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Abstract

We present a family of scale-invariant local shape featuresformed by chains ofk connected,

roughly straight contour segments (kAS), and their use for object class detection.kAS are able to

cleanly encode pure fragments of an object boundary, without including nearby clutter. Moreover, they

offer an attractive compromise between information content and repeatability, and encompass a wide

variety of local shape structures. We also define a translation and scale invariant descriptor encoding the

geometric configuration of the segments within akAS, makingkAS easy to reuse in other frameworks,

for example as a replacement or addition to interest points.Software for detecting and describingkAS

is released onlear.inrialpes.fr/software.

We demonstrate the high performance ofkAS within a simple but powerful sliding-window object

detection scheme. Through extensive evaluations, involving eight diverse object classes and more than

1400 images, we 1) study the evolution of performance as the degree of feature complexityk varies

and determine the best degree; 2) show thatkAS substantially outperform interest points for detecting

shape-based classes; 3) compare our object detector to the recent, state-of-the-art system by Dalal and

Triggs [4].

Index Terms

Local features, shape descriptors, object detection

I. INTRODUCTION

In the last few years, the problem of recognizing object classes has received growing attention,

in both variants of whole image classification [3], [6], [12], [16], [17], and object localization [1],

[4], [18], [32]. The majority of existing methods use local image patches as basic features. While

these work well for some object classes, such as motorbikes and cars, other classes are defined

by their shape, and are therefore better represented bycontour features (e.g. horses, or mugs).

In spite of their substantial scope, only comparably few works [1], [15], [24], [30] have tackled

the class-level localization problem using contour features.

In this paper we present a family of local contour features, and their application for detecting

and localizing objects. These features are small groups ofconnected, approximately straight

contour segments, calledk adjacent segments, or kAS. The segments in akAS form a path

of length k through a network of contour segments covering the image [10]. Essentially, two

segments are connected in the network if they are adjacent onthe same edgel-chain, or if one
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is at the end of an edgel-chain directed towards the other segment (section III). The larger the

numberk of segments in akAS, the more complex the local shape structures it can capture.1AS

are just individual segments, while2AS includeL shapes, and3AS can formC, F andZ shapes

(figures 2, 3). Along with thekAS features, we propose a low dimensional, translation+scale

invariant descriptor designed to encode the geometric properties of the segments composing a

kAS. .

kAS have a several attractive properties. First, as bothkAS and their descriptors cover solely

short chains of connected segments, they have the ability tocover pure portions of an object

boundary, without including clutter edges which very oftenlie in the vicinity. Second, for a

sensible range ofk, kAS have intermediate complexity, which makes them detectable repeatably

while being informative at the same time. Third, connectedness is a natural grouping criterion

to form kAS. It avoids the need for defining a ‘grouping scale’ or a ‘grouping neighborhood’

for a segment, and effectively constrains the features to bechains of segments, which are more

likely to lie entirely on a boundary. Finally,kAS are complete local invariant features: each has

a well defined location and scale, an invariant descriptor, and is detected based only on local

properties of a single image. Hence, they can be reused effortlessly in a variety of recognition

and image matching frameworks as a replacement or addition to interest points (such as [1],

[6], [12], [18], [31]).

We demonstrate the power and flexibility ofkAS within an object detection framework

which brings together several successful ideas presented before. Following the ‘bag of features’

paradigm [3], [16], [35], we construct a codebook ofkAS types, each capturing a different kind

of local shape structure (figures 2 and 3). An image window is subdivided into tiles [4], [17]

and each is described by a separate bag ofkAS. In this fashion the window representation is

composed of several bags ofkAS spatially localized within the window. Adding this layerof

spatial organization improves the discriminative power compared to a standard orderless bag of

features over the entire window. We first train a classifier from example object and background

windows, and then localize previously unseen instances in test images via a multi-scale sliding-

window mechanism [4], [32] coupled with the classifier. Our method is rendered computationally

efficient by organizing all imagekAS in an Integral Histogram [25], which is a recently developed

datastructure supporting the rapid computation of multidimensional histograms.

During an extensive evaluation, involving eight diverse object classes and over 1400 images
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(section VI), we study several aspects ofkAS. First, we analyze the object detection performance

while varyingk, thereby shedding light on the relation between repeatability and informativeness

as k increases. Second, for eachk, we vary the resolution of the window tiling, allowing to

observe the trade-off between adding localization information and reducing tolerance to spatial

variations within the class. Interestingly, we find the optimal window tiling to relate to the

complexity of the features (k), with simpler features preferring finer tiling. Moreover,we thor-

oughly compare the performance ofkAS against interest points, and against the state-of-the-art

object detection technique by Dalal and Triggs [4]. Their work is particularly relevant because it

follows a similar detection framework (sliding-windows, tiles), but it applies different descriptors

to the window tiles (simpler histograms of gradient orientations). Finally, we experiment with

the application ofkAS with differentk at the same time, and with the combination of interest

points andkAS.

