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Abstract

We present a family of scale-invariant local shape featdoesed by chains oft connected,
roughly straight contour segmentsAS), and their use for object class detectidiAS are able to
cleanly encode pure fragments of an object boundary, withmmluding nearby clutter. Moreover, they
offer an attractive compromise between information conterd repeatability, and encompass a wide
variety of local shape structures. We also define a transiathd scale invariant descriptor encoding the
geometric configuration of the segments withik&S, makingkAS easy to reuse in other frameworks,
for example as a replacement or addition to interest po$tware for detecting and describid@\S
is released ohear.inrial pes. fr/software.

We demonstrate the high performancei@{S within a simple but powerful sliding-window object
detection scheme. Through extensive evaluations, imrgleight diverse object classes and more than
1400 images, we 1) study the evolution of performance as #duee@ of feature complexity varies
and determine the best degree; 2) show #&$ substantially outperform interest points for detecting
shape-based classes; 3) compare our object detector tedhnty state-of-the-art system by Dalal and

Triggs [4].

Index Terms

Local features, shape descriptors, object detection

I. INTRODUCTION

In the last few years, the problem of recognizing objectsgashas received growing attention,
in both variants of whole image classification [3], [6], [LE16], [17], and object localization [1],
[4], [18], [32]. The majority of existing methods use localage patches as basic features. While
these work well for some object classes, such as motorbikd<ars, other classes are defined
by their shape and are therefore better representedcbytourfeatures (e.g. horses, or mugs).
In spite of their substantial scope, only comparably fewksdi ], [15], [24], [30] have tackled
the class-level localization problem using contour feagur

In this paper we present a family of local contour featuresl their application for detecting
and localizing objects. These features are small groupsoahected approximately straight
contour segments, callekl adjacent segment®r £KAS. The segments in &AS form a path
of length k& through a network of contour segments covering the imagé¢ HESsentially, two

segments are connected in the network if they are adjacetittedsame edgel-chain, or if one
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is at the end of an edgel-chain directed towards the otheneeg(section IIl). The larger the
numberk of segments in @AS, the more complex the local shape structures it can capths
are just individual segments, whifAS include L shapes, andAS can formC, F andZ shapes
(figures 2, 3). Along with thetAS features, we propose a low dimensional, translatioriesca
invariant descriptor designed to encode the geometriceptms of the segments composing a
EAS. .

kEAS have a several attractive properties. First, as h@t8 and their descriptors cover solely
short chains of connected segments, they have the abilippver pure portions of an object
boundary, without including clutter edges which very oft@n in the vicinity. Second, for a
sensible range of, kAS have intermediate complexity, which makes them detéetapeatably
while being informative at the same time. Third, connecessnis a natural grouping criterion
to form £AS. It avoids the need for defining a ‘grouping scale’ or a (gymmg neighborhood’
for a segment, and effectively constrains the features tohagns of segments, which are more
likely to lie entirely on a boundary. Finally;AS are complete local invariant features: each has
a well defined location and scale, an invariant descriptod & detected based only on local
properties of a single image. Hence, they can be reusedleffsly in a variety of recognition
and image matching frameworks as a replacement or additiantérest points (such as [1],
[6], [12], [18], [31]).

We demonstrate the power and flexibility &AS within an object detection framework
which brings together several successful ideas presermfenleh Following the ‘bag of features’
paradigm [3], [16], [35], we construct a codebookiAS typeseach capturing a different kind
of local shape structure (figures 2 and 3). An image windowutsdszided into tiles [4], [17]
and each is described by a separate bagAf. In this fashion the window representation is
composed of several bags bAS spatially localized within the window. Adding this layef
spatial organization improves the discriminative powempared to a standard orderless bag of
features over the entire window. We first train a classifienfrexample object and background
windows, and then localize previously unseen instancesshitmages via a multi-scale sliding-
window mechanism [4], [32] coupled with the classifier. Owthod is rendered computationally
efficient by organizing all imaggAS in an Integral Histogram [25], which is a recently develdp
datastructure supporting the rapid computation of mutteisional histograms.

During an extensive evaluation, involving eight diversgecb classes and over 1400 images
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(section V1), we study several aspectskéS. First, we analyze the object detection performance
while varyingk, thereby shedding light on the relation between repeatalihd informativeness
as k increases. Second, for eaéh we vary the resolution of the window tiling, allowing to
observe the trade-off between adding localization infaromaand reducing tolerance to spatial
variations within the class. Interestingly, we find the opl window tiling to relate to the
complexity of the featuresk], with simpler features preferring finer tiling. Moreoveve thor-
oughly compare the performance BAS against interest points, and against the state-of4the-a
object detection technique by Dalal and Triggs [4]. Theirkvws particularly relevant because it
follows a similar detection framework (sliding-windowses), but it applies different descriptors
to the window tiles (simpler histograms of gradient orig¢imas). Finally, we experiment with
the application oftAS with differentk at the same time, and with the combination of interest
points andkAS.

[l. RELATED WORKS

In the following we first review object detection techniguessed on contour features, for
which £AS offer an alternative, and then present works on the péueégrouping of contours,
upon whichkAS build.

Contour features for object class detectioSelinger and Nelson [28] detekey curves
long segments of an edgel-chain bounded by two high cumagiaimts. A key curve’s size and
orientation defines a square image patch, which is then ibescusing all edgels falling within
it. These edge patches attempt to strike a winning tradebeffocal, and hence bring robustness
to occlusion and clutter, while also complex enough to bérdisve to some degree, enabling to
match individual features, and opening the door to compirtatly efficient indexing schemes.
However, for key curves lying on the object boundary, thestehes will include nearby clutter
edgels, which corrupt their descriptors and makes themcdlffio put in correspondence.

Selinger and Nelson’s recognition system was demonstratetbntrolled laboratory con-
ditions, with clean images containing modest amounts ofteluand mostly on the task of
recognizing specific objects. Jurie and Schmid [15] wereragrtbe first to propose local contour
features for the detection of objeclasses and to test their system on real, cluttered images.
Their scale-invariant feature detector responds to crcalcs of edgels, which are described

by the spatial distribution of points in a thin annular ndaghhood of the circle. This attempts
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to exclude clutter from the descriptor by avoiding encodpwnts inside the circle. As one
limitation, circular arcs only cover a fairly restrictedasls of shapes.

In their very recent works, Shotton et al. [30] and Opelt et[2#] independently propose
to construct contour fragments tailored to a specific cld$e idea is to explicitly construct
fragments to occur frequently in positive training imagésaaclass, while seldom in negative
ones. Both works employ boosting to select fragments fronargel pool of candidates, but
differ in the way these candidates are constructed (randectamgles sampled from training
segmentation masks in [30], whereas [24] grows fragmeatsiisg from random contour points,
and optimizes their length so as to maximize Chamfer magckoore and accuracy of object
centroid prediction in validation images). Although thegncbe more discriminative for the
learned class, these kind of fragments are harder to reugenwoether recognition or image
matching frameworks, compared to generic features whigrexe only on local properties of
individual images. Moreover, the fragments of [30], [24¢ &ot scale-invariant, and those of [30]
need segmented training images to be learned, which fulithés their applicability.

