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The only known infinite simple groups of finite Morley rank are the simple algebraic groups over algebraically closed fields and this is a motivation, among many others, for a classification project of these groups. It borrows ideas and techniques from the Classification of the Finite Simple Groups but at the same time it may provide, sometimes, a kind of simplified version of the finite case. This is mostly due to the existence of well-behaved notions of genericity and connectivity in the infinite case, which unfortunately have no direct finite analogs.

The present note deals with a very specific and technical topic concerning such arguments based on genericity in the case of infinite groups of finite Morley rank, which serve here to bypass allegro potential complications of various nature, including finite combinatorics. As a result, we show similarities with algebraic groups in any case as far as a theory of Weyl groups is concerned, and naturally this applies also to non-algebraic configurations which are encountered throughout much of the current work in the area.

In a connected reductive algebraic group, maximal (algebraic) tori are conjugate and cover the group generically, with the Weyl group governing essentially the structure of the entire group. In the abstract context, we use the term "generous" to speak of a subset "whose union of conjugates is generic in the group", the typical property of tori in the classical algebraic case. There are at least two abstract versions of tori in groups of finite Morley rank, which coincide at least in the case of a reductive algebraic group, decent tori on the one hand and Carter subgroups on the other. The main caveat with these two more abstract notions for a seemingly complete analogy with algebraic groups is in both cases an unknown existence, more precisely the existence of a nontrivial decent torus on the one hand and the existence of a generous Carter subgroup on the other. Anyway, here we follow an approach resolutely adapted to the second notion.

With both notions there are conjugacy theorems, the conjugacy of maximal decent tori [START_REF] Cherlin | Good tori in groups of finite Morley rank[END_REF] and of generous Carter subgroups [START_REF] Jaligot | Generix never gives up[END_REF]. This gives a natural notion of Weyl group in each case, N (T )/C • (T ) for some maximal decent torus T or N (Q)/Q for some generous Carter subgroup Q. In any case and whatever the Weyl group is, it is finite and, as with classical Weyl groups and algebraic tori in algebraic groups, its determination and its action on the underlying subgroup is fundamental in the abstract context.

As an element of the Weyl group is a coset in the ambient group, it is then useful to get a description of such cosets, even though recovering from such a description the structure and the action of the Weyl group is in general a particularly delicate task. This is mostly due to the fact that, in practice, one can only get a generic, and thus weak, description of the coset. In [START_REF] Cherlin | Tame minimal simple groups of finite Morley rank[END_REF] such arguments were however developed intensively, and this was highly influenced by one of the most critical aspects of the early work, notably by Nesin, on the socalled "bad" groups of finite Morley rank ([BN94, Theorem 13.3]). In this paper, a pathological coset, whose representative is typically a Weyl element which should not exist, is usually shown to be both generous and nongenerous, and then the coset does not exist. This is the main protocol, sometimes refered to as "coset arguments", for the limitation of the size of the Weyl group. Generosity is usually obtained by unexpected commutations between the Weyl elements and the underlying subgroup, and in general this may depend on the specific configuration considered. It is certainly the pathological property in any case, and we shall prove here at a reasonable level of generality that the existing cosets should be nongenerous.

In particular, we rearrange as follows the protocol of [START_REF] Cherlin | Tame minimal simple groups of finite Morley rank[END_REF] in the light of further developments of [START_REF] Jaligot | Generix never gives up[END_REF] concerning generosity.

Theorem 1 (Generix and the Cosets) Let G be a connected group of finite Morley rank in which, generically, elements belong to connected nilpotent subgroups. Then the coset wH is not generous for any definable subgroup H and any element w normalizing H but not in H.

The assumption on the generic elements of G in Theorem 1 can take several forms, and we will explain this shortly. The most typical case where Theorem 1 applies is however the case in which H = Q is a generous Carter subgroup of G. In particular, the present paper is also an appendix of [START_REF] Jaligot | Generix never gives up[END_REF] on the structure of groups of finite Morley rank with such a generous Carter subgroup, and more precisely a follow-up to Section 3.3 in that paper.

The general idea of the protocol of [START_REF] Cherlin | Tame minimal simple groups of finite Morley rank[END_REF] has been used repeatedly in various contexts, most notably to get a fine description of p-torsion in terms of connected nilpotent subgroups of bounded exponent and of decent tori [START_REF] Burdges | Semisimple torsion in groups of finite Morley rank[END_REF]. Applied to the most natural kind of Weyl groups, the protocol shows that centralizers of decent tori are connected in any connected group, implying in particular that the Weyl group N (T )/C • (T ) attached to a decent torus T acts faithfully on T . This corresponds to the most typical and smooth applications of the protocol in [START_REF] Cherlin | Tame minimal simple groups of finite Morley rank[END_REF], generally a lemma expedited at the early stage of the analysis of each configuration considered there. With [START_REF] Cherlin | Good tori in groups of finite Morley rank[END_REF] and [START_REF] Jaligot | Generix never gives up[END_REF], and eventually the finiteness of conjugacy classes of uniformly definable families of decent tori of [FJ08, Theorem 6.4], it became clear that, for that specific lemma, the protocol had implementations autonomous from these specific configurations. Proofs may have appeared in [START_REF] Altınel | On analogies between algebraic groups and groups of finite Morley rank[END_REF][START_REF] Frecon | Pseudo-tori and subtame groups of finite morley rank[END_REF], with a conceptually better and more general implementation in the second case but, regrettably, with no connection at all to [START_REF] Cherlin | Tame minimal simple groups of finite Morley rank[END_REF] in both cases.

