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Abstract

The Neumann problem for the Poisson equation is considered in a domain Ωε ⊂ Rn with boundary
components posed at a small distance ε > 0 so that in the limit, as ε → 0+, the components touch
each other at the point O with the tangency exponent 2m ≥ 2. Asymptotics of the solution uε and
the Dirichlet integral ‖∇xuε; L

2(Ωε)‖
2 are evaluated and it is shown that main asymptotic term of

uε and the existence of the finite limit of the integral depend on the relation between the spatial
dimension n and the exponent 2m. For example, in the case n < 2m − 1 the main asymptotic term
becomes of the boundary layer type and the Dirichlet integral has no finite limit. Some generalization
are discussed and certain unsolved problems are formulated, in particular, non-integer exponents 2m

and tangency of the boundary components along smooth curves.
AMS subject classification: primary 35J25, secondary 46E35,35J20.

1 Introduction

1.1 Formulation of the problem

Let Γ and Γ0 be smooth closed (n−1)-dimensional surfaces in the Euclidian space Rn, mutually tangent
at the point O, the origin of the Cartesian coordinate system x = (y, z) ∈ Rn−1 ×R. If Ω is the domain
whose boundary is the surface Γ, the set Γ0�O is included in Ω and, in a cylindrical neighborhood
U = Bn−1

R × (−d, d) of the point O, the surfaces Γ and Γ0 are given respectively by

z = −H− (y) and z = H+ (y) (1.1)

∗The research of S.A.N. is partially supported by the grant RFFI-06-01-257.
†The research of J.S. was partially supported by the Projet CPER Lorraine MISN: Analyse, optimisation et contrôle 3

in France, and the grant N51402132/3135 Ministerstwo Nauki i Szkolnictwa Wyzszego: Optymalizacja z wykorzystaniem
pochodnej topologicznej dla przeplywow w osrodkach scisliwych in Poland.
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where the smooth functions H± on the ball Bn−1
R = {y : r := |y| < R} verify the relations

H (y) := H− (y) + H+ (y) = r2mH0 (θ) + H̃ (y) , (1.2)

H± (0) = 0, ∇yH± (0) = 0 ∈ Rn−1, ∇j
yH̃ (0) = 0, j = 0, . . . , 2m.

Here m is an integer, r and θ = r−1y are the spherical coordinates in Rn−1, H0 is a positive function on
the unit sphere Sn−2, and H̃ is a smooth function on the ball Bn−1

R which, with all derivatives up to the
order 2m included, according to the last formula in (1.2), vanishes at the center of Bn−1

R . In other words,

H̃(y) is a small remainder term in comparison with the homogeneous polynomial H(y) = r2mH0(θ) in
variables y = (y1, . . . , yn−1) of order 2m. Two typical geometrical situations are drawn on Figures 1 and
2; in particular in Fig. 1 the fixed surface Γ is not simply connected.

Fig. 1 Fig. 2

Let ε be a small positive parameter, and

Γε = {x = (y, z) : (y, z − ε) ∈ Γ0} . (1.3)

The domain bounded by the surfaces Γ and Γε is denoted by Ωε (cf. Figures 3 and 4 with Figures 1 and
2, respectively).

Fig. 3 Fig. 4

The sizes R, d > 0 and ε0 are chosen in such a way that for ε ∈ (0, ε0] the intersection Ωε ∩ U is defined
by the formula

Ωε ∩ U =
{
(y, z) : y ∈ Bn−1

R , z ∈ Υε (y)
}

(1.4)

where Υε (y) := (−H− (y) , ε + H+ (y)) . This part of the singularly perturbed domain Ωε is called a
ligament.

In the domain Ωε with the ligament located near the point O, the Neumann boundary value problem
for the Poisson equation is considered

−∆xuε (x) = f (ε, x) , x ∈ Ωε, (1.5)

∂νuε (x) = g (ε, y, z − ε) , x ∈ Γε, ∂νuε (x) = 0, x ∈ Γ. (1.6)
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Here ∂ν stands for the normal derivative along the outer normal, f and g are smooth functions on the
sets [0, ε0]×Ω and [0, ε0]×Γ0, respectively. Obviously, the right-hand sides of problem (1.5), (1.6) have
to verify the compability condition

∫

Ωε

f (ε, x) dx +

∫

Γε

g (ε, y, z − ε) dsx = 0. (1.7)

Such condition is satisfied, e.g., in the case of

f = 0, g (ε, x) = G (x) , (1.8)

where G is a smooth function on Γ0 with null mean value and independent of the parameter ε. In the
variable domain Ωε, in general, condition (1.7) can be met for the elements f and g depending on ε.
In (1.6) the boundary condition on the surface Γ is homogeneous, without loosing the generality, since
a non-homogeneous boundary condition can be compensated by a smooth solution of the Neumann
problem in the compehensive domain Ω which by definition includes Ωε for all ε ∈ (0, ε0]; so in this way
the nonhomogeneous boundary condition is moved from Γ to Γε.

The main goal of the paper is the derivation of asymptotic formulae for solutions of problem (1.5),
(1.6), as well as for the related shape functionals.

1.2 Boundary value problems in domains with thin ligaments

Singular perturbed problem (1.5), (1.6) enjoys physical interpretation, and asymptotics of its solution
are constructed in a simplified case of the half plane with taken off a circle in paper [1] on the basis of
the explicit formulae, obtained by an application of conformal mappings. The Dirichlet problem in the
plane domain Ωε and in some other type of domains with parts of boundaries put closely one to another,
and also the asymptotics of the corresponding Dirichlet integrals, which describe, e.g., the capacities of
electrical capacitors, are investigated in [2, 3] (we refer also to monograph [4, Ch. 14]). The asymptotics
of the eigenvalues and the eigenfunctions for the Neumann spectral problem in Ωε are determined in [5]
and the asymptotics of the Dirichlet integral in [6].

The problem investigated in [1] can be considered as out-of-plane problem in the elasticity theory.
Analogously, the plane problem of the elasticity theory is studied in [7] for a canonical domain in the form
of the half plane with a circle taken off, on the basis of elastic potentials, and in [8] for the domains in
much more general form by an applications of the asymptotic methods. The analogous three dimensional
problem of elasticity is discussed in [8, 9].

The presented condensed review of the literature on the subject shows that, firstly, the only plane
problems were investigated, in exclusion of [8, 9], where it is only performed formal asymptotic analysis,
without proofs, and secondly, in the notation of (1.2), the case of m = 1 is worked out. The latter fact
is fundamental for the plane Neumann problem, actually for G ∈ C (Γ0) and m = 1, the limit problem
for ε = 0 in the domain Ω0 admits a solution with the finite Dirichlet integral; however for G(O) 6= 0
and m > 1 such a solution does not exist (we refer the reader to [10, 11] and in the sequel to section
1§2). Therefore, the energy functional

E (uε; Ωε) =
1

2

∫

Ωε

|∇xuε (x)|2 dx +

∫

Ωε

f (ε, x)uε (x) dx +

∫

Γε

g (ε, y, z − ε) uε (x) dsx (1.9)

admits the finite limit E (u0; Ω0) for m = 1, and the main term of asymptotics for the solution uε is
of regular type. In contrast, the case of m > 1 provides no convergence (see Figure 5 where a ball is
tangent to a paraboloid with the same curvature at O so that m = 2 in (1.1), (1.2)), and the main term
of asymptotics becomes of the boundary layer type, localized in a small neighborhood of the point O,
and written in the fast variables

ζ = ε−1z, η = ~−1y, ~ = ε
1

2m . (1.10)
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Fig. 5

In view of the Green formula, the quadratic functional (1.9), evaluated with the solutions of problem
(1.5), (1.6), is equal to

−1

2

∫

Ωε

|∇xuε (x)|2 dx = −1

2

∫

Ωε

f (ε, x)uε (x) dx − 1

2

∫

Γε

g (ε, y, z − ε)uε (x) dsx . (1.11)

Let us observe, that according to [10, 11], the necessary and sufficient conditions for the non existence
of any solution u0 ∈ H1 (Ω0) for G(O) 6= 0 takes the form

n ≤ 2m − 1. (1.12)

The second feature of the singularly perturbed problem (1.5), (1.6) are related to the spatial dimen-
sions of the domain. Indeed, in any case it is required to have the expansion of the solution u0 of the
limit Neumann problem in the vicinity of the point O, where two smooth components of the boundary
are tangent each to other. For n = 2 such a singularity of the boundary in the form of two separated
peaks can be treated by an application of general results in [12, 13], and is included in the framework
of the theory of elliptic boundary problems in the domains with piecewise smooth boundaries (see the
key references, [14, 15, 16, 17], and also, e.g., monographs [18, 19]). For n ≥ 3 the singularity of the
boundary in the vicinity of the point O cannot be converted into a conical one and the general theory
does not furnish an answer on the behavior of the solution u0 for x → O. The asymptotic decomposition
of solutions in the vicinity of the point O are constructed and justified only for some classes of equations
in mathematical physics (see [20, 9, 21] and also [22, 23, 24, 25, 26, 27] for related problems in layered
domains) and the analysis is performed with the so-called procedure of dimension reduction (see e.g.,
[28, 29]). The same procedure is used in section §3 to describe the phenomenon of boundary layer,
stretching the coordinates in two different scales ε−1 and ~−1 = ε−1/2m for transversal and longitudal
directions (see (1.10)) results in the second limit problem which becomes (n − 1)−dimensional

−∇η · (1 + H (η))∇ηw (η) = F (η) , η ∈ Rn−1, (1.13)

see also section 1§4. The behavior of the solution u0 with x → O, and of the solution w with η → ∞ is
investigated in §2, with the particular attention paid to the case n ≥ 3 for the reasons explained above.
The plane problem has some particular features in the algorithm of asymptotic construction presented
in §3 and in the weighted trace inequality necessary for the justification of asymptotics and given in
the next section of §1. Concluding remarks are presented in §4, where the possible generalization of the
results are discussed and certain unsolved problems are mentioned.

1.3 The weighted Poincaré inequality

To derive an a priori estimate for solutions of problem (1.5), (1.6), we proceed with proving variants of
one-dimensional Hardy’s inequalities.
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Lemma 1 If U ∈ C1
c [0, R) , the following inequality holds

∫ R

0

(~ + r)
2m

Rn (r) |U (r)|2 rn−2dr ≤ cn

∫ R

0

(~ + r)
2m

∣∣∣∣
dU (r)

dr

∣∣∣∣
2

rn−2dr, (1.14)

where n ≥ 3 and R3 (r) = r−2
∣∣ln r

R

∣∣−2
, Rn (r) = r−2 for n ≥ 4. In the case n = 2 the inequality takes

the form ∫ R

0

(~ + r)
2m−2 |U (r)|2 dr ≤ 4

(2m − 1)
2

∫ R

0

(~ + r)
2m

∣∣∣∣
dU (r)

dr

∣∣∣∣
2

dr. (1.15)

Proof. If n > 3, inequality (1.14) with the constant cn = 4 (n − 3)
−2

follows from the relation using
the Newton-Leibnitz formula and the Cauchy-Bunyakowsky-Schwartz inequality:

∫ R

0

(~ + r)
2m

rn−4 |U (r)|2 dr = −2

∫ R

0

(~ + r)
2m

rn−4

∫ R

r

dU
dρ (ρ)U (ρ) dρdr ≤

≤ 2

∫ R

0

∣∣∣dU
dρ (ρ)

∣∣∣ |U (ρ)|
∫ ρ

0

(~ + r)
2m

rn−4drdρ ≤ 2
n−3

∫ R

0

∣∣∣dU
dρ (ρ)

∣∣∣ |U (ρ)| (~ + ρ)
2m

ρn−3dρ ≤

≤ 2
n−3

(∫ R

0

(~ + ρ)
2m

ρn−2
∣∣∣dU

dρ (ρ)
∣∣∣
2

dρ

) 1
2

(∫ R

0

(~ + ρ)
2m

ρn−4 |U (ρ)|2 dρ

) 1
2

.

Similar calculations are sufficient in the case n = 3, namely, c3 = 4 and

∫ R

0

(~ + r)
2m

r−1
∣∣ln r

R

∣∣−2 |U (r)|2 dr ≤ 2

∫ R

0

∣∣∣dU
dρ (ρ)

∣∣∣ |U (ρ)|
∫ ρ

0

(~ + r)
2m

r−1
∣∣ln r

R

∣∣−2
drdρ ≤

≤ 2

∫ R

0

∣∣∣dU
dρ (ρ)

∣∣∣ |U (ρ)| (~ + ρ)
2m ∣∣ln r

R

∣∣−2
dρ ≤

≤ 2

(∫ R

0

(~ + ρ)
2m

ρ
∣∣∣dU

dρ (ρ)
∣∣∣
2

dρ

) 1
2

(∫ R

0

(~ + ρ)
2m

ρ−1
∣∣ln r

R

∣∣−2 |U (ρ)|2 dρ

) 1
2

.

Finally, estimate (1.15) is obtained from

∫ R

0

(~ + r)
2m−2 |U (r)|2 dr ≤ 2

∫ R

0

∣∣∣dU
dρ (ρ)

∣∣∣ |U (ρ)|
∫ ρ

0

(~ + r)
2m−2

drdρ =

≤ 2
2m−1

∫ R

0

∣∣∣dU
dρ (ρ)

∣∣∣ |U (ρ)|
(
(~ + ρ)

2m−1 − ~2m−1
)

dρ ≤ 2
2m−1

∫ R

0

(~ + ρ)
m

∣∣∣dU
dρ (ρ)

∣∣∣ (~ + ρ)
m−1 |U (ρ)| dρ. ¥

We are ready to verify the weighted Poincaré and trace inequalities.

Proposition 2 Let uε ∈ H1 (Ωε) satisfy the orthogonality condition
∫

Ωε

uε (x) dx = 0. (1.16)

The relationship

∥∥Rnuε; L
2 (Ωε)

∥∥2
+

∥∥∥
(
ε + ρ2m

) 1
2 Rnuε; L

2 (∂Ωε)
∥∥∥

2

+

+
∥∥∥
(
ε + ρ2m

)−1
(u+

ε − u−
ε ) ; L2

(
Bn−1

R

)∥∥∥
2

≤ c
∥∥∇xuε; L

2 (Ωε)
∥∥2

(1.17)

is valid, where u+
ε (y) = uε (y, ε + H+ (y)) , u−

ε (y) = uε (y,−H− (y)) , ρ (x) = |x| ,

Rn (x) =

{
(~ + ρ (x))

−1
as n 6= 3,

(~ + ρ (x))
−1

(1 + |ln (~ + ρ (x))|)−1
as n = 3,

(1.18)

~ is the small parameter in (1.10), and the constant c depends on neither uε, nor ε ∈ (0, ε0] .
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Proof. By virtue of the completion, we, without any loss of generality, assume uε to be sufficiently
smooth. Let ω be a fixed domain in Ωε�U , measnω > 0 (on Figure 6 the domain is overshadowed).

Fig. 6

We set

uε = vε + cε, cε = (measnω)
−1

∫

ω

uε (x) dx,

∫

ω

vε (x) dx = 0. (1.19)

Clearly,
∥∥∇xvε; L

2 (Ωε)
∥∥ =

∥∥∇uε;L
2 (Ωε)

∥∥ . Furthermore, by the orthogonality condition (1.19), the
following variants of the Poincaré inequality are valid:

∥∥vε;L
2 (ω)

∥∥ ≤ cω

∥∥∇xvε;L
2 (Ω (ε))

∥∥ ,
∥∥vε; L

2 (Ω (ε))
∥∥ ≤ C (Ω (ε) , ω)

∥∥∇xvε;L
2 (Ω (ε))

∥∥ +
∥∥vε; L

2 (ω)
∥∥ ≤ (1.20)

≤ C (Ω (ε) , ω) (1 + cω)
∥∥∇xvε; L

2 (Ω (ε))
∥∥ .

The domain Ω (ε) = Ωε�B
n−1

R/2 × [−d, d] depends regularly on the parameter ε and thus the coefficient
C (Ω (ε) , ω) can be taken independent of ε ∈ (0, ε0] (cf. [30, §7.6.5]).

