

Topological Features of both Electron Density and Electrostatic Potential in Bis(tiosemicarbazide)zinc(II) dinitrate Complex

Sladjana B. Novaković, Goran A. Bogdanović, Bernard Fraisse, Nour Eddine Ghermani, Nouzha Bouhmaida, Anne Spasojevic - de Biré

▶ To cite this version:

Sladjana B. Novaković, Goran A. Bogdanović, Bernard Fraisse, Nour Eddine Ghermani, Nouzha Bouhmaida, et al.. Topological Features of both Electron Density and Electrostatic Potential in Bis(tiosemicarbazide)zinc(II) dinitrate Complex. Journal of Physical Chemistry A, 2007, 111 (51), pp.13492 -13505. 10.1021/jp075456i . hal-00204137v1

HAL Id: hal-00204137 https://hal.science/hal-00204137v1

Submitted on 12 Jan 2008 (v1), last revised 29 Sep 2020 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SUPPORTING INFORMATION

 Table S1. Crystallographic, data collection and reduction details.

Table S2. Summary of the least-squares refinements.

 Table S3. Bond distances and angles.

Table S4. Topological proprieties of covalent bonds (strategy II).

Table S5. Topological proprieties of hydrogen bonds (strategy II).

 Table S6. Net atomic charges.

Table S7. Atomic coordinates, anisotropic displacement parameters for non-H atoms and isotropic displacement parameters for H atoms after the multipolar refinement.

Table S8 Gram-Charlier coefficients and their estimated standard deviations for anharmonic

 thermal vibration of Zn atom

Table S9a/b. Multipolar refinement parameters for non-H atoms in $[Zn(TSC)_2](NO_3)_2$. **Table S10a/b**. Multipolar refinement parameters for H atoms in $[Zn(TSC)_2](NO_3)_2$.

Figure S1. Residual density maps for $[Zn(TSC)_2](NO_3)_2$ (contours 0.1 e.Å⁻³ and 0.05 e.Å⁻³). **Figure S2**. Static density maps for $[Zn(TSC)_2](NO_3)_2$ (contours 0.1e.Å⁻³).

Figure S3. Dynamic density maps for $[Zn(TSC)_2](NO_3)_2$ (contours 0.1e.Å⁻³).

Figure S4. Experimental density maps $(F_{obs}-F_{calc})$ for $[Zn(TSc)_2](NO_3)_2$ (contours 0.1e.Å⁻³). **Figure S5.** Static deformation density maps of hydrogen bonds: in the N-H...O plane; orthogonal to N-H...O plane.

The results of the additional strategy which includes the refinement of the multipole parameters for Zn atom

Table 51.	Crystan	ographic, data concention and rea	uction u	Julis.						
Diffractomet	er		SMART	CCD 1	K					
Sample cond	ition, tem	perature	N ₂ stream, 100 K							
Chemical for	mula		$C_2 H_{10} N_2 S_2 O_6 Zn$							
Molecular we	eight		371.7							
F ₀₀₀			752							
Density			2.15							
Crystal system	m		Monocl	inic						
Space group			C 1 2/c	1						
Ζ			4							
	a (Å)	10.9541	(3)							
	7.5673(2	2)								
Unit cell dim	c (Å)	14.1753	(3)							
Onit cen uni	90.000	(2)								
		β (°)	101.630	(2)						
		γ (°)	90.003(2)						
Volume (Å ³)			1150.90	(6)						
Absorption c	oefficient	$\mu (mm^{-1})$	2.540	~ /						
Crystal dime	nsions: (n	nm) x (mm) x (mm)	0.47 x 0	.43 x 0.3	30					
Colour			White translucent							
Wavelength	(Å)		0.71073							
Detector-sam	ple distar	nce (cm)	4.082							
20-detector p	osition (°)	0	28	-45	60	-75			
Scan mode		·	ω	•	ľ	- 1	.			
Scan width (°)		-0.15							
Time per frai	me (s)		2	5	10	20	30			
Number of m	neasured f	rames	24000				•			
$(\sin \theta / \lambda)_{max}$	Å ⁻¹)		1.10							
h_{min} ; k_{min} ; l_m	in		-25 ; -17	7;-33						
h_{max} ; k_{max} ; l_n	nax		24;17	33						
Integration b	ox size X	(°) x Y (°) x Z (°)	2.80 x 2	.80 x 1.8	30	2.60 x	2.60 x 2.30			
I/σ threshold	for the pr	ofile integration	10							
	Number	of measured reflections	55584							
SADABS	R _{int} befo	re SADABS	0.0623							
	R _{int} after	SADABS	0.0195							
	R ₁		0.0167							
SORTAV	53409									
	7.4									
	7616									
	7140									
	0.0174									
SHELXL	0.0188									
	wR ₂		0.0444							
	gooF		0.98							
	Number	of refined parameters	108							
1	Trannoel	or remied parameters	100							

 Table S1. Crystallographic, data collection and reduction details.

Table S2. Summary of the least-squares refinements.

	Spherical atom model	High Order	Pval-к model	Multipolar model (strategy I)	Multipolar model (strategy II)
$\sin\theta/\lambda$ range	0.05-1.10	0.80-1.11	0.05-1.10	0.05-1.10	0.05-1.10
Nobs (I> $3\sigma_I$)	5904	2517	5904	5904	5904
Npar	108	124	32	258	258
R [F]	1.66%	1.55%	1.63%	1.15%	1.15%
$R_w[F]$	2.00%	1.52%	1.97%	1.33%	1.33%
GoF	1.25	0.86	1.28	0.88	0.88

Table S3. Bond	distances	and	angles.
(strategy I)			

(strategy II)

