This general Theorem has many applications in our framework.

(i) Good Class. For algorithms of the Good Class, one chooses F := C1(X),
the weak norm is the sup-norm ||f ||0 := sup |f(t)|, while the strong norm is the
norm ||f ||1 := sup |f(t)| + sup |f ′(t)|. Then, the density transformer satisfies the
hypotheses of Hennion’s Theorem. Note that Properties (P1), (P2) in Figure 2 are
essential here.

(ii) Bad Class. The previous statement is also true for the transfer operator
relative to the induced systems associated to the Bad Class, since the induced set

H̃ fulfills Properties (P1), (P2) [see Section 2.6].

(iii) Type 4. For this type, one uses various functional spaces, with various
applications of Hennion’s Theorem. We work both in the space Hα(J) of α–Hölder
functions [the strong norm is the α–Hölder norm, and the weak norm is the L1

norm] and in the space C0(J)) of continuous functions [the strong norm is now the
norm sup, and the weak norm is the L1 norm].

8.3. Study of the underlined operator. Recall that the underlined operators
act on functions F of two variables, and their components are of the form

Hs,w,[h][F](x, y) := δs−w
h · |h′(x)|s · |h′(y)|−w · F (h(x), h(y)).

On the diagonal x = y, the function F (x, x) is denoted by f(x) and the equality
Hs,w,[h][F](x, x) = Hs−w[f](x) holds. When the Bounded Distortion Property
holds, it is –at least intuitively– clear that the behaviour of the underlined operator
Hs,w is “close” to the plain operator Hs−w.

Consequently, there are two main cases. The Easy Class, for which Property (P2)
of Figure 2 holds, or the Difficult Class, where it does not hold.

Good Class. One chooses F := C1(X × X), the weak norm is the sup-norm
||F ||0 := sup |F (x, y)|, while the strong norm is the norm ||F ||1 := sup |F (x, y)| +
sup |DF (x, y)|, where DF (x, y) denotes the differential of F at (x, y). Then, the
transfer operator Hs,w satisfies the hypotheses of Hennion’s Theorem, and is proven
to be quasi–compact.

Bad Class. The previous statement is also true for the transfer operator relative
to the induced systems associated to the Bad Class.

Difficult Class. For Type 3 or Type 4, neither Property (P1) nor Property (P2)
hold, and we do not succeed to apply Hennion’s theorem: We do not know how
to obtain a functional space F where the underlined operators are proven to be
quasi–compact.

56 BRIGITTE VALLÉE

Type Plain Operator Underlined Operator

Types 0,1, 2 C1(X) C1(X ×X)

A∞(M) A∞(M×M)

Binary H2(M) ———–

LSB C1(J), C0(J) ———–

Figure 21. Functional spaces associated to each operator.

Easy Class. It is also possible to work inside the Banach space A∞(M×M), for
a convenient disk M which contains the real interval X of the relative dynamical
system; in this case, the underlined transfer operators [the underlined transfer
operators for the Good Class or the “induced” underlined transfer operator for the
Bad Class] have very nice supplementary properties, for instance compacity and
nuclearity.

8.4. Choice of the functional Space. We summarize the possible choices.

Transfer operators on functions of one variable.

Type 1 and 2. As we saw it, there are two possible choices
(i) the Banach space A∞(M), for a convenient disk M which contains the real

interval X of the relative dynamical system; in this case, the transfer operators
[the plain transfer operators for the Good Class or the “induced” transfer operator
for the Bad Class] have very nice supplementary properties, for instance compacity
and nuclearity.

(ii) the Banach space C1(X), easier to use. For instance, results à la Dolgopyat
are proven to hold in this space, and not in the previous space.

Type 3. For the induced Binary System, we choose as F the Hardy space H2(M)
relative to a disk M of diameter [0, ρ] with 1 < ρ < 2. We do not succeed to find
a convenient functional space for the Plus-Minus Algorithm.

Type 4. We choose as F both spaces C1(J), C0(J).

Transfer operators on functions of two variables [only for the Easy Class].

As previously there are two possible choices
(i) the Banach space A∞(M×M), for a convenient disk M which contains the

real interval X of the relative dynamical system; in this case, the transfer operators
[the plain transfer operators for the Good Class or the “induced” transfer operator
for the Bad Class] have very nice supplementary properties, for instance compacity
and nuclearity.

(ii) the Banach space C1(X ×X), easier to use.

8.5. General spectral properties of transfer operators. We now describe
the main spectral properties of the transfer operator Hs,w [plain, with a hat, or
underlined] on this convenient functional space F . All these properties are easy
consequences of three central properties for the density transformer H:

Property UDE: Unique Dominant Eigenvalue
Property SG: Spectral Gap
Properties An? : various analyticity properties.

Consider a Euclidean dynamical system (X,V) of any type and the functional space
F previously defined in Figure 21. Consider any of the three transfer operators:

the operators Hs,w,(c) or Ĥs,w,(c) associated to a cost of moderate growth, or an
underlined transfer operator Hs,w.

In the following, the operator Gs,w denotes:
– for the Good Class, any of the three previous operators.

EUCLIDEAN DYNAMICS 57

– for the Bad Class, any of the induced versions of the three operators.

– for the Difficult Class, only the operators Hs,w or Ĥs,w associated to a cost of
moderate growth.

In any cases, there exist an interval Σ0 :=]σ0,+∞[with σ0 < 1 and a real neigh-
borhood W0 of w = 0 for which the following eight properties are true when
(σ = ℜs, ν = ℜw) belongs to Σ0 ×W0:

(1) [Quasi-compactness.] The operator Gs,w acts boundedly on F , and Gs,w is
(uniformly) quasi-compact for real (s, w).

(2) [Unique dominant eigenvalue.] For real (σ, ν) ∈ Σ0 ×W0, Gσ,ν has a unique
eigenvalue λ(σ, ν) of maximal modulus, which is real and simple, the dominant

eigenvalue. The associated eigenfunction fσ,ν is strictly positive, and the associated
eigenvector µ̂σ,ν of the adjoint operator G∗

σ,ν is a positive Radon measure. With
the normalization conditions, µ̂σ,ν [1] = 1 and µ̂σ,ν [fσ,ν] = 1, the measure µσ,ν :=
fσ,ν µ̂σ,ν is a probability measure. In particular, µ̂1 is the Haar measure, with
λ(1) = 1, and f1,0 = ψ the invariant density of the dynamical system..