We now set wε = χvε where χ is a smooth cut-off function such that χ = 1 on Ωε�Ω(ε) and χ = 0
outside of Ωε ∩ U . In view of (1.20), we evidently have

∥∥∇xwε;L
2 (Ωε ∩ U)

∥∥ ≤ cχ

∥∥∇xvε; L
2 (Ωε)

∥∥ = cχ

∥∥∇xuε;L
2 (Ωε)

∥∥ . (1.21)

Let us employ the decomposition

wε (x) = wε (y) + w⊥
ε (x) , wε (y) = (ε + H (y))

−1
∫ ε+H+(y)

−H−(y)

wε (y, z) dz. (1.22)

Since the integral of w⊥
ε over the interval Υε (y) = (−H− (y) , ε + H+ (y)) vanishes, the Poincaré inequal-

ity yields
∫

Ωε∩U

(ε + H (y))
−2 ∣∣w⊥

ε (x)
∣∣2 dx ≤ π2

∫

Ωε∩U

∣∣∂zw
⊥
ε (x)

∣∣2 dx = π2

∫

Ωε∩U

|∂zwε (x)|2 dx. (1.23)

Moreover, the standard way to prove trace inequalities (cf. [31]) leads to the relation

∫

Bn−1

R

(ε + H (y))
−1

(∣∣w⊥
ε (y, ε + H+ (y))

∣∣2 +
∣∣w⊥

ε (y,−H− (y))
∣∣2

)
dy =

=

∫

Ωε∩U

(ε + H (y))
−2 ∂

∂z

[
(2z + H− (y) − ε − H+ (y)) + w⊥

ε (y, z)
2
]
dx ≤

≤
∫

Ωε∩U

(ε + H (y))
−1

(
(ε + H (y))

−1 ∣∣w⊥
ε (y, z)

∣∣ + 2
∣∣∂zw

⊥
ε (y, z)

∣∣
) ∣∣w⊥

ε (y, z)
∣∣ dx ≤

≤
∫

Ωε∩U

(∣∣∂zw
⊥
ε (y, z)

∣∣2 + (ε + H (y))
−1 ∣∣w⊥

ε (y, z)
∣∣2

)
dx.

(1.24)
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On the other hand,

∫

Bn−1

R

(ε + H (y))
−1 |wε (y, ε + H+ (y)) − wε (y,−H− (y))|2 dy =

=

∫

Bn−1

R

(ε + H (y))
−1 ∣∣w⊥

ε (y, ε + H+ (y)) − w⊥
ε (y,−H− (y))

∣∣2 dy ≤

≤ 2

∫

Bn−1

R

(ε + H (y))
−1 ∣∣w⊥

ε (y, ε + H+ (y))
∣∣2 +

∣∣w⊥
ε (y,−H− (y))

∣∣2 dy.

(1.25)

Let us process the component wε in decomposition (1.22). We have

∫

Ωε∩U

|∇ywε (x)|2 dx =

∫

Ωε∩U

∣∣∇yw⊥
ε (x)

∣∣2 dx +

∫

Bn−1

R

(ε + H (y))
−1 |∇ywε (y)|2 dy+

+2

∫

Bn−1

R

∇ywε (y) ·
∫

Υε(y)

∇yw⊥
ε (y, z) dzdy =: I1 + I2 + 2I3.

(1.26)

By (1.2), the relation

c (~ + r)
2m ≤ ε + H (y) ≤ C (~ + r)

2m
, (1.27)

is valid with positive constants c and C, independent of ε ∈ (0, ε0] . Thus,

I2 ≥ c

∫

Bn−1

R

(~ + r)
2m |∇ywε (y)|2 dy ≥ c

∫ R

0

∫

Sn−2

(~ + r)
2m |∂rwε (rθ)|2 rn−2drdsθ ≥

≥ c

∫ R

0

∫

Sn−2

(~ + r)
2m−2

(1 + δn,3 |ln r|)−2 |wε (rθ)|2 rn−2drdsθ =

= c

∫

Bn−1

R

(~ + r)
2m−2

(1 + δn,3 |ln (~ + r)|)−2 |wε (y)|2 dy.

(1.28)

Here we have applied Lemma 1 while observing that the weights on the right of (1.14) and (1.15) are

larger than (~ + r)
2m−2

(1 + δn,3 |ln (~ + r)|)−2
.

It remains to estimate the integral I3 in (1.26). Since

∇y

∫

Υε(y)

w⊥
ε (y, z) dz =

∫

Υε(y)

∇yw⊥
ε (y, z) dz+∇yH+ (y)w⊥

ε (y, ε + H+ (y))+∇yH− (y) w⊥
ε (y,−H− (y)) ,

(1.29)
we recall that the left-hand side of (1.29) vanishes due to (1.22) and, therefore, by (1.2) we obtain

|I3| ≤
∫

Bn−1

R

|∇ywε (y)|
(∣∣w⊥

ε (y, ε + H+ (y))
∣∣ +

∣∣w⊥
ε (y,−H− (y))

∣∣) dy ≤

≤ δI2 + Cδ−1

∫

Bn−1

R

(∣∣w⊥
ε (y, ε + H+ (y))

∣∣2 +
∣∣w⊥

ε (y,−H− (y))
∣∣2

)
dy,

(1.30)

where δ > 0 is arbitrary. The last integral has been estimated in (1.23), even with additional large factor

(ε + H+ (y))
−1

in the integrand. Thus, choosing δ = 1
4 we derive from (1.26), (1.30) and (1.23) that

I1 + I2 ≤ c

∫

Ωε∩U

|∇xwε (x)|2 dx.

We now take into account that, first, ~+ r and ~+ρ are equivalent infinitesimals on Ωε ∩U and, second,

Rn (x) ≤ c (ε + H+ (y))
−1

, Rn (x) ≤ c (~ + r)
−1

(1 + δn,3 |ln (~ + r)|)−1
, x ∈ Ωε ∩ U .

These ensure the inequality (1.17) with uε replaced by wε. Indeed, the necessary estimate for the first
and the second terms on the right-hand side of (1.17) follow from (1.23), (1.28) and (1.24), (1.28),
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respectively, while noticing that the integration in z of wε over the interval Υε (y) brings the additional
factor ε + H+ (y) but this factor is absent in the norms on the surfaces Γ+

ε = Γε ∩ U and Γ−
ε = Γ ∩ U .

A bound for the norm of the differences of the traces wε|Γ±
ε

is directly given by (1.25) because the

difference is not influenced by wε (y) . We emphasize that the Jacobians 1 + |∇yH±|2 are bounded on
Γ±

ε and, hence, cannot spoil the estimates.
The weights in (1.17) and (1.18) are bounded in Ωε ∩ U uniformly in ε ∈ (0, ε0] and that is why the

inequality (1.17) for wε together with relations (1.20) provide the inequality (1.17) for vε. By (1.19) and
(1.16), we thus obtain

|cε| =

∣∣∣∣
∫

Ωε

vε (x) dx

∣∣∣∣ ≤ c
∥∥vε; L

2 (Ωε)
∥∥ ≤ c

∥∥∇xuε;L
2 (Ωε)

∥∥ .

Since ∫

Ωε

Rn (x)
2
dx +

∫

∂Ωε

(
ε + ρ2m

)
Rn (x)

2
dsx ≤ const, ε ∈ (0, ε0] ,

the desired inequality (1.17) is proved. ¥

2 Asymptotics of solutions of limit problems.

2.1 Asymptotics of unbounded energy solutions

Let us consider problem (1.5), (1.6) for ε = 0,

−∆xv0 (x) = f0 (x) , x ∈ Ω0, ∂νv0 (x) = g0 (x) , x ∈ ∂Ω0�O. (2.1)

Here ∂Ω0 stands for the union of surfaces Γ0 and Γ, f0(x) = f(0, x) and g0(x) = 0 for x ∈ Γ, and
g0(x) = g(0, x) for x ∈ Γ0. Passage to the limit ε → 0 in equality (1.7) leads to the compability
condition ∫

Ω0

f0 (x) dx +

∫

∂Ω0

g0 (x) dsx = 0. (2.2)

However, problem (2.1) does not always admits a solution v0 in H1(Ω). According to [10] the weighted
trace inequality of the following Lemma shows that in the case of a smooth function g0 on Γ0, for the
existence of a solution of (2.1), in addition to (2.2) the following relations should be valid

∇k
yg0 (O) = 0, k ≤ m − n + 1

2
, (2.3)

where ∇k
yg is the collection of derivatives of the function g of order k on the surface Γ0.

Lemma 3 For any function v ∈ H1 (Ω0) the inequality

∥∥ρm−1v;L2 (∂Ω0)
∥∥ +

∥∥ρ−1v;L2 (Ω0)
∥∥ ≤ c

∥∥v; H1 (Ω0)
∥∥ , (2.4)

holds, where ρ = |x| and the constant c is independent of v.

In section 3 §1 the approach of [32, 10] to prove inequality (2.4) was used to verify Proposition 2.

Remark 4 In the case of kissing balls (compare Figures 1 and 2 with Figures 3 and 4, respectively)
we have m = 1, which implies that there are no additional conditions (2.3) for any n ≥ 2, i.e., the
solution v ∈ H1 (Ω0) readily exists. However, for the ball Bn

R0 kissing from interior paraboloid (see Fig.
5) and having the same radius R0 of curvature at the top, the exponent m in formula (1.2) becomes 2.
Therefore, the solvability of the most interesting cases of plane and three dimensional problems (2.1) is
lost in the energy classes (we refer the reader to [10] for the details). ¥
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If relations (2.3) are verified then ρ1−mg0 ∈ L2(∂Ω) and, in view of Lemma 3, the right-hand side of
the integral identity

(∇xv0,∇xΨ)Ω0
= (f0, Ψ)Ω0

+ (g0,Ψ)∂Ω0
, Ψ ∈ C∞

(
Ω0�O

)
, (2.5)

is a continuous functional on the space H1 (Ω0). Thus, the Riesz representation theorem in Hilbert space
combined with the Fredholm alternative ensures the solvability of the Neumann problem. Note that the
embedding H1 (Ω0) ⊂ L2 (Ω0) is compact due to inequality (2.4).

In (2.5) and further (·, ·)Ξ denotes the scalar product in the Lebesque space L2(Ξ).

Lemma 5 If ρf0 ∈ L2 (Ω0) and ρ1−mg0 ∈ L2 (Γ0) , problem (2.1) admits a generalized solution v0 ∈
H1 (Ω0) verifying integral identity (2.5) if and only if condition (2.2) is satisfied. Such a solution is
defined up to an additive constant, and meets the inequality

∥∥∇xv0; L
2 (Ω0)

∥∥ ≤ c
(∥∥ρf0; L

2 (Ω0)
∥∥ +

∥∥ρ1−mg0; L
2 (Γ0)

∥∥)
. (2.6)

The solution with null mean value in the domain Ω0 is unique and satisfies the estimate

(∥∥ρm−1v0; L
2 (∂Ω0)

∥∥ +
∥∥ρ−1v0; L

2 (Ω0)
∥∥)

≤ c0

(∥∥ρf0;L
2 (Ω0)

∥∥ +
∥∥ρ1−mg0;L

2 (Γ0)
∥∥)

.

In an artificial way, condition (2.3) or ρ1−mg0 ∈ L2 (Γ0) can be ensured. Few unbounded energy
terms in asymptotics of the solution can be constructed with the remainder in the class H1 (Ω0). The
corresponding procedure is described in [20] (see also [9, 21] for other problems in mathematical physics).
We are going to recall briefly the procedure, namely, the way to compensate the right-hand sides of two
special types. We check that additional discrepancies, resulting from asymptotic terms for the solution,
are of the same kind, but are characterized by smaller growth rate or larger decay rate as x → O. In this
way, in few iterations of the procedure, the main part of the asymptotics of the solution is generated, and
the remainder is defined as the bounded energy solution of problem (2.1) with the corrected right-hand
sides, the decay rate of which in the vicinity of the point O is sufficiently high. Now the condition g0 = 0
is no longer required.

Remark 6 Owing to the Newton-Leibnitz formula

v (y, H+ (y)) − v (y,−H− (y)) =

∫

⊁0(y)

∂zv (y, z) dz;

and inequality (2.4), the restrictions imposed on the data of problem (2.1) can be changed for

ρf0 ∈ L2 (Ω0) , g0 ∈ L2
loc (∂Ω0�O) ,

ρ1−m
(
g+
0 + g−0

)
∈ L2

(
Bn−1

R

)
, ρ1/2

(
g+
0 + g−0

)
∈ L2

(
Bn−1

R

)
,

where g±0 (y) = g0(y,±H(y)) for y ∈ Bn−1
R . We refer the reader to [10] and [33] for details. ¥

The first kind of special right-hand sides is given by

f0 (x) = H (y)
−2

rµf (θ, ln r, ζ) + ..., g±0 (y) =
(
1 + |∇yH± (y)|2

)−1/2

H (y)
−1

rµg± (θ, ln r) + ..., (2.7)

where µ is a number, f and g± are polynomials in ln r and ζ = H(y)−1(z + H−(y)) while coefficients
are smooth functions in θ ∈ Sn−2, and dots stand for the terms of lower order. Moreover, f and g± are
subjected to the orthogonality condition

∫ 1

0

f (θ, ln r, ζ) dζ + g+ (θ, ln r) + g− (θ, ln r) = 0. (2.8)
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By ζ is denoted the fast variable, which describes the behaviour of the solution v0 on the degenerated
ligament Ω0 ∩ U . For the variables y = (y1, . . . , yn−1) the previous scale is retained and only the new
notation η = (η1, . . . , ηn−1) is introduced. Since

∇y = ∇η − H (η)
−1

(ζ∇ηH (η) −∇ηH− (η)) ∂ζ , ∂z = H (η)
−1

∂ζ , (2.9)

the Laplace operator in the curvilinear coordinates (η, ζ) takes the form

∆x = H (η)
−2

∂2
ζ +

[
∇η − H (η)

−1
(ζ∇ηH (η) −∇ηH− (η)) ∂ζ

]2

. (2.10)

The unit outer normal vectors ν± to the surfaces Γ+ = Γ0 ∩ U and Γ− = Γ ∩ U are defined by

ν± (y) =
(
1 + |∇yH± (y)|2

)−1/2

(−∇yH± (y) ,±1) , (2.11)

hence

∂ν± =
(
1 + |∇yH± (y)|2

)−1/2

(±∂z −∇yH± (y) · ∇y) , (2.12)

and the central dot · indicates the scalar product in Rn−1. From (2.12) and (2.9), it follows that

∂ν± =
(
1 + |∇yH± (y)|2

)−1/2

H (η)
−1

(±∂ζ −∇ηH± (η) · (∇η ∓∇ηH± (η) ∂ζ)) . (2.13)

The main asymptotic parts of operators (2.10) and (2.13) are equal to H(η)−2∂2
ζ and H(η)−1∂ζ , respec-

tively. Therefore, asymptotic solution which compensate for the terms separated in (2.7) becomes

rµv (θ, ln r, ζ) , (2.14)

where the same notation as above is used. The angular part v is a solution of Neumann problem for
ordinary differential equation on the interval (0, 1)

−∂2
ζv (θ, ln r, ζ) = f (θ, ln r, ζ) , ζ ∈ (0, 1) , ±∂ζv

(
θ, ln r,

(1 ± 1)

2

)
= g± (θ, ln r) . (2.15)

Relations (2.8) ensure the existence of a solution of (2.15); in addition, the orthogonality condition

∫ 1

0

v (θ, ln r, ζ) dζ = 0, (2.16)

makes it uniquely defined.
We determine the discrepancies left by the asymptotic solution (2.14). Let us recall that the conditions

required in section 1§1 for functions H±, describing the surfaces Γ± (see, e.g., (1.2) and (1.1)), imply

H± (y) = H± (y) + O
(
r2m+1

)
, H (y) = H+ (y) + H− (y) = r2mH0 (θ) ,

±H± (y) =

2m∑

p=2

Hp (y) ± H2m
± (y) ,

(2.17)

where Hp and H2m
± are homogeneous polynomials of order p and 2m, respectively. In this way, by (2.12)

and (2.15), we obtain

rµv (θ, ln r, ζ) |ζ=(1±1)/2 −
(
1 + |∇yH± (y)|2

)−1/2

H (y)
−1

g± (θ, ln r) =

= −
(
1 + |∇yH± (y)|2

)−1/2

H (y)
−1 ∇yH± (y) · (H (y)∇y ∓∇yH± (y) ∂ζ) rµv (θ, ln r, ζ) |ζ=(1±1)/2 ∼

∼
(
1 + |∇yH± (y)|2

)−1/2

H (y)
−1

∞∑

p=

rµ+pg±
p (θ, ln r) .