A much more delicate use of the protocol can be found in [CJ04, Proposition 6.17]. It is proved there, still in a specific configuration, that the centralizer of a certain finite subgroup of a decent torus is connected, with then a much more restrictive faithful action of the Weyl group. As this special application of the protocol contains the main difficulty possibly inherent to the subject, we mostly refer to this example. As we will see below, the key point is that generosity is in general related to a finiteness property, as opposed to a uniqueness property, a delicate aspect treated "by hand" in [CJ04, Proposition 6.17] and much more conceptually here.

Theorem 1 has general consequences on the action of the Weyl group on the underlying subgroup, again whatever these are. Back to the concrete example of a reductive algebraic group, the maximal algebraic torus is a divisible abelian subgroup, and the Weyl group acts faithfully on it. The main corollary of Theorem 1 is a general form of this in the abstract context of groups of finite Morley rank.

Corollary 2 Let G be a connected group of finite Morley rank in which, generically, elements belong to connected nilpotent subgroups. Suppose that H is a definable connected generous subgroup, that w is an element normalizing H but not in H, of finite order n modulo H, and that

{h n | h ∈ H} is generic in H. Then C H (w) < H.
In the case of a connected reductive algebraic group, the subgroup H in Corollary 2 is typically the maximal torus T and w a representative of a nontrivial element of order n of the Weyl group. In the finite Morley rank case, H may typically be a generous n-divisible Carter subgroup Q, and w a representative of a nontrivial element of order n of the Weyl group N (Q)/Q. One gets then, for instance if Q is a divisible abelian generous Carter subgroup as in Corollary 14 below, consequences qualitatively similar in the finite Morley rank case.

As for Theorem 1, the statement adopted in Corollary 2 is far more general than what it says about this typical case. Less typical applications can be found in [DJ07, §4.2] in the context of connected locally • solvable • groups, the smallest class of groups of finite Morley rank containing connected solvable groups and Chevalley groups of type PSL 2 and SL 2 over algebraically closed fields. Besides, the reader can find there a form of Theorem 1, actually weaker, but which reformats uniformly and in a hopefully informative way the original arguments of [START_REF] Cherlin | Tame minimal simple groups of finite Morley rank[END_REF] in this context of "small" groups.

Technicalities and environment

Before passing to the proofs, we review briefly the background needed, or surrounding.

Groups of finite Morley rank are equipped with a rudimentary notion of finite dimension on their definable sets, satisfying as axioms a few basic properties of the natural dimension of varieties in algebraic geometry over algebraically closed fields. By definable we mean definable by a first-order logic formula, possibly with parameters and possibly in quotients by definable equivalence relations. The dimension, or "rank", of a definable set A is denoted by rk (A).

The finiteness of the rank implies the descending chain condition on definable subgroups, and this naturally gives abstract versions of classical notions of the theory of algebraic groups:

• The definable hull of an arbitrary subset of the ambient group is the smallest definable subgroup containing that set. It is contained in the Zariski closure in the case of an algebraic group.

• The connected component G • of a group G of finite Morley rank is the smallest (normal) definable subgroup of finite index of G, and

G is con- nected when G = G • .
A fundamental property of a connected group of finite Morley rank is that it cannot be partitioned into two definable generic subsets, that is two subsets of maximal rank [START_REF] Cherlin | Groups of small Morley rank[END_REF]. Our arguments make full use of the following simpler properties.

Fact 3

(1) A connected group of finite Morley rank acting definably on a finite set must fix it pointwise.

(2) A connected group of finite Morley rank acting definably on a group H of finite Morley rank induces a trivial action on H/H • .

Proof. The first item is a well known application of connectedness: as elements of the base set have finite orbits, their (definable) stabilizers are of finite index, and hence cannot be proper. The second item is a special case of the first which does not seem to be specifically mentioned in the literature: as H • is definably characteristic in H, the acting group induces an action on H/H • , and we are then in presence of the action of a connected group on a finite set.

Following [START_REF] Jaligot | Generix never gives up[END_REF], we say that a definable subset of a group G of finite Morley rank is generous in G when the union of its G-conjugates is generic in G. In our proof of Theorem 1, we are essentially going to reuse lines of arguments of [START_REF] Jaligot | Generix never gives up[END_REF] for dealing with generosity, both for characterizing it and for applying it. When working with generosity in very general contexts, one has to inspect closely each conjugacy class of each individual element of the set considered.

