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HAMILTONIAN APPROACH TO GEODESIC IMAGE MATCHING

FRANÇOIS-XAVIER VIALARD

Abstract. This paper presents a generalization to image matching of the Hamiltonian approach
for planar curve matching developed in the context of group of diffeomorphisms. We propose an
efficient framework to deal with discontinuous images in any dimension, for example 2D or 3D.
In this context, we give the structure of the initial momentum (which happens to be decomposed
in a smooth part and a singular part) thanks to a derivation lemma interesting in itself. The
second part develops a Hamiltonian interpretation of the variational problem, derived from the
optimal control theory point of view.
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1. Introduction

This paper arose from the attempt to develop the multi-modal image matching in the framework

of large deformation diffeomorphisms. Initiated by the work of Grenander, this context was deeply

used since [Tro95], especially with applications to computational anatomy. The method followed

is the classical minization of an energy on the space of diffeomorphisms, which enables to compute

geodesics on this space and to derive the evolution equations. In most of the papers, the group of

diffeomorphisms acts on the support of the template; we add to this one a diffeomorphisms group

action on the level set of the template. This action is a natural way to cope with the multi-modal
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2 FRANÇOIS-XAVIER VIALARD

matching and could be, in a certain way, compared to the metamorphoses approach exposed in

[TY05]: the metamorphoses are another way to act on the images but the goal is very different in

our case. Matching in our context, is to find a couple (η, φ) which minimizes the energy

E(η, φ) = D(Id, (η, φ))2 +
1

σ2
‖η ◦ I0 ◦ φ−1 − Itarg‖2

L2, (1)

with I0 the initial function (or image) and Itarg the target function, Id is the identity map in the

product of groups, σ is a calibration parameter. The distance D is obtained through a product of

Riemannian metrics on the diffeomorphisms groups.

All the complexity is then carried by the group of diffeomorphisms and its action: in the particular

case of landmark matching, the geodesics are well described. The problem is reduced in this

case to understand the geodesic flow on a finite dimensional Riemannian manifold. It should be

also emphasized that this problem can be seen as an optimal control problem. In [BMTY05],

numerical implementation of gradient based methods are strongly developed through a semi-

Lagrangian method for computing the geodesics. A Hamiltonian formulation can be adopted to

provide efficient applications and computations through the use of the conservation of momenta.

In [VMTY04], statistics are done on the initial momenta which is a relative signature of the

target functions. The existence of geodesics from an initial momentum was deeply developed in

[TY05], but this work dealt only with smooth functions for I0 (essentially H1) however with a

very large class of momenta. An attempt to understand the structure of the momentum for an

initial discontinuous function was done in the matching of planar curves in [GTL06].

We propose thereafter a framework to treat discontinuous functions in any dimension: the main

point is to derive the energy function in this context.

Finally, we chose to give a Hamiltonian interpretation of the equations which is the proper way

to handle the conservation of momentum. This formulation includes the work done in [GTL06]

but does not capture the landmark matching. The formulation we adopt gives a weak sense to

the equations and we prove existence and uniqueness for the weak Hamiltonian equations within

a large set of initial data. A word on the structure of initial data: the article on planar matching

([GTL06]) focuses on Jordan curves. The main result is the existence for all time and uniqueness of

Hamiltonian flow. The initial data are roughly a Jordan curve for the position variable and a vector

field on this curve for the momentum. In our context, we choose four variables (I0,Σ0, p0, P0). I0

is the initial function with a set of dicontinuities Σ0, p0 is the momentum on the set Σ0 and P0 is

the momentum for the smooth part of the initial function. This is a natural way to understand

the problem and the choice to keep the set of discontinuity as a position variable can lead to larger

applications than only choose I0 as position variable.

The paper is organized as follows. We start with a presentation of the framework underlying

equation (1). We present a key lemma concerning the data attachment term with respect to the η

and φ variables. Its proof is postponed to the last section. Then we derive the geodesics equations

and ensure the existence of a solution for all time from an initial momentum. In the second part of

this paper, we give the weak formulation of the Hamiltonian equations, and deal with the existence

and uniqueness for this Hamiltonian formulation.
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2. Framework and notations

2.1. The space of discontinuous images. Let n ≥ 1 and M ⊂ R
n a C1 bounded open set

diffeomorphic to the unit ball.

We denote by BV (M) the set of functions of bounded variation. The reader is not supposed to

have a broad knowledge of BV functions. Below, we restrict ourselves to a subset of BV functions

which does not require the technical material of BV functions. However it is the most natural

way to introduce our framework. Recall a definition of BV functions:

Definition 1. A function f ∈ L1(M) has bounded variation in M if

sup{
∫

M

f divφ dx | φ ∈ C1
c (M,Rn), |φ|∞ ≤ 1} <∞.

In this case, Df is defined by
∫

M
f divφ dx = −

∫

M
Df φ dx.

Definition 2. We define Im(M) ⊂ BV (M) such that for each function f ∈ Im(M), there exists

a partition of M in Lipschitz domains (Ui)i∈[0,k] for an integer k ≥ 0, and the restriction f|Ui
is

Lipschitz .

Remark 1. The extension theorem of Lipschitz function in R
n enables us to consider that on

each Ui, f|Ui
is the restriction of a Lipschitz function defined on R

n.

On the definition of a Lipschitz domain U : we use here (to shorten the previous definition) a large

acceptation of Lipschitz domains which can be found in chapter 2 of [DZ01]. Namely, U is a lip

domain if there exists a Lipschitz open set Ω such that Ω ⊂ U ⊂ Ω̄. In the proof of the derivation

lemma 7, we give the classical definition of Lipschitz open set that we use above. In a nutshell,

an open set is Lipschitz if for every point of the boundary there exists an affine basis of R
n in

which we can describe the boundary of the open set as the graph of a Lipschitz function on R
n−1.

We chose to deal with Lipschitz domains because it makes sense in the context of application to

images.

Example 1. The most simple example is a piecewise constant function, f =
∑k

i=1 ai1Ui
with

ai ∈ R.

Remark 2. Our framework does not allow us to treat the discontinuities along a cusp, but we can

deal with the corners respecting the Lipschitz condition.

Let f ∈ Im(M), we denote by Jf the set of the jump part of f . As a BV (M) function, we

can write the distributional derivative of f : Df = ∇f + Dcf + j(f)(x)Hn−1
xJf . ∇f is the

absolutely continuous part of the distributional derivative with respect to the Lebesgue measure

and Dc is the Cantor part of the derivative. In other words, with the classical notations j(f)(x) =

(f+(x) − f−(x))νf (x), where (f+, f−, νf ) : Jf 7→ R
n × R

n × Sn−1 is a Borel function. The

functions f+ and f− are respectively defined as f+(x) = limt7→0+ f(x + tνf (x)) and f−(x) =

limt7→0− f(x+ tνf (x)). Naturally, j(f) does not depend on the choice of the representation of νf ,

in fact j(f) is homogeneous to the gradient. See for reference [Bra98] or [AFP00]. In our case,
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the Cantor part is null from the definition.

We then write for f ∈ Im(M),

Df = ∇f + j(f)(x)Hn−1
xJf . (2)

2.2. The space of deformations. We denote by VM , <,>V a Hilbert space of square integrable

vector fields on M , which can be continuously injected in (χp
0(M), ‖.‖p,∞), the vector space of Cp

with p ≥ 1 vector fields which vanish on ∂M . Hence, there exists a constant cV such that for all

v ∈ V :

‖v‖p,∞ ≤ cV ‖v‖V .

Hence this Hilbert space is also a RKHS (Reproducing Kernel Hilbert Space), and we denote by

kV (x, .)α the unique element of H which verifies for all v ∈ H : < v(x), α >=< kV (x, .)α, v >H ,

where <,> is the euclidean scalar product and α a vector in R
n. This will enable an action on

the support M .

We denote by S,<,>S a Hilbert space of square integrable vector fields on R, as above. We denote

by kS(x, .) its reproducing kernel. This will enable the action on the level set of the functions.

Through the following paragraph, we recall the well-known properties on the flow of such vector

fields and its control. Most of them can be found in chapter 2 of [Gla05], and are elementary

applications of Gronwall inequalities. (See Appendix B in [Eva98])

Let v ∈ L2([0, 1], V ), then with [Tro95] the flow is defined:

∂tφ
v
0,t = vt ◦ φv

0,t, (3)

φ0 = Id. (4)

For all time t ∈ [0, 1], φv
0,t is a C1 diffeomorphism ofM and the application t 7→ dxφ

v
0,t is continuous

and solution of the equation:

dxφ
v
0,t = Id+

∫ t

0

dφv
0,s(x)vs.dxφ

v
sds. (5)

We dispose of the following controls, with respect to the vector fields; let u and v be two vector

fields in ∈ L2([0, 1], V ) and T ≤ 1:

‖φu
0,t − φv

0,t‖∞ ≤ cV ‖v − u‖L1[0,T ] exp(cV ‖v‖L1[0,T ]), (6)

‖dφu
0,t − dφv

0,t‖∞ ≤ 2cV ‖v − u‖L1[0,T ] exp(cV ‖v‖L1[0,T ]). (7)

And we have controls with respect to the time, with [s, t] ⊂ [0, T ]:

‖φv
0,t − φv

0,s‖∞ ≤
∫ t

s

‖vr‖∞dr ≤ cV

∫ t

s

‖vr‖V dr, (8)

‖φv
0,t − φv

0,s‖∞ ≤ cV
√

|s− t|‖v‖L2, (9)

‖dφv
0,t − dφv

0,s‖∞ ≤ C exp(C′
√
T‖v‖L2[0,T ])

∫ t

s

‖vr‖V dr. (10)
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with the constants C and C′ depending only on cV . Obviously these results are valid if S replaces

V . In this case, we write η0,t for the flow generated by st. With the group relation for the flow,

ηt,u ◦ ηs,t = ηs,u.