(2.18)
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Here
rµ+pg±

p (θ, ln r) = ±rµhp (y) ∂ζv (θ, ln r, ζ) |ζ=(1±1)/2 (2.19)

and hp (y) are the coefficients of the expansions of functions |∇yH± (y)|2, obtained in the same way as
in (2.17). Besides, the coefficients are independent of the sign ± for p = 1, . . . , 2m − 1.

In view of relations (2.10), (2.15) and (2.17) we have

−∆xrµv (θ, ln r, ζ) − H (y)
−2

rµf (θ, ln r, ζ) =

=
[
∇y − H (y)

−1
(ζ∇yH (y) −∇yH− (y)) ∂ζ

]2

rµv (θ, ln r, ζ) ∼

∼ H (y)
−2

∞∑

p=2

rµ+pfp (θ, ln r, ζ)

(2.20)

with
rµ+pfp (θ, ln r, ζ) = −hp (y) ∂2

ζ rµv (θ, ln r, ζ) , p = 2, ...., 2m − 1. (2.21)

According to (2.16) and (2.15), (2.8), terms (2.19) and (2.21) in formal series of (2.18) and (2.20)
satisfy the orthogonality conditions of type (2.8), while the terms g±

p and fp for p ≥ 2m do not. We set

Fp (θ, ln r) = H0 (θ)
−1

[∫ 1

0

fp (θ, ln r, ζ) dζ + g+
p (θ, ln r) + g−

p (θ, ln r)

]
. (2.22)

Three functions fp and g−
p , g+

p −H0Fp verify the orthogonality condition. Thus, it remains to compensate
discrepancy (2.22) in the Neumann condition on the upper surface Γ+ = Γ0 ∩ U .

The second kind of special right-hand sides is compatible with data (1.8) or (2.22), namely,

f0 (x) = ..., g−0 (y) = ..., g+
0 (y) =

(
1 + |∇yH+ (y)|2

)−1/2

H (y) rµF (θ, ln r) + ... (2.23)

The asymptotic solution, which compensates for the terms given by (2.23), reads

rµ+2−2mV (θ, ln r) . (2.24)

According to (2.10) and (2.12), we have

−∆xrµ+2−2mV (θ, ln r) = −∆yrµ+2−2mV (θ, ln r) , (2.25)

∂ν±rµ+2−2mV (θ, ln r) = −
(
1 + |∇yH± (y)|2

)−1/2

∇yH± (y) · ∇yrµ+2−2mV (θ, ln r) .

In view of (1.2) and (2.17) expressions (2.25) can be represented by formal series with the terms,
analogous to (2.20) and (2.18),

H (y)
−2

rµ+pF0
p (θ, ln r) ,

(
1 + |∇yH± (y)|2

)−1/2

H (y)
−1

rµ+pG±
p (θ, ln r) . (2.26)

Here p = 1, 2, . . . and
F0

q = 0, G±
q = G0

q if q = 1, ..., 2m − 1; (2.27)

rµ+2mF0
2m (θ, ln r) = −H2 (y)∆yrµ+2−2mV (θ, ln r) , (2.28)

rµ+2mG±
2m (θ, ln r) = rµ+2mG0

2m (θ, ln r) − H (y)∇yH
2m
± (y) · ∇yrµ+2−2mV (θ, ln r) .

It is clear that the orthogonality conditions (2.8) hold for quantities in (2.27). Thus the terms in (2.26)
with the indices p = 1, . . . , 2m−1, form the special right-hand sides of the first kind, of lower order, since
p ≥ 1, compared to terms (2.7). On the other hand, in general, by expressions (2.28) the compability
conditions are not true. The expressions are introduced in order to compensate for the special right-hand
sides in (2.23) of the second kind. The quantity H(y)rµF(θ, ln r) is of the same polynomial order rµ+2m
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as rµ+2mG+
2m(θ, ln r). Accordingly, we take the difference of the second quantity and the first one and

we subject this difference together with rµ+2mF0
2m(θ, ln r) and rµ+2mG−

2m(θ, ln r) to the orthogonality
conditions (2.8). In other words, these right-hand sides become of the first kind artificially.

The compability condition takes the form

−∇y · H (y)∇yrµ+2−2mV (θ, ln r) = rµF (θ, ln r) , y ∈ Rn−1� {0} , (2.29)

which is but a degenerate elliptic differential equation on punctured space. In the following section it is
proved that for each right-hand side F, which is a polynomial with respect to ln r and a smooth function
of the variable θ ∈ Sn−2, equation (2.29) admits at least one solution (2.24), where V is a polynomial in
ln r with smooth coefficients in θ ∈ Sn−2. In the sequel we also explain why the data and solutions are
assumed to be polynomials in ln r.

Remark 7 For n = 2 the set Rn−1� {0} in (2.29) is the union of two non connected rays R±, i.e.,
model problem (2.29) becomes a system of two ordinary differential equations. The observation has no
influence on the result stated above. However, it makes sense to consider the particular case of n = 2
separately, and we refer the reader to sections 3 §3 and 5 §4 for further results on the plane problem (see
also Remark 16). ¥

The right-hand sides of form (2.7) and (2.23) are compensated by solutions (2.14) and (2.24), which
leave discrepancies of the same type, but of lower order. Hence, the procedure of formal asymptotics
expansions is completed.

2.2 Degenerated model equation and the second limit problem

Let n ≥ 3. Besides the equation in the punctured space introduced in section 1 §2

L (y,∇y) v (y) := −∇y · H (y)∇yv (y) = f (y) , y ∈ Rn−1� {0} , (2.30)

we consider closely related equation (1.13), posed on the whole space Rn−1, in particular for n = 2.
First, we introduce the Kondratiev function spaces [14], denoted by Vl

β

(
Rn−1

)
and V l

β

(
Rn−1

)
, with the

norms

∥∥v;Vl
β

(
Rn−1

)∥∥ =

(
l∑

k=0

∥∥rβ−l+k∇k
yv; L2

(
Rn−1

)∥∥2

)1/2

, (2.31)

∥∥w; V l
β

(
Rn−1

)∥∥ =

(
l∑

k=0

∥∥∥(1 + r)
β−l+k ∇k

yw; L2
(
Rn−1

)∥∥∥
2
)1/2

. (2.32)

The first space is the completion of the linear set C∞
c (Rn−1� {0}) of smooth functions with compact

supports disjoint from the origin y = 0 in the homogeneous norm (2.31). The space contains functions
with singularities at the origin y = 0. Since the non homogeneous norm (2.32) includes non degenerate
weight multiplier, the space V l

β

(
Rn−1

)
is embedded into H l

loc

(
Rn−1

)
. In addition, there is continuous

embedding V l
β

(
Rn−1

)
⊂ V p

γ

(
Rn−1

)
for all l ≥ p and β − l ≥ γ − p, which becomes compact only

for the strict inequalities l > p and β − l > γ − p. On the other hand, the continuous embedding
Vl

β

(
Rn−1

)
⊂ Vp

γ

(
Rn−1

)
takes place if and only if l ≥ p and β − l = γ − p, and never is compact.

We equip equations (2.30) and (1.13) with the mappings

v ∈ Vl+1
β

(
Rn−1

)
7−→ Al

βv = Lv ∈ Vl−1
β−2m

(
Rn−1

)
, (2.33)

w ∈ V l+1
β

(
Rn−1

)
7−→ Al

βw = Lw ∈ V l−1
β−2m

(
Rn−1

)
, (2.34)

where l ∈ N0 = {0, 1, 2, . . . } is the index of regularity and β ∈ R is the weight index. The case of l = 0
should be considered separately; in such the case the generalized solution v ∈ V 1

β

(
Rn−1

)
satisfies the

integral identity (see [31])
(H∇yv,∇yV )Rn−1 = (f, V )Rn−1 (2.35)

12



with any test function V ∈ V 1
2m−β

(
Rn−1

)
, and a linear and continuous functional on the space V 1

2m−β

(
Rn−1

)

on the right, i.e., f ∈ V −1
β−2m

(
Rn−1

)
. Similar interpretation can be applied to the mapping A1

β .
Both equations can be considered in the framework of general theory of elliptic problems in domains

with conical point; we refer the reader to the key papers [14], [15], [16], [17], and to monographs [18],
[19]. The punctured space Rn−1� {0} is regarded as a complete cone and in view of (1.2) the operator
L admits the representation

L (y,∇y) = r2m−2L (θ,∇θ, r∂r) . (2.36)

Finally, operator (2.36) is the main part of the operator L (y,∇y) = −∇y · (1 + H(y))∇y at infinity.
For an application of the general theory mentioned above, the first step concerns the analysis of the

spectral problem L (θ,∇θ, λ)Φ (θ) = 0 on the unit sphere Sn−2, which in the full form reads

−∇θ · H0 (θ)∇θΦ(θ) = λ (λ + 2m + n − 3)H0 (θ)Φ (θ) , θ ∈ Sn−2, (2.37)

where ∇θ stands for spherical gradient. We present two simple statements. The first follows from the
theory of selfadjoint operators in Hilbert spaces (see, e.g., [34]), the second is a result borrowed from
[14] (see also [18]) on polynomial solutions

v (y) = rλΦ(θ) (2.38)

of the model problem in the cone K = Rn−1� {0}, the case of n = 2 is discussed in Remark 16;

Lemma 8 The spectral equation

−∇θ · H0 (θ)∇θΦ (θ) = ΛH0 (θ)Φ (θ) , θ ∈ Sn−2, (2.39)

admits infinite number of eigenvalues

0 = Λ0 < Λ1 ≤ Λ2 ≤ ... ≤ Λk ≤ ... → +∞, (2.40)

which are listed in (2.40) taking into account their multiplicities. The corresponding eigenfunctions

∥∥H0; L
1
(
Sn−2

)∥∥−1/2
= Φ0, Φ1, Φ2, ...,Φk, ... (2.41)

are smooth on the sphere Sn−2 and can be normalized by the orthogonality conditions

(H0Φj , Φk)Sn−2 = δj,k, (2.42)

where j, k ∈ N0 and δj,k is the Kronecker symbol.

Lemma 9 If the solution of the homogeneous equation (2.30) is given by (2.38) and Φ 6= 0, then λ is
one of the numbers

λ±
k =

1

2

(
3 − n − 2m ±

√
(3 − n − 2m)

2
+ 4Λk

)
, (2.43)

and Φ is an eigenfunction of equation (2.39) corresponding to the eigenvalue Λk.

We present also some results which follows from the general theory combined with Lemma 9. Such
results are given in [14] and we indicate the corresponding statement in [18] to unify the references.

Proposition 10 ([14], [18, Thm. 3.5.1 and Thm. 4.1.2]) The mapping (2.33) is an isomorphism, and
the mapping (2.34) is Fredholm if and only if the number l − β − (n − 3)/2 is not in the set defined by
(2.43).
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Proposition 11 ([14], [18, Thm.3.5.6]) Let f ∈ Vl−1
β1−2m

(
Rn−1

)
∩ Vl−1

β2−2m

(
Rn−1

)
, β1 < β2, the num-

bers l + 2 − βi − n do not belong to set (2.43) and vi ∈ Vl+1
βi

(
Rn−1

)
are solutions of equation (2.30).

Then
v1 (y) − v2 (y) =

∑
c±k rλ±

k Φk (θ) , (2.44)

where the summation is performed over indices from set (2.43) which belong to the interval
(

l − β2 −
1

2
(n − 3) , l − β1 −

1

2
(n − 3)

)
. (2.45)

If interval (2.45) is free of the numbers λ±
k , then the right-hand side in (2.44) is null and the solutions

v1 and v2 coincide. The coefficients c±k in (2.44) admit the estimate

∣∣c±k
∣∣ ≤ c

(∥∥∥f ;Vl−1
β1−2m

(
Rn−1

)∥∥∥ +
∥∥∥f ;Vl−1

β2−2m

(
Rn−1

)∥∥∥
)

. (2.46)

Proposition 12 ([14], [18, Lemma 3.5.11]) For arbitrary number µ and polynomial F in ln r with
smooth coefficients in θ ∈ Sn−1, equation (2.29) has solution (2.23), which is a smooth function of θ
and a polynomial in ln r. If µ + 2 − 2m is not included in set (2.43), then degV = degF, otherwise,
deg V = 1+ deg F for µ + 2 − 2m = λ±

k .

Remark 13 If µ = 0 and F(θ) =const, then for m = 1 the index 2 − 2m coincides with λ+
0 = 0 and a

solution to problem (2.29) takes the form

C1 ln r + Ψ (θ) + C0 (2.47)

where C1 is a constant, the function Ψ ∈ C∞(Sn−2) has the null mean value on the sphere Sn−2, and
C0 is an arbitrary constant. We point out that

0 = λ+
0 ≥ 2 − 2m > λ−

0 = 3 − n − 2m,

which means, in view of Proposition 12, that for m = 2, 3, . . . equation (2.29) with the constant right-hand
side admits polynomial solution r2−2mΨ(θ). ¥

Now we are in position to establish the unique solubility of equation (1.13)

Theorem 14 Mapping (2.34) turns out to be an isomorphism if and only if

l − β − 1

2
(n − 3) ∈

(
λ−

0 , λ+
0

)
= (3 − n − 2m, 0) . (2.48)

Proof. Since L is the main part of the operator L at infinity, by Proposition 11 the dimension
d of the kernel kerAl

β = {v ∈ V l+1
β

(
Rn−1

)
: Lv = 0} is independent of the index β under condition

(2.48). From a general result in [15] (see also [18, Thm. 3.4.2]), the operators Al
β and Al

β∗
, where

β∗ = 2l + 2m − β, turn out to be formally adjoint, which means that from Fredholm alternative we can
deduce that subspaces cokerAl

β ≈ kerAl
β∗

are of the same dimension d. We point out that the indices
β and β∗ verify (2.48) simultaneously. We fix the weight index β0 = l + m which is exactly in the
middle of the interval in (2.48), and note that the inclusion v ∈ V l+1

β0

(
Rn−1

)
⊂ V 1

m

(
Rn−1

)
implies the

convergence of integral

∫

Rn−1

(1 + H(y))|∇yv(y)|2dy. Therefore, the only solution of the homogeneous

problem (1.13) in the class V l+1
l+m

(
Rn−1

)
is a constant, but non-null constants are absent in the class,

since by the condition l − β − (n − 3)/2 > −λ−
0 = 0 the integral

∫

Rn−1

(1 + r)2(β−l−1)dy is divergent.

Hence, d = 0 and, in view of Proposition 10 and Lemma 9, the sufficiency of condition (2.48) is proved.
The necessity is checked in the standard way (see e.g., [18, §4.1]), namely for β = l − 1

2 (n − 3) − λ±
0

operator Al
β looses Fredholm property by Proposition 10, and for l − β − (n − 3)/2 < λ−

0 (resp. for

l − β − (n − 3)/2 > λ+
0 ) the kernel of operator Al

β (resp. the kernel of operator Al
β∗

or cokernel of

operator Al
β) contains a constant. ¥
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Remark 15 There is another way to prove Theorem 14. At the first step the existence of the unique
generalized solution can be shown (see the integral identity (2.35)) in the energy class V 1

m

(
Rn−1

)
. In

the second step, the regularity of the generalized solution can be improved, by the method [14]. Finally,
the existence result is generalized to interval (2.48) by applying of Proposition 11 on the asymptotics of
solutions to the model problem (2.30). ¥

Remark 16 If n = 2 then (1.13) is an ordinary differential equation on the real axis R ∋ y, and the
model homogeneous problem (2.30), which implies two equations (see Remark 7), admits two pairs of
linearly independent solutions

v±
0 (y) = 1, v±

1 (y) = |y|1−2m
, ±y > 0.