The reader can find in [Jal06, §2.2] such an analysis, done there for definable connected subgroups. Another approach for this analysis was mentioned to the author by Cherlin, with a more conceptual geometric proof, duale in some sense, giving also a few more rank equalities. We take here the opportunity to recast these computations in terms of permutation groups, not only because it generalizes naturally, but also as it certainly might be useful in this more general context.

Given a permutation group (G, Ω) and a subset H of Ω, we denote by N (H) and by C(H) the setwise and the pointwise stabilizer of H respectively, that is G {H} and G (H) in a usual permutation group theory notation. We also denote by H G the set {h g | (h, g) ∈ H × G}, where h g denotes the image of h under the action of g, as in the case of an action by conjugation. Subsets of the form H g for some g in G are also called G-conjugates of H. Notice that the set H G can be seen, alternatively, as the union of G-orbits of elements of H, or also as the union of G-conjugates of H. When considering the action of a group on itself by conjugation, as we will do below, all these terminologies and notations are the usual ones, with N (H) and C(H) the normalizer and the centralizer of H respectively.

We note that in this paper we work only with "exact" normalizers N (H) = {g ∈ G | H g = H}, or "stabilizers", as opposed to "generic stabilizers", where the equality H g = H is understood up to a symmetric difference of lower rank.

Fact 4 [Jal06, Proposition 2.9] Let (G, Ω) be a ranked permutation group, H a definable subset of Ω, and assume that for r between 0 and rk (G/N (H)) the definable subset H r of H, consisting of those elements of H belonging to a set of G-conjugates of H of rank exactly r, is nonempty. Then

rk (H r G ) = rk (G) + rk (H r ) -rk (N (H)) -r.
Proof. One may proceed exactly as in the geometric proof of [Jal06, Proposition 2.9]. In the natural geometry associated to this computation, points are the elements of Ω which are G-conjugate to those of H and lines are the G-conjugates of H. The set of flags is the set of couples (point,line) where the point belongs to the line, and one considers the subflag naturally associated to H r . Projecting on the set of points one gets rk (H r G ) + r for the rank of this subflag, and similarly rk (G/N (H)) + rk (H r ) by projecting on the set of lines. The equality follows.

In this proof we use essentially only two properties of the rank. The first one is a guarantee that the sets H r considered are definable. The second one is a guarantee of the two formulas as above for the rank of a set, as the sum of the rank of its image by a definable function and of the rank of the fibers of that function, when constant. These two properties correspond respectively to the definability and the additivity of the rank in the Borovik-Poizat axioms for ranked structures [BN94, §4].

In the context of a permutation group as in Fact 4, we may naturally say that the definable subset H of Ω is generous when the subset H G of Ω is generic in Ω.

Of course, this matches with the usual definition in the case of the action of a group on itself by conjugation. Continuing in the general context of permutation groups, Fact 4 has the following corollary characterizing generosity.

Corollary 5 Assume furthermore rk (G) = rk (Ω) and rk (H) ≤ rk (N (H)) in Fact 4. Then H G is generic in Ω if and only if rk (H 0 ) = rk (N (H)). In this case rk (H 0 ) = rk (H) = rk (N (H)), a generic element of Ω lies in only finitely many conjugates of H, and the same applies to a generic element of H.

Proof. If H G is generic in Ω, then one has for some r as in Fact 4 that H r G is generic in Ω, and then

0 ≤ r = rk (H r ) -rk (N (H)) ≤ rk (H) -rk (N (H)) ≤ 0,
showing that all these quantities are equal to 0. In particular r = 0, and rk

(H 0 ) = rk (N (H)). Conversely, if rk (H 0 ) = rk (N (H)), then rk (H 0 G ) = rk (G) = rk (Ω) by Fact 4.
For our last statement, we also see with the above inequalities that rk (H) = rk (N (H)), and as H 0 and N (H) have the same rank it follows that rk (H 0 ) = rk (H) = rk (N (H)). In particular the definable subset H 0 of H is generic in H, and together with the genericity of H 0 G in Ω this is exactly the meaning of our two last claims.

We stress the fact that, under the circumptances of Corollary 5, the generosity of H is equivalent to the genericity of the definable sets H 0 and H 0 G in H and Ω respectively, so that working with these definable sets avoids troublesome saturation issues. At this point, it is also worth mentioning that there are uniform bounds on finite sets throughout. This is one of the Borovik-Poizat axioms, usually called elimination of infinite quantifiers, which gives uniform bounds on the cardinals of finite sets in uniformly definable families of sets. This is used on rather rare occasions, and could also be used here to see the definability of sets like H 0 in Fact 4 and Corollary 5: H 0 is exactly the set of elements of H contained in at most m distinct conjugates of H, for some fixed finite m. We will not use it as the definability of the rank amply suffices here, but this aspect can of course be kept in mind.

