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THE D’ALEMBERT-LAGRANGE PRINCIPLE FOR

GRADIENT THEORIES AND BOUNDARY CONDITIONS

H. GOUIN

Université d’Aix-Marseille, 13397 Marseille Cedex 20, France

E-mail: henri.gouin@univ-cezanne.fr

Dedicated to Prof. Antonio M. Greco

Motions of continuous media presenting singularities are associated with phe-
nomena involving shocks, interfaces or material surfaces. The equations repre-
senting evolutions of these media are irregular through geometrical manifolds.
A unique continuous medium is conceptually simpler than several media with
surfaces of singularity. To avoid the surfaces of discontinuity in the theory, we
transform the model by considering a continuous medium taking into account
more complete internal energies expressed in gradient developments associated
with the variables of state. Nevertheless, resulting equations of motion are of an
higher order than those of the classical models: they lead to non-linear models
associated with more complex integration processes on the mathematical level
as well as on the numerical point of view. In fact, such models allow a precise
study of singular zones when they have a non negligible physical thickness. This
is typically the case for capillarity phenomena in fluids or mixtures of fluids in
which interfacial zones are transition layers between phases or layers between
fluids and solid walls. Within the framework of mechanics for continuous me-
dia, we propose to deal with the functional point of view considering globally
the equations of the media as well as the boundary conditions associated with
these equations. For this aim, we revisit the d’Alembert-Lagrange principle of

virtual works which is able to consider the expressions of the works of forces
applied to a continuous medium as a linear functional value on a space of test
functions in the form of virtual displacements. At the end, we analyze exam-
ples corresponding to capillary fluids. This analysis brings us to numerical or
asymptotic methods avoiding the difficulties due to singularities in simpler -but
with singularities- models.

1. Introduction

A mechanical problem is generally studied through force interactions be-

tween masses located in material points: this Newton point of view leads

together to the statistical mechanics but also to the continuum mechanics.

The statistical mechanics is mostly precise but is in fact too detailed and
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in many cases huge calculations crop up. The continuum mechanics is an

asymptotic notion coming from short range interactions between molecules.

It follows a loose of information but a more efficient and directly computable

theory. In the simplest case of continuum mechanics, residual information

comes through stress tensor like Cauchy tensor1,2 . The concept of stress

tensor is so frequently used that it has become as natural as the notion

of force. Nevertheless, tensor of contact couples can be investigated as in

Cosserat medium3 or configuration forces like in Gurtin approach4 with

edge interactions of Noll and Virga5 . Stress tensors and contact forces are

interrelated notions6 .

A fundamental point of view in continuum mechanics is: the Newton sys-

tem for forces is equivalent to the work of forces is the value of a linear

functional of displacements. Such a method due to Lagrange is dual of

the system of forces due to Newton7,8 and is not issued from a variational

approach; the minimization of the energy coincides with the functional ap-

proach in a special variational principle only for some equilibrium cases.

The linear functional expressing the work of forces is related to the theory

of distributions; a decomposition theorem associated with displacements

(as test functions whose supports are C∞ compact manifolds) uniquely de-

termines a canonical zero order form (separated form) with respect both to

the test functions and the transverse derivatives of contact test functions9 .

As Newton’s principle is useless when we do not have any constitutive

equation for the expression of forces, the linear functional method is useless

when we do not have any constitutive assumption for the virtual work func-

tional. The choice of the simple material theory associated with the Cauchy

stress tensor corresponds with a constitutive assumption on its virtual work

functional. It is important to notice that constitutive equations for the free

energy χ and constitutive assumption for the virtual work functional may

be incompatible10 : for any virtual displacement ζ of an isothermal medium,

the variation −δχ must be equal to the virtual work of internal forces δτint.

The equilibrium state is then obtained by the existence of a solution mini-

mizing the free energy.

The equation of motion of a continuous medium is deduced from the

d’Alembert-Lagrange principle of virtual works which is an extension of

the principle in mechanics of systems with a finite number of degrees of

freedom: The motion is such that for any virtual displacement the virtual

work of forces is equal to the virtual work of mass accelerations.

Let us note: if the virtual work of forces is expressed in classical notations
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in the form

δτ =

∫ ∫ ∫

D

{f . ζ + tr [(−p 1 + 2µ ∇V) .∇ζ]} dv +

∫ ∫

S

T. ζ ds (1)

from the d’Alembert-Lagrange principle, we obtain not only the equations

of balance momentum for a viscous fluid in the domain D but also the

boundary conditions on the border S of D. We notice that expression (1)

is not the Frechet derivative of any functional expression.