In other words, λ+
0 = 0 and λ−

0 = 1 − 2m are the only indices in (2.43). Theorem 14 is still valid,
however instead of one constant and bounded solution for n ≥ 3 there are two linearly independent
bounded solutions of homogeneous equation (1.13) for n = 2 of the form

W0 (η) = 1, W1 (η) =

∫ η

0

(
1 + H (η)

2
)−1

dη,

where W1 is an odd function of the variable η ∈ R. ¥

2.3 Asymptotics of bounded energy solution of the limit problem in vicinity

of point O
In section 1§2 it is shown how to construct unbounded energy components of solutions to problem (2.1)
with bad right-hand sides. Such components form the main terms of asymptotics of the solution v0 with
infinite Dirichlet integral. However, it is still not explained, how to construct the asymptotic remainder
ṽ0 ∈ H1(Ω). The same question is raised in the case of good right-hand sides. The answer is given
in paper [20] in much more complicated situation, but for the convenience of the reader a simple and
independent proof is presented for the problem under consideration. Beside that, owing to the algorithm
of formal asymptotic construction in section 1§2, we can suppose that the right-hand sides enjoy the
sufficient decay rate for x → O.

All arguments and results can be applied to the problem with n = 2; however the existing results
for the plane domains with peaks singularities on the boundaries are much more advanced and include
e.g., further estimates in weighted Hölder and Lp-spaces along with the asymptotics for solutions with
insufficient smoothness of data (we refer the reader to the papers [12, 13, 16] for results in this direction).
In contrast, most of such questions are still open for the singularities associated with two tangent surfaces
in Rn with n ≥ 3.

Let v0 ∈ H1(Ω) be a solution to problem (2.1), or equivalently, to identity (2.5). We select the test
function ψ(y), which equals to Ψ(y) on the degenerate ligament Ω0 ∩ U , and to zero otherwise, with
Ψ ∈ C∞

c (Bn−1
R � {0}). Then identity (2.5) takes the form

∫

Bn−1

R

∇yΨ (y) ·
∫

Υ0(y)

∇yv0 (y, z) dzdy =

∫

Bn−1

R

Ψ(y)

∫

Υ0(y)

f0 (y, z) dzdy+ (2.49)

+
∑

±

∫

Bn−1

R

Ψ(y) g±0 (y)
(
1 + |∇yH± (y)|2

)1/2

dy.

In the same way as (1.29) we obtain

∫

Υ0(y)

∇yv0 (y, z) dz = ∇yH (y) v0 (y) −
∑

±

∫

Bn−1

R

v0 (y,±H± (y))∇yH± (y) , (2.50)

where v0 (y) = H (y)
−1 ∫

Υ0(y)
v0 (y, z) dz (compare with formula (1.22) for z = 0).
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Lemma 17 If r−σ∂zv0 ∈ L2(Ω0 ∩ U) for some σ ≥ 0 then
∥∥r−σ−m (v0(·) − v0 (·,±H± (·))) ; L2

(
Bn−1

R

)∥∥ ≤ c
∥∥r−σ∂zv0;L

2 (Ω0 ∩ U)
∥∥ . (2.51)

Proof By the Newton-Leibniz formula

v0 (y, z) − v0 (y,−H− (y)) =

∫
z

−H−(y)

∂zv0 (y, z) dz

and by integration over Υ0 (y) ∋ z, we have

H (y) (v0 (y) − v0 (y,−H− (y))) =

∫ H+(y)

−H−(y)

∫
z

−H−(y)

∂zv0 (y, z) dzdz = (2.52)

=

∫ H+(y)

−H−(y)

(H+ (y) − z) ∂zv0 (y, z) dz.

Multiplying equality (2.52), after taking square of both sides, by r−2σH (y)
−3

, and integrating over
Bn−1

R ∋ y lead to

∫

Bn−1

R

r−2σH (y)
−1 |v0 (y) − v0 (y,−H− (y))|2 dy ≤

≤
∫

Bn−1

R

r−2σH (y)
−3

∣∣∣∣∣

∫

Υ0(y)

(H+ (y) − z) ∂zv0 (y, z) dz

∣∣∣∣∣

2

dy ≤

≤ c

∫

Bn−1

R

r−2σ

∫

Υ0(y)

|∂zv0 (y, z)|2 dydz.

To complete the proof, it suffices to make the change −H− 7→ H+ in the calculation. ¥

Taking into account (2.50), we rewrite (2.49) in the form
∫

Bn−1

R

H (y)∇yv0 (y)∇yΨ(y) dy =

∫

Bn−1

R

F0 (y)Ψ (y) dy +

∫

Bn−1

R

F1 (y) · ∇yΨ(y) dy (2.53)

where
F1 (y) = (H (y) − H (y))∇yv0 (y) +

∑

±

(v0 (y,±H± (y)) − v0 (y))∇yH± (y) ,

F0 (y) =

∫

Υ0(y)

f0 (y, z) dz +
∑

±

g±0 (y)
(
1 + |∇yH± (y)|2

)1/2

.
(2.54)

Theorem 18 Let σ and τ be two positive numbers, such that τ ∈ (σ, 1 + σ] and the interval

(
σ − m − 1

2
(n − 3) , τ − m − 1

2
(n − 3)

)
(2.55)

contains (compare with (2.45)) the exponents λ±
k , . . . , λ±

k+κ−1 and the interval ends σ − m − 1
2 (n − 3),

τ −m− 1
2 (n − 3) are not in set (2.43). Let v0 ∈ H1(Ω) be a solution to problem (2.1) with the right-hand

sides
ρ1−τf0 ∈ L2 (Ω0) , ρ1−τ−mg0 ∈ L2 (∂Ω0) (2.56)

and, in addition,
ρ−σ∇yv0 ∈ L2 (Ω0) , ρ−1−σv0 ∈ L2 (Ω0) . (2.57)

Then the representation

v0 (x) = χ (y)

κ−1∑

p=0

cpr
λ+

k+pΦk+p (θ) + ṽ0 (x) , (2.58)
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is valid where χ is a smooth cut-off function, which vanishes outside the degenerate ligament and is equal
to one on Ω0∩U for r < R/2, ck, . . . , ck+κ−1 are constants, ṽ0 is the remainder with ρ−τ∇xṽ0 ∈ L2(Ω0),
ρ−1−τ ṽ0 ∈ L2(Ω0). Furthemore, the estimate

κ−1∑

p=0

|cp| +
∥∥ρ−τ∇xṽ0; L

2 (Ω0)
∥∥ +

∥∥ρ−1−τ ṽ0;L
2 (Ω0)

∥∥ ≤ cN , (2.59)

holds true where N stands for the sum of norms of functions (2.56) and (2.57) in the indicated spaces.

Proof. Asymptotic formula (2.58) and estimate (2.56) are local, namely, taking into account that
ρ > c > 0 for x ∈ Ω0�U , the required properties of the remainder outside a vicinity of the point O
follow from inclusions (2.57). Therefore, after multiplication of v0 by an appropriate cut-off function χ
we assume that the solution v0 as well as the right-hand sides f0 and g0 vanish outside the set Ω0�U .
By definition of the mean value v0, inclusions (2.57) yield

ρ−1−σ+mv0 ∈ L2
(
Bn−1

R

)
, ρ−σ+m∇xv0 ∈ L2

(
Bn−1

R

)
, (2.60)

i.e., v0 ∈ V1
−σ−m

(
Bn−1

R

)
is a solution of variational problem (2.53). In addition, in view of (1.2) and

(2.51), respectively, we obtain

(H − H)∇yv0 ∈ V0
−σ−m−1

(
Bn−1

R

)
,

(v0 (·,±H±) − v0)∇yH± ∈ V0
−σ−m−1

(
Bn−1

R

)
.

Beside that, by (2.55), we have

∫

Υ0(y)

f0 (·, z) dz ∈ V0
−τ−m+1

(
Bn−1

R

)
,

which, owing to the assumed inequality −σ−1 ≤ −τ, means that expressions (2.54) satisfy the inclusions

F0 ∈ V0
−τ−m+1

(
Bn−1

R

)
, F1 ∈ V0

−τ−m

(
Bn−1

R

)
. (2.61)

In other words, the right-hand side (2.53) is a continuous linear functional on the space V1
τ+m

(
Bn−1

R

)
.

Thus, all assumptions of Proposition 11 are verified, for the choice of exponents β1 = −τ+m, β2 = −σ+m
and l = 0. As a result, taking into account the required bounds on the indices σ and τ , asymptotic
formula (2.44) is transformed into

v0 (y) = χ (y)

κ−1∑

p=0

cpr
λ+

k+pΦk+p (θ) + ṽ0 (x) . (2.62)

We point out that Proposition 11 covers two singular points of the complete cone K = Rn−1� {0},
namely, the origin and the point at infinity. At the same time, formula (2.62) delivers the decomposition
of the function v0 for r → 0, therefore, we can include a cut-off function χ which is equal to one in the
ball Bn−1

R/2 and null outside the ball Bn−1
R . In this way the remainder (2.62) is still included in the space

V1
−τ−m

(
Bn−1

R

)
and for r > R. Beside that, inequality (2.46) and Proposition 10 imply the estimate

κ−1∑

p=0

|cp| +
∥∥∥ṽ0;V

1
−τ−m

(
Bn−1

R

)∥∥∥ ≤ cN . (2.63)

Note that the norms of functions (2.60) and (2.61) do not exceed cN .
Since ∥∥∥ρ−τ∇xṽ0; L

2 (Ω0)
∥∥∥ +

∥∥∥ρ−1−τ ṽ0; L
2 (Ω0)

∥∥∥ ≤ c
∥∥∥ṽ0;V

1
−τ−m

(
Bn−1

R

)∥∥∥ , (2.64)
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it remains to analyse the difference v⊥0 (y, z) = v0 (y, z) − v0 (y), subject to the orthogonality condition

∫

Υ0(y)

v⊥
0 (y, z) dz = 0, y ∈ Bn−1

R . (2.65)

To this end, we introduce the continuous weight function

P (y) =

{ (
1 + tr−1

)τ
, if r > r,(

1 + tr−1
)τ

, if r ≤ r,
(2.66)

where t and r are small positive parameters. Derivatives of functions (2.66) vanish on the ball Bn−1
r

and
satisfy

|∇yP (y)| ≤ τtr−2P (y) . (2.67)

We select the test function ψ = P 2v⊥
0 ∈ H1(Ω0 ∩U) in the integral identity (2.5), and recall that v0 = 0

in the exterior of Ω0 ∩ U . Denote V0 = Pv0, and respectively V ⊥
0 = Pv⊥

0 , V 0 = Pv0. We then obtain

(
Pf0, V

⊥
0

)
Ω0

+
∑

±

(
Pg±0 , V ⊥

0

)
Γ± =

(
∇xv0,∇x

(
P 2v⊥

0

))
Ω0

=

=
(
P∇xv0,∇xV ⊥

0

)
Ω0

+
(
P∇yv0, V

⊥
0 P−1∇yP

)
Ω0

=

=
(
∇xV0,∇xV ⊥

0

)
Ω0

−
(
V0P

−1∇yP,∇yV ⊥
0

)
Ω0

+

+
(
∇yV0, V

⊥
0 P−1∇yP

)
Ω0

−
(
V0P

−1∇yP, V ⊥
0 P−1∇yP

)
Ω0

.

(2.68)

The orthogonality condition (2.65) leads to

(
V0P

−1∇yP, V ⊥
0 P−1∇yP

)
Ω0

=
∥∥V ⊥

0 P−1∇yP ; L2 (Ω0 ∩ U)
∥∥2

,(
∇yV0, V

⊥
0 P−1∇yP

)
Ω0

=
(
∇yV ⊥

0 , V ⊥
0 P−1∇yP

)
Ω0

.
(2.69)

Taking into account formula (2.50), we find

∣∣∣
(
∇yV 0,∇yV ⊥

0

)
Ω0

∣∣∣ =

∣∣∣∣∣

∫

Bn−1

R

∇yV 0 (y)

∫

Υ0(y)

∇yV ⊥
0 (y, z) dzdy

∣∣∣∣∣ ≤

≤ c

∫

Bn−1

R

∣∣∇yV 0 (y)
∣∣ r

∑

±

∣∣V ⊥
0 (y,±H± (y))

∣∣ dy,

∣∣∣
(
V 0P

−1∇yP,∇yV ⊥
0

)
Ω0

∣∣∣ ≤ c

∫

Bn−1

R

∣∣V 0 (y)
∣∣ |∇yP (y)|

P (y) r
∑

±

∣∣V ⊥
0 (y,±H± (y))

∣∣ dy.

(2.70)

Note that the multiplier r appears in (2.70) due to the estimate |∇yH±(y) ≤ cr (see (1.2))). We use
also the Poincaré inequality combined with the trace inequality, which are valid by condition (2.65) and
the relation H(y) ≥ cr2m, c > 0:

∫

Ω0∩U

r−4m
∣∣V ⊥

0 (x)
∣∣2 dx +

∑

±

∫

Bn−1

R

r−2m
∣∣V ⊥

0 (y,±H± (y))
∣∣2 dy ≤ c

∥∥∇xV ⊥
0 ; L2 (Ω0 ∩ U)

∥∥2
. (2.71)

Collecting formulae (2.68)-(2.71), we derive that

∥∥∇xV ⊥
0 ; L2 (Ω0 ∩ U)

∥∥2 −
∥∥V ⊥

0 P−1∇yP ; L2 (Ω0 ∩ U)
∥∥2

=

=
(
Pf0, V

⊥
0

)
Ω0∩U

+
∑

±

(
Pg±0 , V ⊥

0

)
Γ± +

(
V 0P

−1∇yP,∇yV ⊥
0

)
Ω0∩U

−
(
∇yV 0,∇yV ⊥

0

)
Ω0∩U

≤

≤ c
∥∥∇xV ⊥

0 ; L2 (Ω0 ∩ U)
∥∥

{
∥∥r2mPf0; L

2 (Ω0 ∩ U)
∥∥ +

∑

±

∥∥rmPg±0 ; L2 (Γ±)
∥∥+

+
∥∥r1+mv0∇yP ; L2

(
Bn−1

R

)∥∥ +
∥∥rmP∇yv0; L

2
(
Bn−1

R

)∥∥}
.

(2.72)
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Inclusions (2.56), (2.60), formulae (2.66), (2.67) for the weight function P , and also the relations

1 − τ ≤ 2m − τ, 1 − τ − m ≤ m − τ, −1 − σ − m ≤ −τ − m ≤ 1 + m − τ − 2,
−σ − m ≤ 1 − τ − m ≤ m − τ,

allow us to compare weight exponents of r in (2.56), (2.60) and (2.72), and show that the sum of norms
in the curly brackets in (2.72) is bounded by the quantity c(t), depending on the parameter t but
independent of the parameter r in the definition of P . Beside that, by inequalities (2.67) and (2.71), we
obtain ∥∥V ⊥

0 P−1∇yP ; L2 (Ω0 ∩ U)
∥∥ ≤ ct

∥∥r−2V ⊥
0 ; L2 (Ω0 ∩ U)

∥∥ ≤
≤ ct

∥∥r−2mV ⊥
0 ; L2 (Ω0 ∩ U)

∥∥ ≤ ct
∥∥∇xV ⊥

0 ; L2 (Ω0 ∩ U)
∥∥ .

Therefore, the quantity t can be fixed sufficiently small, such that the left-hand side of (2.72) becomes
greater than a half of the squared norm ‖∇xV ⊥

0 ; L2 (Ω0 ∩ U) ‖. Dividing estimate (2.72), without the
middle part, by the latter norm, passage to the limit r → 0+ leads to

∥∥∥∇x

((
1 + tr−1

)τ
v⊥
0

)
; L2 (Ω0 ∩ U)

∥∥∥ ≤ cN .

Therefore, by the application of inequality (2.71), we obtain
∥∥r−2m−τv⊥

0 ; L2 (Ω0 ∩ U)
∥∥ +

∥∥r−τ∇xv⊥0 ; L2 (Ω0 ∩ U)
∥∥ ≤ cN . (2.73)

This inequality, in fact, implies the required estimate for the component v⊥0 , i.e., inequality (2.59) follows
from (2.63), (2.64) and (2.73). ¥

Theorem 18 gives the main terms of the required expansion of bounded energy solution to problem
(2.1). By combination of the formal procedure to construct the formal asymptotics from Section 1§2
with iterative application of Theorem 18, one can determine the full asymptotic expansion of the solution
v0 in the case when the right-hand sides f0 and g0 admit power series expansions.