The group we consider is the product group of all the diffeomorphisms we can obtain through the

flow of u ∈ L2([0, 1], V × S).

We aim to minimize the following quantity, with µ the Lebesgue measure:

J(vt, st) =
λ

2

∫ 1

0

‖vt‖2
V dt+

β

2

∫ 1

0

‖st‖2
Sdt+

∫

M

|η0,1 ◦ I0 ◦ φ−1
0,1(u) − Itarg(u)|2dµ(u), (11)

with η0,t the flow associated to st. Remark that the metric we place on the product groups V ×S

is the product of the metric on each group which is represented by the first two terms in (11). The

functions I0, Itarg lie in Im(M). In one section below, we prove classically that there exists at least

one solution and we derive the geodesic equations which give the form of the initial momentum.

3. Derivation lemma

This derivation lemma may be useful in many situations where discontinuities arise. Consider

for exemple two Lipschitz open sets U and V . One may want to deform one of these open sets

while the second remains unchanged (figure below). The basic case is the following:

Jt =

∫

V

χU ◦ φ−1
t dx = µ(V ∩ φt(U)),

with µ the Lebesgue measure. We answer to the differentiation of Jt, we obtain a sort of Stokes

formula with a perturbation term. We discuss below a more general formula to apply in our

context. The final result is the proposition 1:

Lemma 1. Let U, V two bounded Lipschitz domains of Rn. Let X a Lipschitz vector field on

R
n and φt the associated flow. Finally, let g and f Lipschitz real functions on Rn. Consider the

following quantity depending on t,

Jt =

∫

φt(U)

f ◦ φ−1
t g1V dµ,

where dµ is the Lebesgue measure, then

∂t|t=0+Jt =

∫

U

− < ∇f,X > g1V dµ+

∫

∂U

< X,n > fg1̃V (X)dµ|∂U . (12)

with 1̃V (X)(y) = limǫ 7→0+ 1V̄ (y + ǫX), if the limit exists, 0 elsewhere. And we denote by dµ|∂U

the measure on ∂U and n the outer unit normal.

As a corollary, we deduce:

Corollary 1. We have,

∂t|t=0+µ(V ∩ φt(U)) =

∫

∂U

< X,n > 1̃V (X)dµ|∂U ,

with 1̃V (X)(y) = limǫ 7→0+ 1V̄ (y + ǫX), if the limit exists, 0 elsewhere. And we denote by dµ|∂U

the measure on ∂U and n the outer unit normal.
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V

U

Figure 1. Evolution of the area between two Lipschitz curves. (The arrows
represent X along the boundary of U)

In this case, the derivation formula is a Stokes’ formula in which one takes only into account the

deformation viewed in V .

Below is a figure to illustrate the lemma:

Remark 3. We could generalize the lemma to finite intersection of Lipschitz domains, with the

same scheme of the proof developed above. We gain hence generality which seems to be very natural

for concrete applications.

This generalization for Lipschitz domains is sufficient for the application we aim, and this appli-

cation is presented in the paragraph below to derive the geodesic equations. Hence we present the

corollary we use in the next paragraph.

Theorem 1. Let (f, g) ∈ Im(M)2, X a Lipschitz vector field on R
n and φt the associated flow.

Jt =

∫

M

f ◦ φ−1
t (x)g(x)dµ(x),

then the derivation of Jt is:

∂t|t=0+Jt =

∫

M

− < ∇f,X > gdx−
∫

(f+ − f−)g̃ < νf , X > dHn−1. (13)

with g̃X(x) := limt7→0+ g(φt(x)) if the limit exists and if not, g̃X(x) = 0.

Proof: Writing f as f =
∑k

i=1 f1x∈Ui
where (Ui)i=1,...,n is the partition in domains associated

to f , and using the same expression for g, by linearity of integration, we fall in the case of the

proposition 3. �

A last remark on the formulation of the lemma, we can rewrite the equation (13) in a more compact

form:

∂t|t=0+Jt = −
∫

M

〈Df,X〉g̃,

with Df the notation for the derivative for SBV function and g̃ is the function defined above.

Remark that µ a.e. g̃ = g, these two functions differ on Jf .
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4. Minimizing the energy functional

The existence of geodesics is a classical fact, but in this framework the derivation of the geodesic

equations did not appear to the author in the existing literature. With the metric introduced

above, a geodesic in the product space is a product of geodesics. We chose to understand the

two geodesics separately for technical reasons. We could also have described the geodesics in the

product space V × S, this point of view will be detailed in the Hamiltonian formulation of the

equations.

4.1. Existence and equations of geodesics.

Theorem 2. Let (I0, Itar) ∈ Im(M)2, we consider the functional J on H = L2([0, 1], V×S) defined

in (11). There exists (v, s) ∈ H such that J(v, s) = min(v,s)∈H J(v, s). For such a minimizer, there

exists (pa, pb, pc) ∈ L2(M,Rn) × L2(JI0 ,R
n) × L2(M,R) such that:

βst =

∫

M

pc(y)d[ηt,1]Is
t (y)kS(Is

t (y), .)dµ(y), (14)

λvt =

∫

M

kV (φ0,t(x), .)[dφ0,t]
−1∗
x (pa(x))dµ(x)

+

∫

JI0

kV (φ0,t(x), .)[dφ0,t]
−1∗
x (pb(x))dµ|JI0

(x), (15)

with:

Is
t = η0,t ◦ I0 ◦ φ1,0,

Iv
t = η0,1 ◦ I0 ◦ φt,0,

and JI0 the jump set of I0. More precisely for the (pa, pc) we show, we have the equation:

pa(x) = −Jac(φ0,1(x))∇|xI
v
0 pc(x). (16)

Proof:

On the space H , the strong closed balls are compact for the weak topology. The functional J

is lower semi-continuous, so we obtain the existence of a minimizer. As reference for the weak

topology [Br94]. We find here [TY05] a proof that the flow is continuous for the weak topology, the

main point to prove the semi-continuity: if (un, sn) ⇀ (u, v) in H , then (φ0,1, η0,1) 7→ (φ0,1, η0,1).

We first differentiate w.r.t. the vector field s ∈ L2([0, T ], S), we denote by s̃ a perturbation of s.

Using the lemma 10 in appendix, we write: ∂s̃η0,1(x) =
∫ 1

0 [dηt,1]|η0,t(x)s̃t(η0,t(x))dt. We already

introduce the kernel:
∫ 1

0

[β < st, s̃t >S +

∫

M

2(I1 − Itarg)[dηt,1]|η0,t(Is
0 (y)) < kS(Is

t (y), .), s̃t >S dµ(y)]dt = 0,

it leads to:

βst +

∫

M

2(I1(y) − Itarg(y))[dηt,1]|Is
t (y)kS(Is

t (y), .)dµ(y) = 0.

With the notation pc = −2(I1 − Itarg), we have the first equation announced.

For the second equation, we need the derivation lemma detailed in section 3. In order to use the

lemma, we first need to develop the attachment term:
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∫

M

|η0,1 ◦ I0 ◦ φ−1
0,1(u) − Itarg(u)|2dµ(u) =

∫

M

(Iv
1 )2 − 2Iv

1 Itarg + I2
targdµ,

Now, only the first two terms are involved in the derivation, and we apply the lemma to these two

terms. (Actually the lemma is necessary only for the second term.)

Again, we have with the lemma 10:

V1 := ∂ǫφ1,0(x) = −
∫ 1

0

d(φt,0)φ1,t(x)(ṽ[φ1,t(x)])dt.

We consider the semi-derivation of (11) at the minimum with respect to the displacement field v,

we use the notations of SBV functions for the derivatives:

λ

∫ 1

0

< vt, ṽt > dt+

∫

D[(Iv
1 )2]V1 − 2

∫

DIv
1V1Ĩ

ṽ
targ = 0,

λ

∫ 1

0

< vt, ṽt > dt+

∫

M

2 < ∇Iv
1 , V1 > (Iv

1 − Itarg)dµ+

∫

JIv
1

(

j([Iv
1 ]2) − 2j(Iv

1 )
)

V1ĨtargdH
n−1 = 0.

As (Iv
1 )2 and Iv

1 have the same discontinuity set, the second integration is only over JIv
1
.

We apply a version of the central lemma in [GTL06] which is detailed in appendix (see lemma 9).

g : L2([0, 1], V ) 7→ L2([0, 1], V ) × L2(M,Rn) × L2(JIv
1
,Rn)

ṽ 7→ (ṽ, V1, V1|JI1
v

),

We ensure that B := {(v, 2∇Iv
1 (Iv

1 −Itarg),
(

j([Iv
1 ]2) − 2j(Iv

1 )
)

Ĩtarg), ṽ ∈ L2([0, 1], V )} is bounded.

For each ṽ, |Ĩ ṽ
targ|∞ ≤ |Itarg|∞. (This assumption could be weakened.) Whence we get with the

lemma 9 the existence of Ĩtarg ∈ Conv(B) (we observe that the Lebesgue part of Ĩtarg is equal to

Itarg, the modification is on the set JIv
1
), such that:

λ

∫ 1

0

< vt, ṽt > dt+

∫

D[(Iv
1 )2]V1 − 2

∫

DIv
1V1Ĩtarg = 0,

λ

∫ 1

0

< vt, ṽt > dt+

∫

M

2∇Iv
1 (Iv

1 − Itarg)dµ+

∫

JIv
1

j([Iv
1 ]2)V1 −

∫

JIv
1

2j(Iv
1 )ĨtargV1 = 0.

Now, we aim to obtain the explicit geodesic equations by introducing the kernel, we denote by

A(ṽ) :=
∫

D[(Iv
1 )2]V1−2

∫

DIv
1V1Ĩtarg the pseudo derivative of the attachment term and we denote

also:

∆̃(x) := j((I0)
2) ◦ φ1,0(x) − 2j(I0) ◦ φ1,0(x)Ĩtarg(x),

which defines a normal vector field on JIv
1
.

