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The initial value problem for the conservation law

) and under natural polynomial growth conditions imposed on the nonlinearity. We find the asymptotic expansion as |x| → ∞ of solutions to this equation corresponding to initial conditions, decaying sufficiently fast at infinity.

Introduction

We study properties of solutions to the initial value problem for the multidimensional conservation law with the anomalous diffusion

∂ t u + (-∆) α/2 u + ∇ • f (u) = 0, x ∈ R d , t > 0, (1.1) u(x, 0) = u 0 . (1.2)
Here, we always impose the standing assumption 1 < α < 2. Moreover, we assume that the C 1 -vector field f (u) = f 1 (u), . . . , f d (u) is of a polynomial growth, namely, it satisfies the usual estimates |f (u)| ≤ C|u| q and |f (u)f (v)| ≤ C|u -v| |u| q-1 + |v| q-1 (1.3) for some constants C > 0, q > 1 and for all u, v ∈ R (in fact, assumption (1.3) can be slightly relaxed in some parts of our considerations, cf. Remark 2.3, below).

Linear evolution problems involving fractional Laplacian describing the anomalous diffusion (or α-stable Lévy diffusion) have been extensively studied in the mathematical and physical literature (see, e.g., [START_REF] Metzler | The random walks guide to anomalous diffusion: A fractional dynamics approach[END_REF]). The probabilistic interpretation of nonlinear evolution problems with an anomalous diffusion, obtained recently by Jourdain, Méléard, and Woyczyński [START_REF] Jourdain | A probabilistic approach for nonlinear equations involving the fractional Laplacian and singular operator[END_REF], motivated us to study (1.1)- (1.2). The authors of [START_REF] Jourdain | A probabilistic approach for nonlinear equations involving the fractional Laplacian and singular operator[END_REF] considered a class of nonlinear integro-differential equations involving a fractional power of the Laplacian and a nonlocal quadratic nonlinearity represented by a singular integral operator. They associated with the equation a nonlinear singular diffusion and proved propagation of chaos to the law of this diffusion for the related interacting particle systems. In particular, due to the probabilistic origin of (1.1)-(1.2), the function u(•, t) should be interpreted as the density of a probability distribution for every t > 0, if the initial datum is so.

Although, the motivation for this paper comes from the probability theory, our methods are purely analytic. Hence, if X(t) is the symmetric α-stable Lévy process, its density of the probability distribution p α (x, t) is the fundamental solution of the linear equation (1.4) ∂ t v + (-∆) α/2 v = 0, hence, p α can be computed via the Fourier transform p α (ξ, t) = e -t|ξ| α . In particular,

p α (x, t) = t -d/α P α (xt -1/α ),
where P α is the inverse Fourier transform of e -|ξ| α (see [START_REF] Jacob | Pseudo-differential operators and Markov processes[END_REF]Ch. 3] for more details). It is well known that for every α ∈ (0, 2) the function P α is smooth, nonnegative, and satisfies the estimates We refer to [START_REF] Blumenthal | Some theorems on stable processes[END_REF] for a proof of the formula (1.6) with the explicit constant c 0 . The optimality of the estimate of the lower order term in (1.6) is due Kolokoltsov [10, Eq. (2.13)], where higher order expansions of P α are also computed. The proof of the asymptotic expression (1.7) and the value of c 1 can be deduced from (1.6) using an identity by Bogdan and Jakubowski [START_REF] Bogdan | Estimates of heat kernel of fractional Laplacian perturbed by gradient operators[END_REF]Eq. (11)].

The asymptotic formula (1.6) for the kernel P α plays an important role in the theory of α-stable processes. The main goal in this work is to present a method which allows to derive analogous asymptotic expansions as |x| → ∞ of solutions to the Cauchy problem (1.1)-(1.2). In the next section, we recall several properties of solutions to (1.1)-(1.2) and we state our main results: Theorems 2.1 and 2.4. In Section 3, we gather technical space-time estimates of solutions to (1.1)-(1.2). The proofs of Theorems 2.1 and 2.4 are contained in Section 4.

Notation. The L p -norm of a Lebesgue measurable, real-valued function v defined on R d is denoted by v p . In the following, we use the weighted

L ∞ space (1.8) L ∞ ϑ = {v ∈ L ∞ (R d ) : v L ∞ ϑ ≡ ess sup x∈R d |v(x)|(1 + |x|) ϑ < ∞},
for any ϑ ≥ 0, and its homogeneous counterpart

L∞ ϑ = {v ∈ L ∞ loc (R d \{0}) : v L∞ ϑ ≡ ess sup x∈R d |v(x)||x| ϑ < ∞}.
The constants (always independent of x) will be denoted by the same letter C, even if they may vary from line to line. Sometimes, we write, e.g., C = C(T ) when we want to emphasize the dependence of C on a parameter T .

