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NEUMANN LAPLACIAN ON A DOMAIN WITH TANGENTIAL COMPONENTS IN THE BOUNDARY

We study the Neumann problem for the Poisson equation in a domain where two boundary components are tangential at a single point, such that a geometrical irregularity of the rotational cusp type is formed. We derive necessary and sufficient conditions for the existence of a solution with a finite Dirichlet integral.

Formulation of the problem.

Since the pioneering paper [START_REF] Kondratiev | Boundary problems for elliptic equations in domains with conical or angular points[END_REF] by V.Kondratiev much attention is devoted to elliptic boundary value problems in domains with irregular boundaries. An almost complete theory has been created in case of conical corner points and edges, see for example the key works [START_REF] Kondratiev | Boundary problems for elliptic equations in domains with conical or angular points[END_REF], [START_REF] Mazja | On coefficients in asymptotics of solutions of elliptic boundary value problems in a domain with conical points[END_REF], [START_REF] Mazja | Estimates in L p and Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary[END_REF], [START_REF] Nazarov | The polynomial property of self-adjoint elliptic boundary-value problems and the algebraic description of their attributes[END_REF] and [START_REF] Kondratiev | The smoothness of solution of Dirichlet's problem for second-order elliptic equations in a region with a piecewise smooth boundary[END_REF], [START_REF] Nikishin | Singularities of the solutions to the Dirichlet problem for a second order equation in a neighbourhood of an edge[END_REF], [START_REF] Mazja | L p -estimates of solutions of elliptic boundary value problems in domains with edges on the boundary[END_REF], [START_REF] Mazja | Schauder estimates of solutions of elliptic boundary value problems in domains with edges on the boundary[END_REF], respectively, and also the monographs [START_REF] Grisvard | Singularities in boundary value problems[END_REF], [START_REF] Nazarov | Elliptic Problems in Domains with Piecewise Smooth Boundaries[END_REF], [START_REF] Kozlov | Elliptic boundary value problems in domains with point singularities[END_REF]. Other geometrical irregularities, common in everyday life and engineering practise, have been considered as well. The papers [START_REF] Maz'ya | The asymptotic behavior of solutions of differential equations in Hilbert space[END_REF], [START_REF] Plamenevskii | The asymptotic behavior of the solutions of quasielliptic differential equations with operator coefficients. (Russian)[END_REF] and [START_REF] Kozlov | Elliptic boundary value problems in domains with point singularities[END_REF] contain studies near cusp tips of peak-shaped domains, using reduction to conical domains and to differential operators with strongly perturbed coefficients.

There are nevertheless many types of irregularities, also interesting for applied sciences, which have not yet been deeply studied. We mention cuspidal edges and rotational cusps, the latter being the subject of the present paper. It is not difficult to imagine the applications of such geometrical forms in mechanics and even more applied problems in metal or woodworking machinery; think about drill tips, milling inserts, incisal surfaces etc. Evidently, the solvability and Fredholm properties of such elliptic problems is open, though there exist results on asymptotics of solutions (see e.g. [START_REF] Nazarov | Asymptotics of the solution of the Neumann problem at a point of tangency of smooth components of the boundary of the domain[END_REF]).

Let Ω be a domain in the Euclidean space R n , which is Lipschitz everywhere else except at the origin O of the Cartesian coordinate system x = (y, z) ∈ R n-1 × R 1 . We assume that in a cylindrical neighbourhood U = B n-1 R × (-d, d) of O, where B n-1 R := {y ∈ R n-1 : |y| < R}, and R > 0, d > 0, a point x = (y, z) ∈ U belongs to the domain Ω, if and only if z satisfies the inequalities -H -(y) < z < H + (y). (1.1) Here the functions H ± are in the space H 1,∞ (B n-1 R ), i.e., the gradients ∇ y H ± are bounded functions almost everywhere on the ball. In addition, H := H + + H -> 0 for r ∈ (0, R] and H(y) = r 1+γ (H 0 (θ) + O(r δ )) , r → 0, (1.2) AMS subject classification: primary 35J25, secondary 46E35,35J20. The research of S.A.N. was partially supported by the grant RFFI-06-01-257. The research of J.S. was partially supported by the Projet CPER Lorraine MISN: Analyse, optimisation et contrôle 3 in France, and the grant N51402132/3135 Ministerstwo Nauki i Szkolnictwa Wyzszego: Optymalizacja z wykorzystaniem pochodnej topologicznej dla przeplywow w osrodkach scisliwych in Poland.