(3) [Spectral gap.] For real parameters (σ, ν) ∈ Σ0 ×W0, there is a spectral gap,
i.e., the subdominant spectral radius rσ,ν ≥ Re(σ, ν) defined by rσ,ν := sup{|λ|;λ ∈
Sp(Gσ,ν), λ 6= λ(σ, ν)}, satisfies rσ,ν < λ(σ, ν).

(4) [Analyticity in compact sets.] The operator Gs,w depends analytically on
(s, w). Thus, λ(σ, ν)±1, f±1

σ,ν , and f ′
σ,ν depend analytically on (σ, ν).

(5) [Analyticity in a neighborhood of (1, 0).] If (s, w) is complex near (1, 0) then
λ(s, w)±1, f±1

s,w, and f ′
s,w are well-defined and analytic; moreover, for any θ, with

r1 < θ < 1, one has r1,w/|λ(1, w)| ≤ θ.

(6) [Derivatives of the pressure.] The first derivatives of the dominant eigenvalue
function λ(σ, ν) of the plain operator at (1, 0) satisfy the following: λ′(1) = λ′s(1, 0)
is the opposite of the entropy of the dynamical system (V, dx), and, in the case of
a cost c, λ′w(1, 0) is the average of the cost:

λ′(1) = −α = −
∑

h∈H

δh log δh −
∫

X

log |V ′(t)|ψ(t)dt

λ′w(1, 0) = µ(c) =
∑

h∈H

δh · c(h)
∫

h(X)

ψ(t) dt.

(7) [Function w 7→ σ(w).] There is a complex neighborhood W of 0 and a unique
function σ : W → C such that λ(σ(w), w) = 1, this function is analytic, and
σ(0) = 1.

(8) Furthermore, for the Good Class, there exist relations between the dominant

eigenvalues of the three operators Ĥs,w, Hs,w and Hs,w, namely

λ̂(s, w) = λ(s, w), λ(s, w) = λ(s− w, 0).

8.6. Properties SM, SLC, UNI, US. These properties are not automatic con-
sequences of the three main properties UDE, SG, An. As we already said, some of
these properties do not hold for dynamical systems with affine branches. However,
as soon as a dynamical system is not C2 conjugated with a dynamical system with
affine branches, Property SM holds. Property SLC also holds in this case provided
the cost c is not constant (see for instance Lemma 7 of [7]).

(9) [Property SM]. For any t 6= 0, the spectral radius R(σ + it, 0) satisfies R(σ +
it, 0) < R(σ, 0).

(10) [Property SLC]. For any (q, r) 6= (0, 0), the second derivative of the pressure
function w 7→ logλ(1 + qw, rw) is not zero at w = 0.

58 BRIGITTE VALLÉE

For Euclidean dynamical systems, all the branches are LFT’s, and it is easy to
prove that these systems are not C2 conjugated to dynamical systems with affine
branches. Then, these two properties SM and SLC hold for all our Euclidean
dynamical systems. On the other hand, Condition UNI [Strong Condition UNI, or
only Weak Condition UNI], when it is fulfilled, entails that all the three properties
SM, SLC, US hold.

8.7. Conclusion of the Functional Analysis Study. Finally, this Section
proves the following facts

— Theorem 1 holds for all Systems of the Fast Class.
— Theorem 2 holds for all systems of the Good Class.
— Theorems 3, 6 hold for all the systems.
— Theorems 4, 5 hold for the Fast Class.
— Theorems 7, 8, 9 hold for all the Good Class.

9. Historical Notes, Possible extensions and Open Problems.

Here, we provide a complete description of related works, and state some open
problems.

9.1. Euclidean Algorithms and Worst-case Analysis. For a description of
Euclidean Algorithms, see Knuth’s and Shallit’s vivid accounts [56, 89].

Classical Euclidean Algorithms. Euclid’s Algorithm based on the usual division
was discovered as early as 300BC, and is “the grandfather of all the algorithms”,
as Knuth says. Euclidean Algorithm was analysed first in the worst case in 1733
by de Lagny, The Centered algorithm (K) has been considered by Rieger [83]. The
Even Algorithm is introduced by Eisenstein [32]. The Even and Odd algorithms
are described in [94, 95].

Pseudo–Euclidean Algorithms. Two of these Algorithms, the Pseudo-Classical (Ğ),

the Pseudo-Centered (K̆) have been studied by Shallit [88] who limited himself
to a worst-case analysis and wrote “Determining the average behaviour for these
algorithms seems quite hard.” Then, Vallée introduces a general formalism for what
she called pseudo-euclidean algorithms [106], [107].

Binary, Plus-Minus Algorithms. The Binary algorithm of Stein [96] is described for
instance in Knuth [56] while the Plus-Minus algorithm is due to Brent and Kung
[15].

LSB Algorithm. Finally, Stehlé and Zimmermann proposed to consider divisions
that are totally directed by the LSB’s, which then lead to the integer analogue to
increasing–degree gcd algorithm for polynomials. Such an algorithm is described
in [98] for instance, where the authors also provide a worst–case analysis of this
algorithm.

Lehmer-Euclid algorithm, Interrupted Algorithm. The Lehmer-Euclid algorithm is
an improvement of the Euclid algorithm when applied for large integers. It was
introduced by Lehmer [62] and first analyzed in the worst–case by Sorenson [97].
It uses what Daireaux et Vallée have called the Interrupted Euclidean algorithm
[24]. This interrupted algorithm depends on some parameter α ∈ [0, 1], and, when
running with an input (u, v), it performs the same steps as the usual Euclidean
algorithm, but it stops as soon as the current integer is smaller than vα.

9.2. Dynamical Euclidean systems and transfer operators. We summarize
here the main works about the continuous Euclidean framework.

Dynamical systems. See for instance [70] for a readable treatment of dynamical
systems of intervals, and [9] for a general overview on dynamical systems. The

EUCLIDEAN DYNAMICS 59

Classical Euclidean system was first studied by Gauss himself. The density trans-
former, also known as the Perron-Frobenius operator, was introduced early in the
study of continued fractions (see for instance Lévy [63], Khinchin [54], Kuzmin [59],
Wirsing [111] and Babenko [3]). It was more recently deeply studied by Mayer, in
a sequence of papers [72, 73, 71, 74, 75, 76]. The Centered system was studied
by Rieger [83, 84], the Even system by Schweiger, Bauer, Kraaicamp and Lopes
[94, 8, 55], the Odd System by Schweiger [94]. The dynamical system for polyno-
mials was described in [11].