Bond	(Å)	Angle	(°)	Bond	(Å)	Angle	(°)
Zn1-N1	2.0918(2)	N1-Zn1-S1	88.47(1)	Zn1-N1	2.0918(2)	N1-Zn1-S1	88.47(1)
Zn1-\$1	2 2667(2)	N1-Zn1-S1_2	113.62(2)	7n1-S1	2 2667(2)	N1-Zn1-S1_2	113.62(2)
2111-01	2.2007(2)	N1-Zn1-N1_2	122.06(1)		2.2007(2)	N1-Zn1-N1_2	122.06(1)
N1-N2	1.4114(2)	S1-Zn-S1_2	134.59(1)	N1-N2	1.4114(2)	S1-Zn-S1_2	134.59(1)
C1-N2	1.3419(3)	Zn1-N1-N2	110.68(1)	C1-N2	1.3419(3)	Zn1-N1-N2	110.68(1)
C1-N3	1.3274(3)	Zn1-S1-C1	95.37(1)	C1-N3	1.3274(3)	Zn1-S1-C1	95.37(1)
C1 S1	1.52, 1(3) 1.7104(3)	N1-N2-C1	121.64(2)	C1 S1	1.52, 1(3) 1.7104(2)	N1-N2-C1	121.64(2)
CI-51	1./194(2)	N2-C1-S1	123.61(2)	CI-51	1./194(2)	N2-C1-S1	123.61(2)
01-N4	1.2561(2)	N2-C1-N3	117.45(2)	01-N4	1.2567(2)	N2-C1-N3	117.45(2)
O2-N4	1.2568(3)	S1-C1-N3	118.94(2)	O2-N4	1.2560(3)	S1-C1-N3	118.94(2)
03-N4	1 2/18(3)	H1a-N1-H1b	107.97(2)	03-N4	1 2/18(3)	H1a-N1-H1b	108.00(2)
03-114	1.2410(3)	N2-N1-H1a	109.92(2)	03-114	1.2410(3)	N2-N1-H1a	114.33(2)
N1-H1a	0.997(10)	N2-N1-H1b	107.13(2)	N1-H1a	0.981(10)	N2-N1-H1b	107.14(2)
N1-H1b	1.030(9)	Zn1-N1-H1a	114.34(2)	N1-H1b	1.026(9)	Zn1-N1-H1a	114.34(2)
N2-H2	0.991(10)	Zn1-N1-H1b	106.47(2)	N2-H2	0.976(10)	Zn1-N1-H1b	106.40(2)
	1.00((10)	N1-N2-H2	116.41(2)		1.000(10)	N1-N2-H2	116.50(2)
N3-H3a	1.006(10)	C1-N2-H2	121.67(2)	N3-H3a	1.000(10)	C1-N2-H2	121.57(2)
N3-H3b	0.984(10)	H3a-N3-H3a	121.27(2)	N3-H3b	0.974(10)	H3a-N3-H3a	121.38(2)
		C1-N3-H3a	120.03(2)			C1-N3-H3a	120.00(2)
		C1-N3-H3b	118.62(2)			C1-N3-H3b	118.55(2)
		01-N4-02	120.20(2)			01-N4-O2	120.20(2)
		01-N4-03	119.41(3)			01-N4-O3	119.41(3)
		O2-N4-O3	120.38(3)			02-N4-03	120.38(3)

Bond	length (Å)	d_1	d ₁	ρ	$\nabla^2 \rho$	λ_2	λ_2	λ_3	3	G	V	Н
Zn1-N1	2.0918(2)	0.999	1.093	0.52	7.18	-2.86	-2.67	12.72	0.07	234.17	-237.11	-38.94
Zn1-S1	2.2667(2)	1.050	1.217	0.40	5.06	-1.81	-1.68	8.56	0.07	158.97	-180.37	-21.40
N1-N2	1.4114(2)	0.695	0.716	2.06	-3.64	-16.17	-15.09	27.62	0.07	975.53	-2050.04	-1074.51
C1-N2	1.3419(3)	0.555	0.787	2.35	-22.32	-19.30	-16.71	13.69	0.15	892.59	-2395.55	-1500.03
C1-N3	1.3274(3)	0.552	0.775	2.43	-23.27	-20.63	-16.59	13.95	0.24	949.80	-2532.35	-1582.55
C1-S1	1.7194(2)	0.886	0.834	1.30	-2.60	-6.98	-5.64	10.02	0.23	436.44	-934.58	-507.14
01-N4	1.2567(2)	0.624	0.632	3.06	-6.19	-26.33	-23.38	43.53	0.13	1904.85	-3905.11	-2000.26
O2-N4	1.2560(3)	0.622	0.635	3.06	-6.30	-26.49	-23.50	43.69	0.13	1901.96	-3972.22	-2070.26
O3-N4	1.2418(3)	0.622	0.620	3.19	-11.05	-28.22	-24.00	41.17	0.18	1958.49	-4217.44	-2258.95
N1-H1a	0.981(10)	0.726	0.268	2.15	-18.86	-28.77	-26.49	36.40	0.09	776.57	-2055.98	-1289.41
N1-H1b	1.026(9)	0.735	0.295	2.06	-16.69	-25.06	-23.17	31.73	0.08	738.97	-1931.76	-1192.79
N2-H2	0.976(10)	0.740	0.248	2.13	-21.27	-29.18	-26.72	33.85	0.09	715.60	-2009.57	-1293.97
N3-H3a	1.000(10)	0.726	0.240	2.12	-28.85	-29.30	-27.53	27.98	0.06	569.60	-1923.68	-1354.08
N3-H3b	0.974(10)	0.722	0.262	2.27	-24.96	-31.41	-29.18	34.94	0.08	771.98	-2222.65	-1450.67

Table S4. Topological proprieties of covalent bonds (strategy II).

d1, d2 are the distances from the critical point to atoms 1 and 2 in (Å); ρ is the electron density in (e.Å⁻³); $\nabla^2 \rho$ is the Laplacian in (e.Å⁻⁵), $\lambda_1 \lambda_2 \lambda_3$ are the principle cutvatures in (e.Å⁻⁵), G, V, H are kinetic energy density, potential energy density and total energy density, respectively in (KJ.mol.borh⁻¹).

Table S5. Topological proprieties of hydrogen bonds (strategy II).