If the free energy depends on the strain tensor F , then δτ must depend on

∇ζ and leads to the existence of the Cauchy stress tensor. If the free energy

depends on the strain tensor F and on the overstrain tensor ∇F, then δτ

must depend on ∇ζ and ∇2ζ.

Conjugated (or transposed) mappings being denoted by asterisk, for any vec-

tors a,b, we write a∗ b for their scalar product (the line vector is multiplied

by the column vector) and ab∗ or a⊗b for their tensor product (the column

vector is multiplied by the line vector). The product of a mapping A by a

vector a is denoted by Aa. Notation b∗ A means the covector c∗ defined

by the rule c∗ = (A∗ b)∗. The divergence of a linear transformation A is the

covector divA such that, for any constant vector a, (div A)a = div (A a).

We introduce a Galilean or fixed system of coordinates (x1, x2, x3) which is

also denoted by x as Euler or spatial variables. If f is a real function of x,
∂f

∂x
is the linear form associated with the gradient of f and

∂f

∂xi
= (

∂f

∂x
)i ;

consequently, (
∂f

∂x
)∗ = grad f . The identity tensor is denoted by 1.

Now, we present the method and its consequences in different cases of gradi-

ent theory. As examples, we revisit the case of Laplace theory of capillarity

and the case of van der Waals fluids.

2. Virtual work of continuous medium

The motion of a continuous medium is classically represented by a con-

tinuous transformation ϕ of a three-dimensional space into the physical

space. In order to describe the transformation analytically, the variables

X =(X1, X2, X3) which single out individual particles correspond to mate-

rial or Lagrange variables. Then, the transformation representing the mo-

tion of a continuous medium is

x = ϕ (X,t) or xi = ϕi(X1, X2, X3, t) , i = 1, 2, 3

where t denotes the time. At t fixed the transformation possesses an inverse

and continuous derivatives up to the second order except at singular sur-
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faces, curves or points. Then, the diffeomorphism ϕ from the set D0 of the

particles into the physical space D is an element of a functional space ℘ of

the positions of the continuous medium considered as a manifold with an

infinite number of dimensions.

To formulate the d’Alembert-Lagrange principle of virtual works, we in-

troduce the notion of virtual displacements. This is obtained by letting

the displacements arise from variations in the paths of the particles. Let a

one-parameter family of varied paths or virtual motions denoted by {ϕη}

and possessing continuous derivatives up to the second order and expressed

analytically by the transformation

x = Φ (X,t; η)

with η ∈ O, where O is an open real set containing 0 and such that

Φ (X,t; 0) = ϕ (X,t) or ϕ0 = ϕ (the real motion of the continuous medium

is obtained when η = 0). The derivation with respect to η when η = 0 is

denoted by δ. Derivation δ is named variation and the virtual displacement

is the variation of the position of the medium11 . The virtual displacement

is a tangent vector to ℘ in ϕ (δϕ ∈ Tϕ(℘)). In the physical space, the

virtual displacement δϕ is determined by the variation of each particle: the

virtual displacement of the particle x is such that ζ = δx when δX = 0,

δη = 1 at η = 0; we associate the field of tangent vectors to D

x ∈ D → ζ = ψ(x) ≡
∂Φ

∂η
|η=0 ∈ Tx(D)

where Tx(D) is the tangent vector bundle to D at x. The concept of virtual

x

X

Do

D

ϕ
η

ϕ

S

So

Physical space

ζ

℘

ϕ =ϕ

ϕ

o

η

(C)

δϕ

functional

space of 

positions

Fig. 1. The boundary S of D is represented by a thick curve and its variation by a thin
curve. Variation δϕ of family {ϕη} of varied paths belongs to Tϕ(℘), tangent space to
(℘) at ϕ.
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work is purposed in the form:

The virtual work is a linear functional value of the virtual displacement,

δτ =< ℑ, δϕ > (2)

where < . , . > denotes the inner product of ℑ and δϕ; then, ℑ belongs to

the cotangent space of ℘ at ϕ (ℑ ∈ T ∗

ϕ(℘)).