Transfer operators. See the book of V. Baladi [4] for a general overview on transfer
operators. The density transformer is a special case of a transfer operator, and the
general notion of transfer operators was introduced by Ruelle, in connection with
his thermodynamic formalism (see for instance [85, 86]). Then Mayer has applied
such operators to the classic continued fraction transformation.
After works of Chernov [21], Dolgopyat [29] was interested in the decay of correla-
tions for hyperbolic flows satisfying some uniform nonintegrability condition (UNI).
Later on, Pollicott and Sharp used Dolgopyat’s bounds together with Perron’s for-
mula to find error terms in asymptotic estimates for geodesic flows on surfaces of
variable negative curvature; see e.g. [81], where only univariate Dirichlet series with
positive cofficients appear.

Truncated trajectories and metrical properties of continued fractions.. Central
Limit Theorem for costs [stated here as Theorem 1] is quite well-known. See
for instance [22] or [17] for interval maps, and [1] for a more abstract framework
and references to the pioneering paper of Nagaev [78]. The situation is less clear
for continuants: There are previous works due to Philipp [80] which have been gen-
eralized by Vallée [101]. These results are extended to our general framework for
the first time in the present paper. A survey for metrical properties of continued
fractions is [50].

9.3. Euclidean Analysis. Inside the Euclidean framework, most of dynamical
studies concern the continuous point of view [metric properties of continued fraction
expansions for instance], and not the discrete analysis of gcd algorithms. On the
otherside, most of the analyses of Euclidean Algorithms do not adopt a dynamical
point of view. The methods used till the early 1980’s are quite various, and they
range from combinatorial (de Lagny, Heilbronn) to probabilistic (Dixon).

Average-case analysis. The standard Euclidean Algorithm was analysed first in the
average-case around 1969 independently by Heilbronn [42] and Dixon [28]. The
centered algorithm was studied by Rieger [83]. Brent [14] has analysed the Binary
algorithm under some heuristic hypotheses. Brent’s work deals with the operator
H relative to the plain [i.e., not induced] Binary Euclidean System defined in (3.4),
and he conjectures that there exists a limit density for the algorithm. Then, he
makes a (essential) heuristic hypothesis: the rationals have a “typical” behaviour
inside the reals, so that the restriction to the rationals of the limit (real) density
is also the limit (rational) density. Then, under the conjecture and the heuristic
hypothesis, he obtains the average–case analysis of the Binary Algorithm (B). The
Subtractive algorithm (T) was studied by Knuth and Yao [112]. Results on the
average-case analysis of the polynomial gcd can be found in [38, 56].

Distributional analysis. Concerning the standard Euclidean algorithm and the num-
ber of steps (i.e., the constant cost c ≡ 1), Hensley [44] has obtained a Central Limit
Theorem, and a Local Limit Theorem with speed of convergence O((logN)−1/24).
Hensley has used a transfer operator Hs,0, to obtain distributional results on ra-
tional trajectories upon aproximating discrete measures on rationals by continuous
measures. In particular, his approach avoids parameters s of large imaginary parts.

60 BRIGITTE VALLÉE

9.4. Dynamical Euclidean Analysis. We now cite the main works of our group
which are closely related to the present survey. Note that the Caen group intro-
duced dynamical methods in another algorithmic domain, the Information Theory
Domain. See [104] for an instance of such a work.

Average-case dynamical analysis. A precise description of Euclidean analyses can be
found in the following papers. Paper [35] is itself a survey paper where transfer op-
erators are used for analysing the Euclid Algorithm together some of its generaliza-
tion on higher dimensions. Paper [101] introduces for the first time the underlined
operators [for analyzing algorithms], and uses them for obtaining Theorem 2 for
continuants in the case of the Classical Euclidean Algorithm. More general transfer
operator with two variables are introduced in [104]. Papers [106, 107] provide an
unifying point of view on Algorithms of Type 1 and 2. The analysis of the Binary
Algorithm can be found in [105], while Daireaux explicits the Plus-Minus Dynam-
ical System in [23]. A recent work [25] done by Daireaux, Maume-Deschamps, and
Vallée provides the average-case analysis of algorithms of Type 4. The strange title
of the paper is due to the fact that executions of such algorithms can be viewed as
a race between a (dyadic) hare, and a (Lyapounov) tortoise.
Papers [2, 108] introduce the main parameters: digits, continuants, bit-complexities,
and gives a panorama for their analyses. Paper [24] deeply studies (in the average
case) the particular parameter “continuant at a fraction of the depth”.

Distributional dynamical analysis. To the best of our knowledge, the general frame-
work described in Section 7, due to Baladi and Vallée [7] provides the first instance
of a dynamical distributional analysis. The authors apply and extend powerful
tools due to Dolgopyat to dynamical systems with infinitely many branches, with
two different points of view: they consider the Strong UNI Condition, in [5, 7] or
the Weak UNI Condition in [6]. In this way, they improve Hensley’s result [44]
while extending it to a large class of cost functionals and to several algorithms and
obtaining an optimal speed of convergence. The last two results of Section 7 are
due to Lhote and Vallée [69, 67].

9.5. Open Problems. This survey shows that there yet exist many problems to
solve in this area.

(i) What happens for the distribution of the algorithms of the Difficult Class,
namely the Binary Algorithm or the LSB Algorithms? The functional space used
for the average–case analysis of the Binary Algorithm [a Hardy Space] is not so easy
to deal with, and, at the moment, we do not succeed to extend Dolgopyat methods
to such a space.

(i) Does Theorem 8 hold for beginning continuants? This is related to a possible
extension of the result of Section 7.4 to underlined operators Hs,w.

(iii) On another register, the extension to “large” costs or Bad Class is likely
to lead us to the realm of stable laws: see for instance Gouezel’s work [39] for
occurrences of these laws in continued fraction related matters.

(iv) There exist fast gcd algorithms [93] which are based on a Divide and Conquer
method, and use the principles of the Lehmer method [61]. For a readable treatment
of such algorithms, see the book of Yap [113], for instance. Dynamical Analysis
methods probably apply to this class of algorithms (work in progress of Daireaux,
Lhote, Maume-Deschamps and Vallée).

