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Modeling of Laminar Flows 
in Rough-Wall 
Microchannels
Numerical modeling and analytical approach were used to compute laminar flows in

rough-wall microchannels. Both models considered the same arrangements of rectangu-
lar prism rough elements in periodical arrays. The numerical results confirmed that the
flow is independent of the Reynolds number in the range 1–200. The analytical model
needs only one constant for most geometrical arrangements. It compares well with the
numerical results. Moreover, both models are consistent with experimental data. They
show that the rough elements drag is mainly responsible for the pressure drop across the
channel in the upper part of the relative roughness range.

1 Introduction

Much work in recent years has gone into the development of

microchannel technology. This has been especially useful in elec-

tronics, where ever faster and smaller microchips are built, or in

biology where lab on chips are currently used. Investigations of

liquid flows in rough microducts present a great interest since

rough surfaces are commonly found in many practical situations.

The size of roughness elements is usually very small compared to

macroscale in ducts of conventional size so that roughness effects

may be neglected in laminar flows. However, the relative rough-

ness becomes significant when the duct size is reduced to several

hundred micrometers or less, and may play a role in the hydrody-

namics, even in laminar flows. Surface roughness is due to the

process used for making microchannels, and may be high when

micromachining is used. In addition, rough walls are potentially

interesting for enhancing heat transfer in industrial applications. It

is therefore highly desirable to understand the roughness effect on

flows in microducts and to quantify its influence on the pressure

losses. This has motivated several studies using experimental,

analytical and numerical approaches.

Mala and Li �1� experimentally found an increase in the Poi-

seuille number for water flows in rough microtubes ranging from

50 �m to 254 �m in diameter. For Re below 800, they measured

an increase in pressure losses ranging from 7% to 15% for relative

roughness �roughness element height divided by tube diameter�
between 1.2% and 3.6%. For Re higher than 1000, the Poiseuille

number was found to increase significantly with Re. This was
interpreted by the authors as the result of an early transition to
turbulence in rough microtubes, when compared to conventional
size tubes. Guo and coworkers �2,3� also performed measurements
in rough stainless steel microtubes. They concluded that a relative
roughness of 3% to 4% increased the pressure drop from 15% to

37% when compared to the smooth case. Judy et al. �4� conducted
experiments in rough stainless steel microtubes from

75 �m to 125 �m in diameter. There is no precise indication of
the roughness height in their paper. They did not conclude that an
increase in the pressure losses might be due to roughness ele-
ments. In their study, the Poiseuille number was found to be con-
stant in the laminar regime. Measurements were also carried out
in rough trapezoidal microchannels �5�, obtained by wet-etching a
silicon substrate and covering it with a Pyrex glass plate. The
results revealed an increase in the Poiseuille number compared to
the conventional theory in the Reynolds range investigated in the

present work ��1500�. For low Re, the increase in pressure losses

varied from 8% to 30% for relative roughness ranging from 1.7%
to 3%. These investigations supported the idea of an early transi-
tion to turbulence due to roughness elements. Pfund et al. �6�
performed experiments in a rough rectangular microchannel

257 �m in height. They found a 26% increase in the pressure
losses for a mean relative roughness �roughness element height
divided by channel height� of 1.5%. Recently, Baviere et al. �7,8�
investigated high aspect ratio rectangular microchannels ranging

from 100 �m to 300 �m in height. In their experiments, the rela-
tive roughness ranged from 1.7% to 5%. For Re between 50 and
1000, the corresponding increase in the Poiseuille number was
found to be 5% to 37%.

To summarize, most published experimental results concerning
flows in rough microducts show an increase in pressure losses
compared to conventional smooth wall ducts. However, some as-
pects of these results are conflicting. In some experiments, the
Poiseuille number increases significantly with Re. On the con-
trary, other results show Reynolds number independency of the
Poiseuille number in a wide range of Re. It is therefore important
to establish the relationship between the pressure drop increase
and the rough surface characteristics.

An analytical approach of roughness effects was developed by
Mala and Li �1� and Qu et al. �5�. These authors proposed a
roughness-viscosity model in a manner similar to the eddy-
viscosity concept in turbulent flows. The model brought into play
a constant which needed to be evaluated from experimental re-
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sults. More recently, Koo and Kleinstreuer �9� modeled the near-
wall region by using an equivalent porous medium layer. They
were able to reproduce the measurements of �1,3� by adjusting the
permeability �or equivalently the Darcy factor� of this layer. They
also applied the model to microjournal bearings �10�.