II. RELATED WORKS

In the following we first review object detection techniquesbased on contour features, for

which kAS offer an alternative, and then present works on the perceptual grouping of contours,

upon whichkAS build.

Contour features for object class detection:Selinger and Nelson [28] detectkey curves:

long segments of an edgel-chain bounded by two high curvature points. A key curve’s size and

orientation defines a square image patch, which is then described using all edgels falling within

it. These edge patches attempt to strike a winning trade-off: be local, and hence bring robustness

to occlusion and clutter, while also complex enough to be distinctive to some degree, enabling to

match individual features, and opening the door to computationally efficient indexing schemes.

However, for key curves lying on the object boundary, these patches will include nearby clutter

edgels, which corrupt their descriptors and makes them difficult to put in correspondence.

Selinger and Nelson’s recognition system was demonstratedin controlled laboratory con-

ditions, with clean images containing modest amounts of clutter, and mostly on the task of

recognizing specific objects. Jurie and Schmid [15] were among the first to propose local contour

features for the detection of objectclasses, and to test their system on real, cluttered images.

Their scale-invariant feature detector responds to circular arcs of edgels, which are described

by the spatial distribution of points in a thin annular neighborhood of the circle. This attempts
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to exclude clutter from the descriptor by avoiding encodingpoints inside the circle. As one

limitation, circular arcs only cover a fairly restricted class of shapes.

In their very recent works, Shotton et al. [30] and Opelt et al. [24] independently propose

to construct contour fragments tailored to a specific class.The idea is to explicitly construct

fragments to occur frequently in positive training images of a class, while seldom in negative

ones. Both works employ boosting to select fragments from a large pool of candidates, but

differ in the way these candidates are constructed (random rectangles sampled from training

segmentation masks in [30], whereas [24] grows fragments starting from random contour points,

and optimizes their length so as to maximize Chamfer matching score and accuracy of object

centroid prediction in validation images). Although they can be more discriminative for the

learned class, these kind of fragments are harder to reuse within other recognition or image

matching frameworks, compared to generic features which depend only on local properties of

individual images. Moreover, the fragments of [30], [24] are not scale-invariant, and those of [30]

need segmented training images to be learned, which furtherlimits their applicability.

Berg et al. [1] offer an alternative view on contour-based object recognition, casting the

problem as deformable shape matching. Instead of counting on sophisticated local features,

they simply take individual edgels (with a Geometric Blur neighborhood descriptor), and put

them in correspondence between pairs of images with a powerful non-rigid point matching

algorithm based on Integer Quadratic Programming. The method obtains impressive results on

the challenging Caltech101 database. One disadvantage is that it reduces recognition to matching

pairs of training and test images, and does not infer from thetraining images a single model

summarizing common properties shared by different instances of the class. Besides, it would be

interesting to injectkAS in their framework, as replacement for individual edgels, and observe

whether this would lead to improved performance.

Dalal and Triggs [4] considerably advanced the state-of-the art in human detection, by design-

ing the Histogram of Oriented Gradients (HoG) descriptor, and carefully optimizing it over a large

dataset containing thousands of humans in unconstrained poses. In their recognition framework

image windows are subdivided in tiles and each one is described by a HoG. A simple sliding-

window mechanism then allows to localize objects. Photometric normalization within multiple

overlapping blocks of tiles makes the method particularly robust to lighting variations. Notice

that HoG descriptors are only defined within a given subwindow, they don’t have a concept of

April 9, 2007 DRAFT



5

location and scale. Hence, they need to be associated to someexternal feature detector before

being applicable within frameworks not based on sliding-windows.

Perceptual grouping:Perceptual grouping of contours has a long history in computer

vision [7], [14], [19], [20], [26], [27], [29], [33]. The idea behind these works is that pieces

of contour related by someperceptually salientproperty are more likely to belong to the

same object. The perceptual properties exploited include convexity [14], co-circularity [33],

connectedness [27], [29], parallelism [20], and proximity[20].

One major area of application for perceptual grouping is image segmentation, in which the

task is to group together all elements belonging to individual, unspecified objects [7], [14], [33].

Moreover, perceptual grouping played an important role in the recognition of specific objects

under varying viewpoint, particularly in the 80s and 90s. The focus was mainly on planar

objects [27] and polyhedra [13], [20].