9.6. α-Euclidean Algorithms. Three Algorithms of the MSB Class are defined
by the position of the remainder : the standard division relative to a remainder
in [0, 1[, the centered division, with a remainder in [−1/2,+1/2[, or the by-excess
division with a remainder in [−1, 0[. With respect to the classification previously
described, the first two algorithms (i.e., standard and centered) belong to the Good

EUCLIDEAN DYNAMICS 61

Figure 22. Japanese dynamical systems

Class, while the third one, by excess, belongs to the Bad Class. It is thus quite
natural to study a “generic” Euclidean algorithm, called the α–Euclidean algorithm,
where the remainder has to belong to some interval [α − 1, α[, with α ∈ [0, 1].
When the parameter α varies in [0, 1], this gives rise to a whole class of Euclidean
algorithms. There are now natural questions to ask: Are there other values than
0 of parameter α for which the algorithm belongs to the Bad Class? How do the
number of iterations and the bit–complexity evolve with respect to α? What is
the best algorithm in the whole class? Paper [19] provides some answers to these
questions.
All the dynamical systems Sα relative to α appear in a quite natural manner. First,
we draw the set of all the maps Fi defined on [−1,+1] \ {0} by

Fi(x) =

∣∣∣∣
1

x

∣∣∣∣ − i

for any integer i ≥ 1. Then, we only “keep” the window Iα ×Iα = [α− 1, α]× [α−
1, α], and we obtain the representation of the dynamical system Sα [see Figure 22].

There is a main difference with the Dynamical Systems described here, which are
“complete” –in the sense that all the branches are surjective–, and for which the
transfer operator is then proven to act on C1([0, 1]) Here, the involved dynamical
system Sα is no longer “complete” –in the sense that there exist some branches
that are not surjective–. Generally speaking, it is not even markovian, and the
convenient functional space F is the set BV of functions defined on [0, 1] with
bounded variation; If we choose as a weak norm the L1-norm and as a strong norm
the norm ||f ||BV , Hennions’s Theorem (see Section 8.2) can be applied, and the
transfer operator Hs is quasi-compact on BV .
When parameter α belongs to [1/2, 1], this dynamical system Sα has been first ex-
tensively studied by Ito, Tanaka and Nakada [51, 79]. This is why the α–Euclidean
algorithms are often nicknamed as “Japanese algorithms”. Later, Moussa, Cassa,
Marmi [77] provided an extension of these results to the range α ∈ [

√
2 − 1, 1/2].

Paper [19] proves the following:

62 BRIGITTE VALLÉE

(i) For any parameter α 6= 0, all the algorithms Eα belong to the Fast Class, and
the analogues of Theorem 3, 4, 5, 6 are true for all these Algorithms. The mean
values involve the entropy h(α) of the dynamical system, together with a constant
Eα[ℓ] related to the digit– size.

(ii) There is a central range α ∈ [
√

2 − 1, φ − 1] where the average number
of iterations of the Euclidean Algorithms is optimal and independent of α. It
corresponds to the number of iterations of the Centered Algorithm (K).

9.7. Generalizations of the Euclid Algorithm in higher dimensions. There
are many various points of view for a generalization of the Euclidean algorithms.

The lattice reduction problem. [26][109]. The lattice reduction problem consists in
finding a short basis of a lattice of Euclidean space given an initially skew basis.
This reduction problem is well–known to be central to many areas of approxima-
tion and optimization with deep consequences in computational number theory,
cryptography, and symbolic computation.
In dimension d = 1, lattice reduction may be viewed as a mere avatar of the
Euclidean GCD algorithm and of continued fraction expansions. Lattice reduction
per se really started with Gauss who gave an algorithm that solves the problem
exactly using what resembles a lifting of the Euclidean algorithm to 2–dimensional
lattices. In recent times, an important discovery was made by Lenstra, Lenstra
and Lovász in 1982 [64]; their algorithm, called the LLL algorithm, is able to find
reduced bases in all dimensions d ≥ 3. The LLL algorithm itself proceeds by stages
based on the Gaussian algorithm as the main reduction step.
Paper [26] provides a detailed analysis of the Gaussian algorithm, both in the
average case and in probability. Like its one–dimensional counterpart, the algorithm
is known to be of worst–case logarithmic complexity, a result due to Lagarias [60],
with best possible bounds being provided by Vallée [100]. The analysis provided in
[26] is another instance of a dynamical analysis; it deals with the transfer operator
Hs relative to the Classical Euclidean Algorithm with the special value s = 2, and
all the results can be expressed with the spectral objects of H2. The probabilistic
behaviour of the Gaussian algorithm turns out to be appreciably different of the
Euclidean Algorithm:

(i) The average–case complexity of the Gaussian algorithm (measured in the
number of iterations performed) is asymptotically constant, and thus essentially
independent of the size of the input vectors. The expectation µ is equal to (I −
H2)

−1[1](0) and µ ∼ 1.35113 15744 . . .
(ii) The distribution of the number of iterations is closely approximated by a

geometric law whose ratio is λ(2) ∼ 0.1994.
(iii) The dynamics of the algorithm is governed by a (conditional) limit measure

that constitutes the analogue of the limit measure first observed by Gauss for
continued fractions. This measure has a density which is closely related to the
dominant eigenfunction of H2.

These results have been recently extended to study additive costs (see [109]). On
average, the Gaussian algorithm is thus of complexity O(1), which is of an order
different from the worst-case. The case of dimension d = 2 therefore departs signif-
icantly from its 1–dimensional analogue, and it would be of interest to determine
to which extent such a phenomenon propagates to higher dimensions.

Our analytic knowledge of the LLL algorithm in higher dimensions is of course less
advanced, but Daudé and Vallée [30] already succeeded in proving that the LLL
algorithm, when applied to d–dimensional lattices, has an average–case complexity
that is bounded from above by a constantKd, where Kd = O(d2 log d). The present
work thus fits as a component of a more global enterprise whose aim is to understand

EUCLIDEAN DYNAMICS 63

Figure 23. The domains [L = k] are drawn alternatively in black and
white for rank k ≤ 4 [on the left, for the Gauss Algorithm, and on the
right for the Comparison Algorithm].

theoretically why the LLL algorithm performs in practice much better than worst–
case bounds predict, and to quantify precisely the probabilistic behaviour of lattice
reduction in higher dimensions.

Comparison of rationals. [103] [36] How to compare two rationals numbers a/b
and c/d [with a, b, c, d four integers of length N], if we do not wish to work with
integers of length 2N? One uses a continued fraction expansion algorithm applied
simultaneously to the two numbers and stopped as soon as a discrepancy of CFE

digits is encountered. This algorithm can be used to compute the sign of the
determinant (ad − bc) without computing the determinant itself, and it is crucial
in geometric algorithms, for instance. How many steps are necessary (on average)
to compare two rationals? What is the (asymptotic) distribution of the numbers
of steps when N becomes large? The two answers are the same as in the previous
paragraph:

(i) the average number of iterations is asymptotically constant, and the constant
is equal to the previous constant µ.

(ii) The distribution of the number of iterations is closely approximated by a
geometric law whose ratio is λ(2) ∼ 0.1994.