Bond	HO (Å)	N-HO (°)	d1	d2	ρ	$ abla^2 ho$	λ_1	λ_2	λ_3	3	G	V	Н
N3-H3aO2 ⁱ	1.8503(2)	175.58(1)	0.632	1.222	0.12	3.81	-0.62	-0.58	5.00	0.06	78.19	-53.04	25.15
N2-H201 ⁱ	1.9382(3)	178.72(2)	0.703	1.225	0.14	2.90	-0.71	-0.69	4.30	0.03	64.25	-49.77	14.48
N1-H1aO3 ⁱⁱ	2.0061(2)	158.97(2)	0.726	1.284	0.09	2.57	-0.47	-0.41	3.44	0.17	52.21	-34.57	17.64
N3-H3bO1 ⁱⁱⁱ	2.0901(2)	156.42(2)	0.801	1.373	0.05	1.91	-0.27	-0.23	2.42	0.24	36.73	-20.71	15.20
N1-H1bO3 ^{iv}	2.2981(2)	158.38(2)	0.905	1.478	0.03	1.12	-0.14	-0.05	1.31	0.67	21.21	-11.97	9.24
N1-H1bO2 ^{iv}	2.4650(3)	108.32(2)	1.067	1.439	0.05	0.98	-0.24	-0.14	1.37	0.65	19.87	-13.10	6.77
N1-H1a01 ⁱⁱ	2.4710(3)	148.67(1)	1.031	1.612	0.02	0.57	-0.05	-0.04	0.68	0.57	10.79	-6.09	4.70
N3-H3aO3 ^v	2.5737(3)	107.46(2)1	1.159	1.467	0.04	0.82	-0.14	-0.12	1.08	0.14	16.33	-10.37	5.96
N1-H1bO2 ^{vi}	2.6111(3)	08.32(1)	1.211	1.501	0.04	0.71	-0.13	0.10	0.94	0.77	14.34	-9.38	4.96

(i) x,y,z; (ii) -x+0.5,-y+0.5,-z+1; (iii) x+0.5,y+0.5,z; (iv) x,y,z+0.5; (v) -x+0.5,y+0.5,-z+0.5; (vi) -x+0.5,y+0.5,-z+1.

Table	S6 .	Net	atomic	char	ges.
-------	-------------	-----	--------	------	------

	Strat	egy I	Strategy II				
ATOM	Kappa	AIM	Kappa	AIM			
Zn1	1.45(4)	0.61	1.41(3)	0.63			
S1	0.01(5)	0.12	0.03(4)	0.15			
N1	-0.70(8)	-0.73	-0.69(2)	-0.72			
N2	-0.24(7)	-0.83	-0.23(5)	-0.85			
N3	-0.99(9)	-1.22	-0.99(7)	-1.29			
N4	0.62(5)	0.65	0.58(7)	0.67			
C1	0.15(8)	0.73	0.15(6)	0.67			
01	-0.59(4)	-0.54	-0.59(5)	-0.55			
02	-0.45(4)	-0.56	-0.45(4)	-0.56			
03	-0.53(4)	-0.57	-0.54(3)	-0.56			
H1a	0.38(5)	0.53	0.39(5)	0.52			
H1b	0.37(5)	0.45	0.36(5)	0.44			
H2	0.28(5)	0.50	0.28(5)	0.523			
H3a	0.45(6)	0.59	0.46(5)	0.65			
H3b	0.53(5)	0.58	0.54(5)	0.61			

	Х	у	Z	U(1.1)	U(2.2)	U(3.3)	U(1.2)	U(1.3)	U(2.3)
Zn1	0.50000	0.16713(1)	0.75000	0.00218(1)	0.00371(1)	0.00061(1)	0.00000	0.00027(1)	0.00000
N1	0.35667(2)	0.03320(3)	0.65767(1)	0.00219(1)	0.00365(2)	0.00091(1)	-0.00113(2)	0.00062(1)	0.00032(2)
N2	0.35293(2)	0.08165(3)	0.56097(2)	0.00181(1)	0.00404(2)	0.00078(1)	-0.00151(2)	0.00032(1)	-0.00010(2)
N3	0.42828(2)	0.22683(3)	0.44366(2)	0.00220(1)	0.00545(3)	0.00073(1)	-0.00135(3)	0.00033(1)	0.00031(2)
C1	0.43834(2)	0.19023(3)	0.53650(2)	0.00147(1)	0.00324(2)	0.00072(2)	-0.00016(2)	0.00033(1)	-0.00001(2)
S1	0.55857(1)	0.28277(1)	0.61841(1)	0.00146(1)	0.00401(1)	0.00080(1)	-0.00098(1)	0.00020(1)	0.00001(1)
N4	0.32555(2)	0.56438(3)	0.66716(1)	0.00155(1)	0.00300(2)	0.00087(1)	-0.00004(2)	0.00046(1)	-0.00001(2)
01	0.33332(3)	0.60002(4)	0.58202(1)	0.00228(1)	0.00588(3)	0.00099(1)	-0.00108(3)	0.00086(1)	0.00066(2)
02	0.27966(3)	0.41977(4)	0.68642(2)	0.00243(1)	0.00387(2)	0.00125(1)	-0.00158(3)	0.00031(1)	0.00060(2)
03	0.36185(4)	0.67230(5)	0.73284(2)	0.00355(2)	0.00385(3)	0.00128(1)	-0.00065(4)	0.00023(2)	-0.00108(2)
H1a	0.3605(9)	-0.0981(13)	0.6641(7)	0.025(1)					
H1b	0.2744(9)	0.0753(12)	0.6749(7)	0.027(2)					
H2	0.2893(9)	0.0218(14)	0.5117(7)	0.024(2)					
H3a	0.3566(10)	0.1778(13)	0.3950(8)	0.022(2)					
H3b	0.4896(9)	0.3071(14)	0.4244(8)	0.025(2)					

Table S7a. Atomic coordinates, anisotropic displacement parameters for non-H atoms and isotropic displacement parameters for H atoms after the multipolar refinement (strategy I).

Table S7b. Atomic coordinates with anisotropic displacement parameters for non-H atoms and isotropic displacement parameters for H atoms after the multipolar refinement (strategy II).