where H 0 is a smooth function of class C 2 , positive on the unit sphere S n-2 ⊂ R n-1 , while r = |y| and θ = r -1 y ∈ S n-2 are spherical coordinates, and γ, δ are positive exponents.

Classical geometrical forms described by the relations (1.1), (1.2) are balls kissing each other from inside or from outside (see Figure 1), and also the well known hydrodynamical problem on the ellipsoid sitting on the halfspace, see Figure 2. In these cases we have γ = 1. There exist more complicated geometries: for example, the Figure 3 designates a surface of revolution, tangent to the cylindrical cone. If a ball is kissing a paraboloid from inside (see in Figure 4) such that the curvatures of both bodies coincide at the origin O, the exponent γ turns out to be 3. Yet a different case, where γ may not be a constant at the origin, is designated in Figure 5. If the cylindrical surface is circular, then γ = 1 as before, but for a ball of radius R 0 > 0 and the parabolic cylinder with maximal curvature R -1 0 the domain is no more described by the relations (1.1), (1.2): one has γ = 3 along the trace (the generating parabola) and and γ = 1 along the axis (the line perpendicular to the traces), hence, there does not exist a positive function H 0 . In the sequel γ is called the exponent of tangency of the surfaces Γ ± = {x ∈ U : z = ±H ± (y)}.

We consider the following Neumann problem for the Poisson equation in the domain Ω:

-∆ x u(x) = f (x) , x ∈ Ω , ∂ ν u(x) = g(x) , x ∈ ∂Ω \ O. (1.3)
Here ∂ ν is the outward normal derivative, and the compability conditions on the data will given later. It is clear that the following conditions, in an appropriate sense, should be satisfied:

Ω f (x)dx + ∂Ω g(x)ds x = 0, (1.4)
where ds x is the (n -1)-dimensional surface measure. We shall study the question of the existence of solutions to problem (1.3) in the Sobolev space H 1 (Ω). Also the following simplified problem appears often in applications: given a function G, continuous or smooth near the origin O, find a solution to (1.3) with a finite Dirichlet integral, for the data

f = 0 on Ω ∩ U , g = 0 on Γ -, g = G on Γ + . (1.5)
It is known (see e.g., [START_REF] Maz'ya | Asymptotics of the solution of the Dirichlet problem in domains with a thin crosspiece[END_REF], [START_REF] Maz'ya | Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten[END_REF], Chapter 14, and Section 6 of this paper), that the analogous Dirichlet problem in the two dimensional case

-∆ x u(x) = f (x) , x ∈ Ω, , u(x) = g(x) , x ∈ ∂Ω \ O, (1.6)
has a negative answer, if G(O) = 0. This is so since the inclusion u ∈ H 1 (Ω) means that in a sense the difference u(y, H + (y)) -u(y, H -(y)) admits the null limit for y → 0.

In the paper we derive the criterium

γ < n (1.7)
for the existence of bounded energy solutions to problem (1.3) under conditions (1.4), (1.5) and G(O) = 0. If γ ≥ n, then, for any solution of (1.3) with the right-hand sides given above, the Dirichlet integral diverges. As a consequence we find that the Neumann and Dirichlet problems (with (1.5) ) behave in substantially different ways: for the geometrical forms of Figures 1 and2 and for the most interesting dimensions n = 2 and n = 3, the solution of the Neumann problem enjoys a finite energy, but this is not true for the Dirichlet problem.

