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A new form of governing equations of fluids
arising from Hamilton’s principle

S. Gavrilyuk® and H. Gouin ®
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Sciences, Université d’Aix - Marseille I1I, Case 322, Avenue FEscadrille
Normandie-Niemen, 18397 Marseille Cedex 20, FRANCE

Abstract

A new form of governing equations is derived from Hamilton’s principle of least
action for a constrained Lagrangian, depending on conserved quantities and their
derivatives with respect to the time-space. This form yields conservation laws both
for non-dispersive case (Lagrangian depends only on conserved quantities) and dis-
persive case (Lagrangian depends also on their derivatives). For non-dispersive case
the set of conservation laws allows to rewrite the governing equations in the sym-
metric form of Godunov-Friedrichs-Lax. The linear stability of equilibrium states for
potential motions is also studied. In particular, the dispersion relation is obtained
in terms of Hermitian matrices both for non-dispersive and dispersive case. Some
new results are extended to the two-fluid non-dispersive case.

Key words: Hamilton’s principle; Symmetric forms; Dispersion relations

1 Introduction

Hamilton’s principle of least action is frequently used in conservative fluid
mechanics [1-3]. Usually, a given Lagrangian A is submitted to constraints
representing conservation in the time-space of collinear vectors j,

Divjy = 0, k=0,...,m (L.1)

where Div is the divergence operator in the time-space. Equation (1.1) means
the conservation of mass, entropy, concentration, etc.

Lagrangian appears as a function of j, and their derivatives. To calculate the
variation of Hamilton’s action we don’t use Lagrange multipliers to take into
account the constraints (1.1). We use the same method as Serrin in [2] where
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the variation of the density p is expressed directly in terms of the virtual
displacement of the medium. This approach yields an antisymmetric form for
the governing equations

L) ¢ 0K\~
ZJk<a _<a =0 (1.2)
= z z
where z is the time-space variable, "star” means the transposition, and Kj
is the variational derivative of A with respect to ji

oA
K = — 1.

Equations (1.1) - (1.3) admit particular class of solutions called potential flows

Jr = arjo, ar = const, k=1,...m
Do
K, = —
0 0z

where (g is a scalar function. We shall study the linear stability of constant
solutions for potential flows.

In Section 2, we present the variations of unknown quantities in terms of vir-
tual displacements of the continuum. In Section 3, we obtain the governing
system (1.2) using Hamilton’s principle of least action. Conservation laws ad-
mitted by the system (1.1) - (1.3) are obtained in section 4. For non-dispersive
case, we obtain the equations (1.1) - (1.3) in the symmetric form of Godunov-
Friedrichs-Lax [4,5]. Section 5 is devoted to the linear stability of equilibrium
states (constant solutions) for potential motions. We obtain dispersion rela-
tions in terms of Hermitian matrices both for dispersive and non-dispersive
flows and propose simple criteria of stability. In Section 6-7, we generalize our
results for two-fluid mixtures in the non-dispersive case. Usually, the theory
of mixtures considers two different cases of continuum media. In homogeneous
mixtures such as binary gas mixtures, each component occupies the whole
volume of a physical space. In heterogeneous mixtures such as a mixture of
incompressible liquid containing gas bubbles, each component occupies a part
of the volume of a physical space. We do not distinguish the two cases because
they have the same form for the governing equations. We obtain a simple sta-
bility criterion (criterion of hyperbolicity) for small relative velocity of phases.
In Appendix, we prove non-straightforward calculations.

Recall that "star” denotes conjugate (or transpose) mapping or covectors (line
vectors). For any vectors a,b we shall use the notation a*b for their scalar
product (the line vector is multiplied by the column vector) and ab* for
their tensor product (the column vector is multiplied by the line vector). The
product of a mapping A by a vector a is denoted by Aa, b*A means



covector c* defined by the rule c* = (A*b)*. The divergence of a linear
transformation A is the covector Div A such that, for any constant vector a,

Div (A)a = Div (Aa)

The identical transformation is denoted by [I. For divergence and gradient

operators in the time-space we use respectively symbols Div and —, where
/1

*

z" = (t,x%), t is the time and x is the space. The gradient line (column)
operator in the space is denoted by V (V*), and the divergence operator in
the space by div. The elements of the matrix A are denoted by aé» where
i means lines and j columns. If f(A) is a scalar function of A, matrix

B* = 8_f is defined by the formula

0A
(o5 _ of
B = [=] = :
% = (5), = o
The repeated latin indices mean summation. Index « = 1,2 refers to the

parameters of components densities p,, velocities u,, etc.