ThekAS features are motivated by the same general intuitions of earlier perceptual grouping

works, and are most related to the ideas of Rothwell [26], [27], who advocated for the importance

of connectedness and topological relations. We believe that connectedness is a fundamental,

powerful driving force which is currently still underexploited in computer vision. In this paper,

connectedness is brought to the domain of objectclass detection, and is exploited to define

modern local invariant features: image elements with a welldefined location, a scale and an

invariant descriptor, ready to be used in many recent matching and recognition schemes.

III. k ADJACENT SEGMENTS(kAS)

A. Contour Segment Network

We summarize here the technique of [10] to build thecontour segment network(CSN) of the

image, on which we will detect ourkAS features. Edgels are detected by the excellent Berkeley

natural boundary detector [22], and then chained. The resulting edgel-chains are linked at their

discontinuities, i.e. two edgel-chainsc1 and c2 are linked if c2 passes near an endpoint ofc1,

and if the ending ofc1 is directed towardsc2 (figure 1b). Informally, ifc1 were extended a bit,

it would meetc2. These links are useful in two ways: they record that a contour might continue

over the gap between two edgel-chains, and allow to capture junctions (L-junctions, T-junctions,

and higher order junctions involving several edgel-chains).
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Fig. 1. a) An example image, with three2AS and the underlying CSN connections (arrows). Notice how one

2AS lies entirely on the boundary of a mug. b) Three edgel-chains, with five segments and their inter-connections

(arrows) in the network. c) Two detected2AS (B, C) and (D, E). The order of each segment in the descriptor is

marked next to it (see section III-B). Notice that(A, B), (A, C), (C, E) are also detected, though not displayed

because they overlap with(B, C) and (D, E). d) 3AS(C, A, E). e) 4AS(E, B, C, D). f) ri vectors involved in the

description of the4AS in d).

The edgel-chains are partitioned into roughly straight contour segments. The idea is to organize

these segments in a network, by connecting them along the edgel-chains, and across their links

(figures 1a and 1c). Since every edgel-chain can be linked to several others, the CSN is a complex

branching structure. Intuitively, two segments are connected if the edgels provide evidence that

they might be adjacent along some object contour, even when they are physically separated by a

(small) gap, or when forming a junction. The key property of the CSN is to include paths going

along the contours of the imaged objects [10], which motivateskAS features.

B. DetectingkAS

The principal contribution of this paper is to propose a family of local features: paths of length

k through the CSN. More formally, a group ofk segments is akAS iff they can be ordered so
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that thei-th segment is connected in the CSN to the(i + 1)-th one, fori ∈ {1, k − 1}. Hence

we call themk adjacent segments, and refer to their lengthk as degree. As k grows,kAS can

form more and more complex local shape structures: individual segments fork = 1; L shapes

and 2-segmentT shapes fork = 2; C, Y, F, Z shapes, 3-segmentT shapes, and triangles for

k = 3 (figures 2, 3). The dimensionality ofkAS descriptors also grows withk (next section),

and we treatkAS of different degrees as different feature types, all united in one family by a

shared crucial property: to be sequences ofconnectedsegments.

Connectedness provides a natural criterion for grouping segments intokAS. It avoids arbitrary

definitions of the neighborhood of a segment, and constrainskAS to be chains of segments.

Compared to the broader class of groups of ‘nearby’ segments, they have higher chances to lie

entirely on a portion of the object boundary. In constrast, the features of [15] include disconnected

sets of edgels which happen to be located along part of a circle. The key curves of [28] are

based on individual edgel-chains, and hence are less robustly detected in real images thankAS,

which bridge gaps between edgel-chains.

kAS can be detected by a depth-first search started from every segment, followed by the

elimination of equivalent paths (two different paths involving the same segments constitute the

samekAS). This is computationally cheap for the small values ofk corresponding to local

features (aboutk ≤ 4). We disregard higher values ofk because they result in large-scale

structures, too specific to a particular image or object instance, and in an excessive number of

detected features (several thousands already fork = 5). More precisely, the number ofkAS in

an image containingn segments grows quickly withk, as can be understood by the following

observations. On average, each segment is connected to two to three others, becauseT and

higher-orders junctions occur less frequently than simple1-to-1 connections. As a consequence,

ask grows, the number of paths of lengthk passing through a given branching point increases

quickly. In practice, while the average number of2AS is only about1.5n, the number of3AS

is 4n, that of 4AS is 10n, and there are more than20n 5AS !

As k increases, features increase in complexity. On the one hand, they become more and

more informative, while on the other they gradually get lessand less repeatable across different

images and object instances. Additionally, the number of non-boundary features (or mixed

features covering partly boundary and partly clutter) alsogrows withk, actually faster than pure

boundary ones, leaving a lower signal-to-noise ratio. Hence, for rather low values ofk, kAS
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have an attractive intermediate complexity, offering a convenient compromise: simple enough

to be detected repeatably, yet complex enough to capture informative local object structures. In

section VI, we confirm these intuitions experimentally, anddetermine that2AS perform best.