A typical case in which Fact 4 and Corollary 5 apply is the case in which the permutation group (G, Ω) is interpretable in a group G of finite Morley rank. In the rest of this paper we are only going to consider the action of a group of finite Morley rank on itself by conjugation, so Fact 4 and Corollary 5 will be applied freely.

As G and Ω are the same is this case, the extra assumption rk (G) = rk (Ω) is then automatically satisfied in the characteristion of generosity of Corollary 5. The second assumption rk (H) ≤ rk (N (H)) is not satisfied in general, but an interesting case in which it holds is the case in which H has the form xΓ, where Γ is a definable subgroup of G and x is an element of G normalizing Γ: in this case Γ ≤ N (xΓ), and thus rk (xΓ) = rk (Γ) ≤ rk (N (xΓ)). In fact, one sees in this case that N (xΓ) is exactly the preimage in N (Γ) of C N (Γ)/Γ (x mod Γ). All cosets considered in this paper are of this type, and we will make full use of Corollary 5 when considering the generosity of such cosets in the rest of the paper.

We insist again on the fact that the characterisation of Corollary 5 is in this case essentially the genericity of H 0 in H (in addition to rk (H) = rk (N (H))), and thus the fact that only finitely many conjugates of H pass through a generic element of H. In general, and we would like to say with probability almost one, there is not uniqueness. It may be seen by considering the generic element g of a connected reductive algebraic group. It lies in a maximal torus T , which lies in a generous Borel subgroup B; T is the unique of its conjugates containing g ([Jal06, Corollary 3.8]), but there are several conjugates of B containing g (and permuted by the Weyl group N (T )/T ).

That's all about the background we will use. We do not use decent tori and Carter subgroups in the present work, Theorem 1 and Corollary 2, but, as they correspond so closely to its most typical applications, it may be useful to recall their definitions and to place more precisely our results in context. A decent torus T of a group of finite Morley rank is a definable (connected) divisible abelian subgroup which coincides with the definable hull of its (divisible abelian) torsion subgroup, and a Carter subgroup Q is a definable connected nilpotent subgroup of finite index in its normalizer (and in particular it satisfies Q = N • (Q)). Both types of subgroups exist in any group of finite Morley rank, which is trivial in the first case and follows in the second case from a graduated notion of unipotence on certain connected nilpotent subgroups, for which decent tori are precisely the first stones [FJ08, §3.1]. By [START_REF] Cherlin | Good tori in groups of finite Morley rank[END_REF], maximal decent tori are conjugate in any group of finite Morley rank, which indeed follows from the fact that C • (T ) is generous for any such decent torus T . By [START_REF] Jaligot | Generix never gives up[END_REF], generous Carter subgroups are conjugate in any group of finite Morley rank.

We take this opportunity to mention the following corelation between decent tori and generous Carter subgroups.

Fact 6 If Q is a generous Carter subgroup of a group of finite Morley rank, then T ≤ Q ≤ C • (T ) for some maximal decent torus T , and

N (T ) = C • (T ) • N (Q).
Actually, we will prove something slightly more general than Fact 6, expanding a bit the existing theory of generous subgroups in passing.

Recall first that the existence of a generous Carter subgroup is, maybe, the main open question at the moment concerning groups of finite Morley rank. It is equivalent to the question to know whether any connected group of finite Morley rank containing no proper definable connected generous subgroup is nilpotent (see [Jal06, Genericity Conjecture 4.1 b-β]). As in [Jal06, §4.2], a minimal counterexample to the question of existence of a generous Carter subgroup in connected groups has tendency to be semisimple, i.e., with all its normal solvable subgroups trivial, and has no proper definable connected generous subgroups.

Fact 7 Let G be a group of finite Morley rank.

(1) If Q is a definable nilpotent subgroup of G, then any definable subgroup of Q generous in G is of finite index in Q.

( 

) If Q and H are definable subgroups of G • generous in G, with Q nilpotent, then Q • ≤ H • up to conjugacy. (3) If Q is a generous Carter subgroup of G, then Q is, 2 
.3], N • (Q∩H) ≤ N • (Q) ∩ N • (H), and as N • (Q) = Q • and N • (H) = H •
by generosity of Q and H (using again [Jal06, Lemma 2.2] or Corollary 5), we get N • (Q ∩H) ≤ (Q ∩H) • . In particular Q ∩ H has finite index in its normalizer in Q, and is thus of finite index in Q by normalizer condition in infinite nilpotent groups of finite Morley rank. In particular,

Q • ≤ H • .
(3). By (1) and connectedness of Q, Q is minimal for the generosity of definable subgroups of G • . By (2), any definable generous subgroup H of G • contains a conjugate of Q, i.e., Q ≤ H • up to conjugacy. Hence item (3) follows from the conjugacy of generous Carter subgroups of [START_REF] Jaligot | Generix never gives up[END_REF].

The core of the proof of Fact 7 (2) may seem to be somehow hidden in the use of [Jal06, Fundamental Lemma 3.3], which essentially relies on Fact 3 (1). Fortunately, our proof of Theorem 1 below will reproduce the content of that lemma, with cosets instead of subgroups.