2 Variations of a continuum

Let z = (f{) be Eulerian coordinates of a particle of a continuum and D(t)

a volume of the physical space occupied by a fluid at time ¢. When ¢ belongs
to a finite interval [tg, t1], D(t) generates a four-dimensional domain (2 in
the time-space. A particle is labelled by its position X in a reference space
Dy. For example, if D(t) contains always the same particles Dy = D(ty),
and we can define the motion of a continuum as a diffeomorphism from D(%y)
into D(t)

x = x,(X) (2.1)
We generalize (2.1) by defining the motion as the diffeomorsphism from the
reference space () into the time-space () occupied by the medium in the
following parametric form

t = g\, X)
(2.2)
x = ¢(A, X)
A .
where Z = <X> belongs to a reference space ()5. The mappings
A = h(t,x)
(2.3)
X = 9(t, x)



are the inverse of (2.2). Definitions (2.2) imply the following expressions for
the differentials dt and dx

dt d\
(o) = 5(ix) (2.4)
where 8g 8g
B — ax X
o9 0
X X
Formulae (2.2), (2.4) assume the form
_ 9y 99
dt_&)\d)\+8—XdX 05
_ 0o ¢ '
dx = N d\ + 8XdX
From equation (2.5) we obtain
dx = udt + Fdx
where velocity u and deformation gradient F' are defined by
_ 09 _0¢ 09 0g (09"
u_a)\<8/\>’F_8—X_6—)\8—X§ (2:6)
Let
t = G\, X, e¢)
(2.7)
x = ®(\, X, ¢)

be a one-parameter family of virtual motions of the medium such that
G(A, X,0) = gA, X), (N, X,0) = ¢(N, X)

where ¢ is a scalar defined in the vicinity of zero. We define Eulerian displace-

ment ¢ = (7, &) associated with the virtual motion (2.7)
P
T:%G()\XO) ﬁz%()\XO) (2.8)

We note that (¢ is naturally defined in Lagrangian coordinates. However, we
shall suppose that ¢ is represented in Eulerian coordinates by means of (2.3).

Let us now consider any tensor quantity represented by f (¢, x) in Eulerian

coordinates and } (A, X) in Lagrangian coordinates. Definitions (2.2), (2.3)
involve

Foux) = 7o x). 60 %) (29)



Conversely,

o

Fltx) = f (h (t, %), B (1, x>) (2.10)

Let ? (A, X, &) and 3\” (t, x, €) be tensor quantities associated with the
virtual motions, such that ? (A X, e) = 3\” (t, x, €) where A, X, t, x
are connected by relations (2.7) satisfying } (A, X,0) = } (A, X) or
equivalently 3\” (t,x,0) = f(t,x)). We then obtain

~ A
FOuX.) =1 (60X, 9, 80X, ), <) (2.11)
Let us define Eulerian and Lagrangian variations of f

A ~
§po 91 Gro 9
Sf = E(t,x,()) and 0 f = e (A, X, 0)

Differentiating relation (2.11) with respect to ¢ at ¢ = 0, we get

szgf—g—ﬁc (2.12)

3 Governing equations

Consider a four-dimensional vector jo satisfying conservation law
Divj, = 0 (3.1)

Actually, (3.1) represents the mass conservation law, where jo, = pv, p is the
density and v* = (1, u*) is the four-dimensional velocity vector. Let a; be
scalar quantities such as the specific entropy, the number of bubbles per unit
mass, the mass concentration, etc., which are conserved along the trajectories.
Consequently, if j. = agjo,

aak
Divj, = —jo =0, k=1,... 3.2
IV Jk Oz Jo ) ) , m ( )
Hence ji, K = 1,...,m form a set of solenoidal vectors collinear to jo.

Hamilton’s principle needs the knowledge of Lagrangian of the medium. We
take the Lagrangian in the form

L:A(jk,aiz’“,... 9"J z) (3.3)



where ji are submitted to the constraints (3.1), (3.2) rewritten as
Divj, =0, k=0,...,m (3.4)
Let us consider three examples.

a — Gas dynamics]1-3]

1
Lagrangian of the fluid is L = 5P lul> — €(p, n) — pll(z), where ¢ is the

internal energy per unit volume, 7 = ps is the entropy per unit volume,
s is the specific entropy and II is an external potential. Hence, in variables
jo = pv, j1 = psv, z, Lagrangian takes the form

Ll R .
L= §(|1*(‘]j‘ _1‘10) _8<1J071J1> - 1J0H<Z) = A(.]Oa.]lvz)
0

where 1* = (1,0,0,0).

b — Thermocapillary fluids [6,7]

1
Lagrangian of the fluid is L = §p|u|2 — ¢ (p,Vp,n, Vn) — pll(z). Since
Vp = V(I*jp) and Vn = V (I*j;), we obtain Lagrangian in the form (3.3)

. Ojo . O0j
L:A<J07£7.]17£7Z>

¢ — One-velocity bubbly liquids [8-10]

dp ) dp ap

—, N th — = —

P ) R

where p is now the average density of the bubbly liquid and N is the number

of identical bubbles per unit volume of the mixture. We define again j, = pv

. . dp dp 9I"jo) Jo
nd = Nv. By using — = —v =

¢ o S8 dt 0z 0z 1*jp
obtain Lagrangian in the form

. Oio .
L = A(.]07£7.]1)