A(ṽ) =

∫ 1

0

−
∫

M

2(I1 − Itarg)(y) < kV (φ1,t(y), .)d(φt,0)
∗
φ1,t(y)(∇|φ1,0(y)I

v
0 ), ṽt >V dµ(y)

−
∫

φ0,1(JI0 )

< kV (φ1,t(y), .)d(φt,0)
∗
φ1,t(y)(∆̃(y)), ṽt(y) >V dµ|φ0,1(JI0)(y)dt.
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With the change of variable x = φ1,0(y),

A(ṽ) =

∫ 1

0

−
∫

M

2(I1 − Itarg)(φ0,1(x))Jac(φ0,1(x)) < kV (φ0,t(x), .)d(φt,0)
∗
φ0,t(x)(∇|xI

v
0 ), ṽt >V dµ

−
∫

JI0

Jac(φ0,1(x))

|dφ0,1(nx)| < kV (φ0,t(x), .)d(φt,0)
∗
φ0,t(x)(∆̃(φ0,1(x)), ṽt >V dµ|JI0

dt, (17)

with nx a normal unit vector to JI0 in x ∈ JI0 . Note that in the second term, the change of

variable acts on the hypersurface JI0 . This explains the term
Jac(φ0,1(x))
|dφ0,1(nx)| which corresponds to the

Jacobian term for the smooth part.

We are done,

λvt =

∫

M

2∆(φ0,1(x))Jac(φ0,1(x))kV (φ0,t(x), .)d(φ
−1
0,t )

∗
φ0,t(x)(∇|xI

v
0 )dµ

+

∫

JI0

Jac(φ0,1(x))

|dφ0,1(nx)| kV (φ0,t(x), .)d(φ
−1
0,t )

∗
φ0,t(x)(∆̃(φ0,1(x)))dµ|JI0

.

With pa(x) = 2∆(φ0,1(x))Jac(φ0,1(x))∇|x(Iv
0 ) and pb(x) = ∆̃(φ0,1(x))

Jac(φ0,1(x))
|dφ0,1(nx)| , we have the

geodesic equations. �

These geodesic equations are a necessary condition for optimality. In the next paragraph, we show

that if (pa, pb, pc) is given, we can reconstruct the geodesics.

4.2. Reconstruction of geodesics with the initial momentum. We first demonstrate that

if a vector field is a solution to the geodesic equations, then the norm is constant in time.

Proposition 1. Constant speed curves in vector fields spaces

If a vector field st is a solution of equation (14) and the kernel is differentiable then ‖st‖2 is

constant.

If a vector field vt is a solution of equation (15) and the kernel is differentiable then ‖vt‖2 is

constant.

Proof:

We prove the first point:

‖st‖2
S =

∫

M

∫

M

p(y′)d[ηt,1]Is
t (y′)kS(Is

t (y′), Is
t (y))p(y)d[ηt,1]Is

t (y)dµ(y′)dµ(y).

Remark that a.e. ∂t(d[ηt,1]Is
t (y)) = −d[st]Is

t (y)d[ηt,1]Is
t (y). This equation is obtained by a derivation

of the group relation: d[η0,1]Is
0

= d[ηt,1 ◦ η0,t]Is
0
, and with the derivation of the equation (14):

d[st]x =

∫

M

d[ηt,1]
∗
Is

t (y)pc(y)∂1kS(x, Is
t (y))dy.

As dst ∈ L1([0, 1]) then the equation (5) proves that d[ηt,1]Is
t (.) is absolutely continuous. As the

space of absolutely continuous functions is an algebra, ‖st‖2
S is also absolutely continuous. To

obtain the result, it suffices to prove that the derivate vanishes a.e.

∂t‖st‖2 = −
∫

M

∫

M

p(y′)dst(I
s
t (y′))d[ηt,1]Is

t (y′)kS(Is
t (y′)), Is

t (y)))p(y)d[ηt,1]Is
t (y)dµ(y′)dµ(y)

+

∫

M

∫

M

p(y′)d[ηt,1]Is
t (y′)∂1kS(Is

t (y′)), Is
t (y)))st(I

s
t (y′))p(y)d[ηt,1]Is

t (y)dµ(y′)dµ(y) = 0.
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The second point is very similar. We underline that the equation (15) is a particular case of

the following, with a measure ν which has a Lebesgue part and a singular part on the set JI0 of

discontinuities of the function I0. We also define:

pt(x) = (d[φ0,t]
∗
x)−1(pa(x)1x/∈JI0

+ pb(x)1x∈JI0
),

By the definition,

‖vt‖2 =

∫ ∫

pt(x)kV (φ0,t(x), φ0,t(y))pt(y)dν(x)dν(y).

Remark that ∂tpt(x) = −dv∗t ◦ φ0,t(x)pt(x), and we differentiate:

∂t‖vt‖2 = −
∫ ∫ ∫

pt(x)∂kV (φ0,t(x), φ0,t(z))pt(z)kV (φ0,t(x), φ0,t(y))pt(y)dν(x)dν(y)dν(z)

+

∫ ∫ ∫

pt(x)∂kV (φ0,t(x), φ0,t(y))pt(y)kV (φ0,t(x), φ0,t(z))pt(z)dν(x)dν(y)dν(z) = 0.

�

This proposition is crucial to establish that the geodesics are defined for all time. Namely, we

answer to existence and uniqueness of solutions to (the set JI0 but could be much more general

than the discontinuity set of a function in Im(M)):

η0,t = Id+

∫ t

0

su ◦ ηudu,

βst(.) =

∫

M

pc(y)d[ηt,0]Is
t (y)kS(Is

t (y)), .)dµ(y),

φ0,t = Id+

∫ t

0

vu ◦ φudu,

λvt(.) =

∫

M

kV (., φ0,t(x))[dφ0,t]
−1∗
x (pa(x))dµ(x)

+

∫

JI0

kV (., φ0,t(x))[dφ0,t]
−1∗
x (pb(x))dµ|JI0

(x)dt. (18)

On purpose, this system of equations is decoupled in v and s. The proof of the next proposition

treats both cases in the same time but it could be separated.

Proposition 2. For T sufficiently small, the system of equations (18) with

(pa, pb, pc) ∈ L1(M,Rn) × L1(JI0 ,R
n) × L1(M,R)

has a unique solution if the kernel is differentiable and its first derivative is Lipschitz.

Proof:

We aim to apply the fixed point theorem on the Banach space L2([0, T ], V × S). We estimate the

Lipschitz coefficient of the following application:

Ξ : L2([0, T ], V × S) 7→ L2([0, T ], V × S)

(v, s) 7→ (ξ(v), ξ(s)), (19)
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with

ξ(s)t =

∫

M

pc(x)d[ηt,0]Ĩt(x)kS(Ĩt(x)), .)dµ(x),

ξ(v)t =

∫

M

kV (., φ0,t(x))[dφ0,t]
−1∗
x (pa(x))dµ(x)

+

∫

JI0

kV (., φ0,t(x))[dφ0,t]
−1∗
x (pb(x))dµ|JI0

(x)dt.

For the space L2([0, T ], V ), if we have:

‖ξ(v)t − ξ(u)t‖2 ≤M‖v − u‖L1[0,T ],

the result is then proven with Cauchy-Schwarz inequality:

‖ξ(v) − ξ(u)‖L2[0,T ] ≤
√
MT‖v − u‖L2[0,T ].

This can be obtained with:

‖ξ(v)t − ξ(u)t‖2 = < ξ(v)t, ξ(v)t − ξ(u)t > − < ξ(u)t, ξ(v)t − ξ(u)t >,

‖ξ(v)t − ξ(u)t‖2 ≤ 2 max(| < ξ(v)t, ξ(v)t − ξ(u)t > |, | < ξ(u)t, ξ(v)t − ξ(u)t > |).

For one of the two terms in the equation above:

< ξ(v)t, ξ(v)t − ξ(u)t > =

∫ ∫

[dφv
0,t]

−1∗
x (pa(x))[k(φv

0,t(x), φ
v
0,t(y))[dφ

v
0,t]

−1∗
y (pa(y))

− k(φv
0,t(x), φ

u
0,t(y))[dφ

u
0,t]

−1∗
y (pa(y))]dµ(y)dµ(x).

On the unit ball of L2([0, T ], V × S) denoted by B, and with the inequality (6), we control the

diffeomorphisms:

‖φu
0,t − φv

0,t‖∞ ≤ cV ‖v − u‖L1[0,T ] exp(cV ), (20)

‖dφu
0,t − dφv

0,t‖∞ ≤ 2cV ‖v − u‖L1[0,T ] exp(cV ).

With the triangle inequality, we get:

| < ξ(v)t, ξ(v)t − ξ(u)t > | ≤
∫ ∫

[dφv
0,t]

−1∗
x (pa(x))|[k(φv

0,t(x), φ
v
0,t(y))[dφ

v
0,t]

−1∗
y (pa(y))

− k(φv
0,t(x), φ

v
0,t(y))[dφ

u
0,t]

−1∗
y (pa(y))]|

+ |[k(φv
0,t(x), φ

v
0,t(y))[dφ

u
0,t]

−1∗
y (pa(y))

− k(φv
0,t(x), φ

u
0,t(y))[dφ

u
0,t]

−1∗
y (pa(y))]|dµ(x)dµ(y).

On the unit ball B, we have:

‖dφu
0,t‖∞ ≤ 1 + 2cV exp(cV ),

‖φu
0,t − Id‖∞ ≤ cV .

Let Mk ∈ R a bound for the kernel and its first derivative on the unit ball B. Such a constant

exists thanks to the hypothesis on the kernel and its first derivative.