Berg et al. [1] offer an alternative view on contour-basedeob recognition, casting the
problem as deformable shape matching. Instead of countmgophisticated local features,
they simply take individual edgels (with a Geometric Bluighdorhood descriptor), and put
them in correspondence between pairs of images with a palvadn-rigid point matching
algorithm based on Integer Quadratic Programming. The ogetibtains impressive results on
the challenging Caltech101 database. One disadvantalgat g teduces recognition to matching
pairs of training and test images, and does not infer fromtthming images a single model
summarizing common properties shared by different ingaraf the class. Besides, it would be
interesting to injecttAS in their framework, as replacement for individual edge@isd observe
whether this would lead to improved performance.

Dalal and Triggs [4] considerably advanced the state-efatt in human detection, by design-
ing the Histogram of Oriented Gradients (HoG) descriptod earefully optimizing it over a large
dataset containing thousands of humans in unconstraingespin their recognition framework
image windows are subdivided in tiles and each one is destidy a HoG. A simple sliding-
window mechanism then allows to localize objects. Photamebrmalization within multiple
overlapping blocks of tiles makes the method particuladgust to lighting variations. Notice

that HoG descriptors are only defined within a given subwmdbey don’t have a concept of
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location and scale. Hence, they need to be associated to extermal feature detector before
being applicable within frameworks not based on slidingiaws.

Perceptual grouping:Perceptual grouping of contours has a long history in coeput
vision [7], [14], [19], [20], [26], [27], [29], [33]. The ida behind these works is that pieces
of contour related by someerceptually salientproperty are more likely to belong to the
same object. The perceptual properties exploited inclunlesexity [14], co-circularity [33],
connectedness [27], [29], parallelism [20], and proxim29].

One major area of application for perceptual grouping isgenaegmentation, in which the
task is to group together all elements belonging to indigldunspecified objects [7], [14], [33].
Moreover, perceptual grouping played an important rolehiea tecognition of specific objects
under varying viewpoint, particularly in the 80s and 90s.eTiocus was mainly on planar
objects [27] and polyhedra [13], [20].

The kAS features are motivated by the same general intuition@difege perceptual grouping
works, and are most related to the ideas of Rothwell [26]],[@1ho advocated for the importance
of connectedness and topological relations. We believe ¢dbanectedness is a fundamental,
powerful driving force which is currently still underexpiled in computer vision. In this paper,
connectedness is brought to the domain of obgass detection, and is exploited to define
modern local invariant features: image elements with a efined location, a scale and an

invariant descriptor, ready to be used in many recent magchind recognition schemes.

[1l. k& ADJACENT SEGMENTS(KAS)
A. Contour Segment Network

We summarize here the technique of [10] to build doatour segment netwokCSN) of the
image, on which we will detect oWAS features. Edgels are detected by the excellent Berkeley
natural boundary detector [22], and then chained. The tiaguédgel-chains are linked at their
discontinuities, i.e. two edgel-chaing and ¢, are linked if c; passes near an endpoint @f
and if the ending ot is directed towards, (figure 1b). Informally, ifc; were extended a bit,
it would meetc,. These links are useful in two ways: they record that a camaight continue
over the gap between two edgel-chains, and allow to captmeipns (L-junctions, T-junctions,

and higher order junctions involving several edgel-chains
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Fig. 1. a) An example image, with threBAS and the underlying CSN connections (arrows). Notice how o
2AS lies entirely on the boundary of a mug. b) Three edgelnshatith five segments and their inter-connections
(arrows) in the network. c) Two detectedS (B, C) and (D, E). The order of each segment in the descriptor is
marked next to it (see section IlI-B). Notice that, B), (A,C), (C, E) are also detected, though not displayed
because they overlap witB, C) and (D, E). d) 3AS(C, A, E). e)4AS(E, B, C, D). f) r; vectors involved in the
description of thelAS in d).

The edgel-chains are partitioned into roughly straighteonsegments. The idea is to organize
these segments in a network, by connecting them along thel-etlgins, and across their links
(figures 1la and 1c). Since every edgel-chain can be linkeeMieral others, the CSN is a complex
branching structure. Intuitively, two segments are coterkd the edgels provide evidence that
they might be adjacent along some object contour, even wianare physically separated by a
(small) gap, or when forming a junction. The key property o CSN is to include paths going

along the contours of the imaged objects [10], which mo#ig&AS features.

B. DetectingkAS

The principal contribution of this paper is to propose a figrof local features: paths of length
k through the CSN. More formally, a group éfsegments is &AS iff they can be ordered so
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that thei-th segment is connected in the CSN to tlie- 1)-th one, fori € {1,k — 1}. Hence
we call themk adjacent segmentand refer to their lengtth asdegree As k£ grows, kAS can
form more and more complex local shape structures: indalidegments fok = 1; L shapes
and 2-segmeni’ shapes fork = 2; C|Y, F, Z shapes, 3-segmefit shapes, and triangles for
k = 3 (figures 2, 3). The dimensionality ¢fAS descriptors also grows with (next section),
and we treattAS of different degrees as different feature types, all @thitn one family by a
shared crucial property: to be sequencesafinectedsegments.

Connectedness provides a natural criterion for groupiggneats intatcAS. It avoids arbitrary
definitions of the neighborhood of a segment, and constre/kfS to be chains of segments.
Compared to the broader class of groups of ‘nearby’ segmérgg have higher chances to lie
entirely on a portion of the object boundary. In constrdss,features of [15] include disconnected
sets of edgels which happen to be located along part of aeciidie key curves of [28] are
based on individual edgel-chains, and hence are less tpluletected in real images tha\S,
which bridge gaps between edgel-chains.

EAS can be detected by a depth-first search started from ewgment, followed by the
elimination of equivalent paths (two different paths inwiob the same segments constitute the
samekAS). This is computationally cheap for the small valueskotorresponding to local
features (aboukt < 4). We disregard higher values d&f because they result in large-scale
structures, too specific to a particular image or objectansg, and in an excessive number of
detected features (several thousands already: fer5). More precisely, the number &fAS in
an image containing segments grows quickly witk, as can be understood by the following
observations. On average, each segment is connected tootwWwuete others, becausé and
higher-orders junctions occur less frequently than sinipte-1 connections. As a consequence,
as k grows, the number of paths of lengthpassing through a given branching point increases
quickly. In practice, while the average number2#iS is only aboutl.5n, the number o8AS
is 4n, that of 4AS is 10n, and there are more thatn 5AS !

As k increases, features increase in complexity. On the one,ltheg become more and
more informative, while on the other they gradually get lasd less repeatable across different
images and object instances. Additionally, the number af-boundary features (or mixed
features covering partly boundary and partly clutter) asows with k&, actually faster than pure

boundary ones, leaving a lower signal-to-noise ratio. teerior rather low values of, kAS
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have an attractive intermediate complexity, offering avement compromise: simple enough
to be detected repeatably, yet complex enough to captuoemiative local object structures. In

section VI, we confirm these intuitions experimentally, atelermine thaRAS perform best.