Numerical computations were performed by Hu et al. �11� �de-
noted HWL hereafter�, for water flows in two-dimensional micro-
channels with rectangular prism rough elements. Their calcula-

tions were done in channels ranging from 5 �m to 50 �m in
height at Reynolds number ranging from 0.002 to 20. The authors
expressed the roughness effect as a relative channel height reduc-
tion depending on the roughness elements geometry.

The aim of the present paper is to show that a very simple
analytical model is able to predict the roughness effect on the flow
in rough-wall microchannels. The analytical model is based on the
method developed by Taylor et al. �12� for predicting the rough-
wall skin friction in turbulent flows. In this paper, we combined
analytical and numerical approaches of the flow and compared the
results to experimental data �8� and to published numerical results
�11�.

2 Numerical Approach

The numerical approach pertains to the roughness model devel-
oped by Hu et al. �11�. The fluid physical properties, the basic
equations, and boundary conditions follow the details of the
model proposed by these authors, except that the explored range
of Re number was extended to 200.

2.1 Geometrical Model of Roughness. The geometrical
model of roughness consists of blocks periodically distributed on

the walls of a plane channel of height H �Fig. 1�. The wavelengths

are Lr and lr, in the longitudinal x and transverse z directions,
respectively. The rough elements are parallelepipeds of square

cross section �side length d� and of height k placed on a smooth
wall, called thereafter the bottom wall. They are distributed either
in symmetrical or asymmetrical arrangements. Series of calcula-
tions were performed by varying the dimensions as follows:

Roughness height �k��m��: 0.1, 0.2, 0.3, 0.5, 0.7, 1, 2

Roughness side �d��m��: 0.5, 1, 1.5

Roughness spacing �Lr= lr��m��: 2, 3, 4

Channel height �H��m��: 5, 7.5, 10

2.2 Computation Domain and Boundary Conditions. The

computational domain extends over one wavelength in the x and z

directions and over the half-channel height �H /2� in the y direc-

tion normal to the wall �Fig. 1�. The longitudinal and transverse
dimensions are thus equal to the rough element spacing. The com-
putational domain was treated as part of an extremely long chan-
nel so that the flow was considered as fully developed in the
longitudinal direction. As a result, the flow properties are periodic

in the x direction, except for the pressure which is composed of a
linearly decreasing term and a periodic one. This assumption al-
lows for applying periodic boundary conditions on opposite sides
of the domain in the longitudinal direction. The periodic boundary
condition may be written for the velocity field

U�x,y,z� = U�x + Lr,y,z� �1�

where U is the velocity vector.
The lateral sides of the computational domain are chosen as the

planes of symmetry of the rough elements parallel to the xy plane.

As a result, the velocity gradient of U and V normal to these side
planes and the transverse velocity component W are assumed to
be zero.

at z = 0 and z = lr dU/dz = 0, dV/dz = 0, W = 0 �2�

The condition of symmetry at the top plane of the computational
domain is written

at y = H/2 dU/dy = 0, V = 0, dW/dy = 0 �3�

The system of boundary conditions is completed by the no-slip
condition on all the solid boundaries.

2.3 Equations. Modeling the flow as laminar, steady and in-
compressible, the governing equations consist of the following
system:

Continuity equation

�U = 0 �4�

Momentum equation

�U � U = − �P + ��2U �5�

2.4 Numerical Scheme. Numerical computations of the flow
were carried out by using the commercial code FLUENT 6.1.22. The
equations were discretized by means of a second order upwind
finite volume method. As these equations are nonlinear, a SIM-
PLEC �semi-implicit pressure linked equations consistent� algo-
rithm was used. This algorithm is based on a prediction-correction
method, which allows the equations to be linearized and solved
iteratively. The pressure under-relaxation factor was set to 0.5.
The calculations were performed by means of a double precision

solver until the level of residuals decreased below 10−12. Compu-
tations were performed on orthogonal grids generated by GAMBIT

2.1.2.

2.5 Numerical Accuracy. Grid-convergence tests were per-
formed to verify the mesh accuracy. The tests were conducted

with three grids having a number of mesh nodes equal to 32

�40�32, 48�60�48, 64�80�64 in the x ,y ,z directions, re-
spectively. The pressure gradient was chosen as the control pa-
rameter during the computations. The difference in the results as
given by the coarse and the intermediate grids was 1.5%, and was
0.7% between the intermediate and the fine grids. The accuracy
was further estimated by means of Richardson extrapolation �13�.
When two approximations of the solution T1 and T2 are computed

with two mesh sizes h1 �fine grid� and h2 �coarse grid�, one can

estimate a third approximation T3 whose term of leading order in
the Taylor series expansion around the exact value is of higher

order than that for T1 or T2. T3 is given by the Richardson ex-
trapolation

Fig. 1 Computational domain and arrangement of the rough
elements
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T3 = T1 +
T1 − T2

�h2/h1�2 − 1
�6�

The difference in the pressure gradient as obtained with the inter-
mediate mesh and that obtained from the Richardson extrapolation
applied with the intermediate and fine grids was 1.6%. This ob-
servation allowed us to assume that the numerical calculations

were sufficiently accurate with the grid 48�60�48, which was
adopted for all the cases.