C. DescribingkAS

In order to compare differentkAS, we need a numerical descriptor. As first step, it is important

to order thekAS segments{si}i=1..k in a repeatable manner, so that similarkAS have the same

order. We select as first segment the one with midpoint closest to the centroid of all midpoints

{mi = (xi, yi)}i=1..k (when several segments have similar distances to the centroid, we pick the

first one according to the order defined below). As we will see in the descriptor below, this

centermost segment is the natural choice as reference pointfor measuring the relative location

of the other segments. The remaining segments take up positions2 throughk, and are ordered

from left to right, according to their midpoint. If two segments si, sj have similarx coordinate,

i.e. |xi − xj | ≤ 0.2
√

(xi − xj)2 + (yi − yj)2, then they are ordered from top to bottom. Note

that this order is stable, as no two segments can have similarlocation in bothx andy. Example

orderings can be seen in figure 1c-e.

Once the order established, akAS is a listP = (s1, s2, . . . , sk) of segments. Letri = (rx
i , r

y
i )

be the vector going from the midpoint ofs1 to the midpoint ofsi. Furthermore, letθi andli = ‖si‖

be the orientation and length ofsi respectively. The descriptor ofP is composed of4k−2 values1

(figure 1f):
(

rx
2

Nd

,
ry
2

Nd

, . . . ,
rx
k

Nd

,
ry
k

Nd

, θ1, . . . , θk,
l1
Nd

, . . . ,
lk
Nd

)

(1)

The distanceNd between the two farthest midpoints is used as normalizationfactor, making the

descriptor scale-invariant (hence, both thekAS features and their descriptors are scale-invariant).

While segment lengths are known to be often inaccurate, and each is based only on part of the

kAS, the distance between the farthest midpoints makes a better choice for a reliable estimate

of the kAS scale. In addition to akAS scale, we also define itslocation to be the geometric

center of the midpoints of its segments. Exact definitions ofscale and location are useful when

using kAS in higher level algorithms, such as in our sliding-windowobject detection scheme

(next sections).

1The casek = 1 is an exception. The descriptor is composed only ofθ1, and the scale of1AS is defined asl1.
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The proposed descriptor considers the segments as completely straight, so as to capture only

the relevant information of the geometric configuration they form, and not the unreliable details

of the weak curvature along them. Moreover, we stress that only the k segments are described,

and not other nearby edgels. In this fashion, we can cleanly encode a portion of an object

boundary, without including inner/outer clutter (unlike [28]).

With its 4k−2 dimensions, the descriptor is also very compact. Indeed, since the intrinsic di-

mensionality ofk straight segments is4k, and the dimensionality of the desired scale+translation

invariance space is3, the lowest dimensionality of a complete descriptor is4k− 3. The only re-

dundant degree of freedom we encode is embedded within the relative location vectors{ri}i=2..k.

Factoring it out would require representing them in a more complicated way2.

Interestingly, thekAS descriptor is of different nature than conventional local textured feature

descriptors. While the latter encode the appearance of the pixel patch covered by the feature,

the kAS descriptor encodes the geometric properties of the segments (orientation and length),

and of their spatial arrangement ({ri}i=2..k).

If desired, the descriptor can be easily made rotation-invariant, at the cost of some distinctive-

ness. In addition, fork ≥ 3 one can design descriptors with even higher degrees of invariance

(affine, projective) to be used, e.g. for wide-baseline stereo [31], although we do not investigate

this possibility further in this paper.

The orientation and lengths of all segments in akAS can be reconstructed from thekAS

descriptor and scale. In addition, the exact segment locations can be reconstructed by storing

also the difference between thekAS’ location and the midpoint ofs1. This might be useful, e.g.

for synthesizingkAS for visualization.

D. ComparingkAS

We define here a measureD(a, b) of the dissimilarity between twokAS P a, P b of the same

complexityk

D(a, b) = wr

k
∑

i=2

‖ra
i − r

b
i‖ + wθ

k
∑

i=1

Dθ

(

θa
i , θb

i

)

+
k

∑

i=1

∣

∣log
(

lai /lbi
)∣

∣ (2)

2One way of designing a minimal descriptor is to chooseNd = l1 as scale normalization factor, and removingl1 from the

descriptor. However, the length of a segment is often inaccurately determined. Moreover, basing the scale normalization on a

single segment is a less stable choice for the overall scale of the kAS than the distance between the farthest midpoints (which

spans the wholekAS).
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where the first term is the difference in the relative locations of the segments,Dθ ∈ [0, π/2]

measures the difference between segment orientations, andthe last summation accounts for the

difference in lengths. As segment lengths are often inaccurate, we give higher weight to the two

other terms of the comparison measure: in all our experiments wr = 4, wθ = 2. All ri and all

lengths are normalized as in equation (1).