C. DescribingkAS

In order to compare differeritAS, we need a numerical descriptor. As first step, it is imgoairt
to order thekAS segmentgs;}.—1  in a repeatable manner, so that simit&S have the same
order. We select as first segment the one with midpoint ctasethe centroid of all midpoints
{m; = (z;,y;) }:i=1.x (When several segments have similar distances to the a#nive pick the
first one according to the order defined below). As we will sedhe descriptor below, this
centermost segment is the natural choice as reference foointeasuring the relative location
of the other segments. The remaining segments take up gusiithroughk, and are ordered

from left to right, according to their midpoint. If two segmis s;, s, have similarz coordinate,

ie. |z, — x| < 0.2\/(x,» — )%+ (y; — y;)?, then they are ordered from top to bottom. Note
that this order is stable, as no two segments can have silodation in bothz andy. Example

orderings can be seen in figure 1c-e.
Once the order establishedkAS is a listP = (s, s9, ..., s) Of segments. Let; = (r?,r7)

171

be the vector going from the midpoint ef to the midpoint ofs;. Furthermore, le; andl; = ||s;||
be the orientation and length sfrespectively. The descriptor @t is composed ofk —2 values
(figure 1f): o, o

(;—2%%% 01,...,0, le_ldzlv_]i,) @)
The distanceV, between the two farthest midpoints is used as normalizd#ictor, making the
descriptor scale-invariant (hence, both ##S features and their descriptors are scale-invariant).
While segment lengths are known to be often inaccurate, andl s based only on part of the
kEAS, the distance between the farthest midpoints makes arlbgtbice for a reliable estimate
of the kAS scale. In addition to &AS scale, we also define itscationto be the geometric
center of the midpoints of its segments. Exact definitionsaafie and location are useful when
using kAS in higher level algorithms, such as in our sliding-windowject detection scheme

(next sections).

1The casek = 1 is an exception. The descriptor is composed onlygfand the scale ofAS is defined ag;.
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The proposed descriptor considers the segments as colygatEght, so as to capture only
the relevant information of the geometric configurationytfierm, and not the unreliable details
of the weak curvature along them. Moreover, we stress thigt the £ segments are described,
and not other nearby edgels. In this fashion, we can cleantpde a portion of an object
boundary, without including inner/outer clutter (unlik2g]).

With its 4k — 2 dimensions, the descriptor is also very compact. Indeedesthe intrinsic di-
mensionality ofk straight segments ik, and the dimensionality of the desired scale+translation
invariance space i3, the lowest dimensionality of a complete descriptotis— 3. The only re-
dundant degree of freedom we encode is embedded within fdté/eslocation vectorgr; },—o. .
Factoring it out would require representing them in a momnglicated way?.

Interestingly, thetAS descriptor is of different nature than conventional Ideatured feature
descriptors. While the latter encode the appearance of itted patch covered by the feature,
the kAS descriptor encodes the geometric properties of the setgr{erientation and length),
and of their spatial arrangemenr(},—> ).

If desired, the descriptor can be easily made rotationriaud, at the cost of some distinctive-
ness. In addition, fok > 3 one can design descriptors with even higher degrees ofianae
(affine, projective) to be used, e.g. for wide-baselineestdB1], although we do not investigate
this possibility further in this paper.

The orientation and lengths of all segments irkAS can be reconstructed from thHeAS
descriptor and scale. In addition, the exact segment lmesitcan be reconstructed by storing
also the difference between théS’ location and the midpoint of,. This might be useful, e.qg.

for synthesizingkAS for visualization.

D. ComparingkAS
We define here a measure(a, b) of the dissimilarity between twaAS P¢, P’ of the same
complexity &
k k k
D(a,b) = w, Y [|rf — x| +w Y Do (67,0) + D [log (1 /15)] 2
=2 i=1 i=1

20One way of designing a minimal descriptor is to chodége = I, as scale normalization factor, and removihgfrom the
descriptor. However, the length of a segment is often inately determined. Moreover, basing the scale normatizatin a
single segment is a less stable choice for the overall sdaleeokAS than the distance between the farthest midpointscfw
spans the whol&AS).
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where the first term is the difference in the relative locasiof the segments), € [0, 7/2]
measures the difference between segment orientationghandst summation accounts for the
difference in lengths. As segment lengths are often inateukve give higher weight to the two
other terms of the comparison measure: in all our experiment= 4, wy = 2. All r; and all

lengths are normalized as in equation (1).

— [ = = 1]
)
\\T‘ 7

i-” /] - \1// \'J \t, /(

JENNVAN
’brr“‘
]\
/\
)/

Fig. 2. The 35 most frequer®AS types from the codebook we use in all experiments, cetetrfrom 10 outdoor
images (5 positive and 5 negative images from the INRIA Badsg¢aset, section VI). For each cluster, we display

the single2AS with the lowest sum of dissimilarities to all others in thester.

I[V. CONSTRUCTING THEEKAS CODEBOOK

In the previous section we have introduced #%&S features. Before using them for object
class detection (next section), we construct a codebookvigmal vocabulary’ [3]) of feature
types by clustering a set of trainingAS according to their descriptors (a different codebook
is generated for each). In addition to revealing the frequency at which featurpety occur,
the codebook is convenient because it allows to avoid afglicomparing every test image

features to every feature from the training images. Insteadparison to much fewer feature
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types suffice. Codebook representations have become pdpubaigh several recent works [3],
[6], [16], [17], [18],

For clustering we use a clique-partitioning (CP) approdat.G be a complete graph whose
nodes are the trainingAS, and arcs are weighted kiy— D(a, b). We partitionG into cliques
So as to maximize the sum of intra-clique weights, using figie-partitioning approximation
algorithm of [9]. Each resulting clique is a cluster of siamikAS.

The choice of CP instead of K-means, commonly used for mgldiisual codebooks, is
appropriate in our context where the dissimilarity meadurmakes the descriptor space circular
(Dy terms). Moreover, the parametéiis easy to set, because it represents a rough indication of
the acceptable intra-cluster dissimilarity (akin to thenet-width in mean-shift clustering [16]).
K-means instead requires the number of clusters as inputhws unknown apriori and varies
from dataset to dataset. Several experiments indicatehbkatxact choice of has little impact
on the overall system performance (section VI).

For each cluster, we select as a representativé & with the lowest sum of dissimilarities
to all others (i.e. the one closest to the cluster centerg fifkal codeboolC is the collection of
these representativeAS, the kAS types

When constructing codebooks from different image sets, Weerved that the&AS types
occurring with a significant frequency were very similar.ilconfirms the intuition thatAS
are generic features (certainly for the low values:afie consider). Hence, for eaéhwe build a
single codebook from 10 images and use it for all object elsgs our experiments (section VI).

Figure 2 shows the 35 most frequent types inZA& codebook. As we can see, they have quite
natural shapes: two collinear segmeritstructures, and small T-junctions. Figure 3 displays the
35 most frequen8AS types. They form more complex structures th&S: C|Y, I, Z shapes,

largerT" shapes, and triangles.

V. OBJECT CLASS DETECTION

In this section we present a scheme for detecting objectedbas £AS. We first train a
classifier to distinguish windows covering objects of a @@rclass from any other window, and
then apply it for localizing novel instances in previouslyseen test images, based on a sliding
window mechanism. As in many of the existing approaches, wiel [a detector for a single

viewpoint.
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Fig. 3. The 35 most frequer®AS from our codebook.

A. Training

The training data includes positive images, containingaimses of the class annotated by a
bounding-box (figure 4), and negative images.