The results on the solvability of the Neumann problem , Proposition 3.1 in Section 3, follow from a weighted inequality given by Lemma 2.1. These results assure the sufficiency of the condition (1.7) in the case of data (1.5). The next two sections are devoted to the verification of the necessary condition. In Section 5 we choose appropriate test functions in the integral identity for problem (1.3), and this leads to the conclusion that for G(O) = 0 there is no solution with the finite Dirichlet integral.

In the beginning of Section 4 we give explanations for the existence of the constraints (1.7), based on asymptotic constructions designed in [START_REF] Nazarov | Asymptotics of the solution of the Neumann problem at a point of tangency of smooth components of the boundary of the domain[END_REF].

In Section 6 we discuss possible generalizations and mention some open problems.

Weighted trace inequalities

The main result of this section is the verification of the following statement, with the scheme borrowed from [START_REF] Nazarov | On the spectrum of the Steklov problem in a domain with a peak[END_REF]. The result is used for the analysis of the variational formulation of Neumann problem (1.3).

Lemma 2.1. The following weighted inequality is valid:

ρ -1 u; L 2 (Ω) + c ρ (γ-1)/2 u; L 2 (∂Ω) ≤ u; H 1 (Ω) , (2.1) 
where ρ(x) = |x|, and the constant c is independent of u ∈ H 1 (Ω).

Proof. Since r ≥ r 0 > 0 on Ω \ U , we may assume without loss of generality that the support of the function u is included in the set Ω ∩ U . We represent the function u in the form u(y, z) = ū(y) + u ⊥ (y, z),

H + (y) -H -(y) u ⊥ (y, z)dz = 0 for almost all y ∈ B n-1 R . (2.2)
By orthogonality condition (2.2), the Poincaré inequality holds on the interval Υ(y) = (-H -(y), H + (y)) with the length H(y). Denoting ∂ z := ∂/∂z we can thus write

Ω∩U |∂ z u(x)| 2 dx = B n-1 R Υ(y) |∂ z u ⊥ (y, z)| 2 dzdy ≥ π 2 B n-1 R Υ(y) H(y) -2 |u ⊥ (y, z)| 2 dzdy ≥ C Ω∩U r -2(1+γ) |u ⊥ (x)| 2 dx, C > 0. (2.3)
The standard method of verification of the trace inequalities (see, e.g., [START_REF] Ladyzhenskaya | Boundary value problems of mathematical physics[END_REF]) leads to

I 0 := ± Γ ± ρ -1-γ |u ⊥ (x)| 2 ds x ≤ c ± B n-1 R H(y) -1 |u ⊥ (y, ±H ± (y)| 2 dy ≤ c Ω∩U (|∂ z u ⊥ (y, z)| 2 + H(y) -2 |u ⊥ (y, z)| 2 )dydz. (2.4)
We remark that by our assumptions, the boundary Jacobian on the surfaces Γ ± is bounded, and the quantities r 1+γ , ρ 1+γ , and H(y) are infinitesimal and of the same order, when x → O from inside of Ω.

We have

Ω∩U |∇ y u(x)| 2 dx = B n-1 R H(y)|∇ y ū(y)| 2 dy + Ω∩U |∇ y u ⊥ (x)| 2 dx + 2 B n-1 R ∇ y ū(y) • Υ(y)
∇ y u ⊥ (y, z)dzdy =:

I 1 + I 2 + I 3 . (2.5)
The dot "•" denotes the inner product in R n-1 . We apply the following one dimensional Hardy inequality

R 0 r α-1 |U (r)| 2 dr ≤ 4 α 2 R 0 r α+1 |∂ r U (r)| 2 dr (2.6) with the exponent α = n -2 + γ > 0; it is valid, if U (R) = 0. It follows that I 1 ≥ c B n-1 R r -1+γ |ū(y)| 2 dy ≥ c Ω∩U r -2 |ū(y)| 2 dx , c > 0. (2.7)
For the analysis of the integral I 3 we make use of the rule of differentation of integrals with variable limits and obtain