Main results

It is well known (see [START_REF] Biler | Asymptotics for conservation laws involving Lévy diffusion generators[END_REF][START_REF] Droniou | Global solution and smoothing effect for a non-local regularization of a hyperbolic equation[END_REF][START_REF] Droniou | Fractal first order partial differential equations[END_REF]) that given

u 0 ∈ L 1 (R d ) and 1 < α ≤ 2, the initial value problem (1.1)-(1.2) has the unique solution u ∈ C([0, ∞), L 1 (R d )). Moreover, this solution satisfies u ∈ C((0, ∞), W 1,p (R d )) for every p ∈ [1, ∞] and the following estimates hold true (see [1, Cor. 3.2]) (2.1) u(t) p ≤ Ct -d α (1- 1 
p ) u 0 1 for all t > 0 and C independent of t and of u 0 . Under the additional assumption

u 0 ∈ L p (R d ), the corresponding solution satisfies u ∈ C([0, ∞), L p (R d )) together with the estimate (2.2) u(t) p ≤ u 0 p .
Below, in Proposition 3.3, we complete these preliminary results providing the estimates of solutions to (1.1)

-(1.2) in weighted L ∞ -spaces. In particular, if u 0 ∈ L ∞ α+d (cf. (1.8)), then the corresponding solution of (1.1)-(1.2) satisfies u ∈ C([0, T ], L ∞
α+d ) for every T > 0. Such a result was already obtained in the one dimensional case, see [START_REF] Hayashi | Asymptotics for dissipative nonlinear equations[END_REF]Sect. 2]. In Section 3, we state and prove its multidimensional counterpart for the completeness of the exposition. We complement this result with additional estimates for the gradient of the solution, which will be useful in the proofs of asymptotic formulas in Section 4.

Let us recall that, when studying the large time behavior of solutions for the problem (1.1)-(1.2), an important role is played by the critical exponent

q ≡ 1 + α -1 d .
Indeed, using the terminology of [START_REF] Biler | Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws[END_REF] the behavior of solutions as t → ∞ is genuinely non-linear when q = q, is weakly non-linear when q > q, and is (expected to be) hyperbolic when 1 < q < q.

In this paper, in the supercritical case q > q, as well as for q = q provided u 0 1 is sufficiently small, we will improve the space-time estimates of [START_REF] Hayashi | Asymptotics for dissipative nonlinear equations[END_REF]Sect. 2], showing that

(2.3) |u(x, t)| ≤ Cp α (x, 1 + t),
for all x ∈ R d , t > 0, and C > 0 independent of x, t. Under the additional assumption that ∇u 0 ∈ L ∞ α+d+1 , we will also prove that (2.4) ∇u(t) L ∞ α+d+1 ≤ C(1 + t), see Theorem 3.5, below. In other words, ∇u(x, t) has the same space-time decay profiles as ∇p α (x, 1 + t) (cf. the second inequality in (1.5)).

Furthermore, we make evidence of the second critical exponent, namely,

q * ≡ 1 + 1 α + d ,
playing an important role in the study of the pointwise behavior of solutions as |x| → ∞. The following theorem explains the role of q * , showing that any decaying solution has a precise spatial asymptotic profile. Here, we denote by S α (t)u 0 (x) = p α (t) * u 0 (x) the solution of the linear equation (1.4) supplemented with the initial datum u 0 .

Theorem 2.1. Assume that α ∈ (1, 2), and let u = u(x, t) be the solution of (1.1)-(1.2) with the nonlinearity satisfying (1.3), and with u 0 ∈ L ∞ α+d . (i) Then, for all t > 0,

x ∈ R d , u(x, t) = S α (t)u 0 (x)+ c 1 x |x| α+d+2 • t 0 (t -s)f (u(y, s)) dy ds +O max |x| -q(α+d) ; |x| -(α+d+2) , as |x| → ∞, (2.5) 
uniformly in any time interval t ∈ [0, T ], T > 0. This conclusion is interesting only when the last term on the right hand side of (2.5) is the lower order term as |x| → ∞: this happens when q > q * . (ii) The conclusion at the point (i) can be improved under the additional assumption ∇u 0 ∈ L ∞ α+d+1 , replacing the third term on the right hand side of (2.5) by

O max |x| -q(α+d)-1 ; |x| -(α+d+2) , as |x| → ∞.
Now, this conclusion is interesting also for 1 < q ≤ q * . (iii) If u satisfies inequality (2.3) for all x ∈ R d , t > 0, and C > 0 independent of x, t, then one can make precise the behavior for large t of the remainder term in relation (2.5), replacing it by O (1 + t) N max |x| -q(α+d) ; |x| -(α+d+2) , as |x| → ∞, uniformly in t ∈ [0, ∞), for some exponent N = N(α, q, d) ≤ 3, independent on u 0 .

If, in addition, the solution satisfies inequality (2.4), the conclusion at the point (ii) can be improved replacing the remainder term by

O (1 + t) N max |x| -q(α+d)-1 ; |x| -(α+d+2)
for some exponent N = N(α, q, d) ≤ 3, independent on u 0 , and the convergence as |x| → ∞ holds true uniformly in t ∈ [0, ∞).

It follows from the Duhamel formula that the solution of the Cauchy problem (1.1)-(1.2) satisfies the integral equation

(2.6) u(t) = S α (t)u 0 - t 0 ∇S α (t -s) • f (u)(s) ds.
Hence, it is possible to give a heuristic explanation of the role of space-critical exponent q = q * , simply, by looking at the integrand of the second term on the right hand side of (2.6). Indeed, the kernel of ∇S α behaves as |x|

-(α+d+1) as |x| → ∞ (cf. (1.6)), whereas |f (u(x, t))| ≤ C|x| -q(d+α) for u(t) ∈ L ∞ α+d .
Then, it is natural to expect that the large space asymptotics is influenced by the competition between these two decay rates as |x| → ∞. In fact, the proof of Theorem 2.1 (given in Section 4) consists in finding the asymptotic expansion of the second term on the right hand side of (2.6) and the equality between these two decay rates occurs precisely when q = q * . Remark 2.2. It is worth observing that this type of asymptotic expansion of solutions to convection-diffusion equations is specific of the fractional nature of the diffusion operator (-∆) α/2 and is caused by the algebraic decay of the fundamental solution p α (x, t). For the viscous Burgers equation, or for multidimensional diffusion-convection equations with standard dissipation (i.e., with the usual Laplacian) Theorem 2.1 remains valid, but it is not interesting because the coefficient c 1 vanishes in the limit case α = 2.