Window descriptor.:To produce a useful classifier, we need a numerical windowrgser
which is accurate enough to separate positive examples fregative, yet flexible enough to
accommodate for class variability. When these goals are test windows on novel object
instances will have descriptors closer to the positiventrey set than to the negative, and the
classifier can succeed.

A straightforward option would be theAS histogram, counting how mamAS of each type
there are inside the window, which is a simple bag of featvegsesentation. However, we can
obtain better discriminative power by also encoding thdiapkyout of thekAS in the window
descriptor. We subdivide each window into a setiles B, and compute a separatAS histogram
for each tile (figure 4). The concatenation of all histograyredds the|5| - |C| - dimensional

window descriptor (wheréC| is the size of the codebook).
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Fig. 4. A positive training example, with bounding-box, tiling,daa fewkAS superimposed: (= 2, T = 4).

The tiling patternB automatically adapts to the training data as follows. Fitlseé system
computes the mean dimensions of the positive training wirsd@wvidth M, and height)M},).
Next, it allocates a total of’ tiles, choosing the number of tiles along each dimensionssto a
make them as square as possibtemd(\/W) along the width, andound(\/TMhW)
along the height. The parametér= |B| controls the resolution of the tiling\Z,,, M, will later
be used again when searching for objects in new test imagesf the aspect-ratio of the sliding
window to the one best fitting the training examples.

When computing thé&AS histograms, rather than assigning eadS to the single closest
type, it is soft-assigned to all types within dissimilaritysame as in section 1V). More precisely,
eachkAS P distributes a total sun®, among the types it is assigned to, in inverse proportions to
the dissimilarity to the types’ representativAS. This makes the representation of a window less
sensitive to the exact shape of thAS it contains, and to the exact codebook types. This leads
to smoother models, which better generalize to novel ohbjestances, and to a more accurate,
stable evaluation of test image windows (next subsectiondddition to akAS’ shape, we also
consider itsrelevance the total contribution ofkAS P to a histogram is the average strength
of its edgelsP; € [0, 1]. We experimentally observed a considerable improvemeet treating
edgels as binary features (as also noticed by [4], [10]).

Our window descriptor is a valuable choice for object clastedtion. It is distinctive, because
it recordswhichlocal shape structure&AS) it contains, and roughlwherethey appear. At the

same time, it is flexible thanks to the coarse tiling, and thetiouous assignment GfAS to
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types. Much of the power of our representation comes fronamizing the image edges over
two levels of spatial arrangements: contour segments withe £AS, and then th&AS within
the overall object.

As the tiling resolution?” increases, the spatial localization @AS grows stronger, resulting
in a more informative descriptor, but also a more rigid onecaanmodating for less spatial
variability of the class. Hence, there should be some optifMabringing the best trade-off
between accuracy of localization information and tolemtwintra-class variation. Interestingly,
our experiments show the optim@l to decrease with increasing (section VI). Withk = 1
the features are so uninformative that the window desaripéeds to be augmented with fine-
grained localization to be distinctive. Whikegrows,kAS become more complex, and the added
value of localization gradually diminishes. In additiore ¥ound the optimal” for interest points
described by SIFT to be lower than that of @S we explored X < 4). Since SIFT descriptors
of an image patch are richer features (and have a descriptouch higher dimensionality), this
further confirms the above subtle relation between feataneptexity and localization resolution.

SVM classifier training.: The window descriptor is computed for each positive tragnin
example, and for a number of negative examples collecte@umypbng windows of sizé/,, x M,
over each negative training image. In our experiments, awslare sampled everj0 pixels
horizontally and vertically, typically resulting in thoaisds of negative windows. All window
descriptors finally used to train a two-class linear SVM.cgimegative windows are much more
numerous, the positive window descriptors are replicatedarrect the imbalance.

Figures 5 and 6 show a fewAS automatically selected by the SVM for a few classes (i.e.
the ‘kAS type + tile’ combinations corresponding to the highesigheed window descriptor
dimensions). Among the large numberiAS composing each example, several lie on the object
boundary, and are picked up by the SVM as local shape stesgttommon to multiple training
examples.

Using multiple kAS degrees at once.Our framework includes the possibility of using
multiple degrees okAS at the same time (e.@AS and3AS). In this case the different sets of
kEAS are treated separately: there is a codebook and tilirgjutesn for each value of. Window
descriptors obtained for differertare then concatenated to give a large descriptor which is fed
to the SVM.

Using kAS of different degrees at the same time is an interestingpepSome characteristic
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Fig. 5. One of the most important window descriptor dimensionspaltiog to SVM training £ = 2). Each column
shows a few training images for a class, along with one of ##S type + tile’ combinations which are given the
highest weight by the SVM.

object elements might be extremely simple (like the stralgie on top of a comb, for which
k =1 is good), while others might be more sophisticated localcstires (like aC-shaped mug
handle, for whicht = 3 is good). Hence, using multiple degrees simultaneousbreffthe SVM

a larger, more diverse pool of parts to choose from.

B. Testing

Having trained a linear SVM window classifier, we can detectl docalize novel object

instances in a test image using a simple sliding-window raesm [4], [32]. We slide a window
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Fig. 6. One of the descriptor dimensions which are given the highesght by the SVM (one for each of three

classes, withk = 3).

of aspect-ratial/,, /M, over the image at multiple scalés compute the window descriptor at
each location/scale and evaluate it with the SVM. This pitesia 3D response map, whose
local maxima give candidate object detections. The finalo$etetections are obtained after a
last polishing: if two candidate detections overlap coesatly, we filter out the weaker one.
This sliding window technique requires computing the hgséon of kAS types within a large
number of image windows (tiles). We achieve this efficietijyusing an Integral Histogram [25]
representation (IH). After building an IH where each dimenscorresponds to AAS type, it is
possible to compute the histogram/&S types inanywindow in 3|C| operations, independently

of the total number okAS in the image and of the number 6AS in the window. The cost

3This is implemented simply by resizing the window to contaimarying portion of the image. It is not necessary to rescale
the image, because th\S features themselves automatically adapt to image stegtof different scales. Although theAS
featuresare scale-invariant, we need to search over differéintlowsizes to properly detect the object whose size in the image
is unknown. In all our experiments the sliding steplis pixels is each direction, while the scale stepﬁ%ls. We consider all

scale levels where the window’s longer side is more th@rpixels and still fits in the image.
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of building the kAS IH is low %. Moreover, it is done only once for an image (as we adopt a
single codebook for each). A substantial share of the cost is computing the softgassents
of the imagekAS to types, which must be done in any case.

Our object detection procedure is very fast. After prepssaag (from edge detection to the
kEAS IH), it takes about second to detect all instances in our C++ implementation staadard
workstation. Preprocessing takes longer, due the accuvatesiow, Berkeley edge detector (a
few minutes). However, it only needs to be done once, so tseisamortized when searching
for several classes, or when usiRé§S of multiple degrees at the same time.

The main reason for preferring the Berkeley detector overtthditional Canny detector, is
the inclusion of texture and color segmentation cues, int@adto brightness. Moreover, it
treats edge detection as a pixel classification problem amaista classifier from natural images
with human-annotated boundaries. This results in lesdetleidgels inside textured areas, and
longer, smoother boundaries around textured objects ¢affes). Using this detector instead
of Canny in our framework trades better object detectioriquarance for higher preprocessing
time. An exciting alternative is the very fast edge detectrently published by Dollar et
al. [5]. It performs as well as the Berkeley detector whilking mere seconds for an image, but
is unfortunately not yet publicly available at the time ofsthvriting. The release of this edge

detector will enable our object detector to process an infega scratch in a few seconds.