In [109], Vera provides an explanation of the similarity between the two algorithms
(the Gauss Algoritthm and the Comparison Algorithm). This similarity is well–
described by the geometry of the domains [L ≥ k] (where L is the number of
iterations of the algorithm) [see Figure 23]. For the Gauss Algorithm, the domain
[LG ≥ k] is built by disks whereas the domain [LC ≥ k] relative to the comparison
algorithm is built by squares. However, both disks and squares are themselves built
on the fundamental intervals h(I) of the Euclidean Algorithm. And the constant
λ(2) can be read on the figure: it is approximatively the ratio between the measure
of two successive domains [L = k] and [L = k + 1].

Sorting rational numbers.The sign problem leads to the more general question of
sorting n numbers x1, x2, . . . , xn. The principle is to determine the first CFE–digit
of each number, group the numbers according to their first CFE–digit, and then
sort recursively the subgroups based on the second CFE–digit. The data structure
which is underlying this algorithm is a digital tree (often called a trie). The analysis
of such algorithm answers the following question: How many digits in total must
be determined in order to sort n real numbers? In symbolic dynamical terms,

64 BRIGITTE VALLÉE

it describes the way trajectories of n random points under the shift V evolve by
sharing some common digits before branching off from each other. And the answer
is : the expected number P (n) of quotients that are necessary to sort n numbers
satisfy

P (n) =
1

α
· n logn+O(n), n→ ∞,

where α is the entropy of the CFE dynamical system and the constant which
appears in the term O(n) is a variant of the Porter constant [see Section 7. 10].

Other generalizations. ([95, 16, 10, 18]). The Jacobi–Perron algorithm, or its
variants, were introduced to generalize the continued fraction algorithm, from the
point of view of the construction of a rational approximation of a vector of Rd. The
continued fraction algorithm (in one dimensional–case) provides all the best rational
approximations of a given real x, and many different algorithms were built for
generalizing this property in higher dimensions. Any multidimensional continued
fraction algorithm produces, for a given irrational vector (x1, x2, . . . , xd) of [0, 1]d \
Qd a sequence of irrational vectors (p1(n)/q(n), p2(n)/q(n), . . . , pd(n)/q(n)) which
converges to (x1, x2, . . . , xd). Very often, the algorithms are only convergent in the
weak sense, i.e.

lim
n→∞

∥∥∥∥(x1, x2, . . . , xd) −
(
p1(n)

q(n)
,
p2(n)

q(n)
, . . . ,

pd(n)

q(n)

)∥∥∥∥ = 0,

but some of them are strongly convergent, i.e.

lim
n→∞

||q(n)(x1, x2, . . . , xd) − (p1(n), p2(n), . . . , pd(n))|| = 0.

These convergence properties are closely related with the Lyapounov exponents (see
[12]) of the set of matrices used by the algorithm. In particular, if the second Lya-
pounov exponent is strictly negative, then the algorithm is strongly convergent. As
in the lattice reduction problem, the two dimensional–case is particular and easier
to deal with, and the Jacobi-Perron algorithm is proven to be strongly convergent
for d = 2.

9.8. Study of Constrained Continued Fractions. ([102] [20]). What can be
said about rationals or reals whose continued fraction expansion obeys some con-
traints on its digits? In a quite general setting, such sets of reals have zero measure,
and it is thus interesting to study their Hausdorff Dimension. For instance, the reals
whose all digits in continued fraction expansion are at most M are deeply studied
since they are badly approximable by rationals, and intervene in many contexts
of number theory (see [90]). Hensley precisely studied this set EM , its Hausdorff
dimension tM , and exhibits the asymptotic behaviour of |tM − 1| when the con-
straint bound M tends to ∞ [45]. These results have been generalized in [102]
where “periodic” constraints are considered.
It is also of great interest to consider more general constraints which only deal with
all the digit prefix averages of continued fraction expansions. Paper [20] considers
some digit–cost c [a weight] and studies the set FM of reals for which the weighted
average of each prefix (in the continued fraction expansion) has to be bounded
by M . This setting can be translated in terms of random walks where each step
performed depends on the present digit, and walks under study are constrained to
be always under a line of slope M . Paper [20] first provides a characterization of
the Hausdorff dimension sM , in terms of the dominant eigenvalue of the weighted
transfer operator Hs,w relative to the Euclidean dynamical system, and cost c.
Then, it exhibits the behaviour of |sM − 1| when the bound M becomes large. The
(dynamical) analysis involves, as in previous works, the weighted transfer operator
Hs,w. However, the costs to be considered here are of large growth [for instance the

EUCLIDEAN DYNAMICS 65

cost c0(d) := d is of great interest and already considered in [46]], and the weighted
transfer operator is no longer analytic near the reference point (s, w) = (1, 0). This
is why the analysis is quite involved.
When c0(d) = d, this analysis is closely related to the Subtractive Algorithm. For
performing the precise analysis of the Subtractive algorithm (T), one needs precise
information on the set of rational numbers whose digits in the continued fraction
expansion have an average less than M . This discrete problem is more difficult to
solve than the continuous problem solved in [20]. In the case of “fast Euclidean
Algorithms”, relative to costs of moderate growth, the weighted transfer operator
Hs,w is analytic at the reference point (s, w) = (1, 0). Then, we have seen in the
present paper how Tauberian Theorems or Perron’s Formula allow a transfer “from
continuous to discrete”. Here, it does not seem possible to use directly these tools,
due to the non–analyticity of Hs,w at (1, 0). This is the same problem which we
meet when we study the Bad Class.

9.9. Computation of Constants related to the analysis. ([35] [36] [26] [68]
[66] [37]). It is of theoretical and practical interest to make precise the status of
constants which appear in the probabilistic analysis of Euclidean Algorithms (see
Finch’s book [37] for a nice introduction to classical constants). The constants which
appear in the expectations (see Figure 7 are explicit as soon as the invariant density
is known: this is the case for all the algorithms of Type 1, but this is no longer
true for other types. How to obtain in this case an approximation for constants
α and µ(c)? For any type, are the constants γ, ρ(c) of Figure 7 which intervene
in the asymptotic expression of variances [in Theorems 1, 2, 7 and 8] polynomial–
time computable? What is the status of constants µ, λ(2) which intervene in the
analysis of Gauss Algorithm ? How to compute the Hausdorff dimensions sM , tm
of Section 8.7 ? In the case of the Euclidean Dynamical System, the authors of
[26] introduce a method for computing (a finite part of) the spectrum of transfer
operators. They consider a sequence of matrices Mn which are “truncations” of
the transfer operator, and they “approximate” the dominant part of the spectrum
of the transfer operator. They observe that the sequence formed with the dominant
eigenvalue λn of Mn seems to converge to the dominant eigenvalue λ of the transfer
operator (when the truncation degree n tends to ∞), with exponential speed. They
conjecture the following: There exist n0,K, θ such that, for any n ≥ n0, one has
|λn − λ| ≤ Kθn. Lhote [66, 68] proves that the conjecture is true in a very general
framework, as soon as the transfer operator is relative to a Dynamical System which
is “strongly contracting”. He also proves that the constant θ is closely related to
the contraction ratio of the Dynamical System. It is then exactly computable, and
he proves in this way that the dominant eigenvalue λ (that is unique and isolated
in this framework) is polynomial–time computable as soon as the truncated matrix
Mn is computable in polynomial–time (in n). However, if one wishes to obtain
proven digits for λ, explicit values of K and n0 must be exhibited. This does
not seem possible for general Dynamical Systems but Lhote proves that it is the
case when the transfer operator is normal on a convenient functional space. This
property actually holds for the Classical Euclidean Dynamical System, as Mayer
showed it in his works.