3 Analytical Approach

The analytical approach is based on the method developed by
Taylor et al. �12� for predicting the rough-wall skin friction in
turbulent flows. It considers the same geometrical model of rough-
ness as the numerical analysis. The flow in a half channel consists
of two adjacent layers: A roughness layer with distributed rough
elements in the near-wall region and a clear layer in the central
region. Like in �12�, the physical effects of roughness are taken
into account by using a blockage coefficient and by considering
drag forces exerted by the rough elements on the fluid flow.

3.1 Equations. The present section is devoted to the deriva-
tion of the momentum equation in the roughness layer. Using the
method of Taylor et al., conservation equations for mass and mo-
mentum are derived for control volumes �CV� of infinitesimal

thickness �y in the direction normal to the wall, extending over a
large distance compared to the rough elements spacing in the

other directions �respectively, �x, �z�Lr, lr, Fig. 2�. Flow quan-

tities are averaged over the lengthscales �x, �z as in homogeniza-
tion methods.

3.1.1 Blockage Coefficient. The flow velocity is averaged over

a surface opened to the flow at the distance y from the wall. Thus,

the resulting spatially averaged velocity U�x ,y ,z� takes into ac-

count the blockage effect due to the presence of the rough ele-

ments. For periodically distributed blocks, U is dependent on y
only and it is sufficient to integrate the velocity over one wave-

length in the x and z directions only. U�y� is then defined by

U�y� =
1

Lrlr − d2 � �
dS�x�

u��,y,��d�d� for 0 	 y 	 k �7�

where u�� ,y ,�� stands for the actual flow velocity in the rough-

ness region �y	k�. Integration is performed over the surface

dS�x� open for flow in an elementary cell of sides lr�Lr �Fig. 3�.
This surface is independent of y in the case of cylindrical rough
elements.

The local blockage coefficient in the x direction is the fraction

of the area open for flow through a slice of thickness �y in a plane

x=Cst. This fraction is obviously a function of x in the roughness
layer. Like Taylor et al. �12�, we consider the averaged value of

the local blockage coefficient over a large distance �x. For the
particular case of periodically distributed rough elements, the av-

eraged blockage coefficient 
 is given by


 =
1

Lrlr
� �

dS�x�

d�d� �8�

and is therefore


 = 1 −
d2

Lrlr

for 0 	 y 	 k

�9�

 = 1 for k 	 y

This is the same expression as in �12�, except that the cross sec-
tion of the rough elements is square instead of being circular in

�12�. In the present model of cylindrical elements, 
 is indepen-

dent of y. The maximum blockage effect corresponds to 
=0,
when the rough elements are adjacent.

We also use a filtration or Darcy velocity uD�y�, in the termi-

nology of flow in porous media. This velocity is defined with the

total surface Lrlr

uD�y� =
1

Lrlr
� �

dS�x�

u��,y,��d�d� �10�

so that

U�y� = uD�y�/
 �11�

The effective velocity U is higher than the Darcy velocity because

it refers to a smaller surface than uD. In the most general case, the

average velocity U would be a function of x and z. However, the
flow is assumed to be two dimensional and fully developed so that

U depends on y only. As a result, the transverse velocity is zero
and the inertia terms are also zero in the momentum equation.

In the present approach, the pressure is spatially averaged in the
roughness layer like the velocity. However, the result depends on

the position x of the integration surface because of the pressure
gradient in the channel.

p̄�x,y� =
1

Lrlr − d2 � �
dS�x�

p��,y,��d�d� for 0 	 y 	 k

�12�

We suppose that p̄�x ,y� is independent of y in the present mean

one-dimensional flow. From here, we call P�x� the averaged pres-

sure defined by Eq. �12�.

3.1.2 Momentum Equation. The equilibrium of a control vol-
ume results from the competition between

Pressure forces on the upstream and downstream sides of CV

Fig. 2 Sketch of a control volume over the rough surface. Side
view.