Fact 7 (3) provides a way to see generous Carter subgroups in the ostensibly wider class of minimal definable generous subgroups, where the problem of existence somehow shifts to the problem of conjugacy.

We now add decent tori into the picture.

Fact 8 Let G be a group of finite Morley rank.

(1) If H is a definable generous subgroup of G • , then H • contains a maximal decent torus T of G.

(2) If H is a definable connected generous subgroup of G, minimal with respect to this property, and T is a maximal decent torus of G in H, then T ≤ Z(H).

(3) If T is a maximal decent torus and C • (T ) contains a unique minimal definable generous subgroup up to conjugacy, say H, then

N (T ) = C • (T ) • N (H).
Proof. (1). By [START_REF] Cherlin | Good tori in groups of finite Morley rank[END_REF], C • (T ) is generous for any decent torus T of G. Arguing as in the proof of Fact 7 (2), one finds a generic element in C • (T ) ∩ H and one deduces similarly that N

• (C • (T ) ∩ H) ≤ N • (C • (T )) ∩ N • (H) = C • (T ) ∩ H • . As T is central in C • (T ), this implies in particular that T ≤ H • .
(2). By [START_REF] Cherlin | Good tori in groups of finite Morley rank[END_REF], C • H (T ) is generous in H. By transitivity of the generosity of definable subgroups [Jal06, Lemma 3.9 a], one deduces that C • H (T ) is generous in G, and the minimality of

H forces C • H (T ) = H, i.e., T ≤ Z(H). (3). We have T ≤ N • C • (T ) (H) = H • by generosity of H in C • (T )
, and thus T ≤ Z(H). In particular, N (H) ≤ N (T ). Now a Frattini Argument gives the desired decomposition: if w ∈ N (T ), then H and H w are two minimal definable generous subgroups of C • (T ), H w = H α for some α in C • (T ), and

w = wα -1 α ∈ N (H) • C • (T ). Notice that C • (T ) is normal in N (T ).
Fact 6 follows from Facts 7 and 8, together with the remark that the generous Carter subgroup Q of G, containing the maximal decent torus T , must also be generous in C • (T ) (by [Jal06, Lemma 2.3] or Corollary 5).

In presence of a nontrivial maximal decent torus T , the Weyl group of an arbitrary group of finite Morley rank is naturally defined as in [CJ04, Theorem 1.8] as N (T )/C • (T ), and in presence of a generous Carter subgroup Q, it is defined as in [Jal06, §3.3] as N (Q)/Q. In the first case the original definition relied on a particular decent subtorus related to the prime p = 2, but since the full proof of conjugacy of maximal decent tori of [START_REF] Cherlin | Good tori in groups of finite Morley rank[END_REF] it naturally takes this form. We also mention that the term "Weyl group" made his first appearance, beyond the classical algebraic case, in [START_REF] Nesin | Nonsolvable groups of Morley rank 3[END_REF] in the context of "bad" groups of Morley rank 3, with all possible definitions equivalent in this case.

In Fact 6, we see that both notions of Weyl group essentially match, with however

N (T )/C • (T ) ≃ (N (Q)/Q)/(N C • (T ) (Q)/Q)
isomorphic to a possibly proper quotient of N (Q)/Q, and thus a sharper notion with the second definition. Hence when both definitions are possible we prefer the second one, though the question of equality in general is an interesting issue. We note that everything said here with a decent torus T can be stated similarly with a pseudo-torus T , a slightly more general notion of torus with practically the same properties [START_REF] Frecon | Pseudo-tori and subtame groups of finite morley rank[END_REF].

Besides, we note that [START_REF] Frécon | Conjugacy of Carter subgroups in groups of finite Morley rank[END_REF] provides an analysis of non-generous Carter subgroups in very specific inductive contexts for groups of finite Morley rank. This yields the conjugacy of such non-generous Carter subgroups, and eventually gives in these specific cases the full conjugacy of Carter subgroups, in the nongenerous case as well as in the generous case. In particular, this gives a notion of Weyl group in the most pathological situation in which all Carter subgroups would be non-generous, the line antipodal to the one pursed in [START_REF] Jaligot | Generix never gives up[END_REF] and, seemingly, here.

In Theorem 1 we assume that, generically, elements of the ambient group have a prescribed property: to be in a connected nilpotent subgroup. As this property has no first-order character, this can be interpreted in two possible ways. It means either that the group is saturated and that realizations of the generic type have that property, or, more strongly but with no saturation assumption, that the ambient group has a definable generic subset, all of whose elements have the property. This "generic property" is known to be true, in this second form, in the specific case of connected locally • solvable of finite Morley rank, the smallest class containing connected solvable groups of finite Morley rank and Chevalley groups of type PSL 2 over algebraically closed fields (see [START_REF] Borovik | Involutions in groups of finite Morley rank of degenerate type[END_REF]Proposition 8.1], and [DJ07, §5.3] for an account on this and related topics). In any case, the assumption in Theorem 1 is much weaker than that of the existence of a generous Carter subgroup, and as the former is known in contexts where the latter is not known, it seems relevant at present to state Theorem 1, and its consequences, under this weak assumption.