3 Construction of asymptotics

3.1 Super-critical case.

Let f0 ∈ L2 (Ω0) , g0 ∈ C (Γ0) and

g (O) 6= 0, n < 2m − 1, n ≥ 2. (3.1)

Relations (3.1) deny condition (2.3) for the existence of the solution v0 to the first limit problem (2.1).
Consequently, the main asymptotic term of the solution uε ∈ H1 (Ωε) of the singular perturbed problem
(1.5), (1.6) becomes of the boundary layer type and it is described in the rapid variables (1.10). We
accept the following asymptotic ansatz

uε (x) = χ0 (y) ~2−2mw0

(
~−1y

)
+ ûε (x) − ĉε (3.2)

where χ0 ∈ C∞
c

(
Bn−1

R

)
is a cut-off function such that χ0 (y) = 1 for r < R

4 and χ0χ = χ0 with the cut-off
function χ introduced in Theorem 18. Note that we use the notation χ0(y) for the function which is non-

null only on the ligament Ωε∩U . Furthermore, in (3.2) we have ~ = ε
1

2m , ûε is the asymptotic remainder
to be estimated and w0 implies a solution to the second limit problem (1.13) with the right-hand side

F (η) = g0 (O) . (3.3)

The constant function (3.3) belongs to the space V l−1
β−2m

(
Rn−1

)
(see (2.32)) with any smoothness expo-

nent l ∈ N and the weight exponent

β = −δ + l + 2m − n + 1

2
(3.4)
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where δ is positive and small. Hence, Theorem 14 supplies the equation (1.13), (3.3) with a unique
solution w0 ∈ V l+1

β

(
Rn−1

)
because, with δ ∈ (0, 2m − 2) , exponent (3.4) verifies requirement (2.48):

l − β − n − 3

2
= δ − 2m + 2.

Remark 19 The constant

ĉε = ~2−2m

∫

Bn−1

R

χ0 (y)w0

(
~−1y

)
dy

is chosen such that the function ûε inherits the orthogonality condition (1.16) from uε. Note that ĉε =
O

(
~2−2m+n−1

)
because

∫

Rn−1

|w0 (η)| dη ≤
∥∥∥w0; V

l+1
β

(
Rn−1

)∥∥∥
(∫

Bn−1

R

(1 + |η|)2(l+1−β)
dη

)1/2

and the last integral converges while δ ∈ (0, 2m − n − 1) in (3.4) (see (3.1)). ¥

Lemma 20 The solution w0 admits the asymptotic form

w0 (η) = X (η)V0 (η) + w̃0 (η) (3.5)

where X ∈ C∞
(
Rn−1

)
is a cut-off function such that X (η) = 1 for |η| > 2 and X (η) = 0 for

|η| < 1,V0 (η) := r2−2mΨ(θ) is the power-law solution of the model equation (2.29) with µ = 0 and
F (θ, ln r) = g0 (0) (cf. Remark 13) while the remainder w̃0 falls into V l+1

γ

(
Rn−1

)
with any l ∈ N and

γ < min

{
l + 4m − n + 1

2
, l + 2m +

n − 3

2

}
. (3.6)

Proof. Outside a neighborhood of the coordinate origin y = 0, the function w̃0 = w0 − X |η|2−2m
Ψ

satisfies the equation

L (η,∇η) w̃0 (η) = (L (η,∇η) − L (η,∇η))w0 (η) = ∆ηw0 (η)

while ∆ηw0 ∈ V l−1
β

(
Rn−1

)
. Comparing formulas (3.4) and (3.6), we see that it is possible to choose

δ > 0 in (3.4) such that ∆ηw0 ∈ V l−1
γ−2m

(
Rn−1

)
. Hence, the conditions in Proposition 11 are satisfied

while interval (2.45) lays inside the interval
(
λ−

0 , λ+
0

)
in (2.48) and, therefore, is free of exponents (2.43).

This means that w̃0 ∈ V l+1
γ

(
Rn−1

)
. ¥

By (2.12), right hand sides in the problem (1.5), (1.6) for the remainder ûε,

−∆xûε (x) = f (ε, x) + f̂ (ε, x) , x ∈ Ωε,
∂ν ûε (x) = g (ε, y, z − ε) − χ0 (y) g (0,O) + ĝ+ (ε, x) , x ∈ Γε,
∂ν ûε (x) = ĝ− (ε, x) , x ∈ Γ,

(3.7)

take the form

f̂ (ε, x) = ~2−2m∆y

(
χ0 (y)w0

(
~−1y

))
,

ĝ− (ε, x) = ~2−2m
(
1 + |∇yH− (y)|2

)−1/2

∇yH− (y) · ∇y

(
χ0 (y)w0

(
~−1y

))
,

ĝ+ (ε, x) = χ (y) g (0,O) + ~2−2m
(
1 + |∇yH+ (y)|2

)−1/2

∇yH+ (y) · ∇y

(
χ0 (y)w0

(
~−1y

))
.

(3.8)

Note that supports of functions (3.8) belong to Ωε ∩ U , Γ−
ε and Γ+

ε , respectively. We multiply the
equation in (3.7) with ûε (x) , integrate over Ωε taking the boundary conditions into account. As a
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result, we obtain

∥∥∇xûε; L
2 (Ωε)

∥∥2
=

(∫

Ωε

fûεdx +

∫

Γε

(g − χ0g (0,O)) ûεdsx

)
+

+

(∫

Ωε∩U

f̂ ûεdx +
∑

±

∫

Γ±
ε

ĝ±ûεdsx

)
=: J0 (ûε) + J1 (ûε) .

(3.9)

To process the expression J1 (ûε) , we employ decomposition (1.22) for χûε, namely,

χ (y) ûε (x) = uε (y) + u⊥
ε (x) , uε (y) = (ε + H+ (y))

−1
∫

Υε(y)

ûε (y, z) dz. (3.10)

By estimates (1.23), (1.24) and representation (3.5), we obtain

∣∣J2

(
u⊥

ε

)∣∣ ≤ c
∥∥∇xûε; L

2 (Ωε)
∥∥×

×
(∫

Ωε∩U

(ε + H (y))
2
∣∣∣f̂ (ε, x)

∣∣∣
2

dx +
∑

±

∫

Γ±
ε

(ε + H (y)) |ĝ± (ε, x)|2 dsx

) 1
2

≤

≤ c
∥∥∇xûε; L

2 (Ωε)
∥∥ × |g (0,O)| + ~2−2m

∫

Bn−1

R

(ε + H (y))
(
(ε + H (y))

2
~−4

∣∣∇2
ηw0 (η)

∣∣2 +

+~−2r2 |∇ηw0 (η)|2 + r2 |w0 (η)|2 dy
) 1

2 ≤

≤ c~2−2m
∥∥∇xûε; L

2 (Ωε)
∥∥


~2−2m +

3∑

j=0

{∫ R

0

(~ + r)
2m+2j

~−2j
(
1 +

r

~

)2(2−2m−j)

rn−2dr+

+

∫

Bn−1

R

(~ + r)
2m+2j

~−2j
∣∣∇j

ηw̃0 (η)
∣∣2 dy

})
≤

≤ c~1−m+ n+1

2

∥∥∇xûε; L
2 (Ωε)

∥∥ .
(3.11)

This calculation needs an additional explanation. First, we have used the evident relations in the ball
Bn−1

R

(ε + H (y))
2 ≤ c (~ + r)

4
, r2 ≤ (~ + r)

2
, r2 < c

in order to estimate the sum of integrals in the braces. Second, the integral over r ∈ (0, R) has emerged

from the power-law solution |η|2−2m
Ψ(θ) in (3.5) and has been computed directly. Third, in the integral

over the ball Bn−1
R the change y 7−→ η has been performed and the inclusion w̃0 ∈ V l+1

l+1+m

(
Rn−1

)
has

been applied with the exponent γ = l + 1 + m satisfying (3.6).
For the component uε in (3.10), we,by (3.8), have

J1 (uε) = ~2−2m

∫

Bn−1

R

uε (y) (ε + H (y))∆yχ0 (y)w0

(
~−1y

)
dy+

+

∫

Bn−1

R

uε (y)χ0 (y) g (0,O)
(
1 + |∇yH+ (y)|2

)1/2

dy+

−~2−2m
∑

±

∫

Bn−1

R

uε (y)∇yH± (y) · ∇yχ0 (y)w0

(
~−1y

)
dy =

=

∫

Bn−1

R

uε (y) χ0 (y)
(
~2−2m∇y · (ε + H (y))∇yw0

(
~−1y

)
g (0,O)

)
dy+

+~2−2m

∫

Bn−1

R

uε (y)∇y · (H (y) − H (y))∇y

(
χ0 (y)w0

(
~−1y

))
dy+

+~2−2m

∫

Bn−1

R

uε (y) [∇y · (ε + H (y))∇y, χ0 (y)]w0

(
~−1y

)
dy

(3.12)
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where [A, B] = AB − BA stands for the commutator of the operators A and B. The first integral in
(3.12) vanishes because w0 is a solution to equation (1.13) with the right-hand side (3.3) (recall the
change of variables (1.10)). Moreover, according to (1.2) modulo of the second and third integrals in
(3.12) do not exceed

c~2−2m

∫

Bn−1

R

(~ + r)
m−1 |uε (y)|

2∑

j=0

(~ + r)
m+j

~−j
∣∣∇j

yw0

(
~−1y

)∣∣ dy ≤

≤ c~2−2m
∥∥∥(~ + r)

m−1
(1 + δn,3 |ln (~ + r)|)−1

uε; L
2
(
Bn−1

R

)∥∥∥×

× (1 + δn,3 |ln (~ + r)|)
2∑

j=0

(∫

Bn−1

R

(~ + r)
2(m+j)

~−2j
∣∣∇j

ηw0

(
~−1y

)∣∣2 dy

) 1
2

.

The last integrals can be estimated in the same way as similar integrals in (3.12). Thus,

|J1 (uε)| ≤ c~1−m+ n+1

2 (1 + δn,3 |ln (~ + r)|)
∥∥∇xûε;L

2 (Ωε)
∥∥ . (3.13)

Theorem 21 Let the right-hand sides of problem (1.5), (1.6) satisfy the compatibility condition (1.7)
and the estimate

∥∥R−1
n f ;L2 (Ωε)

∥∥ +
∥∥∥
(
ε + ρ2m

)− 1
2 R−1

n (g − χ0g (0,O)) ; L2 (Γε)
∥∥∥ ≤

≤ c
{

1 + ~1−m+ n+1

2 (1 + δn,3 |ln ~|)
}

.
(3.14)

Then a solution uε of the problem verifies the relation

∥∥∇x

(
uε − ~2−2mχ0w0

(
~−1·

))
; L2 (Ωε)

∥∥ ≤ c
{

1 + ~1−m+ n+1

2 (1 + δn,3 |ln ~|)
}

. (3.15)

where the constant c does not depend on the small parameter.

Proof is adjusted by relations (3.8) and (3.11), (3.13), (3.14) together with inequality (1.17). ¥

Computing the Dirichlet integral of the asymptotic term detached in (3.2) while taking into account
the inclusion w0 ∈ V l+1

l+m

(
Rn−1

)
(δ = m − n+1

2 > 0 in (3.4)), we get

~4−4m

∫

Ωε

∣∣∇xχ0 (y) w0

(
~−1y

)∣∣2 dx = ~4−4m

∫

Bn−1

R

(ε + H (y))
∣∣∇yχ0 (y) w0

(
~−1y

)∣∣2 dy =

= ~−2m+n+1

(∫

Rn−1

(1 + H (η)) |∇ηw0 (η)|2 dη + O (~ (1 + δ2m,n+2 |ln ~|))
)

.

(3.16)

Note that ln ~ appears in the remainder when the integral

∫

Rn−1

(1 + |η|)2m+1 |η|2(2−2m)
dη is diverging.

Due to requirement (3.1), the exponent −2m+n+1 is negative, however the exponent 1−m+ n+1
2 can

be of any sign. That is why we have included the summand 1 into the majorant of (3.14) and, therefore,
it has appeared in (3.15) as well. In particular, under the assumption (1.8), hypothesis (3.14) holds true:
the left-hand side of (3.14) does not exceed

c

∫

Γ0

(~ + ρ)
−2m+2

(1 + δn,3 |ln (~ + ρ)|)2 |G (x) − G (0)|2 dsx ≤

≤ c

(∫

Γ0�U

... dsx +

∫

Γ0∩U

... dsx

)
≤

≤ c

(
1 +

∫ R

0

(~ + r)
−2m+2

(1 + δn,3 |ln (~ + r)|)2 r2rn−2dr

)
≤

≤ c
(
1 + ~1−m+ n+1

2 (1 + δn,3 |ln ~|)
)

.
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In any case ‖∇xûε;L
2(Ωε)‖ ≤ c~1/2~−m+(n−1)/2 and, indeed, Theorem 21 shows that ~2−2mw0(~

−1y)
is the main asymptotic term of the solution uε to the singularly perturbed problem (1.5), (1.6), since
~2−2m‖∇x(χw0);L

2(Ωε)‖ = O(~−m+(n−1)/2) under condition (3.1).

Corollary 22 In the case (1.8), (3.1) the energy functional (1.9) takes the asymptotic form

E (uε; Ωε) = −1

2
~−2m+n+1

∫

Rn−1

(1 + H (η)) |∇ηw0 (η)|2 dη + O
(
~−2m+n+2 (1 + δ2m,n+2 |ln ~|)

)
(3.17)

and, thus, it is infinitely large as ~ → 0+. In (3.17) w0 is the solution in V l+1
β

(
Rn−1

)
of equation (1.13)

with the right-hand side F (η) = G (O) . ¥

3.2 Sub-critical case for n ≥ 3

Let us assume that
n > 2m − 1, n > 2. (3.18)

Furthermore, for the right-hand sides f0 and g0 of the first limit problem (2.1) the orthogonality condi-
tions (2.2) are satisfied, as well as the inclusions

f0 ∈ C0,α (Ω) , g0 ∈ C1,α (Γ0) , α ≥ 1

2
, (3.19)

where Ω is the domain which is bounded by the surface Γ and contains the set Γ0�O. Recall that the
Hölder space Cl,α (Ξ) with the regularity indices l ∈ N0 and α ∈ (0, 1) has the standard norm

∥∥U ; Cl,α (Ξ)
∥∥ =

l∑

k=0

sup
x∈Ξ

∣∣∇k
xU (x)

∣∣ + sup
x,x∈Ξ

|x − x|−α ∣∣∇l
xU (x) −∇l

x
U (x)

∣∣ . (3.20)

Since f0 is a bounded function, ρf0 ∈ L2(Ω0). Moreover, from conditions (3.18) and (3.19) it follows that
ρ1−mg0 ∈ L2(Γ0), which can be combined with Lemma 3 in order to deduce the solvability of problem
(2.1). The solution v0 ∈ H1(Ω0) is unique under the condition

∫

Ω0

v0 (x) dx = 0. (3.21)

We note that by the second inclusion in (3.19) the remainder in expansion

g0 (x) = g0 (O) + y · ∇yg0 (O) + g̃0 (x) (3.22)

satisfies the estimate |g̃0 (x) | ≤ cr1+α. Thus, the inclusion ρ1−τ−mg̃0 ∈ L2(∂Ω0) is valid for any exponent

τ < α − m +
n + 3

2
(3.23)

(compare with (3.19)). Beside that, relations (3.23) and (3.19) show that ρ1−τf0 ∈ L2(Ω0). Therefore,
the asymptotic procedure in section 2§2 and Theorem 18 allow to determine asymptotics of the solution

v0 with the remainder ˜̃v0, which enjoys the inclusions ρ−τ∇x
˜̃v0, ρ

−1−τ ˜̃v0 ∈ L2(Ω0). To this end, we need
some simplifications of the asymptotic expansion, which is assumed to be a one-term expansion in the
present section, and two-term in section 4§3 (in the critical case). In order to simplify the presentation
and avoid the repetition of complicated arguments, we consider in the present section just the two-term
expansion

v0 (x) = χ (y) (V0 (y) + V1 (y)) + ṽ0 (x) . (3.24)

Here

V0 (y) =

{
r2−2mΨ(θ) for m ≥ 2,

C0 + Ψ (θ) + C1 ln r for m = 1,
(3.25)
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|V1 (y)| + r |∇yV1 (y)| ≤ crµ, µ =

{
3 − 2m for m ≥ 2,

min
{
λ+

1 , 1 − δ1

}
for m = 1,

(3.26)

ρ−1−τ ṽ0, ρ−τ∇xṽ0 ∈ L2 (Ω0) , τ = µ + δ + m +
n − 3

2
, (3.27)

where Ψ is a smooth function on the unit sphere Sn−2, C0 and C1 are constants (see Remark 13, by
normalization (3.21) the constant C0 is fixed), λ+

1 is the first positive exponent in (2.43), and δ1, δ are
positive numbers. We point out that, in view of the choice (3.26) of the index µ, the number τ from
(3.27) verifies relation (3.23).