1
L - 5p|u|2—w<

and N = I*j;, we

The Hamilton principle reads: for each field of virtual displacements z €
Q — ¢ such that ¢ and its derivatives are zero on 02,

5/ AdOQ = 0 (3.5)



A
Since variation ¢ is independent of domain 2 and measure df2, the variation
of Hamilton action (3.5) with the zero boundary conditions for j; and its
derivatives yields

UL Y A
5/AdQ:/Zf(sJde:o (3.6)
Q Q k=0 OJi
where —— refers to the variational derivative with respect to ji. In particular,

L = A(jk7%7z)

Jr
if Lagrangian (3.3) is

0z
we get
oA oA Di oA
— = — — Div | —=+—~
Ojk ik 9 ( %)
0z

N
We have to emphasize that in (3.6), the variations ¢ ji should take into
account constraints (3.4). We use the same method as in [2, p. 145] for the
variation of density. This method does not use Lagrange multipliers since

A
the constraints (3.4) are satisfied automatically. The calculation of § jy,
kE = 0,...,m is performed in two steps. First, in Appendix A we calcu-

late Lagrangian variations 4 v, 5 pand 0 aj (expressions (A.2), (A.5) and
(A.6), respectively). Second, by using (2.12) we obtain in Appendix B Eulerian

A
variations d jg, k = 0,...,m (see (B.3))

Sic = (o~ Q) T) i - Pec

Let us now define the four-dimensional covector

. A

Taking into account conditions (3.4) and the fact that ¢ and its derivatives
are zero on the boundary 052, equations (3.6), (B.3) yield

5/AdQ /Z K; <<—C _ (DivC)I) e — %C>

i e s .. OK
= / Z <_D1V(.]k‘Kk) +Jk8—k> ¢ df2
& k=0 z
o T [ OKyg B 0K\ * B
_/];)Jk(@z (8z)>CdQ_O

Q



Hamilton’s principle yields the governing equations in the form
* — =0 3.8
,;0 Jk( 0z ( 0z ) ) (3:8)

where K are given by definition (3.7). The system (3.4), (3.8) represents
m + d + 1 partial differential equations for m + d unknown functions u, p,

ag, k = 1,...,m, where d is the dimension of the ()-space. Since the matrix
0K}, 0K\ *
Ry = — .

F 0z ( 0z ) (3.9)
is antisymmetric and all the vectors ji, k = 0,..., m are collinear, we obtain
that j; Rrjo = 0.

Consequently
3"t Rio = 0 (3.10)
k=0
and the overdetermined system (3.4), (3.8) is compatible.
_ _ _ . 9o
In the case ap = const, kK = 1,....mand A = A Jo,a— , the system
Z
(3.4), (3.8) can be rewritten in a simplified form
.. [ Ko 0K\ *
Jo - ( ) =0
0z 0z (3.11)
DiVjo =0
We call potential motion such solutions of (3.11) that
Do
K, = — 3.12
0 8Z ( )

where (g is a scalar function. In this case, the governing system for the
potential motion is in the form

oA O
o Oz (3.13)
Div jo =0

For the gas dynamics model, the system (3.12), (3.13) reads

O0 _ _(Lipy 2 ) _
o = (Gl o) £ ) el) = elops)
V(,Oo = u*
dp .
yn + div(pu) = 0




0
Eliminating the derivative ﬂ, we obtain the classical model for potential

ot
flows [2] e ) 5
u 1 0 _
— +V(2|u| + 5pelo) +H) 0
u = Vg (3.14)

dp .
pn + div(pu) = 0

4 Conservation laws

Equations (3.4), (3.8) can be rewritten in a divergence form. The demonstra-

0
tion is performed for Lagrangian A which depends only on j; , % and z.
Z
The following result is proved in Appendix C.

Theorem 4.1

i

Let L = Alj,, =—
‘ (']k’az

, Z). The following vector relation is an identity

m a'
Div <Z (K’,;jk[ N A;%) — A 1)

k=0
OA N T s o

+— 4+ Y K;Divjy — > jiRx = 0 (4.1)
oz (o k=0

oA
where the matrices Ry, are given by (3.9) and A} = ———

B Ojr \
0 (5)

In particular, we get

Theorem 4.2

The governing equations (3.4), (3.8) are equivalent to the system of conserva-
tion laws

(S (e Oi A
D Kijil — Kp + AL 3E) A1)+ S =0
v (& (st g ) < ar) e G

Divjy =0, £=0,...,m



In the special case of potential flows (3.13) the governing equations admit
additional conservation laws

Div (CK;; - (K;;c)f) ~ 0 (4.2)

where c is any constant vector. Indeed,

0K,
0z

Div (cKj) = c*< 0 8K0>

> . Div(Kje ) = 5 (Kie) = c*( =

Since for the potential flows

0Ky (GKO)*
oz 0z

we obtain (4.2). In particular, if we take ¢ =1 for the gas dynamics equa-
tions, we get conservation laws (3.14). Multiplying (4.1) by jo and taking into
account the identity (3.10), we obtain the following theorem

Theorem 4.3

The following scalar relation is an algebraic identity

I N A . 0 .
<D1v (Z (Kijol — ixK; + Aki) - AI)) jo

k=0

oA = oo\ e s
—|—8—J0 + > (Kjjo)Divj, = 0 (4.3)
z k=0
This theorem is a general representation of the Gibbs identity expressing that
the "energy equation” is a consequence of the conservation of "mass”, "mo-
mentum” and "entropy”. Examples of this identity for thermocapillary fluids

and bubbly liquids were obtained previously in [6,10].