A bound for the first term can be found with the second inequality of (20):

2cV ‖v − u‖L1[0,T ] exp(cV )Mk(1 + 2cV exp(cV ))‖pa‖‖pb‖,

the second term is controlled with the first inequality of (20) with the Lipschitz hypothesis on the

kernel:

cV ‖v − u‖L1[0,T ] exp(cV )Mk(1 + 2cV exp(cV ))‖pa‖‖pb‖.
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Finally we get,

‖ξ(v)t − ξ(u)t‖2 ≤ 6 cV ‖v − u‖L1[0,T ] exp(cV )Mk(1 + 2cV exp(cV ))‖pa‖‖pb‖.

We have now concluded for the first component of the application Ξ. For the second term, the

proof is essentially the same, we do not give the details. �

We have proven that there exists T > 0 such that we have existence and uniqueness to the system

(18), we prove now that the solutions are non-exploding i.e. we can choose T = +∞ in the last

proposition. This property shows that the associated riemannian manifold of infinite dimension is

complete, since the exponential map is defined for all time. Without the hypothesis on the kernel,

we can find simple counter-examples to this fact.

Proposition 3. The solution proposition 2 is defined for all time.

Proof:

Thanks to propostion 1, we know that the norm of the solution ut is constant in time, which will

enable the extension for all time. Consider a maximal solution with interval of definition [0, T ] with

T < +∞, then with the inequalities from (8) and after, we define the limit limt7→T φ0,t := φ0,T ,

since for all x, φ0,t(x) is a Cauchy sequence. This is the same for limt7→T dφ0,t(x). This limit is

also a diffeomorphism, since we can define the limit of the inverse as well. The proof is the same

to extend ηt for all time.

We can then apply the proposition (existence for small time) to the current image It instead of

I0, we obtain diffeomorphisms φ̃0,s and η̃0,s in a neighborhood of 0, [0, ǫ]. Composing with φ0,T

and η0,T , we extend the maximal solution on [0, T + ǫ]. This is a contradiction. �

We decoupled the equations in s and v to give a simple proof of the existence in all time of the flow.

The formulation of (18) implies the following formulation, which is the first step to understand

the weak Hamiltonian formulation. If we have the system (18) and the relation (16), through the

change of variable u = φ0,t(x), we get easily:

η0,t = Id+

∫ t

0

su ◦ ηudu,

βst(.) = −
∫

M

Pt(x)kS(It(x)), .)dµ(x),

φ0,t = Id+

∫ t

0

vu ◦ φudu,

λvt(.) =

∫

M

kV (., u)Pt(u)∇|uItdµ(x),

+

∫

JI0

kV (., φ0,t(x))[dφ0,t]
−1∗
x (pb(x))dµ|JI0

(x)dt, (21)

with,

Pt(x) = Jac(φt,0)d[ηt,0]Is
t (x)P0 ◦ φt,0,

P0(x) = −pc(φ0,1(x))d[η0,1]I0(x)Jac(φ0,1(x)).
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5. Hamiltonian generalization

In numerous papers on large deformation diffeomorphisms, the Hamiltonian framework arises.

The simplest example is probably the Landmark matching problem for which the geodesic equa-

tions and the Hamiltonian version of the evolution are well known ([VMTY04],[ATY05]). Our

goal is to provide an Hamiltonian interpretation of the initial variational problem. The main

difference is that we want to write Hamiltonian equations in an infinite dimensional space, which

is roughly the space of images. The first step was done in [GTL06] where Hamiltonian equations

were written on the representations of closed curves. Our work generalizes this approach to the

space of images. We use the point of view of the optimal control theory (as it is developed in

[ATY05]) to formally introduce the Hamiltonian. Then, we state a weak Hamiltonian formulation

of the equations obtained by the variational approach. We prove uniqueness for the solutions to

these equations. At the end of this section, we discuss the existence of the solutions with the help

of the existence of the solutions for the variational problem.

In the whole section, we maintain our previous assumptions on the kernel for the existence of

solutions for all time.

5.1. Weak formulation. In this paragraph, we slightly modify the approach in order to develop

the idea of decomposing an image in ”more simple parts”. Let introduce the position variables.

We consider in the following that the discontinuity boundary is a position variable. Instead of

considering the function It as the second position variable, we introduce a product space which

can be projected on the space Im(M). Let (U1, . . . , Un) be a partition in Lipschitz domain of M .

We denote by Σ0 = ∪n
i=1∂Ui the union of the boundaries of the Lipschitz domains. We consider

the projection:

p :

n
∏

i=1

W 1,∞(M) 7→ Im(M) (22)

(Ii)i=1,...,n 7→ I =

n
∑

i=1

Ii1Ui
. (23)

Discontinuities give derivatives with a singular part. Maybe we could have treated this case

adopting only the variable It, but we find the idea of decomposing an image into more simple

parts rich enough to study the case. Observe that Σ0 is endowed with an important role in the

definition of the projection: to write down a Hamiltonian system on the large space, we need to

introduce the deformation of Σ0 and the deformation of each function in the product space. We

will derive the Hamiltonian equations from this optimal control problem: (the position variable is

Q and the control variable is U , c(U) is the instantaneous cost function)

Q = (Qi)0≤i≤r = (Σ, (Ii)1≤i≤r) ∈ L1(Σ0,M) ×W 1,∞(M)r,

U = (v, s) ∈ V × S,

Q̇ = f(Q,U) = (v ◦Q0, (−〈∇Qi, v〉 + s(Qi))1≤i≤r),

c(U) =
λ

2
|v|2V +

β

2
|s|2S .
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The cotangent space D of the position variable contains F = L∞(Σ,Rn) × L1(M,R)r ⊂ D. We

write the formal minimized Hamiltonian of the control system on the subspace F , with P ∈ F :

H(P,Q) = min
U

∫

Σ0

〈P0(x), Q̇0(x)〉dµ|Σ0
(x) +

r
∑

i=1

∫

M

P iQ̇idµ(x) − c(U). (24)

Minimizing in U , we obtain optimality conditions in (u, v) a minimizer such that for any pertur-

bation (δv, δs):

λ〈v, δv〉 =

∫

Σ0

〈P 0, δv ◦Q0〉dµ|Σ0
(x) −

r
∑

i=1

∫

M

P i〈∇Qi, δv〉dµ(x),

β〈s, δs〉 =

r
∑

i=1

∫

M

P iδs(Ii)dµ(x).

Using the kernel, it can be rewritten,

λv =

∫

Σ0

k(Q0(x), .)P 0dµ|Σ0
(x) −

r
∑

i=1

∫

M

kV (x, .)P i∇Qidµ(x), (25)

βs =

r
∑

i=1

∫

M

kS(Qi, .)P idµ(x). (26)

We deduce the expression of the Hamiltonian,

H(P,Q) =
1

2λ
[

∫

Σ0

∫

Σ0

P 0(x)kV (Q0(x), Q0(y))P 0(y)dµ|Σ0
(x)dµ|Σ0

(y)

+

∫

M

∫

M

P j(y)∇Qj(y)kS(y, x)∇Qi(x)P i(x)dµ(x)dµ(y)

− 2
∑

1≤i≤r

∫

M

∫

Σ0

P 0(y)kV (Q0(y), x)P i(x)∇Qi(x)dµ(x)dµ|Σ0
(y)]

+
1

2β

∑

1≤i,j≤r

∫

M

∫

M

P j(y)kS(Qj(y), Qi(x))P i(x)dµ(x)dµ(y).

Now, we want to give a sense to the Hamiltonian equations, ∀ i ∈ [1, r]:

Q̇0
t = ∂P 0H(Pt, Qt)(.), (27)

Q̇i
t = ∂P iH(Pt, Qt) ∀ i ∈ [1, r],

Ṗ 0
t = −∂Q0H(Pt, Qt),

Ṗ i
t = −∂QiH(Pt, Qt) ∀ i ∈ [1, r].

These derivatives should be understood as distributions, for Ψ ∈ C+∞
0 (M,R) and u ∈ C+∞

0 (M,Rn)

and with the notation introduced in (25), ∀ i ∈ [1, r]:
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∂P 0H(P,Q)(u) =

∫

Σ0

〈v ◦Q0(y), u(y)〉dµ|Σ0
(y), (28)

∂P iH(P,Q)(Ψ) =

∫

M

Ψ(y)
(

s(Qi(y)) − 〈v(y),∇Qi(y)〉
)

dµ(y),

∂Q0H(P,Q)(u) =

∫

Σ0

〈[dv]|Q0(y)(u(y)), P
0(y)〉dµ|Σ0

(y),

∂QiH(P,Q)(Ψ) =

∫

M

Ψ(y)[ds]|Qi(y)P
i(y) − 〈v(y), P i(y)∇Ψ(y)〉dµ(y).

Remark that only the last equation really needs to be defined as a distribution and not as a

function. Now we can give a sense to the Hamiltonian equations but only in a weak sense:

Definition 3. An application χ ∈ C0([0, T ], L1(Σ0,M)×W 1,∞(M)r×L1(Σ0,R
n)×L1(M,R)r) is

said to be a weak solution if it verifies for Ψ ∈ C+∞
0 ([0, T ]×M,R) and u ∈ C+∞

0 ([0, T ]×M,Rn):

(we denote χ(t) = (Qt, Pt).)
∫ T

0

∫

M

−∂tΨ Qi
tdµdt =

∫ T

0

∂P iH(Pt, Qt)(Ψ) dt ∀ i ∈ [1, r], (29)

∫ T

0

∫

M

−∂tΨ P i
t dµdt = −

∫ T

0

∂QiH(Pt, Qt)(Ψ) dt ∀ i ∈ [1, r], (30)

∫ T

0

∫

Σ0

−∂tu Q
0
tdµ|Σ0

dt =

∫ T

0

∂P 0H(Pt, Qt)(u) dt, (31)

∫ T

0

∫

Σ0

−∂tu P
0
t dµ|Σ0

dt = −
∫ T

0

∂Q0H(Pt, Qt)(u) dt. (32)

5.2. Uniqueness of the weak solutions. In this paragraph, the uniqueness to the weak Hamil-

tonian equations is proven, and the proof gives also the general form of the solutions. This form

is closely related to the solution of the variational problem of the previous section.