Cosets and generosity

In the present section we pass to the proof of the technical Theorem 1 on generous cosets, and in the next we will see its main corollary on Weyl groups.

In most applications of the general protocol for computing Weyl groups in groups of finite Morley rank, there is a uniqueness property, and then rank computations for generosity, or non-generosity, follow more or less immediately from the presence of disjoint unions. We refer for example to [CJ04, 3.3-3.4], which was essentially extracted from the original works on bad groups [BN94, Theorem 13.3, Claim (d)]. In general, one can use only finiteness instead of uniqueness for generosity, as explained and illustrated abundantly after Corollary 5. The reader can find in [CJ04, Proposition 6.17] a concrete application of the protocol for Weyl groups which uses finiteness only (see actually the preparatory sequence 6.13-6.16, and more specifically 3.16, in that paper), and we give here a much more conceptual treatment of this aspect via Corollary 5.

Recall that G is a connected group of finite Morley rank in which, generically, elements belong to connected nilpotent subgroups, that H is a definable subgroup of G and w is an element in N (H) \ H, and we want to show that wH is not generous in G.

Proof of Theorem 1. Assume towards a contradiction wH generous in G.

We may freely apply Corollary 5 to the coset wH, as remarked after that corollary. It follows that rk (wH) = rk (N (wH)) on the one hand, and, on the other hand, that wH has a definable generic subset, generous in G, all of whose elements can lie in only finitely many conjugates of wH. In this sense, a generic element g of G is, up to conjugacy, a generic element of wH, and contained in only finitely many conjugates of wH. Of course, N (wH) ≤ N (H), and in fact N (wH) is the preimage in N (H) of C N (H)/H (w mod H). As H, wH, and N (wH) have the same rank,

N • (wH) = H • .
In particular one sees also that w has finite order modulo H.

By assumption, a generic element g of G also belongs to a connected nilpotent subgroup Q and, as taking definable hulls does not affect connectedness and nilpotence of subgroups in group of finite Morley rank, we may assume Q definable. (We note here that the generic property in G holds either for the realizations of the generic type in case of saturation of G, or on all elements of a definable generic subset of G, if such a subset exists.)

Using the connectedness of G, one concludes from the two preceding paragraphs that a generic element g of G is, on the one hand, in wH (up to conjugacy) and in only finitely many of its conjugates, and, on the other hand, in a definable connected nilpotent subgroup Q. We will get a contradiction from this position of tightrope walker of g.

As g ∈ wH ∩ Q, we may also assume w in Q, replacing the original representative w of the coset wH by a representative in Q in necessary. This is possible as we may take g. Then

wH ∩ Q = w(H ∩ Q).
Notice that w still has finite order modulo H ∩ Q, as the original w had that property modulo H. The group w (H ∩ Q) is in particular definable, and (H ∩ Q) • is exactly its connected component. From now on we concentrate on the definable subgroup w (H ∩ Q) of Q, and to its normalizer in Q.

N • Q ( w (H ∩ Q))
acts by conjugation on the definable subgroup w (H ∩ Q). By Fact 3 (2), it induces a trivial action on this group modulo its connected component, that is (H ∩ Q) • . This means that it normalizes each coset of (H ∩Q)

• in w (H ∩Q). In particular, N • Q ( w (H ∩Q)) normalizes the (possibly larger) coset w(H ∩ Q).
At this point we use an argument similar to the one used in [Jal06, Fundamental Lemma 3.3]. We denote by X the set of elements of w(H ∩ Q) contained in only finitely many conjugates of wH. We note that the set X is not empty, as it contains the generic element g. We also note that the subset X of wH can be contained in only finitely many conjugates of wH, as it contains the element g which has this property. As N • Q ( w (H ∩ Q)) normalizes w(H ∩ Q), it also normalizes X, and thus it permutes by conjugation the conjugates of wH containing X. We are now in presence of the definable action of a connected group on a finite set, and it follows from Fact 3 (1) that it has a trivial action, or in other words that N • Q ( w (H ∩ Q)) normalizes each of these finitely many conjugates of wH containing X. In particular, it normalizes wH.

Hence

N • Q ( w (H ∩ Q)) ≤ N • (wH) = H • , as noticed earlier, and the definable connected subgroup N • Q ( w (H ∩ Q)) of Q then satisfies N • Q ( w (H ∩ Q)) ≤ (H • ∩ Q) • ≤ (H ∩ Q) • .