Remark 23 The second asymptotic term V1 in expansion (3.24) is designed to compensate for the linear
term in (3.22), and also for the main term of discrepancy, generated in problem (2.1) by the expression
V0 (y). If m > 1, the term V1 is of the form r3−2mΨ1(θ), since the number 3 − 2m belongs to the
segment (3− n− 2m, 0) and, therefore, does not coincide with any of exponents in (2.43) (compare with
Proposition 12). Moreover, asymptotic terms of the first kind (2.14) take the form r2mv(θ, ζ), and can
be included in the asymptotic remainder (3.26).

The case m = 1 is separated. First, the expression χ(y)r2mv(θ, ζ), which has only bounded gradient,
does not verify inclusions (3.27) with the exponent τ = 3 − 2m + 0 + m + (n − 3)/2 = −1 + (n + 3)/2,
thus in (3.26) the exponent µ = 3−2m = 1 is reduced to 1− δ1 (in this particular case we have V1 = 0).
Second, the exponent λ+

1 can be located in the segment (0, 1) (see examples in section 4§4), and this

possibility is also taken into account in formula (3.26), in such a case it follows that V1 = c1r
λ+

1 φ1(θ)
with λ+

1 ∈ (0, 1). ¥

For the solutions of the second limit problem (1.13) with the right-hand side (3.3) Lemma 20 applies.
However for m = 1 (such a possibility is excluded in section 1§3 by condition (3.1)) it is necessary to
define

V0

(
~−1η

)
= C0 + Ψ(θ) + C1 ln

(
~−1 |η|

)
(3.28)

(compare with (3.25)). The existence of the solution w0, which satisfies requirements (3.5), (3.28), follows
from Theorem 14, since we have

(L − L) (XV0) = ∆η (XV0) ∈ V l−1
β+2

(
Rn−1

)
(3.29)

with arbitrary weight index β < l + 2 − (n + 1)/2, in particular, satisfying condition (2.48). Such a
solution is determined up to an additive constant, which is fixed to C0 − C1 ln ~ in order to equalize
expressions (3.28) and (3.25), however, the dependence of solution w0 on the parameter ln ~ is not
indicated explicitely.

In any case the remainder w̃0 belongs to the space V l+1
γ (Rn−1) with the weight index (3.6).

By the local estimates of solutions to elliptic boundary value problems [35], a solution v0 of problem
(2.1) with the right-hand sides (3.19) belongs to the Hölder class C2,α

loc (Ω0�O), i.e., v0 ∈ C2,α(Ω0�Bn
R)

with any R > 0. There exists an extension V0 ∈ C2,α
loc (Ω0�O) of the function v0 onto the domain

Ω, bounded by the surface Γ and containing the set Γε�O for all ε ∈ [0, ε0) (see Figures 1-4). Since
∇xV0 ∈ C1,α(Ω0�U ′), where U ′ = Bn−1

R/2 × (−d, d) ⊂ U , and the surfaces Γε�U ′ and Γ0�U ′ are close to

each other at the distance O(ε), the relation

|∂νV0 (y, z) − ∂νV0 (y, z − ε)| ≤ cε, (y, z) ∈ Γε�U ′, (3.30)

is valid and the term ∂νV0 (y, z − ε) in the above inequality implies the right-hand side gε (y, z − ε) of
boundary condition in (2.1). Moreover, −∆xV0 (x) = f0 (x), x ∈ Ω0 and ∆xV0 ∈ C0,α(Ω0�U ′) so that

|∆xV0 (x) + f0 (x)| ≤ cεα, x ∈ Ωε� (Ω0 ∩ U ′) ,
∆xV0 (x) + f0 (x) = 0, x ∈ Ω0� (Ωε ∩ U ′) .

(3.31)
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We point out that by a known variant of the Hardy’s inequality (see, e.g., [28, Lemma 1.2.4]), the
following inequality is valid:

∥∥uε; L
2 (Ωε� (Ω0 ∪ U ′))

∥∥ ≤ cε
1
2

∥∥uε; H
1 (Ωε)

∥∥ . (3.32)

Note that the set Ωε� (Ω0 ∪ U ′) has the small ”thickness” O (ε).
Global asymptotic approximation of the solution uε to the singularly perturbed problem (1.5), (1.6)

is taken in the form
Uε (x) = X0 (x)V0 (x) + χ0 (y) ~2−2mw0

(
~−1y

)
+

+χ0 (y)
(
1 − χ~

0 (y)
)
(V1 (y) + ṽ0 (y, z)) ,

(3.33)

where X0 is a cut-off function, which is equal to 1 − χ0(y) for x ∈ Ωε ∩ U and one outside the ligament
Ωε ∩ U . Furthermore, the new variable

z = (ε + H (y))
−1

(zH (y) − εH− (y)) (3.34)

belongs to the segment Υε(y) when z ∈ Υ0(y). In other words, the function

x 7−→ ṽ0 (y, z) = ṽ0 (y, z) (3.35)

is defined on the ligament Ωε∩U of the positive thickness, however the function x 7−→ ṽ0 (y, z) is defined
only on the degenerate ligament Ω0 ∩ U . In addition, function (3.35) has a singularity at y = 0, which
is smoothened in (3.33) after multiplication by the cut-off function χ~

0(y) = 1−χ0(~
−1y). We point out

again that the cut-off function χ~
0 does not vanish only on the ligament.

Set ĉε =measn(Ωε)
−1

∫

Ωε

Uε(x)dx. The expression ûε = uε−Uε+ĉε meets the orthogonality condition

(1.16), since uε is normalized. Morever, ûε verifies the integral identity

(∇xûε,∇xψ)Ωε
= (f, ψ)Ωε

+ (g, ψ)Γε
− (∇xUε,∇xψ)Ωε

=

=
(
f −F0

ε , ψ
)
Ωε

+ (g − G+
ε , ψ)Γε

− (G−
ε , ψ)Γ0

−
(
F1

ε ,∇xψ
)
Ωε

,
(3.36)

where
F1

ε (x) = ∇x

{
χ0 (y)

(
1 − χ~

0 (y)
) (

ṽ (y, ς) + V1 (y) + V0 (y)
)}

, (3.37)

F0
ε (x) = −∆x (X0 (x)V0 (x)) − ~2−2m∆y

{
χ0 (y)

(
w0

(
~−1y

)
− X

(
~−1y

)
V0

(
~−1y

))}
,

G±
ε (x) = ∂ν (X0 (x) V0 (x)) + ~2−2m∂ν

{
χ0 (y)

(
w0

(
~−1y

)
− X

(
~−1y

)
V0

(
~−1y

))}

and the cut-off function X in (3.5) is such that X(η) = 1 − χ0(η).
Now, we transform the expression in (3.37). Then we shall estimate the corresponding terms in

(3.36), after that, with the replacement ψ = ûε we shall estimate the asymptotic remainder ûε.
First, we observe that, owing to sufficiently strong decay of the remainder w̃0 ∈ V l+1

γ

(
Rn−1

)
in

expansion (3.5) of the solution of the second limit problem (see formula (3.6)), an analysis of the quantity

J0 = ~2−2m (∆y (χ0w̃0) , ψ)Ωε
− ~2−2m (∂ν (χ0w̃0) , ψ)∂Ωε

, (3.38)

where w̃0 = w0−XV0 (see (3.5)) can be performed in exactly the same way as in section 1§3. This leads
to the estimate

|J0| ≤ c~−m+ n+1

2 (1 + δn,3 |ln ~|) . (3.39)

We note that by requirement (3.18) the exponent −m+ (n+1)
2 of the parameter ~ in the majorant (3.36)

is at least 1/2.
Let us consider the last term in (3.36) rewritten in the form

(
F1

ε ,∇xψ
)
Ω

= −
(
χ0

(
ṽ0 + V1 + V0

)
∇xχ~

0 ,∇xψ
)
Ωε∩U

+

+
(
∇x

(
χ0

(
ṽ0 + V1 + V0

))
, ψ∇xχ~

0

)
Ωε∩U

+
(
∇x

(
χ0

(
ṽ0 + V1 + V0

))
,∇x

((
1 − χ~

0

)
ψ

))
Ωε∩U

=:

=: J1 + J2 + J3.
(3.40)
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The support of derivatives of the cut-off function χ~
0(y) = χ0(~

−1y) is located in the set Ξε = {x ∈
Ωε ∩ U : C ≥ ~−1|y| ≥ c > 0} where ρ = O(~) and

z − z = ε
z + H− (y)

ε + H (y)
= O (ε) . (3.41)

Therefore, taking into account equality (1.17) for ψ, inclusions (3.27) for ṽ0 and formulae (3.25), (3.26)
for V0 and V1, we find that

|J1| + |J2| ≤ c~−1
(∥∥∇xψ; L2 (Ωε)

∥∥ + (1 + δn,3 |ln ~|)
∥∥Rnψ; L2 (Ωε)

∥∥)
·

·
(

(measnΞε)
1
2 supx∈Ξε

1∑

i=0

(|Vi (y)| + r |∇yVi (y)|) + ~1+τ

1∑

i=0

∥∥ρ−τ−1+i∇i
xṽ0;L

2 (Ω)
∥∥
)

≤

≤ c~−1~m+ n−1

2 ~2−2m (1 + δm,1 |ln ~|) (1 + δn,3 |ln ~|)
∥∥∇xψ;L2 (Ωε)

∥∥ .

(3.42)

Let us explain the above calculations. The factor ~−1 comes out from the differentiation of the cut-off
function χ~

0 , the measure satisfies measnΞε = O
(
~2m+n−1

)
, the logarithms are taken from relations (1.18)

and (3.25), and the exponent 1+τ of the multiplier c~1+τ = supx∈Ξε
ρ(x)1+τ equals to µ+δ+m+(n−3)/2

by (3.27) and is greater than 3/2 by (3.26) and (3.18). We observe that the resulting exponent of ~ in
majorant (3.42), as before, is equal to −m + (n + 1)/2 ≥ 1/2.

Let us consider the last term J3 in (3.40). The main idea becomes to replace J3 by the expression

(
∇x (χ0 (ṽ0 + V1 + V0)) ,∇x

((
1 − χ~

0

)
y
))

Ω0∩U
, (3.43)

where the function
x 7−→ y (y, z) = ψ (y, z) (3.44)

is defined on the degenerate ligament Ω0 ∩ U , because the variable

z = H (y)
−1

(z (ε + H (y)) εH− (y)) (3.45)

takes values in the segment Υ0(y) for z ∈ Υε(y) (compare with variable (3.34), used for a similar reason).
The Jacobian of the change of variables (y, z) 7→ (y, z) is equal to H(y)−1(ε + H(y)). Thus, it is

uniformly bounded with respect to ε ∈ (0, ε0], and for |y| > c~ > 0 (we recall the properties of the cut-off
function 1−χ~

0 in (3.43)) and it is approximatively equal to one at a distance from the point O. Denote
V (y, z) = V (y, z) and W (y, z) = W (y, z); then

∂zV (y, z)−∂zV (y, z)|z=z
=

(
(ε + H (y))

−1
H (y) − 1

)
∂zV (y, z) |z=z = −ε (ε + H (y))

−1
∂zV (y, z) |z=z,

∂zW (y, z)−∂zV (y, z)|z=z
=

(
H (y)

−1
(ε + H (y)) − 1

)
∂zW (y, z) |z=z = εH (y)

−1
∂zW (y, z) |z=z.

(3.46)
Similarly ∣∣∣∇yV (y, z)−∇yV (y, z)|z=z

∣∣∣ ≤ c
εr

ε + H (y)

∣∣∣∂zV (y, z)|z=z

∣∣∣ ,
∣∣∣∇yW (y, z)−∇yW (y, z)|z=z

∣∣∣ ≤ c
εr

H (y)

∣∣∣∂zW (y, z)|z=z

∣∣∣ .
(3.47)

The differences from the left-hand sides in (3.47), respectively, equal to

ε
z∇yH (y) + ε∇yH− (y) − H− (y)∇yH (y) + H (y)∇yH− (y)

(ε + H (y))
2 ∂zV (y, z)|z=z

,

−ε
z∇yH (y) − H (y)∇yH− (y) + H− (y)∇yH (y)

H (y)
2 ∂zW (y, z)|z=z

.

The factor r appears in estimates (3.47) due to the relation |∇yH±(y)| ≤ cr which follows from (1.2). The
multipliers on the right-hand sides of (3.47) are only of order O(~) for |y| ≥ c~, however the multipliers
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in (3.46) turn out to be small only far from the point O. In other words, the proposed change of variables
has small influence on the derivatives in y, but it is not the case for the derivatives in z. The latter
observation is also valid for the change of variables in integrals, since H(y)−1(ε + H(y))−1 = εH(y)−1.
We are save due to the infinitely small weight factor as r → 0+ which are present in all integrals.

We now estimate the following differences of scalar products :

J3 =
(
∇y (χ0V0) ,∇y

((
1 − χ~

0

)
ψ

))
Ωε∩U

−
(
∇y (χ0V0) ,∇y

((
1 − χ~

0

)
y
))

Ω0∩U
,

J5 =
(
∇x

(
χ0ṽ0

)
,∇x

((
1 − χ~

0

)
ψ

))
Ωε∩U

−
(
∇x (χ0ṽ0) ,∇y

((
1 − χ~

0

)
y
))

Ω0∩U
.

(3.48)

In a similar way as for J3, the expression J4 with V1 on the place of V0 has a smaller majorant, in view
of the better behavior of V1(y) for r → 0+, compared to V0 (cf. (3.26) and (3.25)).

Formulae (3.47) and (3.25), (1.17) yield

|J3| ≤ c

∫

Ωε∩U

|∇y (χ0 (y)V0 (y))| εr

H (y)

∣∣1 − χ~
0 (y)

∣∣ |∂zψ (y, z)| ε

H (y)
dydz ≤

≤ c (1 + δn,3 |ln ~|)
∥∥∇xψ;L2 (Ωε)

∥∥ (1 + δm,1 |ln ~|)
(

ε4

∫ R

c~

H (y)
−4

(ε + H (y)) r2r2(1−2m)rn−2

) 1
2

dr ≤

≤ c (1 + δn,3 |ln ~|) (1 + δm,1 |ln ~|) ~−m+ n+3

2

∥∥∇xψ; L2 (Ωε)
∥∥ .

(3.49)
We point out that, in view of the weighted Poincaré inequality from Proposition 2, the estimates are
valid

∥∥∇x

((
1 − χ~

0

)
ψ

)
; L2 (Ωε)

∥∥ ≤ c
(∥∥∇xψ;L2 (Ωε)

∥∥ + ~−1
∥∥ψ; L2

(
supp

∣∣∇xχ~
0

∣∣)∥∥)
≤

≤ c
(∥∥∇xψ;L2 (Ωε)

∥∥ + (1 + δn,3 |ln ~|)
∥∥Rnψ; L2 (Ωε)

∥∥)
≤ c (1 + δn,3 |ln ~|)

∥∥∇xψ;L2 (Ωε)
∥∥ ,

(3.50)

which has been already applied in the derivation of (3.49).
Now, using formulae (3.46), (3.47), (3.50) and inclusion (3.27), and also relations (3.26) and (3.6) for

the indices µ and γ, we obtain

|J5| ≤ c
∥∥ρ−τ∇x (χ0ṽ0) ;L2 (Ω0 ∩ U)

∥∥ (1 + δn,3 |ln ~|)
∥∥∇xψ; L2 (Ωε)

∥∥ sup
y∈Bn−1

R �Bn−1

c~

(
ερτ

H (y)

)
≤

≤ c (1 + δn,3 |ln ~|) ~−m+ n+3

2

∥∥∇xψ; L2 (Ωε)
∥∥ .