Theorem 3. Every weak solution is unique and there exists an element of L2([0, T ], V ×S) which

generates the flow (φ0,t, η0,t) such that:

Q0
t (x) = φ0,t(x), x ∈ Σ0, (33)

Qi
t(u) = η0,t ◦Qi

0 ◦ φt,0(u), u /∈ φ0,t(Σ0), i ∈ [0, n]., (34)

and for the momentum variables:

P 0
t (x) = d[φ0,t]

−1∗
x (P 0

0 (x)), x ∈ Σ0, (35)

P i
t (u) = P i

0 ◦ φt,0Jac(φt,0)d[ηt,0]Qi
t(u), u /∈ φ0,t(Σ0). (36)

Proof: Let χ a weak solution on [0, T ], we introduce

t 7→ vt(.) =
1

λ

∫

Σ0

k(Q0
t (x), .)P

0
t dµ|Σ0

(x) −
r

∑

i=1

∫

M

kV (x, .)P i
t∇Qi

tdµ(x),

which lies in L2([0, T ], V ). This vector field is uniquely determined by the weak solution. From

the preliminaries, we deduce that φ0,t(x) =
∫ t

0 vs(φs,0(x))ds is well defined. We introduce also,

t 7→ st(.) =

r
∑

i=1

∫

M

kS(Qi
t, .)P

i
t dµ(x).
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For the same reasons, we can integrate the flow: η0,t(x) =
∫ t

0 sr(ηr,0(x))dr is well defined. In-

troducing Q̃i
t(x) = ηt,0 ◦ Qi

t ◦ φ0,t for i ∈ [1, r], we obtain, with St ◦ ηt,0(x) = ∂tηt,0(x) and

Vt ◦ φ0,t(x) = ∂tφ0,t(x):

∫ T

0

∫

M

−∂tΨ Q̃i
tdµ =

∫ 1

0

∫

M

−∂tΨ ηt,0 ◦Qi
t ◦ φ0,tdµdt

=

∫ T

0

∫

M

−ηt,0 ◦Qi
t [∂tΨ] ◦ φt,0Jac(φt,0)dµdt

=

∫ T

0

∫

M

−ηt,0 ◦Qi
t (∂t[Ψ ◦ φt,0]− < ∇Ψ ◦ φt,0, vt ◦ φt,0 >)Jac(φt,0)dµdt

=

∫ T

0

∫

M

(St(Q̃
i
t)− < ∇Q̃i

t, Vt > +dηt,0(Q̇i
t ◦ φ0,t))Ψ dµdt

=

∫ T

0

∫

M

(St(Q̃
i
t)− < ∇Q̃i

t, Vt > +

dηt,0(− < ∇Qi ◦ φ0,t, v ◦ φ0,t > +s(Qi ◦ φ0,t)))Ψ dµdt.

The cancelation of the equation above relies on the group relation of flows of vector fields. We

have the equality:

St + dηt,0(st ◦ η0,t) = 0,

then the first and last terms cancel. The remaining terms cancel too because of the relations:

∇Q̃i
t = dφ∗0,t

(

dηt,0(∇Qi
t ◦ φt,0)

)

,

vt + dφ0,t(Vt ◦ φt,0) = 0.

Then, we conclude:

∫ T

0

∫

M

−∂tΨ Q̃i
t dµdt = 0.

Introducing Ψ(t, x) = λ(t)γ(x), with λ ∈ C+∞([0, T ]) and γ ∈ C+∞(M), we have:
∫ T

0 −λ′

(t)(
∫

M γ(x) Q̃i
tdµ)dt = 0, hence:

∫

M γ(x) Q̃i
tdµ =

∫

M γ(x) Q̃i
tdµ, i.e. Q̃i

t = Q̃i
0 = Qi

0, and:

Qi
t = η0,t ◦Qi

0 ◦ φt,0.

Now, we introduce for i ∈ [1, r], P̃ i
t (.) =

P i
t ◦φ0,tJac(φ0,t(.))
d[ηt,0]η0,t◦Qi

0(.)
, this quantity is well defined because

of the inversibility of the flow of st and vt. Remark that
Jac(φ0,t(.))

d[ηt,0]η0,t◦Qi
0(.)

is differentiable almost

everywhere because Qi
0 is Lipschitz on M . We want to prove that

∫ 1

0

∫

M
−∂tΨ P̃ i

t dµdt = 0 with

Ψ ∈ C+∞
0 (M), which leads to: P̃ i

t = P̃ i
0 = P i

0 , and then we are done.
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To prove the result, we first use the change of variable y = φ0,t(x), this is a straightforward

calculation, we will also use the equality: d[ηt,0]η0,t(.)dη0,t(.) = 1.
∫ T

0

∫

M

Ψ∂tP̃
i
t dµdt = −

∫ T

0

∫

M

P̃ i
t ∂tΨ ◦ φt,0Jac(φt,0) dµdt,

∫ T

0

∫

M

Ψ∂tP̃
i
t dµdt = −

∫ T

0

∫

M

P i
t

d[ηt,0]Qi
t(.)

∂tΨ ◦ φt,0 dµdt,

∫ T

0

∫

M

Ψ∂tP̃
i
t dµdt =

∫ T

0

∫

M

−P i
t ∂t(

Ψ ◦ φt,0

d[ηt,0]Qi
t(.)

) +
P i

t

d[ηt,0]Qi
t(.)

< ∇Ψ|φt,0
,−dφt,0(vt) >

+ P i
t Ψ ◦ φt,0 ∂t(d[η0,t]Qi

0◦φ0,t
)dµdt, (37)

The third term of the last equation can be rewritten:
∫ T

0

∫

M

P i
t Ψ ◦ φt,0 ∂t(d[η0,t]Qi

0◦φ0,t
) dµdt =

∫ T

0

∫

M

P i
t Ψ ◦ φt,0 (< ∇(d[η0,t]Qi

0
),−dφt,0(vt) > +d[st]Qi

t
d[η0,t]Qi

0◦φ0,t
) dµdt. (38)

Now, we can apply the hypothesis on ∂P i
t , the first term of the expression is equal to:

∫ T

0

∫

M

−P i
t ∂t(

Ψ ◦ φt,0

d[ηt,0]Qi
t(.)

) dµdt =

∫ T

0

∫

M

P i
t < ∇(Ψ ◦ φt,0d[η0,t]Qi

0◦φ0,t
), vt >

− Ψ ◦ φt,0 d[η0,t]Qi
0◦φ0,t

d[st]Qi
t
P i

t dµdt, (39)
∫ 1

0

∫

M

P i
t < ∇(Ψ ◦ φt,0d[η0,t]Qi

0◦φ0,t
), vt > dµdt =

∫ 1

0

∫

M

P i
t < dφ∗t,0(∇Ψ|φt,0

), vt > d[η0,t]Qi
0◦φ0,t

+ P i
t < dφ∗0,t∇(d[η0,t]Qi

0
), vt > dµdt. (40)

All the terms of the equation cancel together, so we obtain the result.

With P̃ 0
t (x) = d[φ0,t]

∗
xP

0
t (x) and Q̃0

t = φt,0 ◦ Q0
0, we get the result for the last two terms of the

system in the same way than the preceding equations, but it is even easier. �

Remark that we only have to suppose the weak solution is L2 to obtain the result. More than

uniqueness, we know that the weak solution ”looks like” a variational solution of our initial prob-

lem.

5.3. On the existence of weak solutions. We consider in this section a Hamiltonian equation

which includes our initial case, for which we have proved existence results. Namely, we can rewrite

our result on the last section in terms of existence of weak solution of the system (27).

Proposition 4. Let (U1, . . . , Un) be a partition in Lipschitz domain of M , Σ0 = ∪n
i=1∂Ui. For

any intial data, I0 ∈ W 1,∞(M)r, Q0 = (Σ0, I0) and P0 ∈ L∞(Σ0,R
n) × L1(M,R)r such that

Supp(P i
0) ⊂ Ui, then there exists a solution to the Hamiltonian equations.

Remark that this solution has the same structure than a variational solution of our initial problem.

In this case, all the momenta (i ∈ [1, r]) can be viewed as one momentum: with Pt =
∑r

i=1 P
i
t ,

we have all the information for the evolution of the system.

Now, we can say a little bit more on the general Hamiltonian equations. We will not give a proof

here of the existence if we relax the condition on the support of P i
0, but the reader can convince
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himself that the existence is somehow a by-product of the last section.

Summing up our work at this point, from a precise variational problem we obtain generalized

Hamiltonian equations, for which we can prove results on existence and uniqueness. A natural

question arises then, from what type of variational problems could appear these solutions? The

answer could be based on the remark: because the decomposition we choose is the direct product

of spaces, we can put a sort of product metric on it. A simple generalized minization is obtained

by modifying the equation (1):

E(η, φ) = D(Id, (η, φ))2 +

r
∑

i=1

1

σ2
i

‖η ◦ (Ii
01Ui

) ◦ φ−1 − Ii
targ‖2

L2, (41)

with for i ∈ [1, r] Ii
0 ∈W 1,∞(M), and I0

0 ∈ Im(M).

6. Conclusion

The main point of this paper is the derivation lemma which may be of useful applications.

This technical lemma gives a larger framework to develop the large deformation diffeomorphisms

theory. The action on the level lines is far to be none of interest but we aim to obtain numerical

implementations of the contrast term applied to smooth images. Finally, the interpretation as a

Hamiltonian system through optimal control theory ends up with giving a proper understanding

of the momentum map. To go further, the technical lemma seems to be easily enlarged to rectifi-

ables domains, and there may be a useful generalization to SBV functions. This would enable a

generalization of a part of this work to SBV functions. But to understand the weak Hamiltonian

formulation would have been much more difficult within the SBV framework. From the numerical

point of view, some algorithms that are currently developed to treat the evolution of curves could

be used efficiently but they need strong developments.