In Relation (2), the medium in position ϕ is submitted to the covector ℑ

denoting all the stresses; in the case of motion, we must add the inertial

forces associated with the acceleration quantities to the volume forces.

The d’Alembert-Lagrange principle of virtual works is expressed as:

For all virtual displacements, the virtual work is null.

Consequently, representation (2) leads to:

∀ δϕ ∈ Tϕ(℘), δτ = 0

Theorem: If expression (2) is a distribution in a separated form, the

d’Alembert-Lagrange principle yields the equations of motions and boundary

conditions in the form ℑ = 0 .

3. Some examples of linear functional of forces

Among all possible choices of linear functional of virtual displacements, we

classify the following ones:

3.1. Model of zero gradient

3.1.1. Model A.0

The medium fills an open set D of the physical space and the linear func-

tional is in the form

δτ =

∫ ∫ ∫

D

Fi ζ
idv

where Fi (i = 1, 2, 3) denote the covariant components of the volume force

F (including the inertial force terms) presented as a covector. The equation

of the motion is

∀ x ∈ D, Fi = 0 ⇔ F = 0 (3)

3.1.2. Model B.0

The medium fills a set D and the surface S is the boundary of D belonging

to the medium; with the same notations as in section 3.1.1, the linear
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functional is in the form

δτ =

∫ ∫ ∫

D

Fi ζ
idv +

∫ ∫

S

Ti ζ
ids (4)

Ti are the components of the surface forces (tension) T. From Eq. (4), we

obtain the equation of motion as in Eq. (3) and the boundary condition,

∀ x ∈ S, Ti = 0 ⇔ T = 0

,

3.2. Model of first gradient

3.2.1. Model A.1

With the previous notations, the linear functional is in the form

δτ =

∫ ∫ ∫

D

(

Fi ζ
i − σj

i ζ
i
,j

)

dv

where σj
i (i, j = 1, 2, 3) are the components of the stress tensor σ. Stokes

formula gets back to the model B .0 in the separated form

δτ =

∫ ∫ ∫

D

(

Fi + σj
i,j

)

ζidv −

∫ ∫

S

njσ
j
i ζ

ids

where nj (j = 1, 2, 3) are the components of a covector which is the annu-

lator of the vectors belonging to the tangent plane at the boundary S. It is

not necessary to have a metric in the physical space; nevertheless, for the

sake of simplicity it is convenient to use the Euclidian metric; the vector n

of components nj (j = 1, 2, 3) represents the external normal to S relatively

to D; the covector n⋆ is associated with the components nj . We deduce

the equation of motion

∀ x ∈ D, Fi + σj
i,j = 0 ⇔ F + div σ = 0 (5)

and the boundary condition

∀ x ∈ S, nj σ
j
i = 0 ⇔ n⋆ σ = 0

3.2.2. Model B.1/0: (Mixed model with first gradient in D and zero

gradient on S)

The linear functional is expressed in the form

δτ =

∫ ∫ ∫

D

(

Fi ζ
i − σj

i ζ
i
,j

)

dv +

∫ ∫

S

Ti ζ
i ds
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Stokes formula yields the separated form

δτ =

∫ ∫ ∫

D

(

Fi + σj
i,j

)

ζi dv +

∫ ∫

S

(

Ti − njσ
j
i

)

ζi ds (S.0)

and we deduce the equation of motion in the same form as Eq. ( 5) and the

boundary condition

∀ x ∈ S, nj σ
j
i = Ti ⇔ n⋆ σ = T

Model B .1/0 is the classical theory for elastic media and fluids in contin-

uum mechanics.

3.2.3. Model B.1

The linear functional is expressed in the form

δτ =

∫ ∫ ∫

D

(

Fi ζ
i − σj

i ζ
i
,j

)

dv +

∫ ∫

S

(

Ti ζ
i + γj

i ζ
i
,j

)

ds (6)

where the tensor γ of components γj
i is a new term. The boundary of D is

a surface S shared in a partition of N parts Sp of class C2, (p = 1, ..., N)

(Fig. 2). We denote by (Rm)−1 the mean curvature of S; the edge Γp of Sp

is the union of the limit edges Γpq between surfaces Sp and Sq assumed to

be of class C2 and t is the tangent vector to Γp oriented by n; n′ is the unit

external normal vector to Γp in the tangent plane to Sp: n′= t × n. Let us

notice that:

γj
i ζ

i
,j = −γj

i,j ζ
i + V j

,j (7)

where V j = γj
i ζ

i ; consequently, from integration of the divergence of

D

S

S

Γp

q

Am

pq

S
p

Γ
pqn

t

n'

Fig. 2. The set D has a surface boundary S divided in several parts. The edge of S is
denoted by Γ which is also divided in several parts with end points Am.
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vector V on surfaces Sp we obtain,
∫ ∫

Sp

V j
,j ds = −

∫ ∫

Sp

nj

(

V j

Rm

− V j
,ln

l

)

ds+

∫

Γp

n
′

jV
j dℓ (8)

We emphasize with the fact that V j
,l n

l corresponds to the normal derivative

to Sp denoted
dV j

dn
. An integration by parts of the term σj

i ζ
i
,j in relation

(6) and taking account of relations (7-8) implies

δτ =

∫ ∫ ∫

D

F 1
i ζ

i dv +

∫ ∫

S

T 1
i ζ

i ds+

∫ ∫

S

Li

dζi

dn
ds+

N
∑

p=1

∫

Γp

Rpi ζ
idℓ

(S.1 )

with the following definitions






F 1
i ≡ Fi + σj

i,j , Li ≡ nj γ
j
i

T 1
i ≡ Ti − nj

(

σj
i −

d

dn
(γj

i ) +
1

Rm

γj
i

)

− γj
i,j , Rpi ≡ n

′

j γ
j
i

Due to theorem 37 in9 , the distribution (S.1) has a unique decomposition in

displacements and transverse derivatives of displacements on the manifolds

associated with D and its boundaries: expression (S.1 ) is in a separated

form. Consequently, the equation of motion is

∀ x ∈ D, F 1
i = 0 ⇔ F1 = 0

and the boundary conditions are

∀ x ∈ S, T 1
i = 0, Li = 0 ⇔ T1 = 0, L = 0

∀ x ∈ Γpq, Rpi+Rqi = 0 ⇔ Rp + Rq = 0

Term L is not reducible to a force: its virtual work Li

dζi

dn
is not the product

of a force with the displacement ζ; the term L is an embedding action.

3.3. Model of second gradient

3.3.1. Model A.2

The linear functional is in the form

δτ =

∫ ∫ ∫

D

(

Fi ζ
i − σj

i ζ
i
,j + Sjk

i ζi
,jk

)

dv

Tensor S with Sjk
i = Skj

i is an overstress tensor. An integration by parts

of the last term brings back to the model B .1 ,

δτ =

∫ ∫ ∫

D

(

Fi ζ
i −

(

σj
i + Sjk

i,k

)

ζi
,j

)

dv +

∫ ∫

S

nkS
jk
i ζi

,j ds
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and the virtual work gets the separated form (S.1 ) with:


























F 1
i = Fi + σj

i,j + Sjk
i,jk volume force

T 1
i = −nj

(

σj
i + Sjk

i,k −
d

dn

(

nkS
jk
i

)

+
1

Rm

nkS
jk
i

)

surface force

Rpi = n′

j nk S
jk
i line force

Li = nj nk S
jk
i embedding action

and consequently yields the same equation of motion and boundary condi-

tions as in case B .1 .

3.3.2. Model B.2

The linear functional is in the form

δτ =

∫ ∫ ∫

D

(

Fiζ
i − σj

i ζ
i
,j + Sjk

i ζi
,jk

)

dv+

∫ ∫

S

(

Tiζ
i + γj

i ζ
i
,j + U jk

i ζi
,jk

)

ds

This functional yields two integrations successively on Sp and on Γpq with

terms at the points Am. With obvious notations, for the same reasons as

in section 3.2.3, the virtual work gets the separated form

δτ =

∫ ∫ ∫

D

F 1
i ζ

idv +

∫ ∫

S

(

T 1
i ζ

i + L1
i

dζi

dn
+ L2

i

d2ζi

dn2

)

ds

+
∑

p

∫

Γp

(

Rpi ζ
i +Mpi

dζi

dn′

)

dℓ+
∑

m

φmi ζ
i
Am

(S.2)

where ζi
Am

(i = 1, 2, 3) are the components of ζ at point Am. The calcula-

tions are not expended. They introduce the curvature tensor on Sp and the

geodesic curvature of Γpq.. Consequently, F 1
i , T

1
i , Rpi, φmi are associated

with volume, surface, line and forces at points; L1
i , L

2
i , Mpi are embedding

efforts of order 1 and 2 on S and of order 1 on the edge Γ. The equa-

tion of motion and boundary conditions express that these seven tensorial

quantities are null on their domains of values D, S, Γp and Am.