(3.51)

Therefore, with the error defined by the majorant in estimate (3.49), not smaller than all remaining
errors, the scalar product J3 in (3.40) can be replaced by the scalar product (3.43), which by obvious
reasons (in particular, owing to χχ0 = χ0) coincides with

J6 =
(
−∆x (χ0ṽ0) ,

(
1 − χ~

0

)
y
)
Ω0∩U

+
∑

±

(
∂ν (χ0ṽ0) ,

(
1 − χ~

0

)
y
)
Γ±∩U

. (3.52)

We return to the analysis of the first three terms on the right-hand side of (3.36), we have already
rewritten two of them as follows:

J7 = (f, ψ)Ωε
+ (g, ψ)Γε

,
J8 = (−∆x (X0V0) , ψ)Ωε

+ (∂ν (X0V0) , ψ)∂Ωε
.

(3.53)

Let Ψ be the extension of the function ψ ∈ H1(Ωε over the set Ω0�(Ωε ∪ U ′) in the Sobolev class H1,
with the estimate ∥∥Ψ; H1 (Ω0�U ′)

∥∥ ≤ c
∥∥∇xψ;L2 (Ωε)

∥∥ . (3.54)

We introduce the function
ψ1 (x) = X0 (x)Ψ (x) + χ0 (y) y (y, z) , (3.55)

defined in the domain Ω0 and observe that
∥∥ψ1 − Ψ; L2 (Ω0 ∩ (U�U ′))

∥∥ ≤ cε
∥∥∇xψ;L2 (Ωε)

∥∥ . (3.56)
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Indeed, the arguments of functions ψ and y differ a little on the set Ω0 ∩ (U�U ′) owing to the relation
z − z = εH(y)−1(z + H−(y)) which follows from (3.45), and in addition, on the set Ω0 ∩ (U�U ′) the
functions ψ and Ψ coincide. In other words, with an admissible error, the cut-off functions χ0 and X0

can be summed in expressions J6 and J8 (see (3.52) and (3.53)); here we note that the cut-off functions
χ0 and X0 form a partition of unity in Ωε. In this way, in view of relations (3.31) (3.32) and formula
(3.24), we find that

|J6 + J8 + J9| ≤ cε,
J9 =

((
1 − χ~

0

)
f0, ψ1

)
Ω0

+
((

1 − χ~
0

)
g0, ψ1

)
Γ0

.
(3.57)

Finally, replacing ψ1 by ψ in (3.57) and applying the same reasoning as above, we have

∣∣J9 − (f0, ψ)Ωε
− (g, ψ)Γε

∣∣ ≤ cmax
{

~, (1 + δn,3 |ln ~|) ~−m+ n+3

2

}∥∥∇xψ; L2 (Ωε)
∥∥ (3.58)

where the function f0 is defined on the domain Ωε,

f0 (ε, x) = X0 (x)F0 (x) + χ0 (y) f0 (y, z) . (3.59)

Here F0 is an extension of f0 to Ω in the class C0,α(Ω�O), and z is variable (3.34). In derivation of
(3.58) it is taken into account the following: first, by the definition of functions ψ and y their traces
coincide on the surfaces Γε ∩U and Γ0 ∩U , second, the functions (3.59) and f0 are bounded, and, third,
by the trace inequality in Proposition 2 we have

∣∣∣∣
∫

Γε∩U

χ~
0g0ψ1dsx

∣∣∣∣ ≤ c (1 + δn,3 |ln ~|)
∥∥∇xψ; L2 (Ωε)

∥∥ ·
(∫ c~

0

(
ε + r2m

)−1
r2rn−2dr

) 1
2

≤

≤ c (1 + δn,3 |ln ~|) ~−m+ n+1

2

∥∥∇xψ; L2 (Ωε)
∥∥ .

Furthermore, ∣∣∣∣
∫

Ωε∩U

χ~
0f0ψdx

∣∣∣∣ ≤ c~m+ n−1

2

∥∥ψ;L2 (Ωε)
∥∥ .

Now, we are in position to present the main result.

Theorem 24 Assume that the right-hand sides of problem (1.5), (1.6) verify orthogonality condition
(1.7) and the relation

∥∥R−1
n (f − f0) ; L2 (Ωε)

∥∥ +
∥∥∥
(
ε + ρ2m

)− 1
2 R−1

n (g − g0) ; L2 (Γε)
∥∥∥ ≤

≤ c~
1
2 max

{
~

1
2 , (1 + δn,3 |ln ~|) (1 + δm,1 |ln ~|) ~−m+ n

2

}
,

(3.60)

where f0 and g0 are the right-hand sides (3.19) of the limit problem (2.1), and the function f0 is defined
by (3.59). Then the solution uε and its asymptotic approximation (3.33) are related by the inequality

∥∥∇x (uε − Uε) ; L2 (Ωε)
∥∥ ≤ c~

1
2 max

{
~

1
2 , (1 + δn,3 |ln ~|) (1 + δm,1 |ln ~|) ~−m+ n

2

}
, (3.61)

where the constant c is independent of the parameter ε ∈ (0, ε0] and ~ = ε1/2m.

Proof. Inequality (3.61) follows from estimates (3.39), (3.42), (3.49), (3.51), (3.57), and assumption
(3.60). ¥

Remark 25 In the right-hand sides of the estimates given by Theorem 24, there are infinitesimal small
terms of different orders. If n > 2m+1 and ε−m+(n+1)/2 ≥ ε3/2 then the majorant c~1 (see e.g., (3.58))
dominates all other majorants. If n = 2m, then the case n = 3, m = 1 is excluded and there is the
quantity c~1/2 on the right-hand side of (3.61). Finally, for n = 2m+1 on the right-hand side of (3.61)
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there is c~ if n 6= 3, and c~(1 + | ln ~|)2 in the most interesting case of n = 3 and m = 1 (kissing balls in
Figures 1-4). The result can be formulated as follows: the majorant in (3.61) takes the form cE, where

E =





~
1
2 for n = 2m,

~ for n ≥ 2m + 1, n + m > 4,

~
1
2 (1 + |ln ~|)2 for n = 3, m = 1. ¥

(3.62)

We emphasize that in situation (1.8) the left-hand side of relation (3.60) is null, i.e., the corresponding
requirement is verified.

Corollary 26 Assume that the right-hand sides of problem (1.5), (1.6) take form (1.8) and G ∈
C1,α(Γ0), α > 1/2. Then energy functional (1.9) satisfies the relation

|E (uε; Ωε) − E (v0; Ω0)| ≤ cE , (3.63)

where E is defined by (3.62), v0 is the solution of the limit problem (2.1) with the right-hand sides f0 = 0,
g0 = 0 on Γ and g0 = G on Γ0.

Proof In view of formula (1.11) we have

E (uε; Ωε) = −1

2

∫

Γε

G (y, z − ε) uε (x) dsx = −1

2

∫

Γε

G (y, z − ε) Uε (x) dsx + Iε,

|Iε| =
1

2

∣∣∣∣
∫

Γε

G (uε − Uε) dsx

∣∣∣∣ ≤ c
∥∥(

ε + ρ2m
)
Rn (uε − Uε) ; L2 (Γε)

∥∥×

×
(∫

Γε

(
ε + ρ2m

)−1 Rn (x)
2
dsx

) 1
2

≤ cE .

We observe that the last integral is bounded by a constant independent of ε due to assumption (3.18)
and definition (1.18). The trace on Γε of the approximate solution equals to

v0 (y, z − ε) + X0 (x) V0 (x) −X0 (y, z − ε) v0 (y, z − ε) + χ0

(
ε−1y

)
v0 (y, z − ε)+

+~2−2mχ0 (y)
(
w0

(
~−1y

)
− X

(
~−1y

)
V0

(
~−1y

))
.

(3.64)

In order to complete the proof we make use of the following two estimates. First, we have

|X0 (x)V0 (x) −X0 (y, z − ε) v0 (y, z − ε)| ≤ cε

by the continuous differentiability on Ω�U ′ of the functions v0, V0 and X0. Second,

∫

Γ0

∣∣χ0

(
~−1y

)
v0 (y, z)

∣∣ dsx ≤ c

(∫

Γ0

ρ2m−2 |v0 (x)|2 dsx

) 1
2

(∫ c~

0

r2−2mrn−2dr

) 1
2

≤ c~−m+ n+1

2 .

The required estimate for the integral of the last term in (3.64) can be shown in the same way as (3.16)
and (3.38), (3.39) by an application of Lemma 20. Finally, − 1

2

∫
Γ0

Gv0dsx = E(v0, Ω0) by the Green
formula. ¥

3.3 Subcritical case for n = 2

If the first inequality of (3.18) is verified and n = 2 then m = 1. In such case there are some certain
particularities in the construction of asymptotics for the solution to problem (1.5), (1.6). However the
justification of asymptotics is performed in the exactly same way as it has been done in section 2§3. On
the other hand, the plane problems with ligaments are analysed in details in [5] and [6]. That is why we
here restrict ourselves to the construction of formal asymptotics only.
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General results of [12], [13] or the framework developed in section §2 taking into account the procedure
presented in Remark 7 shows that the solution of the first limit problem (2.1) with the right-hand sides
(3.19) allows the expansion

v0 (y, z) = c±0 − H−1
0 g0 (O) ln |y| + O (|y|) , Ω0 ∩ U ∋ y = y1 → 0±. (3.65)

The orthogonality condition (3.21) implies the uniqueness of the solution v0 as well as of the constants
c±, which do not coincide by any reason (note that for n ≥ 3 the value of the function v0 at the point O
is uniquely determined). To glue asymptotics coming from two peaks resulting from the decomposition
of degenerated ligament Ω0 ∩ U , we employ the general solution

− (2H0)
−1

g0 (O) ln
(
1 + H0η

2
)

+ c0 + H
− 1

2

0 c1 arctan
(
H

1
2

0 η
)

(3.66)

(compare with (3.41)) of the second limit problem

−∂η

(
1 + H0η

2
)
∂ηw0 (η) = g0 (O) , η ∈ R. (3.67)

We, readily, have

w0 (η) = −H−1
0 g0 (O) ln |η| − g0 (O)

2H0
lnH0 + c0 ±

c1π

2
√

H0

+ O
(
|η|−1

)
. (3.68)

Therefore, taking into account (1.10) with ~ =
√

ε, for matching the asymptotics (3.65) and (3.68), it is
necessary to find the constants c0 and c1 by solving the system of two algebraic equations

−g0 (O)

2H0
ln

H0

ε
+ c0 ±

c1π

2
√

H0

= c±. (3.69)

We observe that the parameter ln ε appears by the change of variables, i.e. the stretching of coordinates
y 7→ η = ε−1/2y. As a result we have

c0 =
1

2
(c+ − c−) +

g0 (O)

2H0
ln

H0

ε
, c1 =

√
H0

π
(c+ − c−) . (3.70)

For given constants (3.70), the solution (3.66) of equation (3.67) is obtained in a precise form, thus
we need to repeat all arguments given in previous section in order to apply Theorem 24. However, we
restrict ourselves to a result on asymptotics of energy functional (1.9), similar to Corollary 26.

Proposition 27 Assume that n = 2, m = 1 and relation (1.21) is verified. Then the asymptotic formula
for the energy functional

E (uε; Ωε) = E (u0; Ω0) + O
(
ε

1
2 (1 + |ln ε|)

)
= −1

2

∫

Γ0

G (x) v0 (x) dsx + O
(
ε

1
2 (1 + |ln ε|)

)
, (3.71)

is valid, where v0 ∈ H1(Ω0) is the solution of the first limit problem (2.1) with the right-hand sides
f0 = 0 and g0 = G on Γ0, g0 = 0 on Γ.

3.4 Critical case

The plane problem is automatically excluded from considerations in the critical case

n = 2m − 1, (3.72)

The peculiarity of the case (3.72) is non existence of solutions for both the limit problems (2.1) and
(1.13) in the energy classes H1(Ω) and V1

m

(
Rn−1

)
, respectively. However, if the solutions v0 and w0

are found out and theirs asymptotics are matched for x → O and η → ∞, respectively, then the
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asymptotic constructions and the analysis of asymptotic remainders looks pretty the same as explained
in section 2§3 (actually, for such a reason we have detached two asymptotic terms in (3.31)). Indeed, in
definition (3.33) of the approximate solution Uε of problem (1.5), (1.6) all singular terms are multiplied
by appropriate cut-off functions, and the justification of asymptotics is performed by an application of
weighted inequality (1.17), which covers the critical case (3.72) as well, and operates mainly with the
exponents of power solutions. Some differences come out when evaluating the discrepancies, in particular
for the energy functional, therefore, we pay attention to this question.

In accordance with the procedure described in section 1§2, the first limit problem admits the solution
v0 = χ0V0 + v̂0, where V0(y) = r2−2mΨ(θ) is a power solution of model problem (2.30) with the right-
hand side f(y) = g0(O) (see (3.25) and Remark 13), with the energy remainder v̂0 ∈ H1(Ω0). The
results of section 3§2 provide the expansion of the remainder in the vicinity of the point O, in such a
way that for the solution v0 formulas (2.25) - (2.28) are still valid.

The solution w0 of second limit problem (1.13) with right-hand side (3.3) is still of the form (3.5)
(see the comments to formula (3.29)).

When we compare the result obtained in the critical case with that of section 2§3, we see that the
estimation of expression (3.38) is straightforward; however in critical case (3.72), inequality (3.39) is not
satisfactory, since its right-hand side turns out not to be infinitesimal as ε → 0+. Therefore, w̃0 is a
solution to problem (1.13) with the right-hand side (3.29). We proceed as follows: the change of variables
η 7→ y = ~η and the scalar multiplication in L2(Ωε) by ψ result in transformation of the right-hand side
in such a way, that it can be included in expression (3.40) and simplifies with the discrepancies generated
by asymptotic term V0 under gradient ∇y commutation with the cut-off function 1−χ~

0(y) = X(~−1y).
In this way, the majorant in (3.40) is defined by the subsequent asymptotic term V1 (see (3.24) and
(3.25)), thus, it is given by

c~−1~m+ n−1

2 ~µ (1 + δn,3 |ln ~|) = c~ (1 + δn,3 |ln ~|)

The exponent of the parameter ~ in the right-hand sides of inequalities (3.49), (3.51) and (3.58) is also
equal to one, by relation (3.72).

Theorem 28 The conclusion of Theorem 24 remains true in the critical case 2m = n− 1 provided that
the majorants in inequalities (3.60) and (3.61) are made equal to c~(1 + δn,3| ln ~|).

The singularity O(r2−2m) = O(r−n+1) of the integrand (see (3.24)) causes the divergence of the
integral ∫

Γ0

v0 (x) g0 (x) dsx

Indeed, for the set Γ0(δ) = Γ0�(Bn−1
δ ) × (−d, d)) we obtain in view of (3.24) - (3.27) the equality

∫

Γ0(δ)

v0 (x) g0 (x) dsx = ln
1

δ
g0 (O)

∫

Sn−2

Ψ(θ) dsθ + I0 + o (1) , for δ → 0+. (3.73)

In a similar way, by (3.5) we have

~2−2m

∫

Γ0�Γ0(δ)

g0 (x)w0

(
~−1y

)
dsx =

∫

Bn−1

δ/~

g0 (O)w0 (η) dη + o (1) =

= ln δ
~g0 (O)

∫

Sn−2

Ψ(θ) dsθ + I∞ + o (1) , for δ → 0+.