7. Proof of the lemma

After recalling some classical facts about Lipschitz functions, we prove the derivation lemma:

Lemma 1. Let U, V two bounded Lipschitz domains of Rn. Let X a Lipschitz vector field on

R
n and φt the associated flow. Finally, let g and f Lipschitz real functions on Rn. Consider the

following quantity depending on t,

Jt =

∫

φt(U)

f ◦ φ−1
t g1V dµ,

where dµ is the Lebesgue measure, then

∂t|t=0+Jt =

∫

U

− < ∇f,X > g1V dµ+

∫

∂U

< X,n > fg1̃V (X)dµ|∂U . (42)

with 1̃V (X)(y) = limǫ 7→0+ 1V̄ (y + ǫX), if the limit exists, 0 elsewhere. And we denote by dµ|∂U

the measure on ∂U and n the outer unit normal of ∂U .

We will use,

Theorem 4. Rademacher’s theorem

Let f : U 7→ R
n a Lipschitz function defined on an open set U ⊂ R

n, then f is differentiable µ

a.e.
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Theorem 5. Let F : R
d × R

n 7→ R
d, Lipschitz continuous on a neighborhood of (v0, y0) and

F (v0, y0) = 0. Suppose that ∂1F (v0, y0) exists and is invertible. Then there exists a neighborhood

W of (v0, y0), on which there exists a function g : R
n 7→ R

d such that in W :

• g(y0) = v0.

• F (g(y), y) = 0 for (g(y), y) ∈W .

• |g(y) − g(y0)| ≤ c|y − y0|,
with c = 1 + (Lip(F ) + 1)‖∂vF (v0, y0)

−1‖.

This theorem can be found in [PS03] and in a more general exposition than we will use hereafter.

Now an obvious lemma of derivation under the integral,

Lemma 2. Let f a Lipschitz function defined on an open set U ⊂ R
n. Let X a Lipschitz vector

field on R
n of compact support and φt the associated flow. Consider Jt =

∫

U f ◦ φtdx, then:

∂t|t=0Jt =

∫

U

< ∇f,X > dx. (43)

Proof: Using Rademacher’s theorem, this is a staightforward application of dominated convergence

theorem. Note that under the condition that f is Lipschitz, if both f and ∇f are integrable and

X is a bounded vector field, we can relax the hypothesis of a compact support for the vector field,

which is replaced here by the integrability condition. �

We will need the following characterization of derivation for real functions to prove the lemma 4 .

Lemma 3. Let w : R
n 7→ R a function, then w is differentiable in x ∈ R

n if and only if there

exist f and g two C1 functions and a neighborhood V of x, such that f(x) = g(x) and if y ∈ V ,

g(y) ≤ w(y) ≤ f(y). (44)

Proof: Suppose w differentiable in x, it suffices to prove that there exists f C1 such that w ≤ f

in a neighborhood of x. (To obtain g, consider then −w.) we can suppose x = 0, w(0) = 0 and

w′(0) = 0 then limy 7→x
w(y)
|y| = 0. Hence there exists a continuous function v defined on B(0, r > 0)

such that: w(y)
|y| ≤ v(y) and v(0) = 0. With the notation |x| for the euclidean norm in R

n, let

m(|x|) = sup|y|≤|x| v(y), we have m(|x|) ≥ v(x) for x ∈ B(0, r). The function m is non decreasing

and continuous with m(0) = 0. At last, let f(x) =
∫ 2|x|

|x|
m(t)dt, then w(x) ≤ |x|m(|x|) ≤ f(x).

Moreover, the fact f is C1 is straightforward to verify.

Suppose f and g are C1, and denote by f ′ and g′ their derivative in x, then f ′(x) = g′(x) since

f − g ≥ 0 and has a minimum in x. On V we have:

g(x+ h) − g′(x).h ≤ w(x + h) − g′(x).h ≤ f(x+ h) − f ′(x).h.

Hence, w(x+ h) − g′(x).h = o(h) and w is differentiable. (Remark that we only use the fact that

f and g are differentiable in x.) �

Using the lemma above, we study the deformation of an epigraph of a Lipschitz function under

the action of a vector field, which leads to study the deformation of the graph of the function:
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Lemma 4. Let φt the flow of the vector field Lipschitz X on R
n (with ‖X‖ bounded on R

n). Let

V = {(x, z) ∈ R
n−1×R|z > w(x)} with w a Lipschitz function, and wt(x) = inf{z|(x, z) ∈ φt(V )}.

Then, a.e.

∂t|t=0wt(x) = − < ∇w(x), p1(X(x,w(x))) > +p2(X(x,w(x))),

with p1 and p2 orthogonal projections respectively on R
n−1 × 0 and 0n−1 × R.

Proof: Remark that wt is well defined for all t by connexity reason, but wt might be discontinuous

for t large enough. However it is Lipschitz continuous for t in a neighborhood of 0: we first apply

the implicit function theorem for Lipschitz maps to the function:

F (x, t) = p1(φt(x,w(x))) − x0,

note that ∂xF (x0, 0) = Id|Rn−1 , so we obtain for each x0 ∈ R
n−1 a function x0 : t 7→ x0(t) such

that x0 is Lipschitz and the equation F (x, t) = 0 ⇔ x = x0(t) on a neighborhood of (x0, 0). Note

that the implicit function theorem in [PS03] gives only existence but not uniqueness. We develop

now the uniqueness. The Lipschitz condition on w can be written with the cone property. Let

(A,B) two points on the graph of w, then |yA − yB| < M |xA −xB|, for a Lipschitz constant. This

open condition is then verified in a neighborhood of {t = 0}. We see that, F (x1, t) = F (x2, t)

implies φt(x1, w(x1)) = φt(x2, w(x2)), hence x1 = x2.

If w is C1, we get by implicit function theorem the first derivative of x0(t):

∂t|t=0xt = −p1(X(xt, w(xt))).

We deduce,

wt(x) = p2(φt(xt, w(xt))), (45)

and that t 7→ wt(x0) is a Lipschitz function for each x0. In the C1 case, we get by differentiation

of the equation (45),

∂t|t=0
wt(x0) = − < ∇w(x), p1(X(x,w(x))) > +p2(X(x,w(x))).

We now observe that there is an obvious monotonicity in w of wt. Indeed, if w ≤ v then wt ≤ vt.

We then use the lemma 3 to prove the result in the case w is Lipschitz . Let x such that w is

upper and lower approximated by C1 functions: let u and v such that u(x) = w(x) = v(x), and

u ≤ w ≤ v. We obtain:

1

t
(ut(x) − u(x)) ≤ 1

t
(wt(x) − w(x)) ≤ 1

t
(vt(x) − v(x)), (46)

We deduce the result:

lim
t7→0

1

t
(wt(x) − w(x)) = − < ∇w(x), p1(X(x,w(x))) > +p2(X(x,w(x))),

for all the points of derivability of w, i.e. almost everywhere since w is Lipschitz. �

Now, we prove the following lemma, which can be seen as a consequence of the coarea formula. It

will be used in the proposition 5.

Lemma 5. Let w : R
n 7→ R, an a.e. differentiable function, A = w−1({0}) and B = {x|∇w(x) 6=

0} then µ(A ∩B) = 0.
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Proof: For n = 1, the lemma is obvious because the point of A ∩ B are isolated with Taylor

formula. For n > 1, we generalize with Fubini’s theorem:

A ∩B =
n
⋃

i=1

A ∩Bi,

with Bi = {x ∈ R
n| < ∇f(x), ei > 6= 0}. To prove the result, it suffices to see that µ(A∩Bn) = 0.

Consider (x, t) ∈ R
n−1 × R, fx(t) = f(x + t) and Dx = x × R. Then we apply the case n = 1 to

the function fx: µ(A ∩Bn ∩Dx) = 0, and with Fubini’s theorem, µ(A ∩Bn) = 0. �

Remark that this lemma can be applied to a Lipschitz function. Below lies the fundamental step

to prove the derivation lemma.

Proposition 5. Let w : Rn−1 7→ R a Lipschitz function. Let V := {(x, y)|y > w(x)} and

U := {(x, y)|y > 0}. Let X a Lipschitz vector field on R
n and φt the associated flow. Finally,

let g and f Lipschitz real functions on Rn of compact support. Consider the following quantity

depending on t,

Jt =

∫

φt(U)

f ◦ φ−1
t g1V dµ,

where dµ is the Lebesgue measure also denoted by dx, then

∂t|t=0+Jt =

∫

U

− < ∇f,X > g1V dx+

∫

∂U

< X,n > fg1̃V (X)dµ|∂U . (47)

with 1̃V (X)(y) = limǫ 7→0+ 1V̄ (y + ǫX), if the limit exists, 0 elsewhere. And we denote by dµ|∂U

the measure on ∂U and n the outer unit normal.

U

w

V

Figure 2. The main case

Proof: The first case to treat is when w > 0, we can then integrate on V instead of φt(U).

Jt =

∫

V

f ◦ φ−1
t g1V dµ,

we differentiate under the integral, we get:

∂t|t=0Jt =

∫

U

− < ∇f,X > g1V dµ,

this is the formula because the second term is null. In the following, we have to use this case.
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To treat the general case, we first do a change of variable:

Jt =

∫

Rn−1

∫ +∞

wt(x)+
fg ◦ φtJac(φt)dµ.

We introduce some notations:

x+ = max(0, x) = H(x),

∇H(x)(v) = 0, x < 0, or x = 0 et v < 0,

∇H(x)(v) = v , elsewhere,

wt(x) = inf{z|(x, z) ∈ φ−t(V )}.

Let p1 and p2 the orthogonal projections respectively on R
n−1 × {0} and 0n−1 × R. With the

lemma 4,

∂t|t=0+wt(x) =< ∇w(x), p1(X(x,w(x))) > −p2(X(x,w(x))).

Consequently,

∂t|t=0+wt(x)
+ = ∇H(w(x))(< ∇w(x), p1(X(x,w(x))) > −p2(X(x,w(x)))).