4. Conclusion

It is possible to extend the previous presentation by means of more complex

medium with gradient of order n. The models introduce embedding effects

of more important order on surfaces, edges and points. The (A.n) model

refers to a (B.n-1) model: the fact that boundary surface S is (or is not) a

material surface has now a physical meaning. Consequently, we can resume

the previous presentation as follows:
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a) The choice of a model corresponds to specify the part G of the algebraic

dual T ∗

ϕ(℘) in which the efforts are considered: ℑ ∈ G ⊂ T ∗

ϕ(℘).

b) In order to operate with the principle of virtual works and to obtain

the mechanical equations in the form ℑ = 0, it is no matter that the part

G of the dual is separating (∀ℑ ∈ G, < ℑ, δϕ >= 0 ⇒ δϕ = 0), but it is

important the part G is separated (ℑ ∈ G, ∀ δϕ ∈ Tϕ(℘), < ℑ, δϕ >= 0 ⇒

ℑ = 0).

c) The functionals A.1 , B .1/0 , A.2 , B .2 are not separated: if ℑ consists in

the data of the fields F, σ, T, it is not possible to conclude that the fields

are zero.

d) Functionals in A.0 , B .0 , S .1 , S .2 . . . are separated: if the fields S1, T1,

R1, L, . . . are continuous then, by using the fundamental lemma of variation

calculus, their values must be equal to zero. They are the only functionals

we must know for using the principle of virtual works; it is exactly as for a

solid: the torque of forces is only known in the equations of motion.

e) When the fields are not continuous on surfaces or curves, we have to

consider a model of greater order in gradients and to introduce integrals on

inner boundaries of the medium.

For conservative medium, the first gradient theory corresponds to the

compressible case. The theory of fluid, elastic, viscous and plastic media

refers to the model (S .0 ). The Laplace theory of capillarity in fluids refers

to the model (S .1 ). To take into account superficial effects acting between

solids and fluids, we use the model of fluids endowed with capillarity (S .2 );

the theory interprets the capillarity in a continuous way and contains the

Laplace theory of capillarity; for solids, the model corresponds to ”elastic

materials with couple stresses” indicated by Toupin in12 .

5. Example 1: The Laplace theory of capillarity

Liquid-vapor and two-phase interfaces are represented by a material surface

endowed with an energy relating to Laplace surface tension. The interface

appears as a surface separating two media with its own characteristic be-

havior and energy properties13 (when working far from critical conditions,

the capillary layer has a thickness equivalent to a few molecular beams14).

The Laplace theory of capillarity refers to the model B .1 in the form (S .1 )

as following: for a compressible fluid with a capillary effect on the wall

boundaries, the free energy is in the form

χ =

∫ ∫ ∫

D

ρ α(ρ) dv +

N
∑

p=1

ap

∫ ∫

Sp

ds
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where α(ρ) is the fluid specific energy, ρ is the matter density and coeffi-

cients ap are the surface tensions of each surface Sp. Surface integrations

are associated to the space metric; the virtual work of internal forces is

δτint =

∫ ∫ ∫

D

−p,i ζ
idv+

N
∑

p=1

∫ ∫

Sp

ni

(

p−
ap

Rm

)

ζi ds+
N

∑

p=1

∫

Γp

apn
′

i ζ
i dℓ

where p ≡ ρ2α′(ρ) is the fluid pressure. The external force (including inertial

forces) is the body force ρ f defined in D, the surface force is T defined on S

and the line force is R defined on Γ. D’Alembert-Lagrange principle yields

the equation of motion and boundary conditions:

∀ x ∈ D, −p,i + ρ fi = 0 ⇔ −gradp+ ρ f = 0,

∀ x ∈ S, p ni + Ti − ap

ni

Rm

= 0 ⇔ pn + T − ap

n

Rm

= 0

∀ x ∈ Γpq, apn
′

pi + aqn
′

qi +Ri = 0 ⇔ apn
′

p + aqn
′

q + R = 0

Boundary conditions are Laplace equation and Young-Dupré condition.