Fig. 2. The 35 most frequent2AS types from the codebook we use in all experiments, constructed from 10 outdoor

images (5 positive and 5 negative images from the INRIA horses dataset, section VI). For each cluster, we display

the single2AS with the lowest sum of dissimilarities to all others in thecluster.

IV. CONSTRUCTING THEkAS CODEBOOK

In the previous section we have introduced thekAS features. Before using them for object

class detection (next section), we construct a codebook (or‘visual vocabulary’ [3]) of feature

types by clustering a set of trainingkAS according to their descriptors (a different codebook

is generated for eachk). In addition to revealing the frequency at which feature types occur,

the codebook is convenient because it allows to avoid explicitly comparing every test image

features to every feature from the training images. Instead, comparison to much fewer feature
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types suffice. Codebook representations have become popular through several recent works [3],

[6], [16], [17], [18],

For clustering we use a clique-partitioning (CP) approach.Let G be a complete graph whose

nodes are the trainingkAS, and arcs are weighted byd − D(a, b). We partitionG into cliques

so as to maximize the sum of intra-clique weights, using the clique-partitioning approximation

algorithm of [9]. Each resulting clique is a cluster of similar kAS.

The choice of CP instead of K-means, commonly used for building visual codebooks, is

appropriate in our context where the dissimilarity measureD makes the descriptor space circular

(Dθ terms). Moreover, the parameterd is easy to set, because it represents a rough indication of

the acceptable intra-cluster dissimilarity (akin to the kernel-width in mean-shift clustering [16]).

K-means instead requires the number of clusters as input, which is unknown apriori and varies

from dataset to dataset. Several experiments indicate thatthe exact choice ofd has little impact

on the overall system performance (section VI).

For each cluster, we select as a representative thekAS with the lowest sum of dissimilarities

to all others (i.e. the one closest to the cluster center). The final codebookC is the collection of

these representativekAS, thekAS types.

When constructing codebooks from different image sets, we observed that thekAS types

occurring with a significant frequency were very similar. This confirms the intuition thatkAS

are generic features (certainly for the low values ofk we consider). Hence, for eachk we build a

single codebook from 10 images and use it for all object classes in our experiments (section VI).

Figure 2 shows the 35 most frequent types in the2AS codebook. As we can see, they have quite

natural shapes: two collinear segments,L structures, and small T-junctions. Figure 3 displays the

35 most frequent3AS types. They form more complex structures than2AS: C, Y, F, Z shapes,

largerT shapes, and triangles.

V. OBJECT CLASS DETECTION

In this section we present a scheme for detecting objects based on kAS. We first train a

classifier to distinguish windows covering objects of a certain class from any other window, and

then apply it for localizing novel instances in previously unseen test images, based on a sliding

window mechanism. As in many of the existing approaches, we build a detector for a single

viewpoint.
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Fig. 3. The 35 most frequent3AS from our codebook.

A. Training

The training data includes positive images, containing instances of the class annotated by a

bounding-box (figure 4), and negative images.

Window descriptor.:To produce a useful classifier, we need a numerical window descriptor

which is accurate enough to separate positive examples fromnegative, yet flexible enough to

accommodate for class variability. When these goals are met, test windows on novel object

instances will have descriptors closer to the positive training set than to the negative, and the

classifier can succeed.

A straightforward option would be thekAS histogram, counting how manykAS of each type

there are inside the window, which is a simple bag of featuresrepresentation. However, we can

obtain better discriminative power by also encoding the spatial layout of thekAS in the window

descriptor. We subdivide each window into a set oftilesB, and compute a separatekAS histogram

for each tile (figure 4). The concatenation of all histogramsyields the|B| · |C| - dimensional

window descriptor (where|C| is the size of the codebook).
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Fig. 4. A positive training example, with bounding-box, tiling, and a fewkAS superimposed (k = 2, T = 4).

The tiling patternB automatically adapts to the training data as follows. First, the system

computes the mean dimensions of the positive training windows (width Mw and heightMh).

Next, it allocates a total ofT tiles, choosing the number of tiles along each dimension so as to

make them as square as possible:round(
√

TMw/Mh) along the width, andround(
√

TMh/Mw)

along the height. The parameterT = |B| controls the resolution of the tiling.Mw, Mh will later

be used again when searching for objects in new test images, to set the aspect-ratio of the sliding

window to the one best fitting the training examples.