(3.74)

Structure (3.33) of approximate solution Uε and theorem 28 show that uε(x) ∼ v0(x) far from the point
O (outer asymptotic expansion in the framework of method of matched asymptotic expansions; see,
e.g., [36, 37, 38]) and uε(x) ∼ ~2−2mw0(~

−1y) on the ligament in the vicinity of the point O (inner
asymptotic expansion). In this way, the combination of relations (3.73) and (3.74) with δ = ~1/2 results
in the following asymptotic formula for the energy functional, with the justification by an application of
Theorem 28 along the lines of procedure in section 2§3.
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Corollary 29 Assume that under the assumption of Theorem 28 the right-hand sides of problem (1.5),
(1.6) take form (1.8). Then the energy functional enjoys the property

E (uε; Ωε) = −1

2
|ln ε| |G (O)|

∫

Sn−2

Ψ0 (θ) dsθ −
1

2
(I0 + I∞) + O (~ (1 + δn,3 |ln ε|)) ,

where Ψ0 is the angular part of the power solution r2−2mΨ0(θ) of model equation (2.30) with the right-
hand side f(y) = 1, and the quantities I0, I∞ are taken from relations (3.73) and (3.74). ¥

4 Generalizations and conclusions

4.1 Geometrical forms

To describe the limit domain Ω0 in section 1§1 we suppose that Γ0�O is a simply connected part of
the boundary ∂Ω0, i.e., the surfaces Γ0 and Γ has only one common point O (see Figures 3-5). All
asymptotic constructions in section §3 are of local nature, and are still valid for simply connected set
∂Ω�O, for example for three dimensional ash-tray drawn in Figure 7.

Fig. 7

In addition the boundary admits perturbations and in the vicinity of (n− 2)-dimensional edge Σ (on
the rotation axis in Figure 7 the edges Σ and Σε are transformed into points, designated by symbols
¥). The asymptotics of solutions for such perturbations of piecewise smooth boundary are analyzed in
details in monograph [4]. We point out that it is not difficult to construct almost diffeomorphism of a
neighborhood of the edge Σε onto the neighborhood of the edge Σ, which maps Σε onto Σ; hence the
perturbation of the boundary can be considered as regular.

Owing to local character, the asymptotic constructions from section §3 could be relatively easily
adapted to the domains designated in Figure 8

Fig. 8
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(axis of the ellipsoid, originally tangent to the basis of spherical cylinder, is reduced 1 − ε times). The
boundary of Ω0 may have more than two singular points of the described type.

More complex singular perturbations of the boundary are still admissible, for example caverns or
bulges of diameter O(ε) on the surfaces Γε and Γ in the cε-neighborhood of the point O (Figure 9).

Fig. 9

Furthermore, the uniform stretching of coordinates x 7→ ξ = ε−1x (stretching of coordinates in (1.10)
is not uniform, and uses two scales of order ε and ~ = ε1/2m)) leads to the third Neumann limit problem
in unbounded domain Π; the domain in the exterior of a ball Bn

R coincides with the layer Rn−1 × (0, 1)
(with the strip R × (0, 1) for n = 2). Asymptotic behavior at infinity of solutions of similar problems is
investigated in [22, 23, 24, 25, 26, 27]; the derivation of supplementary limit problem is given in [8].

4.2 Construction and justification of asymptotics

In section §3 we restrict ourselves to main asymptotics terms, which is sufficient for analysis of the energy
functional (1.9). The analysis and procedure of section §2 are general to derive the full asymptotic
expansions of solutions of the limit problems (2.1) and (1.13) for x → O and η → ∞, respectively.
Therefore, we are in position to construct full asymptotic expansions of solutions uε. To this end we can
apply either the method of compound asymptotic expansions (see [39, 4], and others) or the method of
matched asymptotic expansions (see [36, 37, 38, 40], and others). We point out that in view of variable
coefficients of differential operator L(η,∇η) in (1.13), in order to construct the lower order terms of
asymptotics in the framework of compound asymptotic expansions, the procedure of rearrangement of
discrepancies should be applied (see monograph [4, Ch. 2 and 5], where the procedure is applied for
some specific problems).

In §3 the estimate of asymptotic remainders are obtained in Dirichlet integral metrics (or in the
weighted Sobolev space when using Proposition 2). The estimates can be derived in the scales of
weighted spaces generated by the Lp- or Hölder norms (see [16]). A priori estimates for solutions of
problems (1.5), (1.6) or (2.1) are derived from inequalities (1.17) or (2.4) by means of the decomposition
of the domain Ωε or Ω0 into almost the same cells which are refined when approaching the point O
(compare with, e.g., [20] and [33]).

4.3 Shape sensitivity analysis

As it is shown in [41], the mentioned in the previous section weighted estimates of asymptotic remainders
are very useful for analysis of general shape functionals. Let us consider the simplest examples

F0
p (uε; Ωε) =

∫

Ωε

|uε (x)|p dx, F1
q (uε; Ωε) =

∫

Ωε

|∇xuε (x)|q dx, (4.1)

where p, q ∈ [1,∞). Asymptotic constructions, recalled in section §2, imply that within of application of
conditions (1.8) the solution v0 to problem (2.1) leaves in the space Lp(Ω0) provided

p <
2m + n − 1

2 (m − 1)
(4.2)
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(if m = 1, the ratio is by definition equal to ∞). In this way, for the first functional in (4.1) and for
m > 1, sub-critical, critical, and super-critical situations are characterized by the following relations,
respectively,

p <
2m + n − 1

2 (m − 1)
, p =

2m + n − 1

2 (m − 1)
, p >

2m + n − 1

2 (m − 1)
, (4.3)

and for m = 1 the situation is always sub-critical. The bounds in (4.3) differ from those given in §3. For
the second functional in (4.1) conditions analogous to (4.3) are of the form

q <
2m + n − 1

2m − 1
, q =

2m + n − 1

2m − 1
, q >

2m + n − 1

2m − 1
. (4.4)

For q = 2, in the case of the Dirichlet integral F1
2 (uε; Ωε), the bounds in (4.4) are exactly the same as in

section §3.
For the surface shape functional (compare with [41])

FΓ
p (uε; Ωε) =

∫

Γε

|uε (x)|p dsx, (4.5)

we have the following conditions

p <
n − 1

2 (m − 1)
, p =

n − 1

2 (m − 1)
, p >

n − 1

2 (m − 1)
. (4.6)

By equality (1.11) the formulae (4.4) for q = 2 and (4.5) for p = 1 are equivalent.
We have performed only formal and preliminary analysis of shape functionals. Investigation of

asymptotic properties of shape functionals in forms (4.1), (4.5), and of more involved shape functionals
is still an open problem.

4.4 Rotational symmetry

For kissing balls with the radii R± (Figures 3 and 4) the function H = r2H0(θ) from (1.2) equals

R− + R+

2R−R+
r2, kissing from outside, (4.7)

R− − R+

2R−R+
r2, kissing from inside (R− > R+). (4.8)

In Figure 5 the ball of radius R is tangent to the paraboloid given by

z =
r2

2R
(4.9)

with the curvature R−1 at the point O. The Taylor formula for the function h 7→ (1 + h)1/2 yields

R −
√

R2 − r2 = R − R

(
1 − 1

2

r2

R2
− 1

8

r4

R4
+ O

(
r6

R6

))
=

(
r2

2R2
− 1

8

r4

R3
+ O

(
r6

R5

))
,

i.e., the ball is inside of the paraboloid (4.9), and, beside that, m = 2 and H (y) = (8R3)r4. For exterior
tangency of the ball and of the paraboloid, formula (4.7) is valid. The same formula in the limit for
R− → ∞ applies to the ball sitting on a hyperplane.

In the case of rotational symmetry the function H0 is constant and in (2.40) there is the sequence of

eigenvalues of the Laplace-Beltrami operator ∆̃θ on the unit ball Sn−2. In addition, in the case of n ≥ 3
the eigenvalue

Λ̃p = p (p + n − 3) (4.10)
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is of multiplicity κp = (n − 3 + 2p) (n−4+p)!
(n−3)!p! , where q! = 1 · 2 · · · · · (q − 1) · q and 0! = 1, (−1)! = 1

2 . The

eigenvalue (4.10) is repeated κp times in the sequence (2.40). In particular,

κ0 = 1, κp = 2, p = 1, 2, ... for n = 3,
κq = 1 + 2q, q = 0, 1, 2, ... for n = 4.

The exponents λ±
k of power solutions can be determined by (2.43) taking into account the multiplicity,

and for the first positive among them, which is present in (3.26) we obtain

λ+
1 =

1

2

(
3 − n − 2m +

√
(3 − n − 2m)

2
+ 4 (n − 2)

)
.

In particular, for the kissing balls (Figures 3 and 4)

λ+
1 = −1 +

√
2 ∈

(
1
3 , 1

2

)
, for n = 3,

λ+
1 = 1

2

(
−3 +

√
17

)
∈

(
1
2 , 1

)
, for n = 4,

and for interior tangency of the ball with the paraboloid (Figure 5)

λ+
1 = −2 +

√
10 ∈ (1, 2) , for n = 3,

λ+
1 = 1

2

(
−5 +

√
33

)
∈

(
1
4 , 1

3

)
, for n = 4.

The solution w0 of the second limit problem (1.13) with the right-hand side F (η) = G(O) keeps the
rotational symmetry in the case of H(y) = H0r

2m, where H0 is a constant. Indeed, equation (1.13) takes
the form

−r2−n∂rr
n−2∂rw0 (r) = G (O) , r ∈ R+,

therefore,

∂rw0 (r) = −G (O)
r

n − 1

(
1 + H0r

2m
)−1

,

w0 (r) = G (O)
1

n − 1

∫ ∞

r

(
1 + H0r

2m
)−1

rdr for m > 1,
(4.11)

w0 (r) =
1

n − 1

1

2H0
ln

(
1 + H0ρ

2
)

+ const for m = 1

(see Remark 13 for the logarithm presence in the above formulae). The first formula in (4.11) shows that
in super-critical case n < 2m− 1 (cf. section 1§3) the energy functional (1.9) (or the Dirichlet integral ,
cf. (1.11)) gets according to (3.17) the asymptotics

E (uε; Ωε) = −1

2
~−2m+n+1measn−2

(
Sn−2

) G (O)
2

(n − 1)
2

∫ ∞

0

(
1 + H0r

2m
)−1

rndr+

+ O
(
~−2m+n+2 (1 + δ2m,n+2 |ln ~|)

)
.

In the same way one can predict the asymptotic formulae for shape functionals (4.1) and (4.5) in the
super-critical cases (see (4.3), (4.4) and (4.6)). For instance, if the inverse inequality (4.3) is valid, then
the following relation holds

F1
q (uε; Ωε) ∼ ~n−(2m−1)(q−1) |G (O)|q

(n − 1)
q measn−2

(
Sn−2

) ∫ ∞

0

(
1 + H0r

2m
)1−q

rn−2+qdr. (4.12)

The power exponent of small parameter ~ in (4.1) is negative.
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4.5 Loosing the connectivity for the limit set

The limit passage ε → +0 transforms the plane (n = 2) domain, designated in Figure 7 in the union of two

domains Ωleft
0 and Ωright

0 with the boundary cusps, i.e., the limit problem (2.1) contains two independent
Neumann problems, which need two compability conditions Iα = 0, where α = right, left = r, l and

Iα =

∫

Ωα
0

f0 (x) dx +

∫

∂Ωα
0

g0 (x) dsx. (4.13)

The additional difficulty is related to the compability conditions. It is easy to see that the orthogonality
condition (2.2) follows from the compatibility condition (1.7) for the singularly perturbed problem (1.5),
(1.6), and implies the relation

Ir = −I l = I, (4.14)

but by no means the equality I = 0, which is necessary for the solvability of two parts of the first limit
problem in the Sobolev class H1(Ωα

0 ). We refer the reader to paper [5] for details and to section §3 for
justification of asymptotics. For the sake of simplicity we here restrict ourselves to the case m = 1, and
derive the explicit formulae. For m > 1 some evident changes are required in the asymptotic procedure.
It is interesting that, in contrast to section 3§3, the Dirichlet integral looses the finite limit for ε → 0+.
However the lost of boundedness has other reason than in section 1§3 and has no relation to the values
of g0 at the point O.

The limit problems (2.1) in the domains Ωl
0 and Ωr

0 admit the solutions

vα
0 (x) = χ (y) IH−1

0 y−1 + v̂α
0 (x) , v̂α

0 ∈ H1 (Ωα
0 ) , α = l, r. (4.15)

This fact comes out from the general results of [12, 13, 15]. In order to verify the result in the simple
situation of the Neumann problem for the Poisson equation we point out two features. First, the
function x 7→ Y (x) = χ(y)y−1 leaves in the homogeneous problem (2.1) a discrepancy with sufficiently
good behavior in the vicinity of the point O, i.e., such that the problem admits a solution in the space
H1(Ωα

0 ). Second, the required condition for solvability of the non homogeneous problem (2.1) can be
assured by the choice of a factor at Y (x) in singular solution (4.14) due to the calculation

−
∫

Ωr
0

∆xY (x) dx +

∫

∂Ωα
0

∂νY (x) dsx = lim
δ→0+

(
−

∫

Ωr
0
(δ)

∆xY (x) dx +

∫

(∂Ωα
0 )(δ)

∂νY (x) dsx

)
=

= lim
δ→0+

∫ H+(δ)

−H−(δ)

∂yY (y, z) dz = lim
δ→0+

− 1

δ2

∫ H+(δ)

−H−(δ)

dz = −H0.

(4.16)

Here, Ωr
0(δ) = {x ∈ Ωr

0 : y > δ} is the domain with blunted peak, and (∂Ωr
0)(δ) = {x ∈ ∂Ωr

0 : y > δ}.
In the same way the left domain Ωl

0 is considered, with the obvious difference, which is related to the
direction of interior normal to the segment {x : y = −δ, −H−(δ) < z < H+(δ)} on the boundary ∂Ωl

0,
and results in the change of sign in three last terms in expressions (4.16)

Solutions (4.14) of the first limit problem in Ωα
0 are matched with the solution ε−1/2w0(ε

−1/2y) of
the homogeneous equation (3.67), i.e., the second limit problem. The required solution (3.66) and enjoys
the following asymptotics for η → ∞ :

w0 (η) = −IH
− 1

2

0 arctan
(
H

1
2

0 η
)

= ∓IH
− 1

2

0

(
π

2
− 1

H
1
2

0 |η|
+ O

(
|η|−3

))
. (4.17)

Due to the presence of the constant terms I(4H0)
−1/2π in expansions (4.17), the asymptotic ansätze in

Ωα
ε have to be changed for

uε (x) = − πI

2
√

H0

ε−
1
2 + v0 (x) + ... in Ωr

ε,

uε (x) =
πI

2
√

H0

ε−
1
2 + v0 (x) + ... in Ωl

ε.
(4.18)
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It is clear that the presence in (4.18) of large but constant terms has influence neither on the differential
equation, nor on the Neumann boundary conditions but the terms effect the behavior of the energy
functional as ε → 0+,

E (uε; Ωε) = −1

2

∫

Ωε

f (ε, x)uε (x) dx − 1

2

∫

∂Ωε

g (ε, x) uε (x) dsx. (4.19)

The following result, provided by the asymptotic anzatz (4.18) (the contribution of boundary layer is of
order O(1)), can be justified by the same scheme as that of section 2§3, and furnishes the asymptotics
of functional (4.19).

Proposition 30 Let Ωε be the domain designated in Figure 7, f = 0 and g(x, ε) = g0(x), the support of
the function g0 is included in the domain ∂Ωε ∩ ∂Ω, i.e., on the fixed part of the boundary of singularly
perturbed domain, and g0 is of the null mean value. Then the following asymptotic formula is valid

E (uε; Ωε) = −π

2
(εH0)

− 1
2

(∫

∂Ωr
0

g0 (x) dsx

)2

+ O (1 + |ln ε|) , ε → 0+. ¥

Fig. 10

The decomposition of the domain Ωε in the limit ε → 0+ into non-connected components can be
achieved in multidimensional case, in Figure 10 there is a ball of radius R in the space R3 which is located
inside of the cylinder of the same radius and of the height 2R, and the perturbation of the domain is
performed by decreasing of the radius to R − ε. In such case for the limit domain appears cuspidal
edges (denoted by the symbol ¥ on the profile of symmetry, in Figure 10). The question on asymptotic
structure of the solution uε to problem (1.5), (1.6), and the behavior of functional (1.9) for ε → 0+ in
such a singularly perturbed domain is a fully open problem. We can forecast, that the solutions of the
first limit problems enjoy the singularities of order O(|z|−1), distributed along the edges, and the density
of distribution can be found by a solution of a supplementary equation on the edge, which results from
the matching of the exterior and interior asymptotic expansions of solutions The same effects appear in
slightly different situations described in [42, 43].
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