References

[1] Aaronson, J., and Denker, M. Local limit theorems for partial sums of stationary sequences
generated by Gibbs-Markov maps, Stoch. Dyn. 1 (2001) pp 193–237

[2] Akhavi, A., Vallée, B. Average bit–complexity of Euclidean Algorithms, Proceedings of
ICALP’2000, Lecture Notes in Computer Science 1853, pp 373-387, Springer.

[3] Babenko, K. I. On a problem of Gauss. Soviet Mathematical Doklady 19, 1 (1978), pp
136–140.

66 BRIGITTE VALLÉE

[4] Baladi, V. Positive Transfer operators and decay of correlations, Advanced Series in non
linear dynamics, World Scientific, 2000.

[5] Baladi, V., and Vallée, B. Distributional analyses of Euclidean algorithms, Proceedings of
Alenex–ANALCO’04, pp 170–184.

[6] Baladi, V., and Vallée, B. Exponential Decay of Correlations for surface semi-flows without
finite Markov partitions, to appear in the Proceedings of the American Mathematical Society,
2004.

[7] Baladi, V., and Vallée, B. Euclidean Algorithms are Gaussian, to appear in Journal of
Number Theory.

[8] Bauer, M. and Lopes, A. A billiard in the hyperbolic plane with decay of correlations of
type n−2, Discrete and continuous dynamical systems 3 (1997) pp 107-116.

[9] Bedford, T., Keane, M., and Series, C., Eds. Ergodic Theory, Symbolic Dynamics and
Hyperbolic Spaces, Oxford University Press, 1991.

[10] Bernstein, L. The Jacobi-Perron algorithm, its theory and application, Lecture Notes in
Mathematics 207, Springer 1971.

[11] Berthé, V. and Nakada, H. On Continued Fraction Expansions in Positive Characteristic:
Equivalence Relations and some metric properties. Expositiones Mathematicae 18 (2000) pp
257–284.

[12] Bougerol, P., and Lacroix, J. Products of Random Matrices with Applications to
Schrodinger Operators, Progress in Probability and Statistics, Birkhauser (1985)

[13] Bowen, R. Invariant measures for Markov maps of the interval, Commun. Math. Phys. 69
(1979) pp 1–17.

[14] Brent, R.P. Analysis of the binary Euclidean algorithm, Algorithms and Complexity, New
directions and recent results, ed. by J.F. Traub, Academic Press 1976, pp 321–355

[15] Brent, R. P. and Kung, H.T. A systolic VLSI array for integer GCD computation, ARITH-
7, Proceedings of the Seventh Symposium on Computer Arithmetic (edited by K. Hwang),
IEEE CS Press, 1985, pp 118–125.

[16] Brentjes, A.J. Multidimensional continued fraction algorithms. Mathematical centre tracts
145, Mathematisch Centrum, Amsterdam, 1981

[17] Broise, A. Transformations dilatantes de l’intervalle et théorèmes limites, Astérisque 238,
pp 5–109, Société Mathématique de France, 1996.

[18] Broise, A. Fractions continues multidimensionnelles et lois stables. Bulletin de la Société
Mathématique de France, 124 no. 1 (1996), p. 97-139

[19] Bourdon, J. Daireaux, and B. Vallée, B. Dynamical analysis of α-Euclidean Algorithms,
Journal of Algorithms 44 (2002) pp 246–285.

[20] Cesaratto, E., and Vallée, B. Hausdorff dimension of reals with bounded weighted aver-
ages, Proceedings of Colloquium on Mathematics and Computer Science: Algorithms, Trees,
Combinatorics and Probability, M. Drmota et al., ed., pp 473–490, Birkhauser Verlag, Trends
in Mathematics, 2004.

[21] Chernov, N. Markov approximations and decay of correlations for Anosov flows, Ann. of
Math. (2) 147 (1998) 269–324.

[22] Collet, P. Some ergodic properties of maps of the interval, Dynamical systems, Proceedings
of the first UNESCO CIMPA School on Dynamical and Disordered Systems (Temuco, Chile,
1991), Hermann, 1996.

[23] Daireaux, B. Master Thesis, Université de Caen, 2001.
[24] Daireaux, B., and Vallée, B. Dynamical Analysis of the Parametrized Lehmer-Euclid

Algorithm, Combinatorics, Probability, Computing, pp 499–536 (2004).
[25] Daireaux, B., Maume-Deschamps, V., and Vallée, B. The Lyapounov Tortoise and the

Dyadic Hare, to appear in Discrete Mathematics and Theoretical Computer Science (2005).
[26] Daudé, H., Flajolet, P., and Vallée, B. An average-case analysis of the Gaussian algo-

rithm for lattice reduction, Combinatorics, Probability and Computing (1997) 6 pp 397–433
[27] Delange, H. Généralisation du Théorème d’Ikehara, Ann. Sc. ENS, (1954) 71, pp 213–242.
[28] Dixon, J. D. The number of steps in the Euclidean algorithm, Journal of Number Theory 2

(1970), pp 414–422.
[29] Dolgopyat, D. On decay of correlations in Anosov flows, Ann. of Math. 147 (1998) pp

357–390.
[30] Daudé, H. and Vallée, B. An upper bound on the average number of iterations of the LLL

algorithm, Theoretical Computer Science 123 (1994) pp 95-115.
[31] Ellison, W. and Ellison, F. Prime Numbers, Hermann, Paris, 1985.
[32] Eisenstein, G. Einfacher Algorithmus zur Bestimmung der Werthes von (a

b
), J. für die

Reine und Angew. Math. 27 (1944) pp 317-318.
[33] Flajolet, P. Analytic analysis of algorithms, In Proceedings of the 19th International

Colloquium “Automata, Languages and Programming”, Vienna, July 1992, W. Kuich, editor,
Lecture Notes in Computer Science 623, pp 186–210

[34] Flajolet, P. and Sedgewick, R. Analytic Combinatorics, Book in preparation (1999),
see also INRIA Research Reports 1888, 2026, 2376, 2956.