Remark 2.3. The conclusion (i) of Theorem 2.1 remains valid under more general assumptions on the nonlinearity. What we really need is that f is a C 1 -vector field such that |f (u)| ≤ c(R)|u| q for some q > 1, a continuous nondecreasing function c(•) on [0, ∞), and all |u| ≤ R. For the part (ii), we need also a similar condition for

f ′ , namely, |f ′ (u)| ≤ c 1 (R)|u| q-1 for |u| ≤ R.
On the other hand, the present form of Theorem 2.1.iii is no longer valid for such more general nonlinearities. Our more stringent assumption (1.3) allows us to present the essential ideas avoiding uninteresting technicalities in the proofs, in particular, separating the cases of large and small u in our estimates. Moreover, such an assumption is well suited for studying self-similar solutions.

For the homogeneous nonlinear term ∇ • f (u) = b • ∇(u|u| q-1 ) with a fixed b ∈ R d and with the time-critical exponent q = q, the authors of [START_REF] Biler | Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws[END_REF] constructed a family of self-similar solutions u M = u M (x, t) of equation (1.1). Those functions satisfy the scaling relation

(2.7) u M (x, t) = t d/α U M (xt -1/α ) where U M (x) = u M (x, 1)
for all x ∈ R d and t > 0. Moreover, each of them is the unique solution of the initial value problem

∂ t u + (-∆) α/2 u + b • ∇(u|u| (α-1)/d ) = 0 (2.8) u(x, 0) = Mδ 0 (2.9)
for α ∈ (1, 2) and M > 0, where δ 0 is the Dirac delta. We refer the reader to [START_REF] Biler | Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws[END_REF] for more information concerning solutions of problem (2.8)-(2.9).

In this paper, we complete results from [START_REF] Biler | Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws[END_REF] providing space-time estimates of those self-similar solutions. First, in Corollary 3.6 below, we establish, for sufficiently small M > 0, the estimate

(2.10) 0 ≤ u M (x, t) ≤ Cp α (x, t) for all x ∈ R d and t > 0,
We conjecture that such estimate remains true without the smallness assumption imposed on M. Inequality (2.10) plays a crucial role in the proof of the following asymptotic expansion of the self-similar kernel U M .

Theorem 2.4. Assume that 1 < α < 2 and q > q * . Let u M be a self-similar solution of (2.8)-(2.9), satisfying the estimate (2.10). Then the self-similar profile U M (x) = u M (x, 1) has the following behavior as |x| → ∞:

(2.11) U M (x) = MP α (x)+ c 1 α 2 α + 1 U M q q b • x |x| α+d+2 +O max |x| -q(α+d) ; |x| -(α+d+2) .
The asymptotic expansion of solutions to (1.1) stated in (2.5) and in (2.11) can be viewed as the true counterparts of the well-known result for the α-stable distribution recalled in (1.6).

Preliminary space-time estimates

We begin this section by the study of the solution of the linear problem

(3.1) ∂ t v + (-∆) α/2 v = 0, v(x, 0) = v 0 denoted by v(x, t) = S α (t)v 0 (x) = p α (•, t) * v 0 (x).
The following lemma contains a direct generalization to R d of estimates from [START_REF] Hayashi | Asymptotics for dissipative nonlinear equations[END_REF]Lemma 1.40]. By this reason, we sketch its proof only.

Lemma 3.1. Assume that v 0 ∈ L ∞ α+d .
There exists C > 0 independent of v 0 and t such that

S α (t)v 0 ∞ ≤ C min t -d/α v 0 1 , v 0 ∞ , (3.2) S α (t)v 0 L ∞ α+d ≤ C(1 + t) v 0 L ∞ α+d , (3.3) ∇S α (t)v 0 L ∞ α+d ≤ Ct -1/α v 0 L ∞ α+d + Ct 1-1/α v 0 1 , (3.4)
Proof. Estimate (3.2) results immediately from the Young inequality applied to the convolution S α (t)v 0 = p α (t) * v 0 , due to the identities d+α) , by the asymptotic properties of the kernel p α (x, 1) = P α (x) (cf. (1.6)), we immediately obtain |v 0 (x)| ≤ Cp α (x, 1) for all x ∈ R d and a constant C > 0 independent of x. Consequently, by the semigroup property, we conclude

p α (t) 1 = 1, p α (t) ∞ = t -d/α P α ∞ for all t > 0. Since |v 0 (x)| ≤ C(1+|x|) -(
S α (t)v 0 L ∞ α+d ≤ C S α (t)p α (1) L ∞ α+d = C p α (t + 1) L ∞ α+d ≤ C(1 + t). Now, replacing v 0 by v 0 / v 0 L ∞
α+d we obtain (3.3). To prove (3.4), we use the pointwise estimate

(1 + |x|) α+d ≤ C(1 + |y|) α+d + C|x -y| α+d ,
valid for all x, y ∈ R and a constant C > 0, and we apply the Young inequality. We get

∇S α (t)v 0 L ∞ α+d ≤ C ∇p α (t) 1 v 0 L ∞ α+d + C ∇p α (t) L∞ α+d v 0 1
and (3.4) immediately follows.