Fig. 3 Surface open for flow. Top view.
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Viscous shear stresses on the upper and lower sides of CV
Drag forces due to the rough elements
The drag force due to the portion of a rough element included

in CV is modeled by using a drag coefficient Cd

�Fd =
1

2
�U2�y�Cdd�y �13�

Finally, the momentum equation is

0 = −
d

dx
�
P� +

d

dy
��


dU

dy
� −

1

2
�Cdd

U2

Lrlr

for 0 	 y 	 k

�14�

0 = −
dP

dx
+ �

d2U

dy2
for k 	 y 	 H/2

The expression of the pressure term results from the definition
�Eq. �12��. It may be interpreted by considering that the pressure
forces act on a reduced area owing to the blockage effect. In the
same way, a reduced area of the CV is exposed to the viscous
shear stresses. Equation �14� is identical to the momentum equa-
tion of �12�, except that there are no inertia terms and no Reynolds
shear stresses in the present case.

3.1.3 Boundary Conditions. A difficulty arises for the rough/
clear layer interfacial conditions for the present shape of the
roughness elements. In fact, the blockage factor is discontinuous

at the interface, going from 1 to a constant value 
�1 across the
interface. This difficulty would not exist for other shapes of the
roughness elements, like conical-shaped blocks, as in the Taylor et
al. paper �12�. The continuity of the local velocity across the
rough/clear layer interface leads to the continuity of the Darcy

velocity. As a result, the spatially averaged velocity U�y� is dis-

continuous like the blockage coefficient at the interface.


U�y = k−� = U�y = k+� �15�

As mentioned before, this discontinuity would not exist for rough-
ness elements of gradually decreasing cross section. In fact, it is
likely that the blockage effect extends over a small distance within
the clear medium away from the interface because the fluid is
strongly slowed down in the vicinity of the top of the blocks. The
present model does not account for this effect and this is probably
a weakness of the model. It could probably be improved by intro-
ducing a smoothing of the blockage effect near the interface. This
was not attempted in the present work to preserve the simplicity
of the model.

In order to express the boundary condition on the shear stress at

the interface, we consider a control volume of height �y and

lengths �x, �z in the other directions, centered at y=k. The force
balance on this CV requires

��	dU

dy
	

y=k+�y/2

− �1 − 
��	dU

dy
	

y=k+

− 
�	dU

dy
	

y=k−�y/2

�x�z

+ �dP
�1 + 
�

2
�z −

1

2
�U2�k�Cd

d�x�z

2Lrlr


�y = 0 �16�

When �y tends to zero, the pressure force and the drag force
become negligibly small so that Eq. �16� reduces to

�	dU

dy
	

y=k−

= �	dU

dy
	

y=k+

�17�

or using the Darcy velocity

1



�	duD

dy
	

y=k−

= �	duD

dy
	

y=k+

�18�

Again, the discontinuity of the shear stress expressed with the
Darcy velocity would not exist for an interface with continuously
varying blockage factor.

The system of boundary conditions is completed by the no-slip

condition at the wall bottom and the condition of symmetry on the
channel axis in the case of identical rough walls on both sides of
the channel.

U�y = 0� = 0 �19�

	 �U

�y
	

y=H/2

= 0 �20�

For a semirough channel formed by a rough wall on one side and
a smooth wall on the opposite side, the latter condition is replaced
by the no-slip condition on the smooth side

U�y = H� = 0 �21�

3.1.4 Drag Coefficient. The model relates the drag force

�Fd�y� exerted by the fluid on a slice of rough element of height

�y to the local velocity U�y�. The starting point of the analysis

considers a single rough element oriented across a fluid stream of

uniform velocity U�=U�y�. This flow is mainly characterized by

the local Reynolds number Red=�U�y�d /�, which is based on a

typical dimension of a block cross section, namely, the side length

d. Red is small in most microchannel flows: Red�5 at the top of

the rough elements for a typically high value of ReDh
=2000 in a

channel of relative roughness 2.5% and for elements of relative

width �d /H� about 2.5%. The flow is therefore dominated by vis-

cous effects in the vicinity of the blocks.
Dimensional analysis shows that the drag force may be written

�Fd�y� =
1

2
K� k

d
,
y

k
,Red���

U�y�
d

�d�y �22�

�Fd is also related to the drag coefficient Cd by Eq. �13� so that

K=CdRed. Eliminating Cd by using Eqs. �13� and �22�, the last

term of Eq. �14� becomes 1/2K�U /Lrlr.
It is well known �14� that inertia effects cannot be totally dis-

carded for creeping flows near extremely long cylinders. How-
ever, the numerical simulations of the present work and those of
HWL along with some experimental works �4,7� indicate that

roughness effects are Re independent up to ReDh
=200. Conse-

quently we assume that K is a function of y /k and k /d only. The

presence of these parameters in the coefficient K reflects the three-
dimensional nature of the low-Reynolds number flow near the
blocks. For creeping flows normal to the major axis of very slen-

der prolate spheroids �E�1�, the drag force is given by �15�

D =
4��U2a

1

2
+ Ln

2a

b

�23�

where E=a /b, 2a=major axis, 2b=minor axis of the spheroid.