∇ y Υ(y) u ⊥ (y, z)dz - Υ(y) ∇ y u ⊥ (y, z)dz ≤ ± |∇ y H ± (y)| |u ⊥ (y, ±H ± (y))| for almost all y ∈ B n-1
R . Since the first integral on the left-hand side is null by (2.2), we have

|I 3 | ≤ C B n-1 R |∇ y ū(y)| ± |∇ y H ± (y)| |u ⊥ (y, ±H ± (y))|dy ≤ C B n-1 R H(y)|∇ y ū(y)|dy 1/2 ± Γ ± H(y) -1 |u ⊥ (x)|ds x 1/2 ≤ εI 1 + cε -1 I 0 , (2.8)
with an arbitrary ε > 0. Assume that ε = 1/4; then from (2.5), (2.4) and (2.8) it follows that each of integrals I 1 and I 2 is bounded by the quantity c ∇ x u; L 2 (Ω∩U ) . The estimates (2.3) and (2.7) for the component in decomposition (2.2) lead to the required relation (2.1).

Solvability of the variational problem

Assume that the right-hand sides of problem (1.3) are smooth for the time being and take the form

f (x) = f 0 (x) -∇ x • f (x) , g(x) = g 0 (x) + ν(x) • f (x), (3.1)
where f = (f 1 , . . . , f n ) and ν = (ν 1 , . . . , ν n ) is the outer unit normal. In such a case the variational formulation [START_REF] Ladyzhenskaya | Boundary value problems of mathematical physics[END_REF] of the Neumann problem (1.3) reads as

(∇ x u, ∇ x v) Ω = (f 0 , v) Ω + (f , ∇ x v) Ω + (g 0 , v) ∂Ω , v ∈ C ∞ c ( Ω \ O); (3.2) here C ∞ c ( Ω \ O)
is the space of infinitely smooth functions which vanish in a neighbourhood of the point O and (•, •) Ξ denotes the scalar product in the Lebesgue space L 2 (Ξ) as well as its extension to the duality pairing between appropriate weighted spaces. In view of Lemma 2.1, the expression on the right hand side of (3.2) defines a continuous functional on H 1 (Ω), if the inclusions

f ∈ L 2 2 (Ω) n , rf 0 ∈ L 2 2 (Ω) , r (1-γ)/2 g 0 ∈ L 2 (∂Ω), (3.3)
hold true. In the sequel we understand (3.2) as a generalized (cf. [START_REF] Ladyzhenskaya | Boundary value problems of mathematical physics[END_REF]) or variational formulation of the problem (1.3), even though the functions (3.1) cannot always be interpreted properly.

By H 1 (Ω) ⊥ we denote the subspace of the Sobolev space, which contains the functions with null mean value

Ω u(x)dx = 0. (3.4)
The left hand side of (3.2) can be taken for the scalar product in H 1 (Ω) ⊥ . Indeed, it is sufficient to verify that for each function u ∈ H 1 (Ω) ⊥ the following inequality holds true:

u; L 2 (Ω) ≤ C ∇ x u; L 2 (Ω) .
We define

u(x) = a + u(x) , Ω(δ) u(x)dx = 0,
where Ω(δ) = Ω \ Bn δ and δ > 0 is small enough. According to (3.4) we have

|a| ≤ (mes n Ω) -1 Ω |u(x)|dx ≤ c u; L 2 (Ω) ,
i.e., it is sufficient to estimate the latter norm. The domain Ω(δ) has Lipschitz boundary, which ensures, owing to the Poincaré inequality, that

u; L 2 (Ω(δ)) ≤ c δ ∇ x u; L 2 (Ω(δ)) = c δ ∇ x u; L 2 (Ω(δ)) ≤ c δ ∇ x u; L 2 (Ω) .
We define a cut-off function χ : Ω → [0, 1] to be equal to one for x ∈ Ω ∩ U , r < R/2 and to null in the exterior of Ω ∩ U . Multiplying u by χ we obtain, for

δ = R/2, r -1 χu; L 2 (Ω) ≤ c ∇ x (χu); L 2 (Ω) ≤ c δ ( ∇ x u; L 2 (Ω) + u; L 2 (Ω(δ)) ) ≤ C δ ∇ x u; L 2 (Ω) .
Here, Lemma 2.1 is applied. In the proof of the lemma it was established that for a function u with the support in the set Ω ∩ U , the norm u; H 1 (Ω) can be replaced by the quantity ∇ x u; L 2 (Ω) in the inequality (2.1) . It remains to note that

u; L 2 (Ω) ≤ χu; L 2 (Ω) + u; L 2 (Ω(δ)) ≤ C ∇ x u; L 2 (Ω) .
By the Riesz representation theorem for continuous functionals on a Hilbert space, the following assertion holds true. 