Identity (4.3) yields an important consequence. Let us recall the Godunov-
Friedrichs-Lax method of symmetrisation of quasilinear conservation laws [4-
5] (see also different applications and generalizations in [11-12]). We suppose
that the system of conservation laws for n variables q has the form

Afi
ot

Let us also assume that (4.4) admits an additional ”energy” conservation law

% + divE = 0, e = e(q), E = E(q)

10



which is obtained by multiplying each equation of (4.4) by some functions p*

and then by summing over ¢ = 1,....,n
0 (Of;
a_: L divE = pf ( é’; + divFi> (4.5)

In particular, if we consider e, E and F; as functions of f;, we obtain from

(4.5)

o, — U an, T Pan T af of '

Let us introduce functions N and M such that

N = fip'—e, M = Fp' — E (4.7)
Consequently, from equations (4.6) and (4.7) we find that

ON oM
G = o (4.8)

Hence, substituting (4.8) into (4.4), we get a symmetric system in the form

0?’N  op PM  op
N Oy (M) (4.9)
optop? Ot op'opl 0x
. PN » : ,
If matrix N;; = m is positive definite then the symmetric system (4.9)
pl
0’N
is t-hyperbolic symmetric in the sense of Friedrichs. Obviously, matrix 5
P Op
-~ 92
is positive definite if and only if matrix e = W;fj is positive definite,

since € N;, = &), where ¢} is the Kronecker symbol.

Now, let us rewrite identity (4.3) in the non-dispersive case

k=0 k=0
Identity (4.10) is exactly of the same type as identity (4.5). It means that
the system (3.4), (3.8) can be always rewritten in a Godunov-Friedrichs-Lax
symmetric form. Actually, if we take

e = ZK’,;Jk — (JkK’,;ﬁ — A and E = —Pj. K"
k=0
where
01 0 0
P=10 010
0 0 0 1

11



the conjugate variables p are

p = 1 ... |, E=0,...,m
—;KkJo

Consequently, the Gibbs identity (4.10) gives directly a set of conjugate vari-
ables. Therefore, we have proved the following theorem

Theorem 4.4
If L = A(ji), the system (3.4), (3.8) is always symmetrisable.

The property of convexity, needed for the hyperbolicity of the governing sys-
tem, should be verified for each particular case. For example, in the gas dy-
namics, the energy of the system is given by the formula

S Ll ul?
e = > Kije — > (eKi), — A = elon) + o
k=0 k=0
Since IE 5
u 5 5
K* L * _ -
oJo P ( 5 8p> ) 1Jo P an
the conjugate variables are (see also [4])
u u
Oe [ul? a2
P="1 o 2 - P T
I

where p is the Gibbs potential and T is the temperature. Obviously, if £(p,n)
is convex, the total energy e is convex with respect to pu, p and 7.

5 Stability of equilibrium states for potential flows.
o
We assume that L is a function of j, and % besides it does not depend
z
i
L = A|j
<Jk ) Oz )

12

on z, i.e.



Let us give some definitions. An equilibrium state is a solution of equations
(3.4), (3.8) such that jp = jke = const. Let v be a real unit vector. Any
vector (3 can be represented in the form

B =wv + B, where v'@3, =0

The equilibrium state ji. # 0 is linearly stable in the direction v if and

only if all non-trivial solutions of the form Jy 372 of the system (3.4), (3.8)
linearized at the equilibrium state ji. are such that w is real for any real Bo.

5.1 Non-dispersive case

We note that in a non-dispersive case the stability means hyperbolicity of
governing system [13-14]. We omit the index “0“ and rewrite system (3.13) in
the form

2 O _ Op
Jj 0z (5.1)
Divj = 0

where A = A(j). The Legendre transformation of A(j) is

AK) = K5 — A() (5.2)
. s 0 oA\ . .
If the matrix A"(j) = 5\ 5 is non-degenerate, (5.2) involves the
J J
formula oA
J = 9K (5.3)

Hence, relations (5.1) - (5.3) yield

9i 0 ({0A\"\ OK S K
m - 5k)) % - vm % - amvE 6

0z
w0 - e (%)) o - 2((%))

The second equation (5.1) and (5.4) involve

where

tr (A"(K)¢"(z)) = 0
If we replace ¢ by i de'd *Z, we get immediately the dispersion relation

BA"(K)B = 0 (5.5)

13



where index ”"e” corresponds to the equilibrium state. The matrix A”(K,)
can be easily calculated in terms of Lagrangian A(j). Indeed,

_0 00K e
I = 5 = 9K 0 = A"(K)A"(j)
It follows that .
A'(K) = (A"(Ge)) (5.6)

Relations (5.5) - (5.6) imply the following result.