6. Example 2: Fluids endowed with internal capillarity

For interfacial layers, kinetic theory of gas leads to laws of state associated

with non-convex internal energies15,16 . This approach dates back to van

der Waals17 , Korteweg18 , corresponds to the Landau-Ginzburg theory19

and presents two disadvantages. First, between phases, the pressure may

become negative; simple physical experiments can be used to cause traction

that leads to these negative pressure values20 . Second, in the field between

bulks, internal energy cannot be represented by a convex surface associated

with density and entropy; this fact seems to contradict the existence of

equilibrium states; it is possible to eliminate this disadvantage by writing

in an anisotropic form the stress tensor of the capillary layer which allows

to study interfaces of non-molecular size near a critical point.

One of the problems that complicates this study of phase transformation

dynamics is the apparent contradiction between Korteweg classical stress

theory and the Clausius-Duhem inequality21 . Proposal made by Eglit22 ,

Dunn and Serrin23 , Casal and Gouin24 and others rectifies this anomaly

for liquid-vapor interfaces. The simplest model in continuum mechanics

considers a free energy as the sum of two terms: a first one correspond-

ing to a medium with a uniform composition equal to the local one and a

second one associated with the non-uniformity of the fluid15,17 . The sec-

ond term is approximated by a gradient expansion, typically truncated to
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the second order. The model is simpler than models associated with the

renormalization-group theory25 but has the advantage of easily extending

well-known results for equilibrium cases to the dynamics of interfaces26–28 .

We consider a fluid D in contact with a wall S. Physical experiments prove

that the fluid is nonhomogeneous in the neighborhood of S 16 . The internal

energy ε is also a function of the entropy. In the case of isothermal motions,

the internal energy is replaced by the free energy. In the mechanical case,

the entropy and the temperature are not concerned by the virtual displace-

ments of the medium. Consequently, for isentropic or isothermal motions,

ε = f(ρ, β) where β = (gradρ)2. The fluid is submitted to external forces

represented by a potential Ω as a function of Eulerian variables x. To obtain

boundary conditions it is necessary to know the wall effect. An explicit form

for the energy of interaction between surfaces and liquids is proposed in29 .

We denote by B the surface density of energy at the wall. The total energy

E of the fluid is the sum of three potential energies: Ef (bulk energy), Ep

(external energy) and ES (surface energy).

Ef =

∫ ∫ ∫

D

ρ ε(ρ, β) dv, Ep =

∫ ∫ ∫

D

ρΩ(x) dv, ES =

∫ ∫

S

B ds

We have the results (see Appendix): δEf =

∫ ∫ ∫

D

(−div σ) ζ dv

+

∫ ∫

S

{

−A
dζn
dn

+

(

2A

Rm

n∗ + grad∗

tgA+ n∗σ

)

ζ

}

ds−

∫

Γ

An′∗ ζ dℓ

with σ = −P1−C grad ρ⊗grad ρ ≡ −P1−C (
∂ρ

∂x
)∗
∂ρ

∂x
, where C = 2ρ ε′β,

P = ρ2ε′ρ − ρ div(C gradρ), ε′ρ (or ε′β) denoting the partial derivative of ε

with respect to ρ (or β), ζn = n∗ ζ; A = Cρ
dρ

dn
where

dρ

dn
=
∂ρ

∂x
n and

gradtg denotes the tangential part of the gradient relatively to S.

δEp =

∫ ∫ ∫

D

ρ
∂Ω

∂x
ζ dv ≡

∫ ∫ ∫

D

ρ (grad∗ Ω) ζ dv; and,

δES =

∫ ∫

S

{

δB −

(

2B

Rm

n∗ + grad∗

tgB

)

ζ

}

ds+

∫

Γ

B n′∗ ζ dℓ

The density in the fluid has a limit value ρ
S

at the wall S and B is assumed

to be a function of ρ
S

only29 . Then, δB = B′(ρ
S
) δρ

S
= −ρ

S
B′(ρ

S
) div ζ,

where div ζ is computed on S 11 . Let us denote G = −ρ
S
B′(ρ

S
); Appendix

yields
∫ ∫

S

δB ds =

∫ ∫

S

G div ζ ds =
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=

∫ ∫

S

{

G
dζn
dn

−

(

2G

Rm

n∗ + grad∗

tgG

)

ζ

}

ds+

∫

Γ

Gn′∗ ζ dℓ

δES =

∫ ∫

S

{

G
dζn
dn

−

(

2H

Rm

n∗ + grad∗

tgH

)