	Х	у	Z	U(1.1)	U(2.2)	U(3.3)	U(1.2)	U(1.3)	U(2.3)
Zn1	0.50000	0.16711(1)	0.75000	0.00217(2)	0.00370(1)	0.00061(1)	0.00000	0.00026(1)	0.00000
N1	0.35667(2)	0.03320(3)	0.65767(1)	0.00219(1)	0.00365(2)	0.00091(1)	-0.00113(2)	0.00062(1)	0.00032(2)
N2	0.35293(2)	0.08165(3)	0.56097(2)	0.00181(1)	0.00404(2)	0.00078(1)	-0.00151(2)	0.00032(1)	-0.00010(2)
N3	0.42828(2)	0.22683(3)	0.44366(2)	0.00220(1)	0.00545(3)	0.00073(1)	-0.00135(3)	0.00033(1)	0.00031(2)
C1	0.43834(2)	0.19023(3)	0.53650(2)	0.00147(1)	0.00324(2)	0.00072(2)	-0.00016(2)	0.00033(1)	-0.00001(2)
S1	0.55857(1)	0.28277(1)	0.61841(1)	0.00146(1)	0.00402(1)	0.00080(1)	-0.00098(1)	0.00020(1)	0.00001(1)
N4	0.32555(2)	0.56438(3)	0.66716(1)	0.00155(1)	0.00300(2)	0.00087(1)	-0.00004(2)	0.00046(1)	-0.00001(2)
01	0.33332(3)	0.60002(4)	0.58202(1)	0.00228(1)	0.00588(3)	0.00099(1)	-0.00108(3)	0.00086(1)	0.00066(2)
02	0.27965(3)	0.41977(4)	0.68642(2)	0.00243(1)	0.00387(2)	0.00125(1)	-0.00158(3)	0.00031(1)	0.00060(2)
03	0.36185(4)	0.67230(5)	0.73284(2)	0.00355(2)	0.00385(3)	0.00128(1)	-0.00065(4)	0.00023(2)	-0.00108(2)
H1a	0.3604(9)	-0.0976(13)	0.6641(7)	0.025(1)					
H1b	0.2747(9)	0.0753(12)	0.6749(7)	0.026(2)					
H2	0.2896(9)	0.0221(14)	0.5118(7)	0.025(2)					
H3a	0.3566(10)	0.1778(13)	0.3950(8)	0.020(2)					
H3b	0.4896(9)	0.3068(14)	0.4245(8)	0.024(2)					

C ₂₂₂	.0050(6)
C ₁₁₂	004(1)
C ₂₃₃	.003(1)
C ₁₂₃	006(2)
C ₁₁₁₁	.0040(5)
C ₂₂₂₂	0017(5)
C ₃₃₃₃	.0013(4)
C ₁₁₁₃	.003(1)
C ₁₁₂₂	008(2)
C ₁₁₃₃	007(2)
C ₁₂₂₃	001(1)
C ₁₃₃₃	.001(1)
C ₂₂₃₃	005(2)
C ₂₂₂₂₂	0008(1)
C ₁₁₁₁₂	.0004(4)
C ₁₁₁₂₃	.0017(8)
C ₁₁₂₂₂	0017(5)
C ₁₁₂₃₃	0005(8)
C ₁₂₂₂₃	.00161(8)
C_{12333}	.0005(7)
C ₂₂₂₃₃	0007(4)
C ₂₃₃₃₃	0005(4)
C ₁₁₁₁₁₁	0007(2)
C_{222222}	.0006(1)
C_{333333}	0002(1)
C_{111113}	0012(4)
C_{111122}	.00016(6)
C_{111133}	.0004(6)
C_{111223}	.002(1)
C ₁₁₁₃₃₃	0009(6)
C_{112222}	.0020(5)
C_{112233}	.006(1)
C_{113333}	0003(5)
C ₁₂₂₂₂₃	0009(8)
C ₁₂₂₃₃₃	.0003(9)
C ₁₃₃₃₃₃	0002(3)
C_{222233}	.0020(5)
C ₂₂₃₃₃₃	.0011(5)

Table S8 Gram-Charlier coefficients and their estimatedstandard deviations for anharmonic thermal vibration of Zn atom.

	Zn1	N1	N2	N3	C1	S1	N4	01	02	O3
κ	1.95(4)	0.974(4)	0.978(5)	0.982(5)	0.986(7)	1.056(4)	0.983(4)	0.985(2)	0.982(3)	0.985(3)
κ'	1.00	0.76(1)	0.88(2)	0.82(2)	0.91(1)	0.82(2)	0.83(1)	1.03(2)	1.00(2)	1.21(2)
P _{val}	1.12(3)	5.59(8)	5.29(7)	5.43(9)	4.17(8)	5.96(5)	5.10(5)	6.35(4)	6.35(4)	6.37(4)
P ₀₀	10.00									
P ₁₁		-0.20(2)	0.00(16)	-0.05(2)	0.07(2)	-0.07(2)	0.01(1)	-0.11(1)	-0.09(1)	-0.09(1)
P ₁₋₁		0.06(2)	0.13(16)	0.01(2)	-0.01(2)	0.03(2)	-0.02(1)	-0.03(1)	-0.01(1)	0.02(1)
P ₁₀		0.03(3)	0.02(13)	0.03(1)	0.04(2)	-0.02(2)	-0.01(1)	-0.01(1)	-0.00(1)	0.05(1)
P ₂₀		0.02(2)	0.03(14)	-0.05(2)	-0.31(2)	0.08(1)	-0.26(1)	-0.01(1)	-0.01(1)	-0.03(1)
P ₂₁		-0.03(2)	0.01(12)	0.03(1)	0.01(2)	0.01(1)	-0.01(1)	-0.01(1)	-0.00(1)	0.00(1)
P ₂₋₁		-0.02(2)	0.01(12)	0.02(1)	0.02(2)	-0.04(1)	-0.01(1)	-0.01(1)	0.00(1)	0.01(1)
P ₂₂		-0.17(1)	0.01(12)	-0.04(2)	-0.01(2)	-0.14(1)	0.01(1)	-0.14(1)	-0.16(1)	-0.13(1)
P ₂₋₂		-0.02(1)	0.04(13)	0.01(2)	-0.04(2)	0.01(1)	-0.01(1)	0.01(1)	0.01(1)	-0.01(1)
P ₃₀		0.06(2)	0.02(14)	-0.01(2)	-0.01(2)	-0.05(2)	-0.01(1)	-0.01(1)	-0.02(1)	0.01(1)
P ₃₁		-0.23(2)	0.03(14)	0.03(2)	0.01(2)	-0.01(1)	-0.03(1)	0.01(1)	0.01(1)	0.02(1)
P ₃₋₁		-0.16(2)	0.01(14)	-0.01(2)	0.04(2)	-0.03(1)	0.01(1)	0.03(1)	-0.01(1)	0.04(1)
P ₃₂		0.00(2)	0.01(14)	0.01(2)	0.02(2)	-0.04(1)	-0.01(1)	-0.02(1)	-0.02(1)	-0.03(1)
P ₃₋₂		-0.03(2)	0.00(14)	-0.00(2)	-0.01(2)	-0.04(1)	-0.01(1)	-0.01(1)	-0.03(1)	0.01(1)
P ₃₃		0.22(2)	0.25(14)	0.29(2)	0.38(2)	0.12(2)	0.45(1)	-0.01(1)	0.01(1)	0.01(1)
P ₃₋₃		-0.02(2)	0.01(14)	-0.01(2)	0.02(2)	0.08(1)	0.01(1)	-0.01(1)	-0.02(1)	-0.00(1)

Table S9a. Multipolar refinement parameters for non-H atoms (Strategy I).