Theorem 5.1 (criterion of stability for potential non-dispersive motions)

If the symmetric matric G = A"(je) has the signature (—,+,+,+), the
equilibrium state j. is stable in any direction v belonging to the intersection
of two cones

C, = {1/| v'Gly < O} and Cy = {V\ v'Gr < O}

Proof. Since () and (5 contain the eigenvector corresponding to the neg-
ative eigenvalue of G, C; N Cy # (. We can find orthogonal coordinates
(t,x1, x9, x3) such that the dispersion relation (5.5) takes the form

3

i=1

In coordinates (t,x1,z2,x3) the cone Cs is defined by the inequality

SN

3 0
—t+ > L <0
i:l)\i

Let us represent 3 in the form

t 1 —N1Y1 — NaY2 — N3Y3
T n

To no Yo

X3 ns Ys

The dispersion relation B*G~'3 = 0 implies
3 2 3
— (Z n;Y; —w) + Z )\z (wni +y,)2 =0
i=1 i=1
It involves
3

3 3 3 2
w%4+ZNM)uwzu+mWﬁzyw—Csz=o
i=1 =1

i=1 i=1

14



Due to the following inequality,

3 3 2 3 3. 2
> = () = St - (X JAu)
=1 =1 =1 =1 ?

3

3 , n2 3 , 3 , 3. 2
> Z AiyY; — (Z )\—Z> <Z Ai%) = (Z Ai%) <1 - Z )\_Z>
i=1 =1 N i—1 i=1 i=1 i

w is real if v belongs simultaneously to C; and (Y. The theorem is proved.

For the gas dynamics model, if the volume energy is a convex function of p
and n = ps, the matrix G satisfies the conditions of Theorem 5.1.

5.2 Dispersive case

It L=A <j7 g—'] >, the governing system is
z

U T SN/ ey QLS B
= 5 6 a(_J> =
0z

Divj = 0
The linearised system in a coordinate form is

Aksjs + Fzs.],sp - Dl::r;p X = Pk and j; =0 (57)

']7mp

where the comma denotes the derivative with respect to z* while Ay, T%,,
D;? | calculated at point j., are defined by the relations

0?A A A A
A s — A LA o) v - B B - B AR Dmp = = . 58
BT gikags TR T agkags 99k TR T agk g, (5:8)
The following symmetry relations result from (5.8)
As = Ay, Th, = -T%., D;* = DV (5.9)

For the solution of (5.7) in the form j* = J*e#*" ¢ = i®e®* we get
the following dispersion relation

G B
det = —B"Adj(G)B =0 (5.10)
g 0
where Adj(G) is the adjoint matrix to G, and the elements Gy of the matrix
G are defined by

Grs = Nes + 1106, + DB, (5.11)

15



Equations (5.9) - (5.11) imply that G is hermitian matrix. In particular, if
det G # 0 then Adj(G) = det(G)G~! and the dispersion relation (5.10) is
equivalent to B*G~'3 = 0, which is a generalization of (5.5) for the dispersive
case. We get the following obvious result:

Theorem 5.2 (criterion of stability for potential dispersive motions)

If T%, = 0 and the symmetric matriz G defined by (5.8), (5.11) has the
signature (—,+,+,+) for B =0, the equilibrium state j. is stable for small
B in any direction v belonging to the intersection of the cones C;, i = 1,2
defined in theorem 5.1.

We note that I}, defined by (5.8) are always zero if the expansion of La-

grangian A in Taylor series at the vicinity of equilibrium state does not contain
i

linear terms with respect to ﬁ.

0z

Sometimes, we are able to obtain a “global” stability. For example, let us

consider a particular case of bubbly liquids, for N/p = const, defined in
Section 3 ,
1 a [ dp
L = - 24— £) —
o+ 5 (%) - <

where ¢(p) is a convex function of the density and a is a positive function of

p. Then,

I A RS .

L =-|>=—=X<-1I —| =) =] — eI

(o) g (o ) - e
Since the governing equations are invariant with respect to the Galilean trans-
formation

t =t xX =x+Ut, v =u+U

we can always assume that u, = 0 (it is sufficient to consider the governing
system in the reference frame moving with the velocity U = u.). Hence,
je = pel, where I* = (1,0,0,0). Omitting index "¢”, we can calculate the
matrix G defined by (5.11)

82
- —i + aBi 0
G = | 9
1
O _
p
Hence,
1
i 0*
PE
Adj (G) = 2¢
1@ (a8 — 55) 1
2

16



and dispersion relation (5.10) reads

, 0%
% T g
R (83 + 35 +p7) = 0 (5.12)

Let v be the direction of time in the time-space, then v = 1 and (5.12) is

equivalent to

w2

D%e )
— — aw
0p?