Using f(y)(< ∇g,X > +div(X)g) = div(fgX) − g < ∇f,X >, we get:

∂t|t=0+Jt =

∫

Rn−1

−∂t|t=0+wt(x)
+f(x,w(x)+)g(x,w(x)+)dx

−
∫

Rn−1

∫ +∞

wt(x)+
< ∇f(x, z), X(x, z) > g(x, z)dxdz

+

∫

∂(U∩V )

fg < X, n > dµ|∂(U∩V ).

Here n is the outer unit normal of ∂(U ∩ V ). Rewrite the last term:
∫

∂(U∩V )

fg < X, n > dµ|∂(U∩V ) =

∫

∂V ∩U

fg < X, n > dµ|∂V

+

∫

w−1(]−∞,0])

f(x, 0)g(x, 0) < X,n > dx.

In a neighborhood C of x such that w(x) > 0, we have demonstrated that the formula holds, so

the first term in the equation above is equal to:

−
∫

∂V ∩U

fg < X, n > dµ|∂V −
∫

w−1(]−∞,0])

∂t|t=0wt(x)
+f(x, 0)g(x, 0)dx.

Moreover, on the set F = {x : w(x) = 0}, we have, with the lemma 5, a.e. ∇w = 0. Then, we have:

∂t|t=0+wt(x)
+ =< X,n >+ , a.e. On the set G = {x : w(x) < 0}, we have: ∂t|t=0+wt(x)

+ = 0.

We now get the result with:
∫

w−1(]−∞,0])

(< X,n > −∂t|t=0wt(x)
+)f(x, 0)g(x, 0)dx =

∫

w−1(]−∞,0])

1̃V (X)(x, 0) < X,n > f(x, 0)g(x, 0)dx.

Indeed, if < X,n > 6= 0 the result is straightforward because the limit exists in the definition of

1̃V . If < X,n >= 0, the contribution is null. �

Our goal is to prove the formula for Lipschitz open sets, we present some definitions.
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Definition 4.

An open set U 6= ∅ of R
n is said to be locally Lipschitz if for each x ∈ ∂U , there exist:

• an affine isometry I, of R
n,

• an open neighborhood V (x) of x,

• a Lipschitz function w defined on R
n−1 with a Lipschitz constant K(x)

such that,

I(V (x) ∩ U) = I(V (x)) ∩ {(x, y) ∈ R
n−1 × R|y > w(x)}

If the constant K(x) can be chosen independent of x, U is said to be Lipschitz.

Remark 4.

(1) An open bounded set of R
n which is locally Lipschitz is also Lipschitz .

(2) By Rademacher’s theorem, the outer unit normal n(x) exists for Hn−1 a.e. x ∈ ∂U .

(3) We will say that (V (x), I) trivializes the Lipschitz domain in x.

The three lemmas below prove that one can describe a Lipschitz domain in many systems of

coordinates. This is a key point to understand the two boundaries at a point of intersection and

enables to use the proposition 5.

Lemma 6. Let ψ a C1 diffeomorphism of R
n and V a Lipschitz domain, then ψ(V ) is a Lipschitz

domain.

Proof: The proof is straightforward with the characterization of Lipschitz domains with the uni-

form cone property, which can be found in [DZ01]. �

Lemma 7. Let (e1, . . . , en) an orthonormal basis of R
n, and w a Lipschitz function defined on

R
n−1 of Lipschitz constant M . Let U the Lipschitz open set which is above the graph of w:

U := {(x, y) ∈ R
n−1 × R|y > w(x)},

then for each n in the open cone C := {n = (x, y) ∈ R
n−1 × R+|y > M |x|} one can trivialize

the boundary of U through the graph of a function defined on n⊥ (with an orthonormal basis).

Moreover, this function is Lipschitz .

w

C
n

Figure 3. Trivializing with respect to the orthogonal hyperplan to n.

Proof: Note that, n can be represented with the angle between the hyperplan and the vector

orthogonal to this hyperplan, and also the Lipschitz constant can be represented as the tangente
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of such an angle. Let two points a, b ∈ R
n which belong to the ∂U , then b − a and n are not

colinear, because of the Lipschitz property. As a consequence, ∂U is defined as the graph of a

function w̃ on n⊥. And, one can verify that, if n is normalized, a Lipschitz constant for w̃ is equal

to: tan(|θ1 − θ2|), if θ1 is the angle of n and θ2 associated to the Lipschitz constant. �

Lemma 8. Let U ⊂ R
n a Lipschitz domain with 0 ∈ ∂U , then there exist a neighborhood V of 0,

w a Lipschitz function defined on R
n−1 and a linear transformation A such that: (e1, . . . , en−1) ⊂

Ker(A− Id) and

V ∩A(U) = V ∩ {(x, y) ∈ R
n × R|y > w(x)}.

Here is the illustration of the idea driving the proof.

M

0

A(M)

H

Figure 4. The linear transformation A

Proof: In some coordinates, we write U as the epigraphG+ of a Lipschitz function v on a hyperplan

H in a neighborhood W of 0. We note by n a normal vector to H . We face two cases:

• If < n, en > 6= 0, let A ∈ L(Rn) defined by: A(n) = en and (e1, . . . , en−1) = Ker(A−Id). Denote

by p2 the orthogonal projection on (e1, . . . , en−1). Let M ∈ G defined by its projections z on H :

M = z + w(z)n, by definition of A, A(M) = (p2(z), w(z)) + A(z − p2(z)). But z − p2(z) = λ(z)n

with λ ∈ (Rn)′ so we obtain: A(M) = (p2(z), w(z) + λ). Also p2|H is a linear isomorphism, we

note the inverse p−1
2 , then with the change of variable x = p2(z), we get

G = {(x, λ(p−1
2 (x)) + w ◦ p−1

2 (x))|x ∈ p2(H ∩W )}.

w ◦ p−1
2 is clearly Lipschitz and we obtain the lemma in this case.

• If < n, en >= 0, we can choose by lemma 7 another system of coordinates for which we fall in

the first case, and the lemma is demonstrated. �

We present a smooth (C1) version of the derivation lemma.

Proposition 6. Let U a bounded C1 domain of Rn and V a bounded Lipschitz domain. Let X a

Lipschitz vector field on R
n and φt the associated flow. Finally, let g and f Lipschitz real functions

on Rn. Consider the following quantity depending on t,

Jt =

∫

φt(U)

f ◦ φ−1
t g1V dµ,

where dµ is the Lebesgue measure also denoted by dx, then

∂t|t=0+Jt =

∫

U

− < ∇f,X > g1V dx+

∫

∂U

< X,n > fg1̃V (X)dµ|∂U . (48)
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with 1̃V (X)(y) = limǫ 7→0 1V̄ (y+ ǫX), if the limit exists, 0 elsewhere. And we denote by dµ|∂U the

measure on ∂U and n the outer unit normal.

Proof: Let K a Lipschitz constant of V . Applying the definition of a C1 domain with the compact

boundary of U , there exist a finite covering W1, . . . ,Wk of ∂U with open balls and (Ψ1, . . . ,Ψk)

C1 diffeomorphisms such that for each i ∈ [1, k],

Ψi(Wi ∩ U) = {(x, y) ∈ R
n−1 × R|y > 0} ∩ Ψi(Wi),

also one has:

Ψi(Wi ∩ ∂U) = R
n−1 × {0} ∩ Ψi(Wi).

Let (θ0, . . . , θn, θk+1) a partition of unity associated to the family

(W0 = R
n \ Ū ,W1, . . . ,Wk,Wk+1 = U).

It means:

• 0 ≤ θi ≤ 1, ∀i ∈ [0, k + 1] and
∑

i∈[0,k+1] θi = 1 on R
n.

• Supp θi ⊂Wi for i ∈ [1, k + 1].

• Supp θ0 ⊂ R
n \ Ū .

Through the change of variable y = φt(x), the quantity is:

Jt =
k+1
∑

i=1

∫

U

fθig ◦ φt1V ◦ φtJac(φt)dµ.

Four cases appear:

• Ū ∩Wi ⊂ V

• Wi ∩ U ⊂ R
n \ V

• V̄ ∩Wi ⊂ U

• ∂V ∩ ∂U ∩Wi 6= ∅.

In the first case, the formula is the result of the derivation under the integral, which is allowed

because g is Lipschitz.

∂t|t=0+Jt =

∫

Wi

f(y)(< ∇g,X > +div(X)g)dµ,

with, f(y)(< ∇g,X > +div(X)g) = div(fgX) − g < ∇f,X >, and applying Stokes theorem true

for a rectifiable open set and Lipschitz functions, we obtain the result.

In the second case, the quantity is null for t sufficiently small. So the formula is obvious.

In the third case, we can integrate on V instead of φt(U ∩Wi):

Jt =

∫

V

f ◦ φ−1
t g1V dµ,

we differentiate under the integral, we get:

∂t|t=0+Jt =

∫

U

− < ∇f,X > g1V dµ,

because the second term of the formula is null.

We deal hereafter with the last case: as Ψi is a C1 diffeomorphism, Ψi(V ) is also Lipschitz.
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Consequently, we can find a finite covering B1, . . . , Bm of Wi, for which one of the following

conditions holds:

• Bi ⊂ V

• Bi ⊂ R
n \ V̄

• Bi ∩∂V 6= ∅ and there exists I such as (Ψi(Bi), I) trivializes the Lipschitz domain Ψi(V ).

In the first two cases, we have already demonstrated that the formula is true.

With the lemma 8, we know that after a linear transformationA which is the identity on R
n−1×{0},

the Lipschitz domain can be represented as the epigraph of a Lipschitz function defined on R
n−1.