Following the form of Eq. �23�, we propose for K the following
expression:

K =
K1

1 + K2Ln
k

d

for
k

d
 1

�24�

K = K1 for
k

d
	 1

The drag force is, however, also dependent of the geometrical
arrangement of the rough elements like in a bank of tubes in a

cross-flow exchanger. The coefficient K1 was therefore deduced
from the numerical simulations conducted in typical arrangements
of the rough elements. For a given flow field, the elementary drag

force �Fd was obtained by integrating the pressure forces on the

front and rear sides of a block slice of height �y and the viscous
forces on its lateral sides. The numerical results have shown that

the coefficient K1 is nearly independent of y in the upper part of
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the blocks, as presented later. For k /d	1, K1 was found to be 116
for the following geometrical arrangement of the rough elements �
d /H=0.2, 0.1�k /H�0.2, Lr /d= lr /d=2�. For k /d�1, the best
agreement of the model with the HWL results was obtained for

K2=0.5. The dependence of K on the geometrical parameters was
not systematically explored in the present work. The same con-
stants were used for all the geometrical arrangements considered
in this study. The model could probably be improved with a better

estimation of K as a function of the actual arrangement of the
rough elements.

3.1.5 Analytical Solution. The system of equations is reduced
to dimensionless form by normalizing the lengths with the chan-

nel height H and the effective velocity with the bulk velocity of
the Poiseuille flow in a smooth channel

U* =
U

−
1

�

dP

dx

H2

12

�25�

Modeling K as independent of y, straightforward computations
lead to the following equations for the velocity profile in a chan-
nel with two rough sides:

for 0 	 y* 	 k*

U*�y*� =
12

A*�1 +

A*�1

2
− k*�sinh�A*y*� − cosh�A*�k* − y*��

C1

�
�26�

for k* 	 y* 	
1

2

U*�y*� =
12


A* �1 +

A*�1

2
− k*�S1 − 1

C1

� + 6�y* − y*2

+ k*2

− k*�

where A*=1/2K /Lr
*lr

*
, C1=cosh�A*k*�, S1=sinh�A*k*� For a

semirough channel, the expressions are

For 0 	 y* 	 k*

U*�y*� =
12

A*
�1 − e−A*y*

� + 2D1 sinh�A*y*�

�27�
For k* 	 y* 	 1

U*�y*� = �y* − 1��2D1
A*C1 + 12�k* +

E1

A*�
 + 6�1 − y*2

�

where E1=exp�−A*k*�

D1 =
6

A*�k* − 1�C1 − 
S1

� k*2

2
−

1

2
+ �1 − k*��k* +

E1

A*�
+ 
�1 − E1

A* �

Integration of the velocity profile gives the flow rate Q as a func-

tion of the pressure gradient, the geometrical parameters k*, 
,

and of A*.

4 Results

The numerical computations were conducted for ReDh
varying

between 1 and 200. All the results were found to be Re indepen-

dent. This was also observed by HWL in the range of ReDh

=0.002–20. The symmetrical and asymmetrical arrangements of
rough elements gave identical results.

4.1 Drag Coefficient of the Roughness Elements. As can be
seen in Fig. 1, the blocks were divided into separate slices of

height �y for calculating the local force density exerted by the

fluid as a function of the local effective velocity U�y�. This ap-

proach allowed for computing the coefficient K�y� defined by Eq.

�22� from the numerical results. Figure 4 displays the variation of

K with the position along a rough element �y=0 corresponds to

the bottom wall� for a typical value of k* �=0.2�. It shows that K

slightly varies in the upper part of the block �y /k�0.3�. The

strong increase in K observed for the lowest part of the block is
obviously due to the influence of the bottom wall and associated
three-dimensional effects. The same computation used with a con-

dition of slip on the bottom wall gave a constant value of K all

along the block. However, this deviation of K from a constant
value is of little consequence on the solution given by the model
because the contribution of the drag force to the flow dynamics is
of minor importance in the near-wall region as shown in the next

section. It follows that the assumption of constant K used in the
analytical approach is quite reasonable.

4.2 Velocity and Shear Stress Profiles. Figure 5 compares
the velocity profiles given by the analytical and numerical solu-
tions for a rough and a semirough channel. The analytical model
slightly overestimates the velocity across the channel. In fact, the
deviation is only 3% to 3.5% in the central region of the channel
for the two cases studied. It can be concluded that there is a very

Fig. 4 Distribution of the drag law coefficient K along a rough

element. k*=d*=L
r

* /2= l
r

* /2=0.2, �=0.75, Re=200.