The graph of the dispersion relation (5.13) for positive values of w is presented

0%e 1
in Figure 1. We have denoted by w, = 8—i — the eigenfrequency of bubbles
0 a

— 1B, (5.13)

0%¢

Pos the equilibrium sound speed of bubbly liquid (see [8]).
o

and by ¢y =

Fig. 1. Dispersion relation for bubbly liquids

6 Governing equations for mixtures

Let us consider homogeneous binary mixtures. The mixture is described by
the velocities u,, the average densities p, and the specific entropies s,
for each component (o = 1,2). We introduce two reference frames associated
with each component in the form

t = ga(Aas Xa)
(6.1)

X = ¢a<)‘a7 Xa)

17



and the inverse mappings

Ao = ha(t, x)
(6.2)
Xo = Pt x)

The corresponding families of virtual motions generated by (6.1) are defined
by
t = Ga()\aa Xaa 50{)

X = (ﬁa(Aaa Xom Ea)
with
Ga()\aa Xom O) = ga()‘aa Xa)

(I)a<)\a7 Xau O) = d)a()\OH XCV)
We define the two Eulerian displacement {, = (7, €,) where

oG, 0P,
88a 85&

Ta = <)\a7 Xa7 0)7 éa = ()‘C'H XOH O)

As in Section 3 we define tensor quantities associated with the two virtual

motions and variations Sa and 0d,. In the general case, we have two four-
dimensional solenoidal vectors joa) = pa Va corresponding to the a'h compo-
nent, where p, is the density and v} = (1,u}) is the four-dimensional veloc-
ity vector. As in Section 3, we introduce additional physical quantities a(q)

associated with the four-dimensional vectors ji) = i) Jo@), @ = 1,2,
k(o) = 1,...,m(a) submitted to the constraints
Diij(a) =0 (63)

For Hamilton’s action in the form

j (6% 8”‘ o
o= [ A (s Bl Ty g
Q

oz"

the Hamilton principle reads: for each field of virtual displacements z €
Q — ¢, such that . and its derivatives are zero on 052,

5aQ/AdQ=o

Here ¢, a is the derivative of the Hamilton action with respect to ¢,, and ¢,
are the virtual displacements expressed in Eulerian coordinates z by means
of equations (6.2). The method developed in Section 3 yields the equations of
motion in the form

m(a) K, oK * SA

ok (o) k(o) *
> i (T - (T) ) =0 Kiw = 5 (04)
k(c)=0 (@) 8Z 8Z (@) 5.]k(a)

18



Divjrey = 0, a = 1,2 and k(o) = 0,...,m(a)

Ojk(a)
0z

As in Theorem 4.1, for the case A = A <jk(a) ,
following identity

, z> we can obtain the

mle) K* . [ . K* A* aJk(C“) A ]’
Z Z k(o) k(o) 4 = Jk(a) g () + k(a) Oz -

a=1 k(a)=
aA 9 m(a) ‘ 2 m(a)
ot 2 Y K Divike — 20 D0 ke Biw) = 0
Z 431 ka)=0 a=1 k(a)=0
where
AA OKi) (K@)
A3 = —F d Ry = - < >
k(a) 9 <3Jk(a)> o He) 0z 0z
0z

Hence, the governing equations (6.4) admit the conservation laws

m(a) pr aA
: Jk(a)
(Z Z < k() .]k(a I — .]k(oz)K + Ak(a 9z ) — A[) az =0

a=1 k(a)=

Divjra) = 0, a = 1,2 and k() = 0,...,m(c)
We notice that for a one-velocity model, the number of scalar conservation laws
is m + d + 1 where d is the dimension of the time-space. The number of
unknown variables is m + d. Due to Theorem 4.3, the m + d + 1 conservation
laws are connected by the ”Gibbs identity”. In the case of mixtures, we obtain
Z m(«a) + d + 1 conservation laws for Z m(a) + 2d unknown variables. In

the general case, the classical approach based on conservation laws, does not
allow to obtain Rankine-Hugoniot conditions for this system. Nevertheless, in
[15-17] we have obtained the jump conditions. The Hamilton principle provides
these conditions without any ambiguity.

7 Linear stability of mixtures.

We consider the Lagrangian in the form [15-19]

1 1
L:§p1‘u1|2+§p2|u2|2_W<plap27?717772uw) (71)

where w = uy — u; and 17, is the entropy per unit volume of the o com-

ponent. A generalisation of (7.1) for thermocapillary fluids was also proposed
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in [20]. If W is an isotropic function of w, Lagrangian (7.1) can be rewritten

as follows
‘.]O(a .
=5 — — ot >
Z <1* JO 0( )
-W (l* Joay > o) » 1*j1(1) e, u) (7.2)
where )
_ Lo o

(7.3)

2 *jo2) *joq)
Here we shall also restrict our study to the case s, = const. To avoid double
indices, we will denote jo(1y, jorz) by Ji, jo. Hence, (7.2) and (7.3) involve

.. R jo|? e N ke ke
AGudz) = 3 > (M — 1Ja> — W, I'ja, ) (7.4)

where W (p1, p2, 1) = Wi(p1, p2, p151, pasa, ).