Under an additional information on the gradient of v 0 , we can obtain analogous estimates for ∇S α (t)v 0 . In order to give a precise statement, let us introduce the space

(3.5) E α+d ≡ {v ∈ W 1,∞ loc (R d ) : v E α+d ≡ v L ∞ α+d + ∇v L ∞ α+d+1 < ∞}. Lemma 3.2.
Assume that v 0 ∈ E α+d . There exists C > 0 independent of v 0 and t such that

∇S α (t)v 0 ∞ ≤ C min t -(d+1)/α v 0 1 ; t -1/α v 0 ∞ ; ∇v 0 ∞ , (3.6) S α (t)v 0 E α+d ≤ C(1 + t) v 0 E α+d , (3.7) ∇S α (t)v 0 E α+d ≤ Ct -1/α v 0 E α+d + Ct 1-1/α v 0 1 (3.8)
for all t > 0.

Proof. Estimate (3.6) is the straightforward application of the L 1 -L ∞ convolution inequalities. In order to prove (3.7) using the radial symmetry of p α (•, t), we see that, for all R > 0, B R ∇p(y, t) dy = 0, where B R denotes the ball centered at the origin and of radius R. Hence,

∇S α (t)v 0 (x) = |y|≤|x|/2 v 0 (x -y) -v 0 (x) ∇p α (y, t) dy + |y|≥|x|/2 v 0 (x -y)∇p α (y, t) dy.
This decomposition shows that, for some constant C > 0, the quantity |∇S α (t)v 0 (x)| can be bounded from above by

C|x| -(α+d+1) ∇v 0 L ∞ α+d+1 R d |y| |∇p(y, t)| dy + Ct|x| -(α+d+1) R d |v 0 (y)| dy, which implies (3.9) ∇S α (t)v 0 L∞ α+d+1 ≤ C ∇v 0 L∞ α+d+1 + t v 0 1 ≤ C(1 + t) v 0 E α+d .
Now, estimate (3.7) follows from (3.3), (3.6) and from the bound for the homogeneous norm (3.9). Let us prove (3.8). By (3.4) and the inequality

∇ 2 S α (t)v 0 ∞ ≤ ∇S α (t) 1 ∇v 0 ∞ ≤ Ct -1/α ∇v 0 ∞ ,
we see that we only have to establish the following estimate in the homogeneous space L∞

α+d+1 (3.10) ∇ 2 S α (t)v 0 L∞ α+d+1 ≤ Ct -1/α v 0 E α+d + Ct 1-1/α v 0 1 .
To prove (3.10), we consider the decomposition

∇ 2 S α (t)v 0 (x) = (J 1 + J 2 + J 3 )(x, t),
where

J 1 (x, t) ≡ |y|≤|x|/2 [v 0 (x -y) -v 0 (x)]∇ 2 p α (y, t) dy, J 2 (x, t) ≡ |y|≥|x|/2 v 0 (x -y)∇ 2 p α (y, t) dy, J 3 (x, t) ≡ -v 0 (x) |y|≥|x|/2
∇ 2 p α (y, t) dy (note that R d ∇ 2 p α (y, t) dy = 0). ¿From the well known estimate (see [START_REF] Kolokoltsov | Symmetric stable laws and stable-like jump-diffusions[END_REF])

(3.11) |∇ 2 P α (x)| ≤ C(1 + |x|) -(α+d+2) , we deduce R d |y| |∇ 2 p α (y, t)| dy ≤ Ct -1/α .
Then, the application of the Taylor formula in the integral defining J 1 yields

|J 1 (x, t)| ≤ Ct -1/α |x| -(α+d+1) ∇v 0 L ∞ α+d+1 .
To deal with the terms J 2 and J 3 , we use two different pointwise estimates of ∇ 2 p α (x, t) resulting from (3.11):

|∇ 2 p α (x, t)| ≤ Ct -(d+2)/α 1 + |x|t -1/α -(α+d+2) ≤ Ct 1-1/α |x| -(α+d+1) and |∇ 2 p α (x, t)| ≤ Ct -1/α |x| -(d+1) , which imply |J 2 (x, t)| ≤ sup |y|≥|x|/2 |∇ 2 p α (y, t)| |y|≥|x|/2 |v 0 (x -y)| dy ≤ Ct 1-1/α |x| -(α+d+1) v 0 1 and |J 3 (x, t)| ≤ C|x| -(α+d) v 0 L ∞ α+d |y|≥|x|/2 |∇ 2 p α (y, t)| dy ≤ Ct -1/α |x| -(α+d+1) v 0 L ∞ α+d .
Combining all these inequalities yields (3.10).

We are in a position to construct solutions of the Cauchy problem (1.1)-(1.2) in the weighted space L ∞ α+d . Proposition 3.3. (i) Let α ∈ (1, 2) and q > 1. Assume that u is a solution of the Cauchy problem (1.1)-(1.2) with the nonlinearity satisfying

(1.3). If u 0 ∈ L ∞ α+d , then (3.12) u ∈ C([0, T ], L ∞ α+d )
for each T > 0. (ii) Under the more stringent assumption u 0 ∈ E α+d , cf. (3.5), we have also

(3.13) u ∈ L ∞ ([0, T ], E α+d ) for each T > 0.
Proof. In order to prove (3.12), it suffices to show that the nonlinear operator

T (u)(t) = S α (t)u 0 - t 0 ∇S α (t -τ )f (u(τ )) dτ
has the fixed point in the space