ζ

}

ds+

∫

Γ

H n′∗ ζ dℓ

with H = B(ρ
S
) − ρ

S
B′(ρ

S
). Then,

δE =

∫ ∫ ∫

D

(ρ grad∗ Ω − div σ) ζ dv −

∫

Γ

(A−H)n′∗ ζ dℓ

+

∫ ∫

S

(G−A)
dζn
dn

+

(

2(A−H)

Rm

n∗ + grad∗

tg(A−H) + n∗σ

)

ζ ds
(9)

At equilibrium, δτ ≡ −δE = 0. The fundamental lemma of variation cal-

culus associated with separated form (9) corresponding to (S.2), yields:

6.1. Equation of equilibrium

From any arbitrary variation x ∈ D → ζ(x) such that ζ = 0 on S, we get
∫ ∫ ∫

D

(ρ grad∗Ω − div σ) ζ ds = 0. Then,

ρ grad∗Ω − div σ = 0 (10)

This equation is written in the classical form of equation of equilibrium24 .

It is not the same for the boundary conditions.

6.2. Boundary conditions

6.2.1. Case of a rigid wall

We consider a rigid wall; on S, the virtual displacements satisfy the condi-

tion n∗ ζ = 0. Then, at the rigid wall, ∀ x ∈ S → ζ(x) such that n∗ ζ = 0,
∫ ∫

S

(G−A)
dζn
dn

+

(

2(A−H)

Rm

n∗ + grad∗

tg(A−H) + n∗σ

)

ζ ds = 0

Due to σ = σ∗, we deduce the boundary conditions (11-12)

∀ x ∈ S, G−A = 0, (11)

and there exists a Lagrange multiplier x ∈ S → λ(x) ∈ R such that,

∀ x ∈ S,
2(A−H)

Rm

n + gradtg(A−H) + σ n = λn (12)

The edge Γ of S belongs to the solid wall and consequently on Γ, ζ = η t:

the integral on Γ is null and does not yield any additive condition.
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6.2.2. Case of an elastic wall

The equilibrium equation (10) is unchanged. On S, the condition (11) is

also unchanged. The only different condition comes from the fact that we

do not have anymore the slipping condition for the virtual displacement

on S, (n∗ ζ = 0). Due to the possible deformation of the wall, the virtual

work of stresses on S is δEe =

∫ ∫

S

κ∗ζ ds +

∫

Γ

R∗ζ dℓ where κ = σe n

is the stress (loading) vector associated with stress tensor σe of the elastic

wall and R is the line force due to the elasticity of the line. Relation (12)

is replaced by

∀ x ∈ S, 2
(A−H)

Rm

n + gradtg(A−H) + σ n + κ = 0

We obtain an additive condition on Γ in the form (H −A)n′ + R = 0 and

due to condition (11),

∀ x ∈ Γ, B n′ + R = 0 (13)

(If Γ is the union of edges Γp, B n′ is replaced by
∑

p

Bp n′

p).

6.3. Analysis of the boundary conditions

Eq. (11) yields C
dρ

dn
+B′(ρ

S
) = 0; the definition of σ implies:

σ n = −Pn− C
dρ

dn
grad ρ

Due to the fact that the tangential part of Eq. (12) is always verified,

the only condition comes from Eq. (11); Eq. (12) yields the value of the

Lagrange multiplier λ and Eq. (13) the value of R. For an elastic (non-

rigid) wall we obtain,

κtg = 0 and κn = P +
2B

Rm

−B′(ρ
S
)
dρ

dn
(14)

where κtg and κn are the tangential and the normal components of κ.

Taking into account of Eq. (14) we obtain the stress values at the non rigid

elastic wall. The surface energy is29 : B(ρ
S
) = −γ1 ρS

+
γ2

2
ρ2

S
where γ1 and

γ2 are two positive constants and the fluid density condition at the wall is

C
dρ

dn
= γ1 − γ2 ρS
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If we denote by ρ
B

= γ1/γ2 the bifurcation fluid density at the wall, due to

the fact C is positive constant16 , we obtain: if ρ
S
< ρ

B
, ( or ρ

S
> ρ

B
),
dρ

dn
is positive ( or negative) and we have a lack ( or excess) of fluid density at

the wall. Such media allow to study fluid interfaces and interfacial layers

between fluids and solids and lead to numerical and asymptotic methods30 .