But as (H ∩Q)

• is exactly the connected component of w (H ∩Q), this inclusion shows that w (H ∩ Q) has finite index in its normalizer in Q. Now definable subgroups of infinite index of nilpotent groups of finite Morley rank are of infinite index in their normalizers, by the classical finite Morley rank version of the normalizer condition in finite nilpotent groups. On finds thus that w (H ∩ Q) has finite index in Q, and by connectedness of the latter one gets

Q = w (H ∩ Q).
As (H ∩ Q) now has finite index in Q, one gets similarly

Q = (H ∩ Q).
At this point one gets a contradiction, either by noticing that w has been pushed inside H, or that g has been pushed outside Q.

Theorem 1 has the following slightly more general form, where the connectedness of the ambient group is dropped and the possibly insinuated saturation assumption is slightly weakened. We note that in this corollary we do not require the elementary extension to be saturated itself, but simply that it is satisfies the same assumption as in Theorem 1.

Corollary 9 Let G be a group of finite Morley rank having an elementary extension G * in which, generically, elements belong to connected nilpotent subgroups. Then the coset wH is not generous in G for any definable subgroup H of G • and any element w in N G • (H) \ H.

Proof. Assume towards a contradiction wH generous in G. As G is a finite union of translates of G • , wH is generous in G • . As the rank can only go up when passing to an elementary extension, one then sees that the canonical extension

[wH] * of wH, in [G * ] • = [G • ] * , is generous in [G * ] • . Now one can apply Theorem 1 in [G * ] • .
Theorem 1 also has the following desirable application.

Corollary 10 Let G be a group of finite Morley rank as in Corollary 9 and let H be a definable subgroup of G • . Then H \ H • is not generous in G and, if H is generous in G, then H • is generous in G, and in fact in any definable subgroup containing it.

Proof. As H \ H • is a finite union of cosets of H • normalizing H • , the first claim follows from Corollary 9. Now H • must be generous in G whenever H is, and our last claim is [Jal06, Lemma 3.9] or Corollary 5.

In particular, when Corollary 10 applies in a connected group of finite Morley rank, then the notion of minimal definable generous subgroup, as in Facts 7 or 8, is the same as the notion of minimal definable connected generous subgroup.

Cosets and action

As stressed in the introduction, recovering the action of a Weyl group on its underlying subgroup from weak information on the elements of the corresponding cosets is a particularly delicate task. Corollary 2 is however a general result of faithfulness following merely from the nongenerosity provided by Theorem 1. The rest of this paper is devoted to the proof of Corollary 2, or rather of what we see as the most interesting intermediary steps.

The most general situation is that of a definable connected generous subgroup H, and we want to examine the action of N (H)/H on H, and much more generally the action on H of elements in N (H). Typically, H may be a generous Carter subgroup, with then N (H)/H the natural Weyl group, and w a representative of any coset of H in N (H).

We note that a definable generous subgroup H always satisfies

N • (H) = H •
by Corollary 5, and is in particular of finite index in its normalizer. We note also that there is a basic result of lifting of torsion in groups of finite Morley rank, implying in particular that any element of finite order of N (H)/H lifts to an element of N (H) of finite order (and where the primes involved in both primary decompositions are the same). In particular, choosing an element w of finite order, for example as in Corollary 2, is always a low cost possibility.

The following lemma is the natural continuation of [CJ04, Lemma 3.4] with the present much better understanding of generosity as a finiteness property as opposed to a uniqueness property. It is the finest corelation one can get between generic elements of the coset wH and generic elements of H in the typical situation where the conclusion of Theorem 1 holds. It shows, we think, the real power of the method.

Lemma 11 Let G be a group of finite Morley rank, H a definable generous subgroup of G, and w an element in N (H) \ H such that w H \ H is not generous. Then

(1) The coset wH has a definable subset [wH] gen , whose complement is nongeneric in wH, and all of whose elements are in infinitely many conjugates of wH.

( Now one can apply Corollary 5 to w H also. The generosity of w H (following that of H) then gives a definable subset [ w H] 0 , generic in w H, and all of whose elements can lie in only finitely many conjugates of w H. If that set had a nongeneric intersection with H, then it would have a generic intersection with one of the proper cosets of H in w H, say w ′ H. As all elements lying in this intersection would be contained in only finitely many conjugates of w ′ H, as contained in only finitely many conjugates of w H and all normalizers are finite modulo H • , Corollary 5 would give the generosity of w ′ H, a contradiction to the assumption that w H \ H is not generous. One may thus consider a generic element of H as an element of H gen := H ∩ [ w H] 0 , and thus with the property that it is in only finitely many conjugates of w H.

Consider now x generic in wH in the sense of the first claim, i.e., such that x is in infinitely many conjugates of wH. The intersection of subgroups considered in our second claim is a subgroup of w H. It is contained in infinitely many conjugates w H, again as all normalizers are finite modulo H • . Hence it contains no conjugates of an element in H gen , as such an element is contained in only finitely many conjugates of w H.

We mention, parenthetically, that the subgroup as in Lemma 11 (2) containing the element x of wH is normalized by C(x). It is definable by descending chain condition on definable subgroups, and in particular it contains the definable hull of x as a (possibly smaller) subgroup.