Ω |f 0 (x)|dx ≤ rf 0 ; L 2 (Ω) Ω r -2 dx 1/2 , ∂Ω |g 0 (x)|ds x ≤ r (1-γ)/2 g 0 ; L 2 (Ω) ∂Ω r γ-1 ds x 1/2
converge on Ω and ∂Ω, respectively.

Remark 3.3. The condition (3.3) does not seem necessary at the first glance, since for smooth functions u in the class H 1 (Ω), the traces of normal derivatives on the smooth surfaces Γ ± are also smooth. However, they need not belong to the weighted space indicated by (3.3). In fact, we can get better results using the following observation, changing the function f in (3.1). Indeed, dealing with the traces g ± of the function g 0 at Γ ± and taking into account the formula for the normal vector

ν ± (y) = (1 + |∇ y H ± (y)| 2 ) -1/2 (∇ y H ± (y), ±1) , x ∈ Γ ± (3.6)
we replace f by the vector function f with the components

f k (x) = f k (x) + χ(y)(1 + |∇ y H(y)| 2 ) -1/2 ∂H ∂y k (y)g -(y) , k = 1, . . . , n -1, f n (x) = f n (x) -χ(y)(1 + |∇ y H(y)| 2 ) -1/2 g -(y),
and note that now g -= 0 in a neighbourhood of the point O ∈ Γ -. In other words, it is sufficient to require that the difference g + -g -belongs to the weighted space (compare with [START_REF] Nazarov | Asymptotics of the solution to the Neumann problem in a thin domain with a sharp edge[END_REF], Lemma 4.2.).

If G is a continuous function which is non null at the point O and if (1.5) is assumed, then the inclusion r (1-γ)/2 G ∈ L 2 (B n-1 R ) is satisfied only for γ < n, i. e., the latter condition is sufficient for the existence of a solution u ∈ H 1 (Ω) with the data satisfying (1.5) and (1.4).

Asymptotic structure of solutions.

In view of the formulae (1.1), (1.2), the domain Ω becomes thin in the direction of the z-coordinate in the vicinity of the point O. We are going to apply the asymptotic ansatz known in the theory of elliptic problems in thin domains (see, e.g. [START_REF] Nazarov | Asymptotic theory of thin plates and rods. Dimension reduction and integral estimates[END_REF], for further details). Such an analysis is required for the description of solutions at the point of tangency for smooth components of the boundary sections (cf. [START_REF] Nazarov | Asymptotic behavior of the stress-strain state near a spatial singularity of the boundary of the beak tip type[END_REF][START_REF] Nazarov | Asymptotics of the solution of the Neumann problem at a point of tangency of smooth components of the boundary of the domain[END_REF][START_REF] Nazarov | On the flow of water under a still stone[END_REF] for some problems in mathematical physics). Indeed, we are going to look for the asymptotic solution of problem (1.3) with data (1.5) in the form

u(x) = v(y) + H(y)V (y, ζ), (4.1)
where v and V are functions to be determined, and ζ = H(y) -1 z is the fast variable. Replacing the solution u in (1.3) by the ansatz (4.1) and taking into account the formula (3.6) for the normal, we obtain

∆ x u(x) = ∆ y v(y) + H(y) -1 ∂ 2 ζ V (y, ζ) + . . . , (4.2) ∂ ν ± u(y, ±H ± (y) = ±∂ ζ V y, 1 2 ± 1 2 -∇ y H ± (y) • ∇ y v(y) + . . . . (4.3)
We denote by . . . the terms which are not substantial for the present formal asymptotical analysis and can thus be neglected here. Now, we observe that the terms in (4.3) are of the same order (for y → 0) as the function G in (1.5), and conclude that the discrepancies of the solution (4.1) in the problem (1.3) are small provided the following relations are satisfied:

-∂ 2 ζ V (y, ζ) = H(y)∆ y v(y) , ζ ∈ (0, 1), ∂ ζ V (y, 1) = ∇ y H + (y) • ∇ y v(y) + G(O), -∂ ζ V (y, 0) = ∇ y H -(y) • ∇ y v(y). (4.4)
These form a Neumann boundary value problem for an ordinary differential equation on the line segment. Since

1 0 H(y)∆ y v(y)dζ + ∇ y H + • ∇ y v(y) + G(O) + ∇ y H -• ∇ y v(y) = ∇ y • H(y)∇ y v(y) + G(O),
the compability condition for the problem is the equality

-∇ y • H(y)∇ y v(y) = G(O), (4.5)
which we consider as a degenerate partial differential equation in the punctured space R n-1 \ O. Myltiplying (1.5) by r -1-γ and taking into account the relation (1.2), we obtain the differential operator

L 0 (y, ∇ y ) = -r -1-γ ∇ y • r 1+γ H 0 (θ)∇ y , (4.6)
which, in a sense, is the main part of the operator -∇ y • H(y)∇ y at the point y = 0. In the spherical coordinates, the operator takes the form r -2 L(θ, ∇ θ , r∂ r ), where ∇ θ stands for the spherical gradient, and can be considered in the framework of elliptic boundary value problems in domains with conical and angular boundary points. We apply the theory to construct the power solutions r λ Ψ(θ) of the homogeneous and nonhomogeneous equations

L 0 (y, ∇ y )U (y) = r µ-1-γ ψ(θ) , y ∈ R n-1 \ {0}. (4.7)
Lemma 4.1. The spectral equation on the sphere

-∇ θ • H 0 (θ)∇ θ φ(θ) = ΛH 0 (θ)φ(θ) , θ ∈ S n-1 , (4.8)
admits the infinite sequence of eigenvalues

0 = Λ 0 < Λ 1 ≤ Λ 2 ≤ Λ 3 ≤ . . . ≤ Λ m ≤ . . . → +∞, (4.9)
which are listed in (4.9) taking into account the multiplicities. The corresponding eigenfunctions

(mes n-2 S n-2 ) -1/2 = φ 0 , φ 1 , φ 2 , . . . , φ m , . . . (4.10)
are normalized by the orthogonality conditions

(H 0 φ j , φ k ) S n-2 = δ j,k (4.11)
where j, k = 0, 1, 2, . . . and δ j,k is the Kronecker symbol. 

∇ θ • H 0 ∇ θ H -1/2 + 1,
for which the general theory applies. From the strong maximum principle it follows that φ 0 is constant and that the first eigenvalue Λ 0 is simple. Lemma 4.2. Each power solution

U (y) = r λ φ(θ) (4.12)
of the homogeneous problem (4.7) has the exponent

λ ± m = 1 2 2 -n -γ ± (2 -n -γ) 2 + 4Λ m (4.13)
and the eigenfunction φ, corresponding to the eigenvalue Λ m in equation (4.8). In addition,

λ + 0 = 0 , λ - 0 = 2 -n -γ < 0. (4.14)
Proof. The power solutions of the form (4.12) can be obtained by direct computations and separation of variables from the homogenuous equation (4.7), i.e. with ψ = 0.

The following statement is well known, see [START_REF] Kondratiev | Boundary problems for elliptic equations in domains with conical or angular points[END_REF], and e.g., [START_REF] Nazarov | Elliptic Problems in Domains with Piecewise Smooth Boundaries[END_REF], Lemma 3.5.11. On the other hand, for γ > 0 and γ = 1 (see Figure 4), the solution turns out to be a power solution,

U (y) = r 1-γ ψ(θ) (4.18)
Indeed, for γ > 1 the exponent 1-γ belongs to the segment (λ - 0 , λ + 0 ) = (2-n-γ, 0), free from the numbers (4.13). For γ ∈ (0, 1) the exponent 1 -γ may coincide with λ + m , but then necessarily m ≥ 1 and therefore, by (4.7), (4.7), the right-hand side ψ(θ) = G(O) is orthogonal to the eigenfunction φ m . Hence, the condition (4.16) is satisfied.