Та	Table S9a. Multipolar refinement parameters for H atoms (Strategy I).										
		Hla	H1b	H2n	H3a	H3b					
	κ	1.49(8)	1.38(7)	1.30(6)	1.25(6)	1.42(8)					
	Pval	0.61(5)	0.49(5)	0.63(5)	0.61(6)	0.53(5)					
	P ₁₁	0.15(3)	0.12(3)	0.09(2)	0.16(2)	0.16(2)					

	Zn1	N1	N2	N3	C1	S1	N4	01	02	O3
κ	1.92(4)	0.974(4)	0.978(5)	0.982(5)	0.986(7)	1.056(4)	0.983(4)	0.983(3)	0.980(3)	0.981(3)
κ'	1.00	0.77(1)	0.89(2)	0.83(2)	0.92(1)	0.81(2)	0.82(1)	1.04(2)	1.00(2)	1.21(2)
P _{val}	1.10(3)	5.59(8)	5.31(7)	5.46(9)	4.17(8)	6.00(5)	5.10(5)	6.30(4)	6.31(4)	6.30(4)
P ₀₀	10.00									
P ₁₁		-0.20(2)	0.01(2)	-0.04(2)	0.07(2)	-0.06(2)	0.01(1)	-0.11(1)	-0.09(1)	-0.09(1)
P ₁₋₁		0.06(2)	-0.13(3)	0.01(2)	-0.01(2)	0.03(2)	-0.02(1)	-0.03(1)	-0.01(1)	0.02(1)
P ₁₀		0.03(2)	0.02(1)	0.03(1)	0.04(2)	-0.02(2)	-0.01(1)	-0.01(1)	-0.00(1)	0.05(1)
P ₂₀		0.02(2)	0.03(1)	-0.05(2)	-0.31(2)	0.09(1)	-0.26(1)	-0.01(1)	-0.01(1)	-0.03(1)
P ₂₁		-0.03(2)	0.00(1)	0.03(1)	0.01(2)	0.01(1)	-0.01(1)	-0.01(1)	-0.00(1)	0.00(1)
P ₂₋₁		-0.03(2)	0.01(1)	0.02(1)	0.02(2)	-0.03(1)	-0.01(1)	-0.01(1)	0.00(1)	0.01(1)
P ₂₂		-0.17(1)	0.01(1)	-0.04(1)	-0.01(2)	-0.14(1)	0.01(1)	-0.14(1)	-0.16(1)	-0.13(1)
P ₂₋₂		-0.02(1)	0.04(1)	0.01(1)	-0.04(2)	0.00(1)	-0.01(1)	0.01(1)	0.01(1)	-0.01(1)
P ₃₀		0.06(2)	-0.02(1)	0.01(2)	-0.01(2)	-0.05(2)	-0.01(1)	-0.01(1)	-0.02(1)	0.01(1)
P ₃₁		-0.23(2)	0.03(1)	0.03(2)	0.01(2)	-0.00(2)	-0.03(1)	0.01(1)	0.01(1)	0.02(1)
P ₃₋₁		-0.16(2)	-0.01(1)	-0.01(1)	0.04(2)	-0.03(2)	0.01(1)	0.03(1)	-0.01(1)	0.04(1)
P ₃₂		0.01(2)	-0.01(1)	0.01(2)	0.02(2)	-0.04(2)	-0.01(1)	-0.02(1)	-0.02(1)	-0.03(1)
P ₃₋₂		-0.02(2)	-0.01(1)	-0.01(1)	-0.01(2)	-0.04(2)	-0.01(1)	-0.01(1)	-0.03(1)	0.01(1)
P ₃₃		0.21(2)	0.24(1)	0.28(2)	0.38(2)	0.13(2)	0.45(1)	-0.01(1)	0.01(1)	0.01(1)
P ₃₋₃		-0.02(2)	0.00(1)	-0.02(1)	0.02(2)	0.08(2)	0.01(1)	-0.01(1)	-0.02(1)	-0.00(1)

Table S10b. Multipolar refinement parameters for non-H atoms in [Zn(TSC)₂](NO₃)₃ (Strategy II).

 Table S10b. Multipolar refinement parameters for H atoms (Strategy II).

	H1a	H1b	H2n	H3a	H3b
κ	1.47(9)	1.37(7)	1.31(6)	1.30(7)	1.46(8)
Pval	0.62(6)	0.49(5)	0.60(5)	0.57(6)	0.51(5)
P ₁₁	0.15(3)	0.13(3)	0.09(2)	0.18(3)	0.17(3)

Figure S1. Residual density maps for [Zn(TSc)₂](NO₃)₂, contours at 0.1e.Å⁻³ (above) and 0.05e.Å⁻³ (below).

Strategy I

Figure S2. Static density maps for $[Zn(TSc)_2](NO_3)_2$ (contours 0.1e.Å⁻³).

Figure S3. Dynamic density maps for [Zn(TSc)₂](NO₃)₂ (contours as above).

Figure S4. Experimental density maps (F_{obs} - F_{caclc}) for [$Zn(TSc)_2$](NO_3)₂ (contours as above).

(a)

(b)

(c)

Figure S5. Static deformation density maps of hydrogen bonds: in the N-H...O plane; orthogonal to N-H...O plane (below). (contours $0.05e.\text{\AA}^{-3}$).