The extension to the dynamic case is straightforward: Eq. (10) yields

ρΓ∗ − div σ + ρ grad∗Ω = 0

Vector Γ is the acceleration; boundary conditions (11-14) are unchanged.
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Appendix

Let S be a surface in the 3-dimensional space and n its external normal

extended locally in the vicinity of S by the expression n(x) = grad d(x),

where d is the distance of a point x to S; for any vector field w, we obtain31 :

rot(n × w) = n div w − w div n +
∂n

∂x
w −

∂w

∂x
n

From n∗
∂n

∂x
= 0 and div n = −

2

Rm

we deduce on S,

n∗rot(n × w) = div w +
2

Rm

n∗w − n∗
∂w

∂x
n (15)

We deduce: for any scalar field A and w = A ζ,

Adiv ζ = A
dζn
dn

−
2A

Rm

ζn − (grad∗

tgA) ζ + n∗rot (An × ζ) (16)

Let us calculate δEf ; D is a material volume, then δEf =

∫ ∫ ∫

D

ρ δε dv

with δε =
∂ε

∂ρ
δρ+

∂ε

∂β
δβ. From δ

∂ρ

∂x
=
∂δρ

∂x
−
∂ρ

∂x

∂ζ

∂x
(see 24),

ρ ε′β δβ = 2ρ ε′β δ
∂ρ

∂x

(

∂ρ

∂x

)

∗

= C

(

∂δρ

∂x
−
∂ρ

∂x

∂ζ

∂x

)(

∂ρ

∂x

)

∗

= div(C gradρ δρ) − div(C gradρ) δρ− tr

(

C gradρ grad∗ρ
∂ζ

∂x

)
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Due to δ ρ = −ρ div ζ (see 11),

δEf =

∫ ∫ ∫

D

(

∂P

∂x
+ div(C grad ρ grad∗ρ)

)

ζ dv

−

∫ ∫ ∫

D

div (C ρ gradρ div ζ + C gradρ grad∗ ρ ζ + P ζ) dv

=

∫ ∫ ∫

D

−(div σ) ζ dv +

∫ ∫

S

(−A div ζ + n∗σ ζ)ds

From Eq. (16), we deduce immediatly: δEf =

∫ ∫ ∫

D

(−div σ)ζ dv +

∫ ∫

S

{

−A
dζn
dn

+

(

2A

Rm

n∗ + grad∗

tg A+ n∗σ

)

ζ

}

ds−

∫

Γ

An′∗ ζ dℓ

Let us calculate δES ; due to ES =

∫ ∫

S

B det (n, d1x, d2x) where

d1x and d2x are two coordinate lines of S, we get:

ES =

∫ ∫

S0

B det F det (F−1n, d1X, d2X)

where S0 is the image of S in a reference space with Lagrangian coordinates

X and F is the deformation gradient tensor
∂x

∂X
of components

{

∂xi

∂Xj

}

.

Then, δES =

∫ ∫

S0

δB det F det (F−1n, d1X, d2X)

+

∫ ∫

S0

B δ
(

det F det (F−1n, d1X, d2X)
)

.

with

∫ ∫

S0

B δ
(

det F det (F−1n, d1X, d2X)
)

=
∫ ∫

S

B div ζ det(n, d1x, d2x) +B det

(

∂n

∂x
ζ, d1x, d2x

)

−B det

(

∂ζ

∂x
n, d1x, d2x

)

=

∫ ∫

S

(

div(B ζ) − (grad∗B) ζ −Bn∗
∂ζ

∂x
n

)

ds

Relation (15) yields: div (B ζ) +
2B

Rm

n∗ζ − n∗
∂B ζ

∂x
n = n∗ rot (B n× ζ),

∫ ∫

S0

B δ
(

det F det (F−1n, d1X, d2X)
)

=
∫ ∫

S0

(

−
2B

Rm

n∗ + grad∗B (nn∗ − 1)

)

ζ ds+

∫ ∫

S

n∗ rot (B n × ζ) ds

where grad∗B (nn∗ − 1) belongs to the cotangent plane to S; we obtain

δES =

∫ ∫

S

(

δB −

(

2B

Rm

n∗ + grad∗

tgB

)

ζ

)

ds+

∫

Γ

B n′∗ζ dℓ.
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