X T = {u ∈ C([0, T ], L ∞ α+d ) : sup t∈[0,T ] u(t) L ∞ α+d < ∞}.
As usual, we work in the ball

B(0, R) = {u ∈ C([0, T ], L ∞ α+d ) : sup t∈[0,T ] u(t) L ∞ α+d ≤ R}, where R = M u 0 L ∞
α+d and M > 0 is a large constant, and T > 0. Combining inequality (3.4) with assumption (1.3) we get

∇S α (t)f (u) L ∞ α+d ≤ Ct -1/α |u| q L ∞ α+d + Ct 1-1/α u q q ≤ Ct -1/α (1 + t) u q-1 ∞ u L ∞ α+d . (3.14) Applying now inequalities (3.3)-(3.14) we can estimate, for u ∈ B(0, R), T (u)(t) L ∞ α+d ≤ C(1 + t) u 0 L ∞ α+d +CR q-1 t 0 (t -τ ) -1/α (1 + (t -τ )) u(τ ) L ∞ α+d dτ ≤ R/2 + CM q-1 u 0 q-1 L ∞ α+d R t 1-1/α (1 + t) ≤ R, provided that 0 ≤ t ≤ T and T ≤ C min{1, u 0 -α(q-1)/(α-1) L ∞ α+d },
with C > 0 small enough.

In the same way, for all u, ũ ∈ B(0, R),

T (u)(t) -T (ũ)(t) L ∞ α+d ≤ CR q-1 t 0 (t -τ ) -1/α (1 + (t -τ )) u(τ ) -ũ(τ ) L ∞ α+d dτ.
The Banach fixed point theorem now guarantees the existence of a local-in-time solution. In the next step, such solution must be extended globally-in-time. The argument is standard: we fix T > 0 arbitrarily large and using that u(t) ∞ ≤ C on [0, T ] (see inequality (2.2)), we show that u(t) L ∞ α+d does not blow up on [0, T ]. Indeed for some constants C 1 , C 2 , . . . , depending on T , for 0 ≤ t ≤ T we have

u(t) L ∞ α+d ≤ C 1 + C 2 t 0 (t -τ ) -1/α u(τ ) L ∞ α+d dτ.
Iterating this inequality and applying Fubini's theorem we get

u(t) L ∞ α+d ≤ C 3 + C 4 t 0 (t -τ ) 1-2/α u(τ ) L ∞ α+d dτ.
We repeat this argument until we obtain the integrand factor (tτ ) with a positive exponent; here, only a finite number if iterations are needed, since α > 1. This leads to u(t)

L ∞ α+d ≤ C 5 + C 6 t 0 u(τ ) L ∞ α+d dτ and finally to u(t) L ∞ α+d ≤ C 5 exp(C 6 t) by the classical Gronwall lemma.
To prove of (3.13) under the stronger assumption u 0 ∈ E α+d , one could proceed in the same way, replacing the space L ∞ α+d with E α+d (and using the estimates of Lemma 3.2). However, this argument would require additional restrictions, such as inequalities of the form |f ′ (u)f ′ (v)| ≤ C|u -v|(|u| q-2 + |v| q-2 ), which are not fulfilled for some nonlinearities satisfying (1.3) with q < 2.

Let us proceed in a slightly different way. First of all we have, by [START_REF] Biler | Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws[END_REF][START_REF] Droniou | Fractal first order partial differential equations[END_REF], ∇u(t) ∈ L ∞ ([0, T ], L ∞ (R d )) for all T > 0. We rewrite the integral equation (2.6) in the following way

∇u(x, t) =∇S α (t)u 0 (x) - t 0 |y|≤|x|/2 + |y|≥|x|/2 ∇p α (x -y, t -s)∇f (u(y, s)) dy ds. (3.15) It follows from condition (1.3) that |f ′ (u)| ≤ C|u| q-1
, hence, for every u satisfying (3.12) we have 

(3.16) |∇f (u(y, s))| ≤ C(1 + |y|) -(q-1)(α+d) |∇u(y, s)| ≤ C(1 + |y|) -(q-1)(α+d) ,
|∇u(x, t)| ≤ C(1 + |x|) -(α+d+1) + C(1 + |x|) -(α+d+1)+q 1 + C(1 + |x|) -(q-1)(α+d) (3.17)
for some constant C = C(T ) > 0, all x ∈ R d , t ∈ [0, T ], and with q 1 = d. Since q > 1, now we can use this inequality to improve the estimate in (3.16). This allows us to replace q 1 with some 0 ≤ q 2 < q 1 and to improve also the estimate of the third term in (3.17). After finitely many iterations of this argument (more and more iterations are needed when q approaches 1), we get |∇u(

x, t)| ≤ C(T )(1 + |x|) -(α+d+1) for all x ∈ R d and t ∈ [0, T ].
Let us now recall a singular version of the Gronwall lemma. This fact seems to be well-known, we state it, however, in the form which is the most suitable for our application and we prove it for the completeness of the exposition. Lemma 3.4. Assume that a nonnegative and locally bounded function h = h(t) satisfies the inequality

(3.18) h(t) ≤ C 1 (1 + t) + C 2 t 0 (t -τ ) -a (1 + τ ) -b h(τ ) dτ
for some a ∈ (0, 1), b > 0, positive constants C 1 and C 2 , and all t ≥ 0. If a + b > 1, then h(t) ≤ C(1 + t) for all t ≥ 0 and C independent of t. The same conclusion holds true in the limit case a + b = 1 under the weaker assumption