The results of the additional strategy which includes the refinement of the multipole parameters for Zn atom

Table S11. Bond distances and angles.										
Bond	(Å)	Angle	(°)							
Zn1-N1	2.0918(2)	N1-Zn1-S1	<mark>88.47(1)</mark>							
Zn1-S1	2 2667(1)	N1-Zn1-S1_2	<mark>113.62(2)</mark>							
$\frac{2111-01}{111}$	$\frac{2.2007(1)}{1.4114(2)}$	N1-Zn1-N1_2	122.06(1)							
IN 1-IN 2	1.4114(2)	S1-Zn-S1_2	134.59(1)							
C1-N2	<mark>1.3419(3)</mark>	Zn1-N1-N2	$\frac{110.68(1)}{25.27(1)}$							
C1-N3	1.3274(3)	ZnI-SI-CI	95.37(1)							
C1-S1	1.7194(2)	NI-NZ-CI N2 C1 S1	$\frac{121.04(2)}{122.61(2)}$							
$\frac{01}{01}$ N4	1.7121(2) 1.2561(2)	N2-C1-51 N2 C1 N3	$\frac{123.01(2)}{117.45(2)}$							
01-114	1.2301(2)	N2-C1-N3 S1-C1-N3	$\frac{117.43(2)}{118.94(2)}$							
<mark>O2-N4</mark>	1.2567(3)	H19-N1-H1h	107.97(2)							
<mark>O3-N4</mark>	1.2417(3)	N2-N1-H1a	107.97(2) 109.92(2)							
N1-H1a	0.997(10)	N2-N1-H1b	107.13(2)							
N1-H1b	1.030(9)	Zn1-N1-H1a	114.34(2)							
	1.030(9)	Zn1-N1-H1b	106.47(2)							
N2-H2	0.991(10)	N1-N2-H2	116.41(2)							
<mark>N3-H3a</mark>	1.006(10)	C1-N2-H2	121.67(2)							
<mark>N3-H3b</mark>	0.984(10)	<mark>H3a-N3-H3a</mark>	<mark>121.27(2)</mark>							
		C1-N3-H3a	120.03(2)							
		C1-N3-H3b	<mark>118.62(2)</mark>							
		<mark>01-N4-02</mark>	120.20(2)							
		<mark>01-N4-03</mark>	<u>119.41(3)</u>							
		O2-N4-O3	120.38(3)							

(f)

Table S12. Net atomic charges										
ATOM	<mark>Kappa</mark>	AIM								
Zn1	1.59(4)	<mark>0.61</mark>								
S1	<mark>0.10(5)</mark>	<mark>0.12</mark>								
N1	<mark>-0.71(8)</mark>	<mark>-0.71</mark>								
N2	<mark>-0.24(7)</mark>	<mark>-0.83</mark>								
N3	<mark>-0.94(9)</mark>	<mark>-1.20</mark>								
N4	<mark>0.60(5)</mark>	<mark>0.66</mark>								
C1	<mark>0.18(8)</mark>	<mark>0.73</mark>								
<mark>01</mark>	<mark>-0.55(4)</mark>	<mark>-0.54</mark>								
O2	<mark>-0.57(4)</mark>	<mark>-0.56</mark>								
O3	<mark>-0.57(4)</mark>	<mark>-0.57</mark>								
H1a	<mark>0.35(5)</mark>	<mark>0.50</mark>								
H1b	<mark>0.38(5)</mark>	<mark>0.45</mark>								
H2	<mark>0.29(5)</mark>	<mark>0.49</mark>								
H3a	<mark>0.41(6)</mark>	<mark>0.58</mark>								
H3b	0.52(5)	0.55								

Table S13. Topological proprieties of covalent bonds												
Bond	length (Å)	d ₁	d ₁	ρ	<mark>∇²ρ</mark>	<mark>λ</mark> 2	<mark>λ</mark> 2	<mark>λ3</mark>	<mark>3</mark>	G	V	H
Zn1-N1	<mark>2.0918(2)</mark>	<mark>0.977</mark>	<mark>1.115</mark>	<mark>0.47</mark>	<mark>7.90</mark>	<mark>-2.36</mark>	<mark>-2.67</mark>	<mark>12.94</mark>	<mark>0.13</mark>	<mark>231.93</mark>	<mark>-249.06</mark>	<mark>-17.12</mark>
Zn1-S1	<mark>2.2667(2)</mark>	<mark>1.038</mark>	<mark>1.230</mark>	<mark>0.37</mark>	<mark>5.12</mark>	<mark>-1.72</mark>	<mark>-1.62</mark>	<mark>8.46</mark>	<mark>0.07</mark>	<mark>152.36</mark>	<mark>-165.51</mark>	<mark>-13.14</mark>
<mark>N1-N2</mark>	<mark>1.4114(2)</mark>	<mark>0.695</mark>	<mark>0.716</mark>	<mark>2.05</mark>	<mark>-3.46</mark>	<mark>-16.13</mark>	<mark>-14.93</mark>	<mark>27.60</mark>	<mark>0.08</mark>	<mark>970.39</mark>	<mark>-2034.90</mark>	<mark>-1064.48</mark>
C1-N2	<mark>1.3419(3)</mark>	<mark>0.547</mark>	<mark>0.796</mark>	<mark>2.32</mark>	<mark>-22.99</mark>	<mark>-19.32</mark>	<mark>-16.69</mark>	<mark>13.02</mark>	<mark>0.16</mark>	<mark>852.96</mark>	<mark>-2331.05</mark>	<mark>-1478.09</mark>
C1-N3	<mark>1.3274(3)</mark>	<mark>0.548</mark>	<mark>0.779</mark>	<mark>2.41</mark>	<mark>-23.21</mark>	<mark>-20.63</mark>	<mark>-16.59</mark>	<mark>14.01</mark>	<mark>0.23</mark>	<mark>932.12</mark>	<mark>-2495.35</mark>	<mark>-1563.23</mark>
C1-S1	<mark>1.7194(2)</mark>	<mark>0.885</mark>	<mark>0.834</mark>	<mark>1.28</mark>	<mark>-2.64</mark>	<mark>-6.97</mark>	<mark>-5.55</mark>	<mark>9.88</mark>	<mark>0.25</mark>	<mark>423.38</mark>	<mark>-918.55</mark>	<mark>-495.16</mark>
<mark>01-N4</mark>	<mark>1.2567(2)</mark>	<mark>0.625</mark>	<mark>0.631</mark>	<mark>3.06</mark>	<mark>-6.07</mark>	<mark>-26.33</mark>	<mark>-23.38</mark>	<mark>43.53</mark>	<mark>0.13</mark>	<mark>1904.13</mark>	<mark>-3973.31</mark>	<mark>-2069.18</mark>
<mark>O2-N4</mark>	<mark>1.2560(3)</mark>	<mark>0.622</mark>	<mark>0.634</mark>	<mark>3.07</mark>	<mark>-6.32</mark>	<mark>-26.48</mark>	<mark>-23.49</mark>	<mark>43.69</mark>	<mark>0.13</mark>	<mark>1910.58</mark>	<mark>-3993.00</mark>	<mark>-2082.42</mark>
<mark>O3-N4</mark>	<mark>1.2418(3)</mark>	<mark>0.622</mark>	<mark>0.620</mark>	<mark>3.19</mark>	<mark>-11.05</mark>	<mark>-28.22</mark>	<mark>-24.00</mark>	<mark>41.17</mark>	<mark>0.18</mark>	<mark>1958.49</mark>	<mark>-4217.44</mark>	<mark>-2258.95</mark>
N1-H1a	<mark>0.981(10)</mark>	<mark>0.726</mark>	<mark>0.268</mark>	<mark>2.16</mark>	<mark>-18.92</mark>	<mark>-28.81</mark>	<mark>-26.49</mark>	<mark>36.36</mark>	<mark>0.09</mark>	<mark>784.18</mark>	<mark>-2082.81</mark>	<mark>-1298.64</mark>
N1-H1b	<mark>1.026(9)</mark>	<mark>0.735</mark>	<mark>0.295</mark>	<mark>2.05</mark>	<mark>-16.69</mark>	<mark>-25.06</mark>	<mark>-23.17</mark>	<mark>31.73</mark>	<mark>0.08</mark>	<mark>730.57</mark>	<mark>-1914.95</mark>	<mark>-1184.39</mark>
N2-H2	<mark>0.976(10)</mark>	<mark>0.743</mark>	<mark>0.245</mark>	<mark>2.13</mark>	<mark>-21.19</mark>	<mark>-29.10</mark>	<mark>-26.71</mark>	<mark>33.85</mark>	<mark>0.09</mark>	<mark>717.06</mark>	<mark>-2010.99</mark>	<mark>-1293.24</mark>
N3-H3a	<mark>1.000(10)</mark>	<mark>0.755</mark>	<mark>0.246</mark>	<mark>2.13</mark>	<mark>-26.94</mark>	<mark>-29.08</mark>	<mark>-27.25</mark>	<mark>29.39</mark>	<mark>0.07</mark>	<mark>612.82</mark>	<mark>-1958.18</mark>	<mark>-1345.36</mark>
<mark>N3-H3b</mark>	<mark>0.974(10)</mark>	<mark>0.722</mark>	<mark>0.262</mark>	<mark>2.30</mark>	<mark>-25.52</mark>	<mark>-31.41</mark>	<mark>-29.18</mark>	<mark>35.07</mark>	<mark>0.08</mark>	<mark>788.90</mark>	<mark>-2271.73</mark>	<mark>-1482.83</mark>