In general, an element x of a coset wH has the form x = wh for some h in H and taking powers one gets (wh) n = w n h w n-1 h w n-2 • • • h for any natural number n (some useful formulas when considering torsion [CJ04, §3.3]). Assuming additionally that the element w of N (H) has finite order n modulo H, which can be done in a general way as explained above, one has (wh) n = w n h n in the easiest case in which w and h commute, with w n in H. This corelation between the element wh of the coset wH and the n-th power of the element h of H will be combined to the full force of the pure genericity argument of Lemma 11 in our proof of Corollary 2.

To this end, our next main step is as follows.

Lemma 12 Let G be a group of finite Morley rank, H a definable connected generous subgroup, and w an element in N (H) such that w H \ H is not generous in G. Then {h w n-1 h w n-2 Not to come to an abrupt end, we mention the following special case of Corollary 2, much typical of a connected reductive algebraic group, where the maximal torus corresponds to our abelian generous Carter subgroup. In this mere application, we do not conclude much more than the faithfulness of the action of the Weyl group, but state it in a form emphasizing various subgroups reminiscent of the BN -pair structure of a reductive algebraic group.

  up to conjugacy, the unique minimal definable subgroup of G • generous in G.Proof. (1). Assume H is a definable subgroup of Q, generous in G. Then H must be of finite index in its normalizer, by [Jal06, Lemma 2.2] or more generally Corollary 5. Now by normalizer condition in infinite nilpotent groups of finite Morley rank, H is of finite index in Q.(2). By Corollary 5 and connectedness of G • , a generic element of G • , say g, is in conjugates of Q and H, say Q and H, and in only finitely many such conjugates. Now by[START_REF] Jaligot | Generix never gives up[END_REF] Fundamental Lemma 3

)

  The subgroup H has a definable generic subset H gen such that, for any x in [wH] gen , the subgroup of w H containing x and defined as

	[ w H] g
	g∈G, x∈[wH] g
	has an empty intersection with (H gen ) G .
	Proof. As N • (H) = H • by generosity of H and Corollary 5, rk (wH) =
	rk (N (wH)), and the first claim follows from the nongenerosity of wH by Corol-
	lary 5. Again we remark that the sets provided by Corollary 5 are definable.

  • • • h | h ∈ H}is not generic in H for any multiple n of the (necessarily finite) order of w modulo H.Proof. Assume towards a contradiction {h wn-1 h w n-2 • • • h | h ∈ H} generic in H.Let φ : wh → (wh) n denotes the definable map, from wH to H, consisting of taking n-powers. Asφ(wH) = w n • {h w n-1 h w n-2 • • • h | h ∈ H},our contradictory assumption forces that φ(wH) must be generic in H.Let H gen denote the definable generic subset of H provided by Lemma 11 (2). By connectedness of H, one gets that H gen ∩ φ(wH) must be generic in H as well. In particular, φ -1 (H gen ∩ φ(wH)) must be generic in the coset wH, and one finds an element x in this preimage and in the subset[wH] gen provided by Lemma 11 (1). Now φ(x) ∈ H gen , but as φ(x) = x n , one getsx n ∈ H gen ∩ x ,a contradiction to Lemma 11 (2), as x is obviously a subgroup of the subgroup considered in Lemma 11 (2).Combined with Theorem 1, one gets the following.Corollary 13 Let G be a group of finite Morley rank as in Corollary 9, H a definable connected generous subgroup of G, and w an element ofG • in N (H) \ H. Then {h w n-1 h w n-2 • • • h | h ∈ H}is not generic in H for any multiple n of the (necessarily finite) order of w modulo H.Proof. As usual, H is of finite index in its normalizer by Corollary 5. By Theorem 1, or rather its slightly more general form, Corollary 9, Lemma 12 applies.If w turned out to centralize H in Lemma 12, then one would get{h w n-1 h w n-2 • • • h | h ∈ H} = {h n | h ∈ H}and thus Corollary 2 follows similarly from Theorem 1 and Lemma 12. Again, Corollary 2 could be stated identically in the slightly more general context of groups as in Corollary 9, taking just care to pick up the element w in G • as in Corollary 13.
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Corollary 14 Let G be a connected group of finite Morley rank with an abelian generous Carter subgroup Q, and assume Q p-divisible for any prime p dividing the order of N (Q)/Q. Then Q has (finitely many) proper definable subgroups, corresponding to all subgroups of the form C Q (w) for w varying in N (Q) \ Q, and with a canonical definition as the centers of proper cyclic extensions of Q in N (Q). In particular, N (Q)/Q acts faithfully on Q.

Proof. Let w in N (Q) \ Q, of finite order n modulo Q. As Q is p-divisible for all primes p dividing the order of N (Q)/Q, its is n-divisible, and in particular

The fact that there are finitely many possibilities for such subgroups C Q (w) follows from their alternative definitions as

and from the fact that N (Q)/Q is finite. For a canonical definition of such subgroups, one may then take Z( w Q), with w varying in N (Q) \ Q.