[35] Flajolet, P., and Vallée, B. Continued fraction Algorithms, Functional operators and
Structure constants, Theoretical Computer Science 194 (1998), pp 1–34.

EUCLIDEAN DYNAMICS 67

[36] Flajolet, P., and Vallée, B.Continued Fractions, Comparison Algorithms, and Fine Struc-
ture Constants, Constructive, Experimental et Non-Linear Analysis, Michel Thera, Editor,
Proceedings of Canadian Mathematical Society, Vol 27 (2000), pp 53-82

[37] Finch, S. R. Mathematical Constants, Cambridge University Press, 2003.
[38] Friesen, C., and Hensley, D. The statistics of continued fractions for polynomials over a

finite field, Proceedings of the American Mathematical Society, 124, (1996) 9, pp 2661–2673,
[39] Gouezel, S. Central limit theorem and stable laws for intermittent maps, Prob. Theory and

Related Fields 128 pp 82–122 (2004)
[40] Grothendieck, A. Produits tensoriels topologiques et espaces nucléaires, Mem. Am. Math.

Soc. 16 (1955)
[41] Grothendieck, A. La théorie de Fredholm, Bull. Soc. Math. France 84 pp 319-384.
[42] Heilbronn, H. On the average length of a class of continued fractions, Number Theory and

Analysis, ed. by P. Turan, New-York, Plenum, 1969, pp 87-96.
[43] Hennion H. Sur un théorème spectral et son application aux noyaux lipschitziens, Proc.

Amer. Math. Soc. 118 (1993) pp 627–634
[44] Hensley, D. The number of steps in the Euclidean algorithm, Journal of Number Theory

49, 2 (1994), pp 142–182.
[45] Hensley, D. Continued Fraction Cantor sets, Hausdorff dimension, and functional analysis,

Journal of Number Theory 40 (1992) pp 336-358.
[46] Hensley, D. The statistics of the continued fraction digit sum, Pacific Journal of Mathe-

matics, Vol. 192, No2, 2000.
[47] Hwang, H.-K. Théorèmes limite pour les structures combinatoires et les fonctions

arithmétiques, PhD thesis, Ecole Polytechnique, Dec. 1994.
[48] Hwang, H.-K. Large deviations for combinatorial distributions: I. Central limit theorems,

The Annals of Applied Probability 6 (1996) pp 297–319.
[49] Hwang, H.-K. On convergence rates in the central limit theorems for combinatorial struc-

tures, European Journal of Combinatorics 19 (1998) pp 329–343.
[50] Iosifescu, M. and Kraaicamp, C. Metrical Theory of Continued Fractions. (2002)
[51] Ito, S. and Tanaka, S. On a family of continued fraction transformations and their ergodic

properties Tokyo J. Math 4 (1981) pp 153–175.
[52] Jacobi, C.G.J. Uber die Kreistheilung und ihre Anwendung auf die Zalhentheorie, J. für

die Reine und Angew. Math. 30 (1846) pp 166–182.
[53] Kato, T. Perturbation Theory for Linear Operators, Springer-Verlag, 1980.
[54] Khinchin, A. I. Continued Fractions. University of Chicago Press, Chicago, 1964. A trans-

lation of the Russian original published in 1935.
[55] Kraaikamp, C. and Lopes, A. The Theta group and the continued fraction expansion with

even partial quotients. preprint, 1995
[56] Knuth, D.E. The art of Computer programming, Volume 2, 3rd edition, Addison Wesley,

Reading, Massachussets, 1998.
[57] Knopfmacher, J. and Knopfmacher, A. The exact length of the Euclidean algorithm in

Fq[X], Mathematika, 35, (1988), pp 297-304
[58] Krasnoselsky, M. Positive solutions of operator equations, P. Noordhoff, Groningen, 1964.
[59] Kuzmin, R. O. Sur un problème de Gauss, Atti del Congresso Internationale dei Matematici

6 (Bologna, 1928) pp 83-89.
[60] Lagarias, J. C. Worst–case complexity bounds for algorithms in the theory of integral

quadratic forms, Journal of Algorithms 1, 2 (1980), pp 142–186.
[61] Lebesgue V. A. Sur le symbole (a/b) et quelques unes de ses applications, J. Math. Pures

Appl. 12 pp 497–517
[62] Lehmer, D. H. Euclid’s algorithm for large numbers. Am. Math. Mon. (1938) 45 pp 227–

233.
[63] Lévy, P. Sur les lois de probabilité dont dépendent les quotients complets et incomplets

d’une fraction continue. Bull. Soc. Math. France 57 (1929) pp 178-194
[64] Lenstra, A. K., Lenstra, H. W., and Lovász, L. Factoring polynomials with rational

coefficients, Mathematische Annalen 261 (1982), pp 513–534.
[65] Lorch, E. R. Spectral Theory, Oxford University Press, New York, 1962.
[66] Lhote, L. Master Thesis, Université de Caen, 2002
[67] Lhote, L. PhD Thesis, Université de Caen, (in preparation).
[68] Lhote, L. Computation of a Class of Continued Fraction Constants Proceedings of Alenex–

ANALCO’04, pp 199–210
[69] Lhote, L., and Vallée, B. Sharp estimates for the main parameters of the Euclid Algorithm.

submitted
[70] Lasota, A. and Mackey, M. Chaos, Fractals and Noise; Stochastic Aspects of Dynamics,

Applied Mathematical Science 97, Springer (1994)
[71] Mayer, D. H. On a ζ function related to the continued fraction transformation, Bulletin de

la Société Mathématique de France 104 (1976), pp 195–203.
[72] Mayer, D. H. Continued fractions and related transformations, In Ergodic Theory, Sym-

bolic Dynamics and Hyperbolic Spaces, T. Bedford, M. Keane, and C. Series, Eds. Oxford
University Press, 1991, pp. 175–222.