When computing thekAS histograms, rather than assigning eachkAS to the single closest

type, it is soft-assigned to all types within dissimilarityd (same as in section IV). More precisely,

eachkAS P distributes a total sumPs among the types it is assigned to, in inverse proportions to

the dissimilarity to the types’ representativekAS. This makes the representation of a window less

sensitive to the exact shape of thekAS it contains, and to the exact codebook types. This leads

to smoother models, which better generalize to novel objectinstances, and to a more accurate,

stable evaluation of test image windows (next subsection).In addition to akAS’ shape, we also

consider itsrelevance: the total contribution ofkAS P to a histogram is the average strength

of its edgelsPs ∈ [0, 1]. We experimentally observed a considerable improvement over treating

edgels as binary features (as also noticed by [4], [10]).

Our window descriptor is a valuable choice for object class detection. It is distinctive, because

it recordswhich local shape structures (kAS) it contains, and roughlywherethey appear. At the

same time, it is flexible thanks to the coarse tiling, and the continuous assignment ofkAS to
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types. Much of the power of our representation comes from organizing the image edges over

two levels of spatial arrangements: contour segments within thekAS, and then thekAS within

the overall object.

As the tiling resolutionT increases, the spatial localization ofkAS grows stronger, resulting

in a more informative descriptor, but also a more rigid one, accommodating for less spatial

variability of the class. Hence, there should be some optimal T , bringing the best trade-off

between accuracy of localization information and tolerance to intra-class variation. Interestingly,

our experiments show the optimalT to decrease with increasingk (section VI). With k = 1

the features are so uninformative that the window descriptor needs to be augmented with fine-

grained localization to be distinctive. Whilek grows,kAS become more complex, and the added

value of localization gradually diminishes. In addition, we found the optimalT for interest points

described by SIFT to be lower than that of anykAS we explored (k ≤ 4). Since SIFT descriptors

of an image patch are richer features (and have a descriptor of much higher dimensionality), this

further confirms the above subtle relation between feature complexity and localization resolution.

SVM classifier training.:The window descriptor is computed for each positive training

example, and for a number of negative examples collected by sampling windows of sizeMw×Mh

over each negative training image. In our experiments, windows are sampled every50 pixels

horizontally and vertically, typically resulting in thousands of negative windows. All window

descriptors finally used to train a two-class linear SVM. Since negative windows are much more

numerous, the positive window descriptors are replicated to correct the imbalance.

Figures 5 and 6 show a fewkAS automatically selected by the SVM for a few classes (i.e.

the ‘kAS type + tile’ combinations corresponding to the highest weighted window descriptor

dimensions). Among the large number ofkAS composing each example, several lie on the object

boundary, and are picked up by the SVM as local shape structures common to multiple training

examples.

Using multiplekAS degrees at once.:Our framework includes the possibility of using

multiple degrees ofkAS at the same time (e.g.2AS and3AS). In this case the different sets of

kAS are treated separately: there is a codebook and tiling resolution for each value ofk. Window

descriptors obtained for differentk are then concatenated to give a large descriptor which is fed

to the SVM.

Using kAS of different degrees at the same time is an interesting option. Some characteristic
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Fig. 5. One of the most important window descriptor dimensions, according to SVM training (k = 2). Each column

shows a few training images for a class, along with one of the ‘kAS type + tile’ combinations which are given the

highest weight by the SVM.

object elements might be extremely simple (like the straight line on top of a comb, for which

k = 1 is good), while others might be more sophisticated local structures (like aC-shaped mug

handle, for whichk = 3 is good). Hence, using multiple degrees simultaneously offers the SVM

a larger, more diverse pool of parts to choose from.

B. Testing

Having trained a linear SVM window classifier, we can detect and localize novel object

instances in a test image using a simple sliding-window mechanism [4], [32]. We slide a window
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Fig. 6. One of the descriptor dimensions which are given the highestweight by the SVM (one for each of three

classes, withk = 3).

of aspect-ratioMw/Mh over the image at multiple scales3 , compute the window descriptor at

each location/scale and evaluate it with the SVM. This provides a 3D response map, whose

local maxima give candidate object detections. The final setof detections are obtained after a

last polishing: if two candidate detections overlap considerably, we filter out the weaker one.