Omitting the tilde symbol, we consider the potential motions

K, = % = e
Dja Oz (7.5)

Divj, = 0, a=1,2

Let us consider the Legendre transformation of A(ji, j2)

2
AK Ky) = Y jiK, — A (7.6)
a=1
If the matrices 5 AN
AO( = —Q e — A* o 77
2@ o
are non-degenerate, relation (7.6) involves
o O0A

Substituting (7.8) in Divj, = 0, we get

”(%) - (@ (i)

with




Hence, the equations of potential motions are
2
tr Z A(,Ya)(pg = 0 (710)
y=1

In the equilibrium state A(,,) = const. Substituting ¢, by iéyeiﬁ*z in
(7.10), we obtain the dispersion relation in the symmetric form

BAB BAwB\
det <5*A<12>5 6*A<22>B> =0

which is the generalisation of the dispersion relation (5.5). However, to cal-
culate A(yq) in terms of A(,q) defined by (7.7), (7.9)), we have to solve the
following system of matrix equations

2 1, a=p
Avarhigy = 160, 5aﬁ:{’ -
;1 () A s9) 0 a4

A simpler method is to consider the linearised system generated from (7.5)

2 : da )" -
Z A(A{a).],y — <6Z> = 0, DIVJQ =0

=1

where A, are taken at the equilibrium state ji.. Substituting j, by J, i3

and @, by P, '8 ? we obtain the dispersion relation in the symmetric form

Aay Apy B O

det Agg) A(()%) g g — 0 (7.11)
0* B 0 0

Equation (7.11) is presented in terms of the matrices A(,4) calculated directly
from the Lagrangian. Let us consider Lagrangian (7.4). Suppose that the ve-
locities of each component are the same at equilibrium (u;. = ug.). Due to
the invariance of the governing equations with respect to the Galilean trans-
formation we assume, without loss of the generality, that u;. = ug. = 0.
Suppressing the index ”e” to avoid double indices, we get

A ( B 6W) -1 OQWH*
=AM T P dpt
1 oW PW
Aoy = Aqg) = — — (1 —11") — I 7.12
ey T i 8u< ) dp10p2 (7.12)
OWN I—11*  O*W
Ay = ( _ > g
22 & oy 1% Ip3
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All matrices A, are diagonal. Now we are able to calculate the dispersion
relation (7.11) which is the determinant of a square matrix of dimension 10.
Let us denote

oW OPW oPwW oPW

a = , Wil =

ou

(7.13)

-, W Wy = —=—5
ap% ) 12 8p1 8p2 ) 22 ap%
Suppose that

a >0, wy >0, wy >0, wjwy —w’y >0 (7.14)

Taking into account (7.12) - (7.13) we obtain by straightforward calculations
of the determinant (7.11)

(a(l)l +p2) + P1p2)ﬁf - (G(P%wn + 2p1paw1a+ P3was) + prpa (patwas + p1w11))
(85 + B3 + B1) BY + (85 + B3 + B (wawn — wiy)pip; = 0 (7.15)
Let v=108=wv+08, \= ‘;}—| The dispersion relation (7.15) takes

the form
(a(l)l +p2) +P1/)2))\4 - (a(pfwn +2p1 pawis+ P3twaz) + p1p2(patwas +p1w11)))\2
+ (wapwin — wh)pipy = 0 (7.16)

The following result is proved in [21]:

Theorem 7.1

If potential W (p1, pe, i) satisfies conditions (7.14), all the roots X of the
polynome (7.16) are real.

w
Conditions (7.14) mean that internal energy U = W — w ——, where w =

ow

|w|, is convex [15-16, 21]. Hence, if the internal energy is a convex function
and the relative velocity w is small enough, the equilibrium state is stable in
time direction in the time-space.

It is interesting to note that the Lagrangian of a two-fluid bubbly liquid with
incompressible liquid phase (heterogeneous case) has the same form as (7.1).
Indeed, in [18,19] the potential W for a bubbly liquid is proposed in the form

W = paealpm) — 5L mle) [w? (7.17)

where ps = c¢pg, ¢ is the volume concentration of gas phase and the index ”0”
means the real density of gas and liquid phase. Concentration c is expressed
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4
by ¢ = —7R>N where R is the average radius of the bubbles, N is the

number of bubbles per unit volume of the mixture. The internal energy per
unit mass &9 of the gas phase and the virtual mass coefficient m are known
functions of pgy and c¢. By introducing the average density of the liquid phase

p1 = po(l —c¢) with pjp = const

we can rewrite the potential (7.17) as

W = p2520<m) _ @m<M) w2
P10 — P1 2 P10

The increase of the volume fraction ¢ producing the interaction between gas
bubbles changes not only the coefficient m(c) but also the interfacial energy
gin(c) so that potential W can be generalized to the form

W = paeso(pm) = SEmie)lwl? + cinle) (7.18)