VI. EXPERIMENTAL EVALUATIONS
A. Datasets and protocol

We present extensive experimental evaluations, involgexgeral existing datasets covering 8
diverse shape-based object classes, for a total of morel#@ test images. Here we briefly
introduce these datasets, while the following sectionsntefine experiments.

INRIA horses [15]: This challenging dataset consists of 170 images contammagor more
horses, seen from the side, and 170 images without horsese$lappear at several scales, and
against cluttered backgrounds (figure 8). We employ the Firgiositive and50 negative images

for training, and the remainin@20 + 120 images for testing.

“Itis O(|C|™%E + N|C|k), for an image of widthiV and heightH, containingN' kAS. r is the spatial resolution of the
histogram, withr = 1 being the highest possible. In all our experiment 10. O(N|C|k) is the cost of soft-assigning the
imagekAS to the codebook types.
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TABLE |

Number of positive+negative training and testing imagesafb datasets.

‘ ‘ INRIA H Anchor‘ Chair‘ Cup H Applelogo‘ Bottle ‘ Giraffe‘ Mug ‘ Swan H Shotton‘

Train | 50+50 21+21 | 31+31 | 29+29 20+20 24+24 | 44+44 | 24+24 | 16+16 50+50
Test | 120+120|| 21+21 | 31+31 | 28+28 20+215 | 24+207 | 43+167 | 24+207 | 16+223 || 277+277

This dataset plays a special role in our evaluations, as viienze the two free parameters
of our detection system on it (the window tiling resoluti@hand the clustering threshold).
The optimal setting established on this dataset is then aeeall others. No tuning is applied
to any other dataset, so the exact same system is run on afiedst

Weizmann-Shotton horses [308hotton et al. [30] propose another horse detection dataset
composed of827 positive images containing exactly one horse each, 3#T7dnegative images.
The positive images are derived from a dataset previouséased by the Weizmann Institute
for evaluating image segmentation algorithms [2]. In orttercarry out proper comparisons,
we follow the protocol of [30] strictly by using their scat®rmalized images, and running our
system at a single scale by sliding a window of fixed dimerssibfy, x M,,. °. As in [30], the
first 50 positive and50 negative images are used for training, the ot&r + 277 for testing
(figure 8).

ETHZ shape classes [10]This dataset features five diverse classes (bottles, swaungs,
giraffes, apple logos), containing a total of 255 imagedectéd from the web by Ferrari et
al. [10]. It is the most challenging dataset we report onhasabjects appear in a wide range of
scales, there are considerable intra-class shape vasaaad many images are severely cluttered,
with the objects comprising only a fraction of it (figure 10).

We train one detector per class, using the first half of thelaa positive images (there are
40 for apple-logos48 for bottles,87 for giraffes, 48 for mugs, and32 for swans). As negative
training images, an equal number is taken, with each of therat classes contributing /4

of them. For example, the training images for the bottle deteare24 bottle images, plu$

®In all other experiments the system is run at multiple scatesletailed in section V-B.
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images from each of the other classes, totalkdgnegative training images. All other images
are used for testing, so each class is searched for in imageselveryclass.

Caltech 101 [8]: The last source of data we consider are three shape-basstslrom
the well-known Caltech-101 database [8]: anchors, chaing, cups 42, 62, 57 positive images
respectively). Although most images contain only limitddtter, the dataset offers substantial
intra-class variation (figure 10). As for the ETHZ shape séss we evaluate one class at a time.
We use the first half of the positive images for training, adl we an equal number of negative
images from the Caltech-101 background set. The test sedisterof the remaining positive
images, plus the same number of negative ones.

Evaluation criterion: Performance is evaluated by plotting detection-rate (D&¥uws the
incidence of false-positives (false-positives per imdgeRl) while varying the detection thresh-
old. We prefer these DR/FPPI plots over precision/recatsofor several reasons. FPPI has a
clearer interpretation than precision, which is entanglgith detection-rate. Moreover, FPPI is
independent of the number of negative test images, and DR/pIBts are easier to read, because
they increase monotonically.

Comparisons between different methods is mainly based onptvints on the DR/FPPI plot,
at 0.3 and0.4 FPPI. These are especially relevant because they corgpam rather low, but
not extremely low, FP rate (around 1 FP every 3 images). Onlyhe Shotton horses dataset
we report precision/recall plots, and compare methodsdaseequal-error rates, because [30]
published their results in that forth Hence, average detection-rates at a particular FPPI rate
refer to means computed over 9 datasets, excluding Shotimeh

For all datasets and methods, a detection is counted asctdries bounding-box overlaps
more than 20% with the ground-truth bounding-b@xd vice-versa. Any other detection is
counted as a false-positive. This is the criterion used @i, [tvhich provides 5 of the 10 con-
sidered datasets. In section VI-G we also report performamzer the PASCAL criterion [34].

B. Degree of complexity dfAS

Impact of tiling and clustering thresholdBefore comparing the performance bAS of

different degrees of complexity on all 10 datasets, we figtnoize 7', d for eachk separately

®Note that our criterion for a correct detection is somewtifednt from that of [30]. This has only a minor influence on

the results, as we discuss in section VI-G
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Fig. 7. Impact of window tiling resolutio¥” at the optimal clustering threshold. The optimum isl" = 90 for

1AS,T = 30 for 2AS, andIl’ = 20 for 3AS and4AS.

on the INRIA horses dataset € {1, 2, 3,4}). For several pairs of’, d, we reprocess the dataset
and obtain a DR/FPPI curve. Figure 7 shows the impact of thng tiesolution, while keeping

d fixed at the optimum. From the plots it clearly appears thaidsuading the window into tiles
makes a substantial difference for &ll Compared to a single bag-of-feature representation (no
tiles), at 0.3 FPPI the optimal tiling brings improvemenasging from 20% £ = 1) to 13%

(k = 4) detection-rate.

It is intriguing to observe that the optimal value @f decreases with increasing This
confirms experimentally the subtle relation discussed ¢tise V-A: as the features grow more
complex and hence informative, a coarser spatial locatiais sufficient, while at the same
time a lowerT yields better tolerance to intra-class variations. Indiidl segments benefit most
from a very fine subdivision o0 tiles, whereas the saturation point for localization infiation
is already reached &0 tiles for 3AS. Moreover, also the gain brought by tiling reduces as the
features become more complex, because the added valueatz&ion gradually diminishes (at
0.3 FPPI, it is of 20%, 16%, 16%, 13% detection-rate for k;3,£ respectively).

Varying the clustering threshold has a smaller impact. Nevertheless, we observe the number
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1l

Fig. 8. Top row: detections at 0.4 FPPI for the INRIA horses dataBké rightmost image shows a missed detection

and a false-positive. Bottom: detections at the equalterate for the Shotton horses dataset.

of clusters corresponding to the optiméako increase withk (4, 127,255,397 for k = 1,2,3,4
respectively). This makes sense, because as the featw@nés more complex, they can assume
a wider variety of shapes. In particular, justclusters are necessary fér= 1, corresponding
roughly to four orientations separated by 45 degrees.