	inipolai iom								
	x	y	z	U(1.1)	<mark>U(2.2)</mark>	U(3.3)	U(1.2)	U(1.3)	U(2.3)
Zn1	<mark>0.50000</mark>	0.16713(1)	<mark>0.75000</mark>	0.00218(1)	0.00371(1)	0.00061(1)	0.00000	0.00027(1)	0.00000
N1	<mark>0.35667(2)</mark>	0.03320(3)	0.65767(1)	0.00220(1)	0.00367(2)	0.00091(1)	-0.00113(2)	0.00062(1)	0.00032(2)
N2	<mark>0.35293(2)</mark>	<mark>0.08165(3)</mark>	0.56097(2)	0.00182(1)	0.00404(2)	0.00079(1)	-0.00151(2)	0.00032(1)	-0.00010(2)
N3	<mark>0.42828(2)</mark>	<mark>0.22683(3)</mark>	0.44366(2)	0.00220(1)	<mark>0.00546(3)</mark>	0.00073(1)	<mark>-0.00135(3)</mark>	<mark>0.00033(1)</mark>	0.00031(2)
C1	<mark>0.43834(2)</mark>	<mark>0.19023(3)</mark>	<mark>0.53649(2)</mark>	<mark>0.00147(1)</mark>	<mark>0.00325(2)</mark>	0.00072(2)	<mark>-0.00016(2)</mark>	<mark>0.00033(1)</mark>	-0.00001(2)
<mark>S1</mark>	<mark>0.55857(1)</mark>	<mark>0.28277(1)</mark>	<mark>0.61841(1)</mark>	<mark>0.00146(1)</mark>	<mark>0.00403(1)</mark>	0.00080(1)	<mark>-0.00098(1)</mark>	0.00020(1)	0.00001(1)
<mark>N4</mark>	<mark>0.32555(2)</mark>	<mark>0.56438(3)</mark>	<mark>0.66716(1)</mark>	0.00155(1)	<mark>0.00301(2)</mark>	0.00088(1)	<mark>-0.00004(2)</mark>	<mark>0.00046(1)</mark>	-0.00001(2)
<mark>01</mark>	<mark>0.33332(3)</mark>	<mark>0.60002(4)</mark>	0.58202(1)	0.00228(1)	<mark>0.00588(3)</mark>	<mark>0.00099(1)</mark>	<mark>-0.00108(3)</mark>	<mark>0.00086(1)</mark>	0.00066(2)
<mark>O2</mark>	<mark>0.27965(3)</mark>	<mark>0.41977(4)</mark>	0.68642(2)	0.00244(1)	<mark>0.00388(2)</mark>	0.00125(1)	<mark>-0.00158(3)</mark>	0.00032(1)	0.00060(2)
O3	<mark>0.36184(4)</mark>	<mark>0.67230(5)</mark>	0.73284(2)	0.00356(2)	0.00385(3)	0.00128(1)	<mark>-0.00066(4)</mark>	0.00023(2)	-0.00108(2)
H1a	<mark>0.3605(9)</mark>	<mark>-0.0981(13)</mark>	<mark>0.6641(7)</mark>	0.025(1)					
H1b	<mark>0.2744(9)</mark>	<mark>0.0753(12)</mark>	<mark>0.6749(7)</mark>	<mark>0.027(2)</mark>					
H2	<mark>0.2893(9)</mark>	<mark>0.0218(14)</mark>	<mark>0.5117(7)</mark>	<mark>0.024(2)</mark>					
H3a	<mark>0.3566(10)</mark>	<mark>0.1778(13)</mark>	<mark>0.3950(8)</mark>	<mark>0.022(2)</mark>					
H3b	<mark>0.4896(9)</mark>	0.3071(14)	0.4244(8)	0.025(2)					

Table S14. Atomic coordinates, anisotropic displacement parameters for non-H atoms and isotropic displacement parameters for H atoms after the multipolar refinement.