We introduce some simplifying assumptions, which will be omitted in the following section. First, H(y) = r 1+γ H 0 (θ), which implies that in (1.2) the small remainder is absent, and the expression r 1+γ L 0 (y, ∇ y )v(y) from (4.6) coincides with the right hand side of (4.5). Second, functions H ± are assumed twice continuously differentiable, and moreover, in accordance with Section 1, we require

|∇ y H ± (y)| + r|∇ 2 y H ± (y)| ≤ C. Solutions of the Neumann problem are of the form V (y, ζ) = - 1 2 ζ 2 H(y)∆ y v(y) -ζ∇ y H -(y) • ∇ y v(y), (4.19) 
and the boundary condition for ζ = 1 is verified for such a solution by the fact that v = U is a solution (of the form (4.17) or (4.18)) to the equation (4.7) for µ = 0 and ψ(0) = G(O). In the case of G(O) = 0, we have

|∇ y v(y)| ≥ c 0 r -γ , c 0 > 0, |∇ y (H(y)V (y, H(y) -1 ζ)| ≤ c 1 .
In this way, for γ > n the Dirichlet integral of the function (4.1) diverges:

Ω∩U |∇ x u(x)| 2 dx ≥ c B n-1 R H(y) 1 2 c 2 0 r -2γ -c 2 1 dy ≥ c R 0 1 2 c 2 0 r 1-γ -c 2 1 r 1+γ r n-2 dr. (4.20)
On the other hand, for γ ∈ (0, n) the Dirichlet integral converges.

Necessity of the condition γ < n

We assume that the problem (1.3) admits a generalized solution u ∈ H 1 (Ω). We introduce the following test functions for the integral identity (3.2):

v k (x) = 0 , x ∈ Ω \ U 2 k(n-2+γ)/2 σ(2 k y) , y ∈ Ω ∩ U .
Here, k = 1, 2, . . . and σ is a nontrivial function from the space C ∞ (R n-1 ) with the support in the annulus {y : r ∈ (R/2, R)}. Because of the normalization factor 2 k(n-2+γ)/2 , one readily verifies that

v k ; H 1 (Ω) ≤ c , k = 1, 2, . . . .
Since the sets suppv k form a sequence diminishing to the point O, the left-hand side of identity (3.2) tends to zero as k → ∞. Under the condition (1.5) the right hand side of (3.2) equals to

B n-1 R v k (y)G(y, H + (y))(1 + |∇ y H + (y)| 2 ) 1/2 dy = 2 k(n-2+γ)/2 2 -k(n-1) B n-1 2 -k R σ(η)(G(O) + o(1))dη = 2 k(γ-n)/2 G(O) R n-1 σ(η)dη + o(1) , k → +∞. (5.1)
Therefore, for g(O) σ(η)dη = 0 and γ -n ≥ 0 the right hand side of (3.2) admits a non null limit. The obtained contradiction shows the necessity of the condition (1.7).

Remark 5.1. Small changes in the proof of (5.1) lead to the following result. In the case of γ + m ≥ n, with an integer m, problem (1.3) is unsolvable in the class H 1 (Ω), if some derivative of order k ≤ m of the function y → G(y, H(y)) is non null at y = 0.

Conclusions

It is clear that the obtained results remain valid for any scalar, formally self adjoint differential operator -∇ x • A∇ x , where A is an n × n-matrix valued function, uniformly positive definite, with measurable, bounded components almost everywhere in Ω.