Following these observations, all further experiments@@dormed with the optimal param-
etersT, d for everyk.

Degreek: We applied our object detection scheme to all 10 datasetshéfour degrees
of kAS complexity we explorei( € {1,2,3,4}). Although there is no single degree producing
the best results on all datase?®\S perform best overall (figure 9). THBAS plot is above all
others on 5 datasets, and its average detection-rdie &PPI is 76.7%, versus 69.4%, 64.1%,
56.5% 0f1AS, 3AS, 4AS respectively (table IIl). Hence, we conclude that 2AStaskAS with
the best intermediate complexity, offering the optimal ppomise between being informative,
repeatable, and generating a good ratio of pure boundatyrésaversus mixed/clutter features
(as discussed in subsection 111-B). In the remainder of thpep,2AS is the referenc&AS for
comparison to other methods, and will be referred taPasS (pairs of adjacent segments).

Table Il shows that by rankingAS according to average detection-rateda, or 0.4 FPPI,
the following order appearAS > 1AS > 3AS > 4AS. This ranking is well confirmed by the
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Fig. 9. Performance okAS, for varying degrees of complexity Top row: the two horses datasets: INRIA horses
and Shotton horses. Second row: the three classes fromadBali@l. Third row: the five ETHZ shape classes. All

performance comparison figures in the paper follow this layo

overall relative heights of the DR/FPPI plots (clearest amgs) applelogos). Surprisingly, the
second bestAS are individual segments. Much of the reason is in the grepact of tiling on
1AS, where very fine-grained localization compensates ferféature’s lack of distinctiveness

(figure 7). NeverthelessPAS do better, confirming it's advantageous to consider groups o
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connected segments as features for object detection. Merg®AS, as well ask AS of higher
degrees, are more reusable in other systems, where thendisative power of individual features
is more important, or where a feature correspondence mustrgee a higher order transformation
than just translation (e.g. recognition systems usingufeatransformations [12], [18], or for
matching features between two images [23], [31]).

In absolute performance termg,AS work consistently well on all classes (detection-rates
between 79% and 88% at 0.4 FPPI), with the exception of swins.is especially remarkable
when considering the low number of positive training imagssd in many datasets (e.g. 24 for
bottles, see table )’ AS achieve particularly high performance on Shotton-horaeth 91.7%
precision-recall equal error-rate , in line with the stafehe-art approach [3019¢.1%) ’. 1AS
does even better, with3.5%. Moreover, in contrast to their work, our method does notdnee
any segmented training image (only bounding-boxes), anddegect objects at multiple scales.
The striking performance ofAS on this dataset (the only one where they beatS) might be
explained by the very low resolution of the images (horsesabyout 100 pixel wide), which
favors simpler features.

We can also draw a loose comparison to [15], on the INRIA hd@aset. Numerically, the
performance of PAS is close to their work (e.g. PAS do 70.0%.@66 FPPI, which corresponds
to 86.1% precision, while [15] reports 70.4% recall at 87.@Pécision). However, an accurate
comparison is not possible, because the authors of [15] lwstedetails of the particular test
set on which results were reported. We adopt here the offiel@ase of the dataset, which
should come quite close. As a reference, we also mention[li@tobtains a similar level of
performance as PAS on the ETHZ shape classes, although thengthods are not directly
comparable since [10] inputs hand-drawings as models.

In order to further strengthen our understanding of PASqerance, and properly set it in the
context of alternative methods, in the following we perfoam in-depth comparison to interest

points, used within our object detection framework, andh® system of Dalal and Triggs [4].

"As shown in section VI-G, this result holds also under striatriteria for considering a detection as correct.
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Fig. 10. All detections at 0.4 FPPI on some example images. Top 3 rBWstZ shape classes. Bottom row: Caltech
101.

C. Comparison to interest points

Interest point (IP) detectors respond to local pixel patewrith certain special properties (e.g.
cornerness) and produce local features widely used forcblojass detection [6], [12], [18]. IP
descriptors capture the appearance of the image patchesisding them. In order to support
the claim thatkAS are better suited to represent shape-based classesplaeeréghem by IPs

in our object detection framework, and reprocess all 10gdsa We experiment with three of
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Fig. 11. OptimizingT with the number of clusters fixed B0 (which is the optimum in the tested rantf@ — 300).

the most widespread scale-invariant IPs: Harris-Lapl@33, [LoG [21], and DoG [21]. All IPs
are described by the extremely popular 128-dimensionall $27].

Codebooks, tiling, and number of clusterShe number of IP per image is aboli00 to
2000, larger than that okAS (for £ < 4). In addition, we want to experiment with IP codebooks
built from more than the 10 images used #&S (details below). As a result, the total number of
IPs to be clustered can grow beyond what CP can handle. SiadmiilIs a pairwise dissimilarity
matrix, memory consumption limits the number of featurealtout 15000, while in several cases
there are more than 50000 IPs. Hence, we build IP codebookg kaneans. Notice how the
CP parameted is now replaced by explicitly providing the number of cluste

As done before fokAS, we optimize the number of tiles and of codebook clustardNRIA
horses (figure 11). The selected optimalis 10, which confirms the trend observed @AS:
the richer the feature, the lower the value. Figure 11 shdwsevaluation on Harris-Laplace,
but similar optimal values are obtained for DoG or LoG.

The rationale behind using a singtdS codebook from a small set of 10 images is that the
features are simple and generic enough. However, this migtttold for IPs. Since they are based
on texture, and the SIFT descriptor captures an entire inpageh, quite different codebooks
might result from different image sets (e.g. giraffes verborses). Therefore, we experimented
with three kinds of codebooks, on the five ETHZ shape clasBas first is computed from the
same 10 images used fbAS, the second is specific to a single class (computed fronsdiee
images used to train the SVM), and the last is based on imagesdll five classes (computed
from all images used to train all 5 SVMs). From the results wéamed, it indeed appears that

class-specific IP codebooks perform moderately better erage. Hence, all experiments below
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Fig. 12. Performance of interest points compared to PAS.

are performed with class-specific codebooks.

Performance: The plots in figure 12 and the average detection-rates iretéblclearly
show that PAS substantially outperform all tested IPs. Qoytwo datasets IPs achieve a
moderately better performance than PAS (Harris-Laplacevasns, and DoG on cups). Besides,
we notice IP’s uneven performance across different clags®apare DoG on cups and bottles).
The performance of PAS instead, is quite stable. Finally,worth noting that on giraffes, for
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which both shapandtexture are characteristic, the results of PAS and the Ifeate very close
(especially in the range 0.3-0.4 FPPI).

Beyond PAS, one can compakdS in general to IPs. In terms of average detection-rate at
0.3 — 0.4 FPPI, all exploredkAS do considerably better than any of the tested IPs (table I
Only the performance levels @fAS and Harris-Laplace are similar.

Inspecting the data, it is also possible to rank featuresngr®s. Although no single one
works best on all datasets, on average Harris-Laplace stang followed by DoG and LoG,
which are at about the same level (table III).

In conclusion, these experiments confirm thAlS are more appropriate features than IPs for

shape-based classes.