This sliding window technique requires computing the histogram ofkAS types within a large

number of image windows (tiles). We achieve this efficientlyby using an Integral Histogram [25]

representation (IH). After building an IH where each dimension corresponds to akAS type, it is

possible to compute the histogram ofkAS types inanywindow in 3|C| operations, independently

of the total number ofkAS in the image and of the number ofkAS in the window. The cost

3This is implemented simply by resizing the window to containa varying portion of the image. It is not necessary to rescale

the image, because thekAS features themselves automatically adapt to image structures of different scales. Although thekAS

featuresare scale-invariant, we need to search over differentwindowsizes to properly detect the object whose size in the image

is unknown. In all our experiments the sliding step is10 pixels is each direction, while the scale step is2
1

4 . We consider all

scale levels where the window’s longer side is more than50 pixels and still fits in the image.
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of building thekAS IH is low 4. Moreover, it is done only once for an image (as we adopt a

single codebook for eachk). A substantial share of the cost is computing the soft-assignments

of the imagekAS to types, which must be done in any case.

Our object detection procedure is very fast. After preprocessing (from edge detection to the

kAS IH), it takes about1 second to detect all instances in our C++ implementation on astandard

workstation. Preprocessing takes longer, due the accurate, but slow, Berkeley edge detector (a

few minutes). However, it only needs to be done once, so the cost is amortized when searching

for several classes, or when usingkAS of multiple degrees at the same time.

The main reason for preferring the Berkeley detector over the traditional Canny detector, is

the inclusion of texture and color segmentation cues, in addition to brightness. Moreover, it

treats edge detection as a pixel classification problem and trains a classifier from natural images

with human-annotated boundaries. This results in less clutter edgels inside textured areas, and

longer, smoother boundaries around textured objects (e.g.giraffes). Using this detector instead

of Canny in our framework trades better object detection performance for higher preprocessing

time. An exciting alternative is the very fast edge detectorrecently published by Dollar et

al. [5]. It performs as well as the Berkeley detector while taking mere seconds for an image, but

is unfortunately not yet publicly available at the time of this writing. The release of this edge

detector will enable our object detector to process an imagefrom scratch in a few seconds.

VI. EXPERIMENTAL EVALUATIONS

A. Datasets and protocol

We present extensive experimental evaluations, involvingseveral existing datasets covering 8

diverse shape-based object classes, for a total of more than1400 test images. Here we briefly

introduce these datasets, while the following sections report the experiments.

INRIA horses [15]:This challenging dataset consists of 170 images containingone or more

horses, seen from the side, and 170 images without horses. Horses appear at several scales, and

against cluttered backgrounds (figure 8). We employ the first50 positive and50 negative images

for training, and the remaining120 + 120 images for testing.

4It is O(|C|W×H

r2 + N |C|k), for an image of widthW and heightH , containingN kAS. r is the spatial resolution of the

histogram, withr = 1 being the highest possible. In all our experimentr = 10. O(N |C|k) is the cost of soft-assigning the

imagekAS to the codebook types.
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TABLE I

Number of positive+negative training and testing images for all datasets.

INRIA Anchor Chair Cup Applelogo Bottle Giraffe Mug Swan Shotton

Train 50+50 21+21 31+31 29+29 20+20 24+24 44+44 24+24 16+16 50+50

Test 120+120 21+21 31+31 28+28 20+215 24+207 43+167 24+207 16+223 277+277

This dataset plays a special role in our evaluations, as we optimize the two free parameters

of our detection system on it (the window tiling resolutionT and the clustering thresholdd).

The optimal setting established on this dataset is then usedon all others. No tuning is applied

to any other dataset, so the exact same system is run on all datasets.

Weizmann-Shotton horses [30]:Shotton et al. [30] propose another horse detection dataset,

composed of327 positive images containing exactly one horse each, and327 negative images.

The positive images are derived from a dataset previously released by the Weizmann Institute

for evaluating image segmentation algorithms [2]. In orderto carry out proper comparisons,

we follow the protocol of [30] strictly by using their scale-normalized images, and running our

system at a single scale by sliding a window of fixed dimensions Mw × Mh. 5. As in [30], the

first 50 positive and50 negative images are used for training, the other277 + 277 for testing

(figure 8).

ETHZ shape classes [10]:This dataset features five diverse classes (bottles, swans,mugs,

giraffes, apple logos), containing a total of 255 images collected from the web by Ferrari et

al. [10]. It is the most challenging dataset we report on, as the objects appear in a wide range of

scales, there are considerable intra-class shape variations, and many images are severely cluttered,

with the objects comprising only a fraction of it (figure 10).

We train one detector per class, using the first half of the available positive images (there are

40 for apple-logos,48 for bottles,87 for giraffes,48 for mugs, and32 for swans). As negative

training images, an equal number is taken, with each of the other 4 classes contributing1/4

of them. For example, the training images for the bottle detector are24 bottle images, plus6

5In all other experiments the system is run at multiple scalesas detailed in section V-B.
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images from each of the other classes, totaling24 negative training images. All other images

are used for testing, so each class is searched for in images from everyclass.