(3.19) h(t) ≤ C 1 (1 + t) + C 2 t 0 (t -τ ) -a τ -b h(τ ) dτ provided C 2 is sufficiently small. Proof. If a + b = 1, we deduce from (3.19) the following inequality h(t) ≤ C 1 (1 + t) + C 2 K(a, b) sup 0≤τ ≤t h(τ ),
where ,b). In the case a + b > 1, using (3.18), we write b = b 1 + η with a + b 1 = 1 and η > 0, and we fix t 1 > 0 such that C 2 (1 + t 1 ) -η < 1/K(a, b 1 ). Now, splitting the integral in (3.18) at t 1 yields

K(a, b) = t 0 (t -τ ) -a τ -b dτ = 1 0 (1 -s) -a s -b ds. Consequently, sup 0≤τ ≤t h(τ ) ≤ C 1 1-C 2 K(a,b) (1 + t) provided C 2 < 1/K(a
h(t) ≤ C(1 + t) + C 2 K(a, b 1 )(1 + t 1 ) -η sup 0≤τ ≤t h(τ )
for some C > 0 independent of t. The conclusion of Lemma 3.4 now follows.

If the exponent q in the assumptions on the nonlinearity (1.3) is larger than the time-critical value q, we can improve the space decay estimates from Proposition 3.3 through the following space-time decay result.

Theorem 3.5. (i) Let α ∈ (1, 2). Assume that u = u(x, t) is a solution of the Cauchy problem (1.1)-(1.
2), where the nonlinearity f satisfies (1.3) with q > q = 1 + (α -1)/d and u 0 ∈ L ∞ α+d . There exists C > 0 (depending on u 0 but independent of x, t) such that

(3.20) |u(x, t)| ≤ Cp α (x, 1 + t) for all x ∈ R d and t > 0.
The same conclusion holds true for q = q provided u 0 1 is sufficiently small. (ii) Under the more stringent assumption u 0 ∈ E α+d we have also

(3.21) ∇u(t) L ∞ α+d+1 ≤ C(1 + t).
Proof. First recall that by estimates (2.1) and (2.2) with p = ∞, the solution satisfies

u(t) ∞ ≤ C(1 + t) -d/α .
Hence, to establish (3.20), it suffices to prove

(3.22) u(t) L ∞ α+d ≤ C(1 + t). Indeed, the inequality g(x, t) ≡ min (1 + t) -d/α ; 1 + t (1 + |x|) α+d ≤ Cp α (x, t + 1).
is the consequence of the elementary estimate

g(x, t) ≤ (1 + t) -d/α min 1 ; |x(1 + t) -1/α | -α-d
and the asymptotic formula (1.6) (implying, in particular, that min{1 ; |x| -α-d } ≤ CP α (x) for all x ∈ R d and a constant C > 0).

In the proof of (3.22), we use the integral equation (2.6), hence we begin by the preliminary estimate (resulting from (3.4) and from the hypothesis (1.3))

∇S α (t -τ )f (u(τ )) L ∞ α+d ≤ C(t -τ ) -1/α u(τ ) q-1 ∞ u(τ ) L ∞ α+d +C(t -τ ) 1-1/α u(τ ) q
q . Moreover, since by (2.1) and (2.2) with p = q, the solution satisfies the decay estimate

(3.23) u(τ ) q q ≤ C(1 + τ ) -d(q-1)/α , we have the following inequalities t 0 (t -τ ) 1-1/α u(τ ) q q dτ ≤ C t 0 (t -τ ) 1-1/α (1 + τ ) -d(q-1)/α dτ ≤ C(1 + t)
which are valid for 1/α + d(q -1)/α ≥ 1. Consequently, after computing the L ∞ α+d -norm of equation (2.6) and using estimate (3.3) we arrive at

(3.24) u(t) L ∞ α+d ≤ C(1 + t) + C t 0 (t -τ ) -1/α (1 + τ ) -d(q-1)/α u(τ ) L ∞ α+d dτ.
In the time-critical case 1/α + d(q -1)/α = 1 (i.e. for q = q) we proceed analogously, however, now we use the estimate

(3.25) u(τ ) ∞ ≤ Cτ -d/α u 0 1
with a constant C independent of u 0 and t. Hence, we obtain the following counterpart of inequality (3.24)

(3.26) u(t) L ∞ α+d ≤ C(1 + t) + C u 0 q-1 1 t 0 (t -τ ) -1/α τ -d(q-1)/α u(τ ) L ∞ α+d dτ.
Finally, the singular Gronwall lemma (Lemma 3.4) applied to inequalities (3.24) and (3.26) completes the proof of (3.20).

To prove inequality (3.21) one should follow exactly the same argument as for the proof of (3.22), putting everywhere E α+d -norms instead of the corresponding L ∞ α+dnorms, and applying Lemma 3.2 instead of Lemma 3.1.

We conclude this section with estimates of self-similar solutions to problem (2.8)-(2.9). Corollary 3.6. If the constant M > 0 in (2.9) is sufficiently small, then the corresponding solution of problem (2.8)-(2.9) satisfies

(3.27) 0 ≤ u M (x, t) ≤ Cp α (x, t), for all x ∈ R d , t > 0,
with C = C(M, α, d) > 0 independent of x and t.