D. Combining multipletAS degrees

Even though PAS are better thaAS of other degrees on most datasé&S and3AS win
on Shotton horses and anchors respectively. This sugdestausing all threel AS/2AS/3AS
simultaneously might give an even better detector.

As explained in section V, we integratéAS of multiple degrees by concatenating window
descriptors computed separately for edghand then training a single SVM on them. Each
degree uses its own codebook and optimal tiling resolutiothis fashion, the SVM can choose
from a very large pool of different local shape structured &hing combinations.

The results can be seen in table Il. For most datasets, psfare is very similar to PAS. On
Shotton horses insteadl]23} AS achieves an exceller.2% precision-recall equal-error rate,
which is better than any ofAS, 2AS, or 3AS. On swans however, we register a considerable
performance drop wrt to PAS (from 64.7% down to 47.1% at O0.PIFPMoreover, the high
performance oBAS on anchors (90.5% at 0.3 FPPI) is not reproduced B33} AS (76.2% at
0.3 FPPI).

Although it seems surprising that adding features can Igweeformance, this could be due to
overfit. Indeed, the dimensionality of the combined windoegdiptor is much higher than that
of a singlekAS degree, while the number of training examples remains#mee. To corroborate
this, notice how the performance drops occur on the datag#tsthe fewest training examples
(swans, 2x16 training examples, and anchors, 2x21 exampidsle the largest improvement

happens on the dataset with most examples (Shotton hordgs eRamples, see table I). Hence,

April 9, 2007 DRAFT



although in our experimen{123} AS performs on average slightly below PAS (table IIl), they
remain a promising option for datasets with many trainingges.

E. Combining PAS and Harris-Laplace

Following the approach as in the previous subsection, we ltambined PAS and Harris-
Laplace, as they are the best members of their respectiveréedamilies. This seems an
exciting possibility, because PAS and Harris-Laplace @xmlomplementarymage properties
(contour and texture). Hence, the hope is to obtain a morergeabject detector, which might
autonomously determine which kind of feature is more appabd@ for (part of) a given object.

The PAS+Harris detector does better than either comporlenean giraffes and Shotton
horses (table II). This is particularly meaningful sinceaffes are defined by both shape and
texture, so we expect their combination to reinforce thedetr. Moreover, giraffes and Shotton
horses are the only two classes on which PAS and Harris-tapleork about equally well.
PAS+Harris now achieves an impressive 95.7% precisioalresqual-error-rate on Shotton
horses. Furthermore, on INRIA horses, chairs, and swanS+Parris exhibit the desired be-
havior: its performance aligns with the better of either R#&tSHarris-Laplace. However, on the
remaining 5 classes PAS+Harris only performs somewhereiwden PAS and Harris-Laplace.
Again, a probable reason is overfit, and we observe a cleaglatipn between the performance
improvement/loss of PAS+Harris and the number of trainintages in a class (table 1). To
confirm this further, we run tests with several randomizelitspf the images in training and
test subsets, and observed that the performance variabioR&S+Harris are far greater than

those of either feature alone.

F. Comparison to Dalal and Triggs [4]

We conclude our series of evaluations by comparing agamesobject detection technique by
Dalal and Triggs [4], which is currently the state-of-thé-+4a human detection, and has proven
very competitive on other classes as well [34]. Like oursjrtbbject detector is based on sliding
a window subdivided into tiles, but uses histograms of gmatibrientations as descriptors.

In an effort to perform a fair comparison, we discussed with authors of [4], who rec-
ommended the following operations. First of all, we used daffecial software released by the

authors. Moreover, we rescaled all training windows to mikeelongest side 100 pixels, which
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Fig. 13. Comparison between our PAS-based detector and Dalal argjJ1i4] HoG-based one.

is about the resolution their system is tuned to. Finalllipfeing the protocol applied for PAS,

we optimized the two most important parameters on INRIA &srdhey are the preprocessing
applied before computing gradients, and the block norrabn scheme applied after collecting
HoG descriptors. The difference between the best and thetwombination of preprocessing
and normalization turned out to be moderate: 4.5% detecttmat 0.3 FPPI. Nevertheless, we

processed all datasets with the best combination: congetdi Lab color space as preprocessing,
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and normalizing descriptors by the square root of the L1 n(see [4] for details).

The results are displayed in figure 13 (the system of [4] iskedras HoG). Our detector
achieves a substantially higher performance on 6 of the 1&sdts, while on mugs and cups the
two methods are about equally good, and HoG obtains betseitseon applelogos and swans.
In terms of average detection-rate at 0.3 FPPI, PAS leads avitonsiderable margin of 20%
(table 1II).

The HoG curves abruptly stop growing after a rather low FRIR,rdue to the system returning
no detection on several images. We tried to counter this tariay a parameter controlling the
minimal score for windows to enter the non-maxima suppasstage, but it only resulted in
lower curves (as Dr. Dalal also expected, when we asked d@hutssue). Besides, we observe
that explicitly comparing performance at the point where(GHstops growing only makes a
difference for cups. PAS still leads on 6 datasets, and ginevalent results on mugs.

In conclusion, our detection system compares favorably4foij our experiments, which

further consolidates PAS as excellent features for objettation.

G. Accuracy of detections

So far we adopted the criterion for counting a detection asecbthat was used in our previous
work [10] (section VI-A). This is a sensible choice, as moatagets we experiment on were
first released in [10]. However, this criterion is rather deoand it might consider as correct
also rather inaccurate detections. In this section, westnyate the performance of our system
under the stricter PASCAL criterion: a detection is coundsdcorrect if the area of intersection
between its bounding-box and the ground-truth boundingddaeeds50% of their union [34].
This allows to understand in how many cases detections alg dccurate, and in how many
others they cover the object more loosely.

Since PAS perform better than other KAS and than IPs alsoruhdePASCAL criterion, we
focus only on them here. Following the protocol applied befave re-optimized” and d on
INRIA horses for the PASCAL criterion. Interestingly, weuind the optimall” = 48 to be higher
than that for the criterion [10]7{ = 30). This can be explained as a finer tiling enables better
localization accuracy, at the cost of some generalizathilitya As in the previous evaluations,

all 10 datasets are re-processed, keeping all parameters fix
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TABLE I
Detection rates at 0.3 and 0.4 FPPI for all features we testesiwell as for the object detection system of [4]
(marked as HoG). The ‘Shotton’ column reports recall at dagreor-rate for the Shotton horses dataset. It is

included here for homogeneity of presentation.