Fig. 5 Velocity profiles. k*=0.1, d*=L
r

* /2= l
r

* /2=0.2, �=0.75, Re
=1; semirough channel, plus indicates numerical computa-
tions, thin lines indicate analytical model; fully rough channel,
open circle indicate numerical computations, thick lines indi-
cate analytical model; smooth channel, dotted lines indicate
Poiseuille flow.
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good agreement between the two solutions, given the crude as-
sumptions of the model and the numerical accuracy. The dimen-
sionless Poiseuille profile is also drawn in Fig. 5 for comparison.
The three curves correspond to the same pressure gradient. The
presence of roughness significantly reduces the mass flow rate, as
expected. The reduction in the maximum velocity is about 28%
for the fully rough channel and approximately the half �13%� for
the semirough channel. For this latter case, the velocity profile

merges with the smooth channel curve when y* tends to 1 and

with the rough channel one when y* tends to 0.
Both the analytical and numerical models enable the separation

of the role of viscous and drag forces in the flow dynamics. Con-

sidering a control volume of height H /2 based on an elementary

cell of sides Lr� lr �Fig. 1�, the force FT due to the pressure

gradient is balanced by the tangential force F�w due to friction on

the bottom wall �surface 
Lrlr�, the tangential force F�t due to

friction at the top of the rough elements �surface �1−
�Lrlr� and

the drag force FD on the rough elements. Figure 6 shows the

contribution of the three components to the total force FT as a
function of the dimensionless roughness height for a fully rough
channel. For very small rough elements, the pressure gradient is
mainly due to the bottom wall viscous force. This contribution
decreases rapidly when the height of the rough elements is in-
creased. In the case of high rough elements, the fluid is strongly
slowed down in the rough layer �Fig. 5� and the velocity gradient
decreases at the wall. At the same time, the rough elements merge
in a region of higher velocity and the drag force increases accord-

ingly. For k*�0.03–0.06, the contribution of the drag force to FT

is dominant. The contribution of F�t tends to 1−
 when k* tends

to zero. It remains approximately constant up to k*�0.1. This
may be understood as follows: The top of the blocks is located in
a region of increasing velocity and is subjected to increasing ve-

locity gradient when k* is increased. In these conditions, F�t still

contributes to the pressure gradient unlike F�w which corresponds

to a weakening velocity gradient when k* is increased. For high

rough elements �k*�0.1�, the contribution of F�t decreases and

the pressure gradient is mainly due to the drag force. The numeri-
cal and analytical models give the same trend for the various
phenomena. However, significant differences are present from a

quantitative point of view. In particular, the contribution of F�t is
much weaker in the analytical model. This may be due to the

discontinuity of 
, as discussed before. It is likely that the block-
age effect is not completely accounted for by the analytical model
so that the velocity gradient is underestimated near the top of the

rough elements by this model. In fact, the model ignores the de-
velopment of boundary layers on the top of the rough elements so

that the shear stress is underestimated for y=k. This may also
explain why the velocities as given by the analytical model are
higher than the numerical ones.

4.3 Influence of the Roughness Elements Geometry on the
Poiseuille Number. For given channel height and roughness ge-
ometry, the flow is characterized by the Poiseuille number

Po = −
1

�

dP

dx

2H3

Q
�28�

Roughness effects are conveniently interpreted by introducing an

apparent channel height Hr which corresponds to a smooth chan-
nel giving the same flow rate as the rough channel when it is

submitted to the same pressure gradient. Hr satisfies the following
relation for fully developed Poiseuille flow in a plane smooth
channel

24 = −
1

�

dP

dx

2Hr
3

Q
�29�

As a result, Hr is deduced from the Poiseuille number as given
either by the analytical model or the numerical simulations for
given channel geometry.

Hr

H
= � 24

Po
�1/3

�30�

The following figures compare the relative channel height reduc-

tion 1−Hr /H as given by the analytical model and the numerical
results of the present work. HWL interpolated their numerical
results and proposed equations for the channel height reduction as
a function of the geometrical parameters. Their results are also
displayed on the following graphs.

4.3.1 Influence of the Roughness Element Height. The appar-

ent channel height reduction is moderate up to k*�0.05 �Fig. 7�,
then increases rapidly with k*. The graph has also been drawn for

very high values of k* �0.4� which are obviously very far from
usual physical situations. There is an excellent agreement between
the three approaches. The slight differences of the present numeri-
cal results with those of HWL may be explained by the fact that
HWL interpolated their results and that inaccuracies may result

from this approximation. The expected maximum value for 1

−Hr /H is obviously 2k* and is displayed in Fig. 7. The figure
reveals that the actual blockage effect is about 25% smaller for the

present arrangement of rough elements when k* is high ��0.1�.
The blockage effect is less pronounced for small rough elements.