Proof. Let us recall that the solution of (2.8)-(2.9) has been constructed in [START_REF] Biler | Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws[END_REF] as the limit of the rescaled functions u λ (x, t) ≡ λ d u(λx, λ α t), where u = u(x, t) is the fixed solution of equation (2.8) supplemented with the nonnegative initial datum u(

•, 0) = u 0 ∈ C ∞ c (R d ) such that R d u 0 (x) dx = M
. By Theorem 3.5, used in the critical case q = q, the rescaled family u λ satisfies (3.28)

|u λ (x, t)| ≤ Cλ d p α (λx, 1 + λ α t) = Cp α (x, λ -α + t)
for all x ∈ R d , t > 0, and a constant C = C(M, α, d) independent of x, t, λ, provided M > 0 is sufficiently small. Since u λ (x, t) → U M (x, t) as λ → ∞ almost every where in (x, t) (see [START_REF] Biler | Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws[END_REF]Lemma 3.7]), passing to the limit in (3.28) we complete the proof of estimate (3.27).

Asymptotic profiles

In this section, we derive the asymptotic expansions from Theorems 2.1 and 2.4. Let us recall that all positive constants, which appear here, are independent of x and t and are denoted by the same letter C.

Proof of Theorem 2.1. Let us consider the nonlinear term appearing in the integral equation (2.6),

N (u)(t) ≡ t 0 ∇ R d p α (x -y, t -s)f (u(y, s))(s) ds.
In order to find an asymptotics of N for large |x|, we define two remainder functions R(x, t) and R 1 (x, t), through the relations

N (u)(x, t) = t 0 f (u(y, s))∇p α (x, t -s) dy ds + R 1 (x, t) = - c 1 x |x| α+d+2 t 0 (t -s)f (u(y, s)) dy ds -R(x, t). (4.1)
Here, c 1 is the constant appearing in relation (1.7). Hence, it follows from the integral equation (2.6) that

(4.2) u(x, t) = S α (t)u 0 (x) + c 1 x |x| α+d+2 t 0 R d (t -s)f (u(y, s)) dy ds + R(x, t)
and it remains to estimate R(x, t).

Computing the difference of the two expressions of N in (4.1) we deduce a bound for R + R 1 , implying

|R(x, t)| ≤ |R 1 (x, t)| + C|x| -(2α+d+1) t 0 R d ∇p α (x, t -s) + c 1 x |x| α+d+2 (t -s) |f (u(y, s))| dy ds.
Now, the asymptotic expansion (1.7), the assumption (1.3), and the L q -estimates (3.23) lead to

|R(x, t)| ≤ |R 1 (x, t)| + C|x| -(2α+d+1) t 0 R d (t -s) 2 |f (u(y, s))| dy ds ≤ |R 1 (x, t)| + C|x| -(2α+d+1) t 2 t 0 (1 + s) -(q-1)d/α ds. (4.3)
In order to estimate R 1 , we decompose it as R 1 = I 1 + • • • + I 4 , where

I 1 (x, t) ≡ t 0 |y|≤|x|/2 [∇p α (x -y, t -s) -∇p α (x, t -s)] • f (u(y, s)) dy ds, I 2 (x, t) ≡ - t 0 |y|≥|x|/2
f (u(y, s)) dy ∇p α (x, ts) ds,

I 3 (x, t) ≡ t 0 |y|≥|x|/2, |x-y|≥|x|/2 ∇p α (x -y, t -s)f (u(y, s)) dy ds, I 4 (x, t) ≡ t 0 |y|≤|x|/2
∇p α (y, ts)f (u(xy, s)) dy ds.

In our next two estimates, we use the inequality (which is a consequence of the L ∞ -bound of the solution, see (2.2))

(4.4) |u(y, s)| q ≤ C(1 + |y|) -(α+d) (1 + s) -(q-1)d/α u(s) L ∞ α+d . This leads to |I 1 (x, t)| ≤ C|x| -(α+d+2) t 0 (t -s) |y|≤|x|/2 |y| |u(y, s)| q dy ds ≤ C|x| -(α+d+2) t t 0 (1 + s) -(q-1)d/α u(s) L ∞ α+d ds. (4.5) 
Here, we have applied also the Taylor formula and the bound (3.11).

The next two integrals can be bounded by the same quantity, indeed

|I 2 (x, t)| + |I 3 (x, t)| ≤ C|x| -(α+d+1) t 0 (t -s) |y|≥|x|/2 |u(y, s)| q dy ds ≤ C|x| -(2α+d+1) t t 0 (1 + s) -(q-1)d/α u(s) L ∞ α+d ds. (4.6) 
The estimate for the last term is

(4.7) |I 4 (x, t)| ≤ C|x| -q(α+d) t 0 (t -s) -1/α u(s) q L ∞ α+d ds.
Since we are assuming α > 1, when we compare the exponents of |x| in inequalities (4.3) and (4.5)-(4.6), we see that

(4.8) |R(x, t)| ≤ C max |x| -q(α+d) ; |x| -(α+d+2)
for all |x| ≥ 1 and t ∈ (0, T ],

where C = C(T ) > 0 is uniformly bounded with respect to x and t, in any time interval t ∈ [0, T ]. Part (i) of Theorem 2.1 now follows.

To establish Part (ii), we have only to improve the estimate of the integral (4.7). We can do it using, in a slightly deeper way, the properties of the fundamental solution p α (x, t). In particular, its radial symmetry implies that |y|≤|x|/2 ∇p α (y, ts) ds = 0, so that (4.9)

I 4 (x, t) ≡ t 0 |y|≤|x|/2 ∇p α (y, t -s) • f (u(x -y, s)) -f (u(x, s)) dy ds.
Owing to the more stringent assumption u 0 ∈ E α+d and by Proposition 3.3, we deduce from the mean value theorem applied to f

(u) (recall that |f ′ (u)| ≤ C|u| q-1 ) (4.10) |I 4 | ≤ C|x| -q(α+d)-1 t 0 u(s) q-1 L ∞ α+d ∇u(s) L ∞ α+d+1 ds.
Replacing inequality (4.7) with this new estimate shows that the bound (4.8) of the remainder term can be improved into

(4.11) |R(x, t)| ≤ C max |x| -q(α+d)-1 ; |x| -(α+d+2)
for all |x| ≥ 1 and t ∈ (0, T ].