Detection rate ‘ INRIA H Anchor‘ Chair‘ Cup H Applelogo‘ Bottle ‘ Giraffe ‘ Mug ‘ Swan H Shotton‘
PAS (0.3 FPPI) 85.4 76.2 78.1 | 78.6 65.0 89.3 72.3 | 80.6 | 64.7 91.7
1AS (0.3 FPPI) 86.2 85.7 | 81.2 | 75.0 55.0 786 | 59.6 | 67.7| 353 935
3AS (0.3 FPPI) 79.2 90.5 75.0 | 71.4 35.0 67.9 61.7 | 54.8 | 41.2 90.3
4AS (0.3 FPPI) 76.9 57.1 71 | 714 30.0 60.7 | 638 | 41.9| 353 90.3
Harris (0.3 FPPI) 63.1 476 | 50.0 | 42.9 60.0 393 | 70.2 | 452 | 76.5 91.0
Dog (0.3 FPPI) 42.3 23.8 53.1 | 78.6 45.0 17.9 55.3 | 226 | 47.1 89.2
Log (0.3 FPPI) 50.8 238 | 31.2 | 571 30.0 250 | 723 | 38.7| 58.8 90.3

{1,2,31AS (0.3 FPPI) 86.2 76.2 774 | 82.1 70.0 85.7 68.1 | 80.6 | 47.1 94.2
PAS + Harris (0.3 FPPI) 84.6 61.9 83.9 | 67.9 60.0 57.1 80.9 | 51.6 | 824 95.7

HoG (0.3 FPPI) 74.6 9.5 32.3 | 78.6 85.0 17.9 48.9 | 80.6 | 82.4 70.1
PAS (0.4 FPPI) 87.7 81.0 87.5 | 82.1 85.0 89.3 78.7 | 80.6 | 64.7 91.7
1AS (0.4 FPPI) 86.9 90.5 84.4 | 82.1 65.0 85.7 61.7 | 71.0| 58.8 93.5
3AS (0.4 FPPI) 85.4 90.5 84.4 | 75.0 40.0 78.6 723 | 645| 41.2 90.3
4AS (0.4 FPPI) 80.8 71.4 90.3 | 78.6 30.0 64.3 68.1 | 51.6 | 41.2 90.3
Harris (0.4 FPPI) 73.8 47.6 62.5 | 53.6 70.0 39.3 723 | 45.2| 824 91.0
DoG (0.4 FPPI) 49.2 28.6 71.9 | 92.9 45.0 17.9 59.6 | 29.0| 58.8 89.2
LoG (0.4 FPPI) 56.2 38.1 34.4 | 60.7 35.0 25.0 745 | 48.4 | 58.8 90.3

{1,2,31AS (0.4 FPPI) 87.7 85.7 87.1 | 82.1 80.0 85.7 745 | 83.9| 58.8 94.2
PAS + Harris (0.4 FPPI) 87.7 71.4 90.3 | 75.0 75.0 64.3 80.9 | 645 | 824 95.7
HoG (0.4 FPPI) 74.6 9.5 32.3 | 78.6 85.0 17.9 53.2 | 839 | 824 70.1

The results are reported in table 1V. The difference in deteerate at 0.4 FPPI compared
to the previous setting varies largely from class to clasggaes from an improvement of
4% on bottles to a decrease @R% on giraffes. On average, the detection-rate at 0.4 FPPI
moderately decreases hy% to 70.1%. Besides, on Shotton horses the precision/recall EER
remains unchanged at the rate @if.7%. Hence, over all datasets, the majority of detections
does meet the strict standards defined by the PASCAL cniterio

For comparison, table IV also reports the performance of Ho@er the PASCAL criterion.
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TABLE Il
All features and combinations tested, ranked accordingh&rtdetection rates at 0.3 and 0.4 FPPI, averaged

over all datasets but Shotton (for which we evaluate in teofgrecision/recall).

| Method | Average DR at 0.3 FPP) Average DR at 0.4 FPP|
PAS 76.7 81.8
(1.2,3AS 74.8 80.6
PAS + Harris 70.0 76.8
1AS 6.4 76.2
3AS 64.1 70.2
4AS 56.5 64.0
HoG 56.6 57.5
Harris 55.0 60.7
DoG 42.9 50.3
LoG 43.1 47.9

HoG’s performance decreases as well in this setting: theageedetection-rate at 0.4 FPPI
decreases bg% (from 57.5% to 49.6%). On average over 9 classes, PAS still achieves about
20% higher detection-rate at 0.4 FPPI, and performs substhriietter on Shotton horse81.7%

vs 61.2%).

In addition to the above results based on the PASCAL criterfor the sake of an exact
comparison to [30] we also report results on Shotton hors&sgutheir own criterion [30]: a
detection is considered correct if its center lies withinggels of the ground-truth center. Under
this criterion, our PAS-based detector achie8e9% precision/recall EER, which is similar to
its performance under PASCAL. Moreover, PAS+Harris, oustlhaetector for Shotton horses,
achieve)3.2% EER, which is better than th&2.1% of [30].

VIlI. CONCLUSIONS AND FUTURE WORK

We have introduced thgAS family of local contour features and their applicationdioject
detection.kAS are able to cover pure portions of an object boundary,authncluding nearby
spurious edgels. Moreover, they can form a wide variety @floshape structures, combine

informativeness and repeatability, and constitute cotepkcale-invariant local features ready to
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TABLE IV
Performance under PASCAL criterion. Detection rates atfRP| for PAS and for the object detection system

of [4] (marked as HoG). The ‘Shotton’ column reports recdilemual error-rate for the Shotton horses dataset.

‘ Detection rate ‘ INRIA H Anchor‘ Chair‘ Cup H Applelogo‘ Bottle ‘ Giraffe ‘ Mug ‘ Swan H Shotton‘

PAS (0.4 FPPI)| 76.9 66.7 74.2 | 78.6 60.0 92.9 511 | 774 | 52.9 91.7
HoG (0.4 FPPI)| 70.0 9.5 16.1 | 75.0 85.0 14.3 340 | 774 | 67.7 61.2

be used in many recognition or image matching frameworks.

We have demonstratedAS within a sliding-window object detector, where windows a
subdivided into tiles, each described by a bagkéfS. Extensive evaluations brought several
interesting conclusions. First, the optimal number ofstitecreases with increasing complexity
k, due to a trade-off between accurate localization inforoma&nd rigidity of the representation.
Second, PAS perform better than othekS, as they bring the best compromise between dis-
tinctiveness and repeatability, while also yielding a ggodportion of pure boundary features.
Third, kAS work substantially better than interest points for shapsed classes, and, finally,
our PAS-based object detection system compares favoralilyet state-of-the-art method [4].

The simple object detection framework developed in thisspa@meant as a tool for analyzing
the properties and performance ©AS. We believe that considerable gains in object detection
performance can be achieved by making the framework morkistigated. EacltAS could be
soft-assigned to several neighboring tiles, rather tham o the tile containing its centerpoint.
This would result in smoother window descriptors, more Ilgtalrt the exact localization of
kEAS on the object. However, it's unclear how to properly impént spatial soft-assigning using
Integral Histograms. Moreover, the scalet@S relative to the window could be encoded in the
window descriptor, thus improving discriminative poweth@ enhancements include re-training
on hard examples [4], better non-maxima suppression of Yid &sponses [4], and automatic
selection of the optimal number of tiles for each class (esgng a validation set).

The use ofkAS in this paper is limited to a rather simple detection fraragk. However,
we expectkAS to be useful in other systems and tasks [11], with possitiyer behaviors. For

example, although in our analysB\S worked bestkAS of higher complexity are attractive
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when the localization constraints are weaker or absent @mdehthe discriminative power of
individual features might become more important [1], [618], or when higher degrees of
geometric invariance are required (e.g. image matching, [[33]). Besides, since our object
detector is restricted to a single viewpoint, it is uncleawhwell kAS would work in a multi-
view setting. Finally, effective ways to combine appeaeafeatures withtAS remain to be
investigated. One option would be to integrate both tightlyaugmentingcAS with appearance

information (e.g. by describing color or texture propest@n either side of d.-shaped PAS).
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