Fig. 6 Contribution of viscous and drag forces to the pressure

gradient. d*=L
r

* /2= l
r

* /2=0.2, �=0.75. Solid diamonds and dotted
lines indicate friction on the bottom wall: F�w /FT, solid circles
and dash-dotted lines indicate friction at the top of the rough
elements: F�t /FT, solid triangles and dashed lines indicate drag
force: FD /FT. Solid symbols correspond to numerical computa-
tions, continuous lines correspond to the analytical model.

Fig. 7 Influence of the roughness element height on the chan-

nel height reduction. d*= l
r

* /2= l
r

* /2=0.2, �=0.75. Open circles in-
dicate numerical computations, thick lines indicate analytical
model, dotted lines indicate HWL’s results, dashed-dotted lines
indicate 1−Hr /H=2k*.
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4.3.2 Influence of the Roughness Element Side Length. The
blockage coefficient directly depends on the roughness element

side length d for given wavelengths in x and z directions �Eq. �9��
and is drawn in Fig. 8. The apparent channel height reduction

increases with d* for given k*, as expected �Fig. 8�. The maximum

value as given by the analytical model is reached for d*2=Lr
*lr

*

�d*=0.4 in the present case� and is close from 2k*. The three

models show a continuous decrease of 1−Hr /H when 
 is in-

creased. Small values of d* correspond to slender blocks placed at

relative long distances Lr /d*= lr /d* apart. In this case, the HWL
results indicate that the roughness effect is still significant al-
though the blockage coefficient becomes very close from 1. This

suggests that in this situation the drag force FD exerted by the
rough elements still plays an important role in the flow dynamics.
The analytical model is consistent with this statement since the

drag force �or A* in Eq. �26�� is independent of d when the drag

coefficient K is taken as a constant. However, the model used with

K2=0 significantly overestimates the channel height reduction as

given by HWL for d*�0.1. The agreement is much better when

the drag coefficient is used with K2=0.5 �Eq. �24��. When d* tends
to zero, the aspect ratio of the blocks becomes very high and the

correction factor K2 Ln�k /d� in Eq. �24� plays a more important

role in the drag. This suggests that three-dimensional effects must

be taken into account in FD in this case.

4.3.3 Influence of the Roughness Element Spacing. The other
way to vary the blockage coefficient is to change the rough ele-

ments spacing while keeping their shape constant �k*=d*=0.2 in
Fig. 9�. Unlike the preceding case, the channel height reduction

continuously decreases from the maximum value 2k* to zero when
the rough element spacing is increased. This result suggests that
the role of the drag force becomes less important when the rough
elements spacing is increased. This is consistent with the analyti-
cal model where the term corresponding to the drag force in Eq.

�14� is inversely proportional to Lrlr. The roughness effect be-
comes vanishingly small when the density of the roughness ele-
ments tends to zero while keeping their shape constant. Again,
Fig. 9 reveals an excellent agreement of the analytical model with
the numerical simulations.

4.4 Comparison With Experiments. In parallel with the ana-
lytical and numerical approaches, experiments were conducted in
water flows through rough rectangular microchannels �7,8�. In
these experiments, the channel walls consisted of parallel bronze

blocks separated by a foil of thickness e f �0.1 mm�e f �1 mm�
with a hollowed out central part 25 mm in width. The length of

the microchannel was 82 mm. The blocks were locally treated by

electrochemical deposition of a thin Ni layer �thickness eNi

�2 �m�, together with small SiC particles �5 to 7 �m in height�.
The height of the roughness elements was estimated to be the size

of the deposited particles �5 �m� and their spacing was found by

visualizations to be around 15 �m. The channel height was given

by e f −2eNi. The pressure drop was measured by two pressure
transducers flush mounted at the wall of sumps located upstream/
downstream of the channel. The experimental surface finish was
obviously far from the regular arrangement of the proposed mod-
els. However, the measured pressure drop may tentatively be com-
pared to the predictions of the analytical model. Figure 10 dis-

plays the experimental Poiseuille number Poexp deduced from the
measured pressure drop and flow rate and the model’s results ob-
tained for three values of the rough elements height �6.2, 7.2, and

8.2 �m�. The experimental uncertainties are also shown in Fig.
10. The analytical model was used with the following relations:

k*=d*=Lr
* /2= lr

* /2 for three values of k. Numerical computations

were performed with k=d=5 �m, Lr= lr=15 �m and the results

are also displayed in Fig. 10. The trend exhibited by Poexp is well
reproduced by the analytical and the numerical models. Consider-
ing the analytical model, the best agreement with the experimental

results is obtained for k=7.2 �m, which is slightly higher than the
estimated height of the roughness elements. The same tendency
may be deduced from the numerical model: A better agreement
with the experimental data would have been obtained for higher
roughness elements. Apart from the experimental and numerical

Fig. 8 Influence of the roughness element side length on the

channel height reduction. k*=L
r

* /2= l
r

* /2=0.2. Dashed lines indi-
cate �. Open circles indicate Numerical computations, analyti-
cal model, dashed-dotted lines indicate K2=0, thick line indi-
cate K2=0.5, dotted lines indicate HWL’s results.