We replace Ψi by A ◦ Ψi = Ψ. We then have the following situations:

Ψ(Wi ∩ V ) = {(z, t)|t > w(z)},

or

Ψ(Wi ∩ V ) = {(z, t)|t < w(z)},

with w : R
n−1 ∩B(0, ρ) 7→ R a Lipschitz function. This situation (or the symetric situation which

is essentially the same) is treated in the proposition 5. �

We generalize the proposition 6 to the case of Lipschitz domains, we need some additional results

of approximation:

Theorem 6. C1 approximation

Let f : R
n 7→ R a Lipschitz function. Then for each ǫ > 0, there exists a C1 function f̄ : R

n 7→ R

such that:

µ({x|f̄(x) 6= f(x)orDf̄ (x) 6= Df(x)}) ≤ ǫ.

In addition,

sup
Rn

|Df̄ | ≤ CLip(f),

for some constant C depending only on n.

See the proof of [EG92].

Remark 5. A direct consequence of the theorem is that we have,

‖f − f̄‖∞ ≤ 2 max(C, 1)Lip(f)
√
n− 1ǫ

1
n−1 .

On each cube of volume ǫ there exists a point where the two functions are equal, then we deduce

easily the claimed bound. Thus, we get also

µ({(x, y)|f̄ (x) < y < f(x) or f(x) < y < f̄(x)}) ≤ 2 max(C, 1) Lip(f)
√
n− 1ǫ1+

1
n−1 .

We deduce a corollary:

Corollary 2. Let U a bounded Lipschitz domain, for each ǫ > 0 there exists V a C1 domain such

that, S = U \ V̄ ∪ V \ Ū , is a rectifiable open set verifying:

µ(S) < ǫ (49)

Hn−1(∂S) < ǫ. (50)
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Proof: We just present the main points for the proof of the corollary.

By compacity of ∂U , there exists a finite open covering (V1, . . . , Vk) of ∂U , such that for each open

set we can trivialize the boundary. On each open set Vi, we have by previous theorem a Lipschitz

application gi : ∂U ∩ Vi 7→ R
n which gives a C1 hypersurface. We have

Hn−1({x ∈ ∂U ∩ Vi|x 6= g(x)}) ≤ ǫ.

Moreover we can assume that this covering satisfies the following property. Let 0 < η < ǫ and

Z := ∪i6=jVi ∩ Vj , Hn−1(∂U ∩ Z) ≤ η. We thus obtain an application g : ∂U 7→ R
n which is

Lipschitz (∂U is endowed with the induced metric by the euclidean metric on R
n) and is the

boundary of a C1 domain V , for which we have:

Hn−1({x ∈ ∂U |x 6= g(x)}) ≤ (k + 1)ǫ.

Then, Hn−1(∂S) < 2 Lip(g)n−1(k + 1)ǫ. And also with the same argument given in the pre-

ceding remark, there exists a constant K such that, µ(S) ≤ K Lip(g) ((k + 1)ǫ)1+
1

n−1 , with

K =
√
n− 1 Lip(∂U). �

We now turn to the proof of the lemma 1.

Proof: We use the corollary 2, let Uǫ a C1 domain for ǫ as in the corollary. Let M1 a constant

such that in a compact neighborhood of U , |f ◦ φt − f | ≤ M1t, g ≤ M2, |f | ≤ M3 and |X | ≤ K.

We have, with

Sǫ = ∆(Uǫ, U) = Uǫ \ Ū ∪ U \ Ūǫ,

We denote by θ = 1U − 1Uǫ
, so we have (triangular inequality for the second inequation):

|(Jt(U) − J0(U)) − (Jt(Uǫ) − J0(Uǫ))| ≤
∫

V

|θ ◦ φ−1
t f ◦ φ−1

t g − θfg|dµ,

|(Jt(U) − J0(U)) − (Jt(Uǫ) − J0(Uǫ))| ≤
∫

V

|θ ◦ φ−1
t (f ◦ φ−1

t g − fg)|dµ+

∫

V

|(θ ◦ φ−1
t − θ)fg|dµ,

|(Jt(U) − J0(U)) − (Jt(Uǫ) − J0(Uǫ))| ≤
∫

V ∩φt(Sǫ)

|f − f ◦ φ−1
t ||g|1V dµ

+

∫

V ∩∆(φt(Sǫ),Sǫ)

|fg|1V dµ,

|(Jt(U) − J0(U)) − (Jt(Uǫ) − J0(Uǫ))| ≤ tM1M2µ(φt(Sǫ) ∩ V ) +M3M2µ(V ∩ ∆(φt(Sǫ), Sǫ))

We first treat the last term. We claim that, for s0 > 0 such that Lip(φt) ≤ 2, we have, for

t ∈ [−s0, s0],
µ(∆(φt(Sǫ), Sǫ)) ≤ tmax(2,M)nHn−1(∂Sǫ)).

Introduce Ψ : (t, x) ∈ [−s0, s0] × R
n 7→ φt(x) ∈ R

n.

We have Lip(Ψ) ≤ max(2,M), and Hn([0, t] × ∂Sǫ)) = tHn−1(∂Sǫ). Hence, Hn(Ψ([−s0, s0] ×
∂Sǫ)) ≤ tmax(2,M)nHn−1(∂Sǫ)). To finish, we prove that:

∆(φt(Sǫ), Sǫ) ⊂
⋃

s≤t

φt(∂Sǫ).
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Let z ∈ ∆(φt(Sǫ), Sǫ),

• Suppose z /∈ Sǫ, there exists x ∈ Sǫ such that φt(x) = z. The map c : s ∈ [0, t] 7→ φs(x)

verifies c(0) = x ∈ S and c(t) = z /∈ S. By connexity, there exists u ∈ [0, t], such that

c(u) ∈ ∂Sǫ. By composition of flow, φt−u(c(u)) = z.

• Suppose z /∈ φt(Sǫ), there exists x ∈ φt(Sǫ) such that φ−t(x) = z. The map c : s ∈ [0, t] 7→
φ−s(x) verifies c(0) ∈ φt(Sǫ) and c(t) = z /∈ φt(Sǫ). By connexity, there exists u ∈ [0, t],

such that c(u) ∈ ∂φt(Sǫ). By composition of flow, m = φ−u(z) ∈ ∂Sǫ and obviously,

φu(m) = z.

We give a bound for the first term in the same neighborhood for t ∈ [−s0, s0],

µ(φt(Sǫ) ∩ V ) ≤ µ(φt(Sǫ)) ≤ 2ntǫµ(Sǫ).

Consequently,

lim sup
t7→0+

|1
t
[(Jt(U) − J0(U) − (Jt(Uǫ) − J0(Uǫ))]| ≤M1M2µ(Sǫ) +M3H

n−1(∂Sǫ)).

We can now obtain the conclusion. Let ǫ > 0,

lim sup
t7→0+

|1
t
[(Jt(U) − J0(U) − (Jt(Uǫ) − J0(Uǫ))]| ≤ (M1M2 +M3)ǫ.

We use now the formula already demonstrated for C1 domains,

lim sup
t7→0+

|1
t
[(Jt(U) − J0(U) −

∫

Uǫ

− < ∇f,X > g1V dµ+

∫

∂Uǫ

< X,n > fg1̃V (X)dµ|∂Uǫ
]| ≤ (M1M2 +M3)ǫ,

and the result is proven. �

8. Appendix

8.1. Central lemma of [GTL06]. We present here a different version of the lemma, which is

essentially the same, but from another point of view.

Lemma 9. Let H a Hilbert space and B a non-empty bounded subset of E a Hilbert space such that

there exists a continuous linear application g : H 7→ E. Assume that for any a ∈ H, there exists

ba ∈ B such that 〈ba, g(a)〉 ≥ 0. Then, there exists b ∈ Conv(B) such that 〈b, g(a)〉 = 0, ∀a ∈ H.

Proof: We denote by H0 = g(H). Let p the orthogonal projection on H0 and Z = Conv(B) is a

non-empty closed bounded convex subset of H , whence weakly compact. As p is weakly continuous

and linear, p(Z) is a weakly compact convex subset and thus strongly closed. From the projection

theorem on closed convex subset, there exists b ∈ p(Z) such that: |b| = infc∈Z |c| and 〈b, c− b〉 ≥ 0

for c ∈ p(Z). As a direct consequence, we have also:

〈b, u− b〉 ≥ 0 ∀u ∈ Z. (51)

The element b lies in the adherence of g(H) then there exists a sequence bn ∈ g(H) such that

lim bn = b. From the hypothesis, there exists un ∈ B such that: 〈un,−bn〉 ≥ 0. As B is bounded,
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lim〈un, b− bn〉 = 0, hence lim sup〈un, bn〉 ≤ 0. By (51), we get lim sup〈un, b〉 ≥ 〈b, b〉. As a result,

〈b, b〉 ≤ 0 and b = 0. By definition, there exists v ∈ Z, p(v) = b = 0. Now, v ∈ H⊥
0 and φ(.) = 〈v, .〉

gives the result. �

8.2. A short lemma. We give here a short proof of the perturbation of the flow of a time

dependent vector field with respect to the vector field. We assume in the proposition that the

involved vector fields are C1 but it can be proven with weaker assumptions on the regularity of

vector fields. (See [Gla05], for a detailed proof following another method.)

Lemma 10. Let ut and vt be two time dependent C1 vector fields on R
n, and denote by φǫ

0,t the

flow generated by the vector field ut + ǫvt, then we have:

∂ǫφ0,1(x) =

∫ 1

0

[dφt,1]φ0,t(x)v(φ0,t(x))dt.

Proof: Introduce the notation At ∈ R
n defined by: At(φ0,t(x)) = ∂ǫφ

ǫ
0,t(x). Deriving this expres-

sion with respect to the time variable:

d

dt
At(φ0,t(x)) = dut(At(φ0,t(x))) + vt(φ0,t(x)),

Remark that the expression above can be written as (with L the Lie derivative):

Lut
At =

d

du |u=0
[dφ0,t+u]−1(At+u(φt+u(x))) = [dφ0,t]

−1(vt(φ0,t(x))).

By integration in time, we obtain the result. �
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