Quantity e;,(c) produces an additional pressure term due to the interfacial
effect [22]. Therefore, Lagrangian (7.1) describes not only binary molecular
mixtures but also partial cases of suspensions. Case (7.17) is actually degen-
erated: wijwey — wly = 0. The introduction of the interfacial term in (7.18)
8282‘” 0
92 > U.

involves the convexity condition wjjwy — w2, > 0 provided

A APPENDIX

o

For any function f (A, X) (see definitions (2.9)-(2.10)) and its image f(¢, X)
in the (¢, X)-coordinates, we obtain the following relations

a}(é@)‘l _of of 9 0;‘<@>_1 _or (A1)

o 9X X ax\an) X

A.1 Variation of the velocity

The definition (2.6) of the velocity u yields

a_ 99 (00)"
OX \ oA
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In Lagrangian coordinates, perturbation of u is represented by the formula

o0® oG -
Sy X e) (m (A, X 5))

Taking the derivative of u with respect to ¢ at ¢ = 0 and using (A.1), we
get

u(\, X,¢e) =

~ 85 - o o7 (9g\~'  OE _oF  de dr
ou = — = = —-UdU— = — —u—
ON 8)\ ox \ox ot ot dt dt
d
where p7le + u* /" is the material derivative. We obtain then
~ 8C
= (I —vI" A2
ov =(I-vI)z"v (A.2)

where v* = (1,u”), I is the identity tensor and 1* = (1,0,0,0).
A.2  Variation of the deformation gradient

In Lagrangian coordinates (A, X), the perturbation of the deformation gradi-
ent is given by (2.6)

-1
FOLX, o) = oe 0P 0G (86’)

OX  9AOX \ Ox

Combination of the derivative of F with respect to € at ¢ = 0 and relation
(A.1) gives

oX 0X

o o -1 o —1 —2 o
S 0 0€& Og <8g> 0P 0T <8g> +g¢) 889 <8g> ﬁ

0X  O) 0X \ oA O\ O\ O\

I N A/ 3 or
= ox ~Yox = (& )" (43)
A.3  Variation of the density

The mass conservation is represented by the formula

pdet F' = po(X)
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The perturbation of p is in the form
PN, X, e) det (M, X, e) = po(X)

and consequently
§pdet F + pd(det F) = 0 (A.4)
By using the Euler-Jacobi identity,

~

§(det F) = det Ftr (F~'6 F)
relations (A.3) and (A.4) lead to
% o O€
op = —tr (p(] — vl )5) (A.5)

A.4  Variation of specific quantities

Along each trajectory the specific quantities a; are constant. Consequently,
ar = aoe(X). The perturbation of ay is such that a; (A, X, e) = ao(X).
Hence,

B APPENDIX

Formulae (A.2) and (A.5) yield directly the variation of jg

5o = (tr ((vl* ~ 1) %ﬁ) I — (vI" — 1)2—2) 3o

0 . .
_ (8—4 ~ (Div ¢) 1) 3o (B.1)
Let us consider the variations ng, k=1,...,m with ji, = aijo where the

scalar fields ay are such that ar = ag(X). Due to (A.6) § ar = 0 and
0 jr = ag 0 jo. Consequently

S ik = (% - (Divc)[)jk, k=0,...m (B.2)
Hence, (2.12) involves
AN (OC : . i _
0jr = <8Z—(D1VC)]>Jk— aZC, kE=20,....m (B.3)
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C APPENDIX

Let A, B be two linear transformations depending on z. Let us define the lin-

0B 0B

ear form tr <A 8—) such that for any constant vector field a, tr <A 8—> a=
Z Z

OBa

>. As a consequence, we get
0z

tr <A

Div(A B) = Div(A) B + ir (A %—f) (C.1)

Indeed,

Div(ABa) — Div(A)Ba + tr (Aaaia) _ ((DivA)Bth'r (A%—f))a

Let us also recall the following useful formulae for any vector fields b(z), c(z)

Div(bc*) = ¢*Divb + b*(gc) (C.2)
Z
. N - g ... *8c a_b
Div(b*cl) = 5 (b*c) = b 5 c” o (C.3)
By using formulae (C.1) - (C.3), we have the following identities
o . 0] ,OK
Div (Kijs I) = Kt ak + i 8Zk (C.4)
Div (juK%) = — K} Divjj, — Jk<a—zk> (C.5)
W A o Odk O (Ol
D1V<A . > = Div(47) 3 + tr <A o <az)> (C.6)
. m | AN dj on D (ajk) OA
Div(AI) = — — | ———— - —
v (A ) ,; o oz " a<%> 92\ 0z oz
0z

= Z( K; A +tr<A*8a (?;))) —g—i (C.7)

By adding (C.4) - (C.7) we obtain

m ) oA
Div <Z <K,’;jkl — KL+ AL ;’*) A[) =

k=0

o . 0Ky, aKk>*
K; D — — =0
+kzzo kI Z Jk( oz ( oz
which proves Theorem 4.1.
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