Fig. 9 Influence of the roughness element spacing on the
channel height reduction. k*=d*=0.2. Same symbols as in
Fig. 8.

Fig. 10 Poiseuille number. Comparison of numerical compu-
tations and analytical model with experimental results. � Ex-
perimental results; � Numerical computations, k=5 �m; ana-
lytical model, dotted lines indicate k=6.2 �m, thick lines
indicate 7.2 �m, dashed lined indicate 8.2 �m, dash-dotted
lines indicate Po=24.
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errors and the uncertainties inherent in the analytical model, this
discrepancy may also be due to the experimental surface finish. In
fact, it is possible that the layer of nickel was not perfectly smooth
but may have included small rough elements besides the largest
particles of SiC. As a consequence, the assumption of a smooth
bottom wall both in the analytical and numerical models would
underestimate the friction on this part of the wall.

5 Conclusions

Numerical modeling and analytical approach were used to com-
pute laminar flows in rough-wall microchannels. Both models
considered the same arrangements of roughness elements in peri-
odical arrays. The numerical results have confirmed that the flow
is independent of the Reynolds number in the range 1–200.

The analytical approach was based on a previous work �12�
devoted to the prediction of the rough-wall skin friction in turbu-
lent flows. The analysis has pointed out the difficulties of setting
the boundary conditions at the clear/rough layer interface in the
case of rectangular prism rough elements. For given geometrical
characteristics of the roughness elements, the analytical model

only needs two constants K1 and K2 to compute the flow. They
correspond to the drag coefficient of the rough elements. In most
cases, a good approximation of the flow characteristics is obtained

by using only one constant, namely, K1. Despite the simplicity of
the model, a very good agreement is found with the numerical
results of the present work and those of Hu et al. �11�. The results
show that the rough elements drag is mainly responsible for the
pressure drop across the channel in the upper part of the relative

roughness range �k*�0.03–0.06�. For very high rough elements

�k*�0.1�, the wall friction has a negligible contribution to the

pressure drop. For a concentrated arrangement of the rough ele-

ments �d*=Lr
* /2= lr

* /2=0.2, Fig. 7�, a very simple approximation
of the roughness effect consists in considering a relative channel

height reduction equal to 2k*. The accuracy is about 25% in 1

−Hr /H for k*�0.1. This blockage effect reduces when the rough
elements are small or more dispersed �increasing blockage coef-

ficient 
�. However, it remains significant for slender blocks, even
if the side length becomes very small.

This study was restricted to patterns of periodic rough elements.
The good agreement with experimental results obtained with ran-
domly distributed roughness on microchannel walls is therefore
striking. It seems that the models catch the main features of the
physical phenomena involved in these microflows. The two main

ingredients of the analytical model are the blockage coefficient 

and the relative roughness height k*. The knowledge of these pa-
rameters seems therefore to be of primary importance to predict
the roughness effects in rough microchannels. This study will be
soon extended to roughness effects on heat transfer in microchan-
nels.
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Nomenclature
Cd � drag coefficient, dimensionless

d � width of roughness elements, m

Dh � hydraulic diameter, m

FD � drag force on roughness elements, N

H � channel height, m

K � drag law coefficient, dimensionless

k � height of roughness elements, m

Lr � longitudinal distance between two roughness
elements, m

lr � transverse distance between two roughness
elements, m

P � pressure, pa
Po � Poiseuille number, dimensionless

Q � volumetric flow rate per unit length,

m3 s−1 m−1

Red � Reynolds number based on local effective ve-
locity and dimension of rough elements,
dimensionless

ReDh
� Reynolds number based on bulk velocity and

hydraulic diameter, dimensionless

U � spatial average of longitudinal velocity, m s−1

uD � filtration or Darcy velocity, m s−1

V � spatial average normal velocity, m s−1

x � abscissa along the channel, m

y � coordinate normal to the wall, m

z � transverse coordinate, m

Greek symbols

� � fluid density, kg m−3

�w � wall shear stress, N m−2

� � dynamic viscosity, kg m−1 s−1

� � kinematic viscosity, m2 s−1
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