Table S15. Multipolar refinement parameters for non-H atoms.											
	Zn1	N1	N2	N3	C1	S1	N4	O1	O2	O3	
κ(4s) κ(3d)	2.00(6) 0.99(2)	0.969(4)	0.976(5)	0.980(5)	0.987(7)	1.059(4)	0.982(4)	0.979(3)	0.982(3)	0.980(3)	
ĸ		0.74(1)	0.89(2)	0.83(2)	<mark>0.91(1)</mark>	0.82(2)	0.82(1)	1.03(2)	<u>1.02(2)</u>	1.24(2)	
P _{val} P ₀₀	1.00(3) 10.00	<mark>5.63(8)</mark>	<mark>5.32(8)</mark>	<mark>5.45(9)</mark>	4.17(8)	<mark>5.96(5)</mark>	5.10(5)	<mark>6.34(4)</mark>	<mark>6.35(4)</mark>	6.36(4)	
\mathbf{P}_{11}		-0.22(2)	0.00(2)	-0.05(2)	0.07(2)	<mark>-0.07(2)</mark>	0.01(1)	-0.11(1)	-0.09(1)	-0.09(1)	
P ₁₋₁		0.07(2)	<mark>-0.13(2)</mark>	0.02(2)	<mark>-0.01(2)</mark>	0.02(2)	-0.02(1)	<mark>-0.02(1)</mark>	<mark>-0.01(1)</mark>	0.02(1)	
P ₁₀	<mark>0.01(1)</mark>	<mark>0.03(3)</mark>	<mark>0.01(1)</mark>	0.03(1)	0.04(2)	<mark>-0.01(2)</mark>	-0.01(1)	<mark>-0.01(1)</mark>	<mark>-0.00(1)</mark>	0.05(1)	
P ₂₀	<mark>0.04(1)</mark>	0.02(2)	<mark>0.04(1)</mark>	<mark>-0.05(2)</mark>	<mark>-0.31(2)</mark>	0.09(2)	-0.26(1)	<mark>-0.01(1)</mark>	<mark>-0.01(1)</mark>	-0.03(1)	
P ₂₁		-0.04(2)	0.01(1)	0.03(1)	0.01(2)	0.01(2)	-0.01(1)	-0.01(1)	-0.00(1)	0.00(1)	
P ₂₋₁		-0.03(2)	0.01(1)	0.03(1)	0.02(2)	-0.05(1)	-0.01(1)	-0.01(1)	0.00(1)	0.01(1)	
P ₂₂	-0.01(1)	-0.18(1)	0.01(1)	-0.04(2)	-0.01(2)	-0.15(1)	0.01(1)	-0.14(1)	-0.16(1)	-0.13(1)	
P_{2-2}	0.01(1)	-0.02(1)	0.04(1)	0.01(2)	-0.04(2)	0.01(1)	-0.01(1)	0.01(1)	0.01(1)	-0.01(1)	
P ₃₀	-0.03(1)	0.07(2)	0.02(1)	-0.01(2)	-0.01(2)	-0.05(2)	-0.01(1)	-0.01(1)	-0.02(1)	0.01(1)	
\mathbf{P}_{31}		-0.22(2)	0.03(1)	0.03(2)	0.01(2)	-0.01(1)	-0.03(1)	0.01(1)	0.01(1)	0.02(1)	
P ₃₋₁	0.01(1)	-0.1/(2)	-0.02(1)	-0.01(2)	0.04(2)	-0.03(1)	0.01(1)	0.03(1)	-0.01(1)	0.04(1)	
\mathbf{P}_{32}	-0.01(1)	0.01(2)	0.03(1)	0.01(2)	0.02(2)	-0.04(1)	-0.01(1)	-0.02(1)	-0.02(1)	-0.03(1)	
P ₃₋₂	-0.01(1)	-0.03(2)	0.00(1)	-0.00(2)	-0.01(2)	-0.04(1)	-0.01(1)	-0.01(1)	-0.03(1)	0.01(1)	
F 33		0.23(2)	0.23(1)	0.29(2)	0.38(2)	0.12(2)	0.40(1)	-0.01(1)	0.01(1)	0.01(1)	
P	0.01(1)	-0.01(2)	0.01(1)	-0.01(2)	0.02(2)	0.06(1)	0.01(1)	-0.01(1)	-0.02(1)	-0.00(1)	
\mathbf{P}_{11}	0.01(1)										
\mathbf{P}_{41}											
\mathbf{P}_{42}	-0.01(1)										
$\mathbf{P}_{4,2}$	-0.01(1)										
P_{42}											
$P_{4,2}$											
\mathbf{P}_{44}	-0.01(1)										
P_{4-4}	-0.01(1)										

	H1a H1	H1b	H2n	H3a	H3b						
<mark>к</mark>	1.48(8)	1.37(7)	1.32(6)	1.30(6)	1.48(8)						
<mark>Pval</mark>	0.62(5)	0.50(5)	0.60(5)	<mark>0.58(6)</mark>	<mark>0.51(5)</mark>						
\mathbf{P}_{11}	0.15(3)	0.11(3)	0.08(2)	0.16(2)	0.16(2)						

Figure S6. Residual density maps for [Zn(TSc)₂](NO₃)₂, contours at 0.1e.Å⁻³ (above) and 0.05e.Å⁻³ (below)

Figure S7. Static density maps for [Zn(TSc)₂](NO₃)₂ (contours 0.1e.Å⁻³)

Figure S8. Residual density maps for $[Zn(TSc)_2](NO_3)_2$, contours at 0.1e.Å⁻³ (above) and 0.05e.Å⁻³ (below)

Figure S9. Static density maps for $[Zn(TSc)_2](NO_3)_2$ (contours 0.1e.Å⁻³)

Table S1	Table S17. Topological proprieties of coordination bonds											
Bond	length (Å)	d ₁	d ₁	ρ	$\nabla^2 \rho$	<mark>λ</mark> 2	λ_2	<mark>λ</mark> 3	<mark>3</mark>	G	V	
Zn1-N1	2.0918(2)	0.980	1.113	0.47	<mark>7.82</mark>	<mark>-2.36</mark>	-2.67	12.85	0.13	230.48	-248.33	
Zn1-S1	2.2667(2)	1.041	1.227	0.37	<mark>5.08</mark>	<mark>-1.73</mark>	-1.62	<mark>8.43</mark>	0.07	151.64	-165.15	

<mark>Н</mark> -17.84

-13.50