It seems possible that there are different conditions on the tangency exponent γ (compare to (1.2) ) for the existence of bounded energy solutions for elasticity boundary value problems on non smooth domains with tractions prescribed on the boundary ∂Ω of elastic body Ω, i.e., with the Neumann boundary conditions. This view is supported by some known results in the elasticity theory, including, the weighted Korn inequality and the results on asymptotic structures of the elastic fields in the vicinity of cuspidal singularities of boundaries (see [START_REF] Nazarov | Asymptotic behavior of the stress-strain state near a spatial singularity of the boundary of the beak tip type[END_REF], [START_REF] Nazarov | The asymptotic form of the stressed state near a three-dimensional boundary singularity of the "claw" type[END_REF]). The precise formulation of such conditions remains an open problem.

Changing to some other types of boundary conditions in general leads to new constraints on the exponent γ. For example, in the case of the Dirichlet boundary conditions (1.6), the bounded energy solutions are obtained only for (6.1) γ < n -2 .

This is just the reason in two spatial dimensions (see [START_REF] Maz'ya | Asymptotics of the solution of the Dirichlet problem in domains with a thin crosspiece[END_REF], [START_REF] Maz'ya | Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten[END_REF], Chapter 14) why the Dirichlet integral of a solution to (1.6) with data (1.5) is infinite for all γ > 0 for G(O) = 0. This can be justified using the methods of [START_REF] Verzhbinskii | Asymptotic behavior of solutions of elliptic equations of the second order close to a boundary[END_REF] and [START_REF] Maz'ya | Asymptotics of the solution of the Dirichlet problem in domains with a thin crosspiece[END_REF]. We only recall, that for a smooth function G the asymptotic anszatz (4.1) is simplified and takes the form u(x) ∼ ζG(O), and the constraint (6.1) for γ comes out from the reasoning similar to (4.20).

The geometrical form designated in Figure 5 is still a subject for further research. If, for example, H -= 0, and the surface Γ + inside of the neighbourhood U is given by the following equation y 2q

n-1 + P (y 1 , • • • , y n-2 ) = 1 , (6.2) where P is a homogeneous polynomial of order 2(q+p), and p, q are positive integers, then our arguments can be used to show that the problem (1.3) along with boundary conditions (1.5) admits a solution in the class H 1 (Ω) for 2(q + p) < n -1, and that there is no such solution for 2q ≥ n. However, a complete analysis would still require a new approach. 

Proposition 3 . 1 .

 31 Assume that the conditions (3.3) and Ω f 0 (x)dx + ∂Ω g 0 (x)ds x = 0 (3.5) are satisfied. Then the variational problem (3.2) admits a unique solution u ∈ H 1 (Ω) ⊥ and the inequality u; H 1 (Ω) ≤ cN, is valid; the constant c is independent of functions (3.3), and N denotes the sum of norms of functions in (3.3). Remark 3.2. The identity (3.5) is just a substitute for (1.4), since for smooth functions the two identities are equivalent, by the representation (3.1). The inclusion (3.3) implies the convergence of the integrals in (3.5), since the integrals on the right-hand sides of the following relations

  Proof. Multiplication of the equation (4.8) by H -1/2 0 and the changes of variables φ → H -1/2 0 φ, Λ → Λ+1 lead to the expression of the positive and selfadjoint operator -H -1/2 0

Proposition 4 . 3 .

 43 If the number µ + 1 -γ is excluded from the set defined in (4.13), then the equation (4.7) has a unique power-law solution (4.12) with the exponent λ = µ + 1 -γ. In the case µ + 1 -γ = λ ± m , the equation (4.7) gains the powerlogarithmic solutionsr λ ± m (c(ψ)φ m (θ) ln r + φ(θ)), (4.15) which differ by the term cr λ ± m φ m (θ). The constant c(ψ) in (4.15) is null, if and only if the right hand-side of equation (4.15) satisfies the condition S n-2 φ m (θ)ψ(θ)ds θ = 0. (4.16)In the case G(O) = 0 in (4.5) the right hand side of the equation (4.7) must be r -1-γ G(O), i. e., µ = 0 and ψ(θ) = G(O). By Proposition 4.3 and Lemma 4.2, the equation (4.7) has in the case of γ = 1 (see Figures1 and 2) the logarithmic solution U (y) = C ln r + ψ(θ).(4.17) 
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