Hence, Part (ii) of Theorem 2.1 follows.

Let us prove assertion (iii). When the solution satisfies the additional estimate (2.3) (recall that, by Theorem 3.5, such an estimate holds true at least when either q > q or q = q and u 0 1 is small enough), we have u(t) L ∞ α+d ≤ C(1 + t). In this case, it is easy to construct an exponent N = N(α, d, q) such that (4.12) |R(x, t)| ≤ C(1 + t) N max |x| -q(α+d) ; |x| -(α+d+2) for all |x| ≥ 1, t > 0.

Let us explain why N ≤ 3. It follows directly from (4.3) and from (4.5)-(4.7) that N ≤ max{3 ; q + 1 -1/α}. However, if q > 2 + 1/α, then we can replace estimate (4.7) with If, moreover, ∇u satisfies the additional pointwise estimate (2.4) then we can precise in a similar way the bound (4.11). Namely, we can replace C = C(T ) in (4.11) with C(1 + t) 3 . Next, the proof of this claim relies either on inequality (4.10) if 1 < q ≤ 2 or on the following new estimate of I 4 when q > 2 Proof of Theorem 2.4. Let u M be a self-similar solution of (2.8)-(2.9), satisfying estimate (2.10). We consider the integrals I 1 , I 2 , I 3 and I 4 and also the remainder term R, defined as in the proof of Part (i) of Theorem 2.1. We treat all these terms proceeding as before, but replacing everywhere estimate (4.4) with the estimate (deduced from (2.10)) (4.14) |u M (y, s)| q ≤ Cs -dq/α P q α (y/s 1/α ), with q = q and C = C(M), then making the change of variables y → ys 1/α in all the space integrals. After some simple computations, we arrive at

|R(x, t)| ≤ Ct -d/α |x| t 1/α -(2α+d+1) + |x| t 1/α -(α+d+2) + |x| t 1/α -q(α+d)
.

Recalling that f (u) = bu q , applying (4.2) to u M we get u M (x, t) = Mp α (x, t) + t 1+1/α • c 1 α 2 α + 1 U M (y) q dy b • x |x| α+d+2 + R(x, t). Now, passing to self-similar variables, we deduce that, for all x ∈ R d ,

U M (x) = MP α (x) + c 1 α 2 α + 1 U M q q b • x |x| α+d+2 + R M (x),
where R M (x) = O max |x| -q(α+d) ; |x| -(α+d+2) , as |x| → ∞.

Theorem (2.4) is now established.

Remark 4.1. We conclude observing that the above expression of the remainder term R M (x) can be simplified distinguishing the two cases d = 1 and d ≥ 2. Indeed, an elementary calculation shows that 1. In the one dimensional case d = 1 (hence, q = α, and the assumption q > q * reads α > √ 2), we have

R M (x) = O |x| -α(α+1) if √ 2 < α ≤ √ 3, O |x| -(α+3) if √ 3 ≤ α < 2, as |x| → ∞.
2. For d ≥ 2, it follows R M (x) = O |x| -q(α+d) as |x| → ∞.

Remark 4.2. Analogously, as in Theorem 2.1, one could remove the restriction q > q * from Theorem 2.4, provided we have the additional weighted estimate (4.15) ∇u M (t) L ∞ α+d+1 ≤ Ct. We expect that inequality (4.15) can be proved using the scaling argument from the proof of Corollary 3.6, below. This reasoning would require, however, some improvements of estimates from [START_REF] Biler | Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws[END_REF]. We skip other details because the goal of this work was to present a method of deriving asymptotic expansions of solutions rather than to study the most general case.

( 1 + d 2 Γ α 2 , and c 1 =

 121 .5) 0 < P α (x) ≤ C(1 + |x|) -(α+d)and|∇P α (x)| ≤ C(1 + |x|) -(α+d+1)for a constant C and all x ∈ R d . Moreover,(1.6) P α (x) = c 0 |x| -(α+d) + O |x| -(2α+d) , as |x| → ∞,and(1.7) ∇P α (x) = -c 1 x|x| -(α+d+2) + O |x| -(2α+d+1) , as |x| → ∞,where c 0 = α2 α-1 π -(d+2)/2 sin(απ/2)Γ α 2πα2 α-1 π -(d+4)/2 sin(απ/2)Γ α + d +

  for a positive constant C = C(T ) and all y ∈ R d , s ∈ [0, T ]. Combining (3.16) with (3.7) and with the decay estimate |∇p α (x, t)| ≤ Ct|x| -(α+d+1) , we get from (3.15) the preliminary inequality

|I 4 (

 4 x, t)| ≤ C|x| -(α+d+2) t 0 (ts) -1/α u(s) q-1-2/(α+d) 1 + t) 3 |x| -(α+d+2) .

|I 4

 4 (x, t)| ≤ C|x| -(α+d+2) ) L ∞ α+d+1 ds.The estimates of the other terms remain unchanged. The proof of Theorem (2.1) is now complete.
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