[73] Mayer, D. H. Spectral properties of certain composition operators arising in statistical
mechanics, Commun. Math. Phys. pp 68, 1-8 (1979)

68 BRIGITTE VALLÉE

[74] Mayer, D. H. On composition Operators on Banach spaces of Holomorphic Functions,
Journal of functional analysis 35 pp 191-206 (1980)

[75] Mayer, D. H. On the thermodynamic formalism for the Gauss Map, Commun. Math. Phys.
130, pp 311-333 (1990)

[76] Mayer, D., and Roepstorff, G. On the relaxation time of Gauss’s continued fraction map.
I. The Hilbert space approach, Journal of Statistical Physics 47, 1/2 (Apr. 1987), pp 149–171.
II. The Banach space approach (transfer operator approach), Journal of Statistical Physics
50, 1/2 (Jan. 1988), pp 331–344.

[77] Moussa, P., Cassa, A. and Marmi, S., Continued Fractions and Brjuno functions, Journal
of Computational and Applied Mathematics 105 (1999) pp 403–415.

[78] Nagaev, S.V. Some limit theorems for stationary Markov chains, Theor. Probab. Appl. 2
(1957) pp 378–406.

[79] Nakada, H. Metrical Theory for a Class of Continued Fraction Transformations and Their
Natural Extensions, Tokyo J. Math., 4 (2) (1981) pp. 399–426.

[80] Philipp, W. Some metrical results in Number Theory II, Duke Math. J. 38 (1970) pp 447-488.
Errata p 788.

[81] Pollicott, M., and Sharp, R. Exponential error terms for growth functions on negatively
curved surfaces, Amer. J. Math. 120 (1998) pp 1019–1042.

[82] Prellberg, T. and Slawny, J. Maps of intervals with Indifferent fixed points: Thermody-
namic formalism and Phase transitions. Journal of Statistical Physics 66 (1992) pp 503-514

[83] Rieger, G. J. Über die mittlere Schrittanzahl bei Divisionalgorithmen, Math. Nachr. (1978)
pp 157–180.

[84] Rieger, G. J., Über die Schrittanzahl beim Algorithmus von Harris und dem nach nächsten
Ganzen, Archiv der Mathematik 34 (1980), pp 421–427.

[85] Ruelle, D. Thermodynamic formalism, Addison Wesley (1978)
[86] Ruelle, D. Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval, vol. 4

of CRM Monograph Series, American Mathematical Society, Providence, 1994.
[87] Schwartz, H. Composition operators in Hp, Ph.D. Thesis, Univ. of Toledo.
[88] Shallit, J. On the worst–case of the three algorithmss for computing the Jacobi symbol,

Journal of Symbolic Computation 10 (1990) pp 593–610.
[89] Shallit, J. Origins of the analysis of the Euclidean Algorithm, Historia Mathematica 21

(1994) pp 401-419
[90] Shallit, J. Real numbers with bounded partial quotients. A survey. L’Enseignement

Mathématique, t. 38, pp 151-187, 1992.
[91] Shapiro, J. Composition operators and classical function theory, Universitext: Tracts in

Mathematics, Springer-Verlag, 1993.
[92] Shapiro, J. and Taylor, P.D. Compact, nuclear, and Hilbert–Schmidt composition oper-

ators on H2, Indiana Univ. Math. J. (1973) 23, pp 471-496
[93] Schonhage, A. Schnelle Berechnung von Kettenbruchentwicklungen, Acta Informatica pp

139–144 (1971)
[94] Schweiger, F. Continued fractions with odd and even partial quotients. Mathematisches

Institut der Universitat Salzburg, Arbeitsbericht 2/1982
[95] Schweiger, F. Multidimensional Continued Fractions, Oxford University Press, (2000)
[96] Stein, J. Computational Problems Associated with Racah Algebra, Journal of Computa-

tional Physics 1 (1967) pp 397–405.
[97] Sorenson, J. An analysis of Lehmer’s Euclidean GCD Algorithm, Proceedings of ISSAC

1995, pp 254–258
[98] Stehlé, D. and Zimmermann, P. A Binary Recursive Gcd Algorithm, Proceedings of

ANTS’04, Lecture Notes in Computer Science.

[99] Tenenbaum, G. Introduction à la théorie analytique des nombres, vol. 13. Institut Élie Car-
tan, Nancy, France, 1990.

[100] Vallée, B. Gauss’ algorithm revisited, Journal of Algorithms 12 (1991), pp 556–572.
[101] Vallée, B. Opérateurs de Ruelle-Mayer généralisés et analyse des algorithmes d’Euclide et

de Gauss, Acta Arithmetica 81.2 (1997) pp 101–144.
[102] Vallée, B. Fractions continues à contraintes périodiques, Journal of Number Theory 72

(1998) pp 183–235.
[103] Vallée, B. Algorithms for computing signs of 2×2 determinants: dynamics and average-case

algorithms, Proceedings of the 8 th Annual European Symposium on Algorithms, ESA’97, pp
486–499, LNCS 1284, Springer Verlag.

[104] Vallée, B. Dynamical Sources in Information Theory: Fundamental intervals and Word
Prefixes, Algorithmica (2001), vol 29 (1/2) pp 262–306

[105] Vallée, B. Dynamics of the Binary Euclidean Algorithm: Functional Analysis and Oper-
ators., Algorithmica (1998) vol 22 (4) pp 660–685.

[106] Vallée, B. A Unifying Framework for the analysis of a class of Euclidean Algorithms.,
Proceedings of LATIN’00, Lecture Notes in Computer Science 1776, pp 343–354

[107] Vallée, B. Dynamical Analysis of a Class of Euclidean Algorithms, Theoretical Computer
Science, vol 297/1-3 (2003) pp 447–486

[108] Vallée, B. Digits and Continuants in Euclidean Algorithms. Ergodic Versus Tauberian
Theorems, Journal de Théorie des Nombres de Bordeaux 12 (2000) pp 531-570.

EUCLIDEAN DYNAMICS 69

[109] Vera, A. Master Thesis (2005)
[110] Von Zur Gathen, J. and Gerhard, J. Modern Computer Algebra, Cambridge University

Press (1999)
[111] Wirsing, E. On the theorem of Gauss–Kusmin–Lévy and a Frobenius–type theorem for

function spaces. Acta Arithmetica 24 (1974) pp 507–528.
[112] Yao, A.C., and Knuth, D.E. Analysis of the subtractive algorithm for greatest common

divisors. Proc. Nat. Acad. Sc. USA 72 (1975) pp 4720-4722.
[113] Yap, C.K. Fundamental Problems in Algorithmic Algebra, Princeton University Press (1996)

Brigitte Vallée: CNRS UMR 6072, GREYC, Université de Caen, F-14032 Caen,
France

E-mail address: brigitte.vallee@info.unicaen.fr