Caltech 101 [8]: The last source of data we consider are three shape-based classes from

the well-known Caltech-101 database [8]: anchors, chairs,and cups (42, 62, 57 positive images

respectively). Although most images contain only limited clutter, the dataset offers substantial

intra-class variation (figure 10). As for the ETHZ shape classes, we evaluate one class at a time.

We use the first half of the positive images for training, as well as an equal number of negative

images from the Caltech-101 background set. The test set consists of the remaining positive

images, plus the same number of negative ones.

Evaluation criterion: Performance is evaluated by plotting detection-rate (DR) versus the

incidence of false-positives (false-positives per image,FPPI) while varying the detection thresh-

old. We prefer these DR/FPPI plots over precision/recall ones for several reasons. FPPI has a

clearer interpretation than precision, which is entangledwith detection-rate. Moreover, FPPI is

independent of the number of negative test images, and DR/FPPI plots are easier to read, because

they increase monotonically.

Comparisons between different methods is mainly based on two points on the DR/FPPI plot,

at 0.3 and0.4 FPPI. These are especially relevant because they correspond to a rather low, but

not extremely low, FP rate (around 1 FP every 3 images). Only on the Shotton horses dataset

we report precision/recall plots, and compare methods based on equal-error rates, because [30]

published their results in that form6. Hence, average detection-rates at a particular FPPI rate

refer to means computed over 9 datasets, excluding Shotton horses.

For all datasets and methods, a detection is counted as correct if its bounding-box overlaps

more than 20% with the ground-truth bounding-box,and vice-versa. Any other detection is

counted as a false-positive. This is the criterion used in [10], which provides 5 of the 10 con-

sidered datasets. In section VI-G we also report performance under the PASCAL criterion [34].

B. Degree of complexity ofkAS

Impact of tiling and clustering threshold:Before comparing the performance ofkAS of

different degrees of complexity on all 10 datasets, we first optimize T, d for eachk separately

6Note that our criterion for a correct detection is somewhat different from that of [30]. This has only a minor influence on

the results, as we discuss in section VI-G
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Fig. 7. Impact of window tiling resolutionT at the optimal clustering thresholdd. The optimum isT = 90 for

1AS,T = 30 for 2AS, andT = 20 for 3AS and4AS.

on the INRIA horses dataset (k ∈ {1, 2, 3, 4}). For several pairs ofT, d, we reprocess the dataset

and obtain a DR/FPPI curve. Figure 7 shows the impact of the tiling resolution, while keeping

d fixed at the optimum. From the plots it clearly appears that subdividing the window into tiles

makes a substantial difference for allk. Compared to a single bag-of-feature representation (no

tiles), at 0.3 FPPI the optimal tiling brings improvements ranging from 20% (k = 1) to 13%

(k = 4) detection-rate.

It is intriguing to observe that the optimal value ofT decreases with increasingk. This

confirms experimentally the subtle relation discussed in section V-A: as the features grow more

complex and hence informative, a coarser spatial localization is sufficient, while at the same

time a lowerT yields better tolerance to intra-class variations. Individual segments benefit most

from a very fine subdivision of90 tiles, whereas the saturation point for localization information

is already reached at20 tiles for 3AS. Moreover, also the gain brought by tiling reduces as the

features become more complex, because the added value of localization gradually diminishes (at

0.3 FPPI, it is of 20%, 16%, 16%, 13% detection-rate for k=1,2,3,4 respectively).

Varying the clustering thresholdd has a smaller impact. Nevertheless, we observe the number
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Fig. 8. Top row: detections at 0.4 FPPI for the INRIA horses dataset.The rightmost image shows a missed detection

and a false-positive. Bottom: detections at the equal-error rate for the Shotton horses dataset.

of clusters corresponding to the optimald to increase withk (4, 127, 255, 397 for k = 1, 2, 3, 4

respectively). This makes sense, because as the features becomes more complex, they can assume

a wider variety of shapes. In particular, just4 clusters are necessary fork = 1, corresponding

roughly to four orientations separated by 45 degrees.

Following these observations, all further experiments areperformed with the optimal param-

etersT, d for everyk.

Degreek: We applied our object detection scheme to all 10 datasets, for the four degrees

of kAS complexity we explore (k ∈ {1, 2, 3, 4}). Although there is no single degree producing

the best results on all datasets,2AS perform best overall (figure 9). The2AS plot is above all

others on 5 datasets, and its average detection-rate at0.3 FPPI is 76.7%, versus 69.4%, 64.1%,

56.5% of1AS, 3AS, 4AS respectively (table III). Hence, we conclude that 2AS arethekAS with

the best intermediate complexity, offering the optimal compromise between being informative,

repeatable, and generating a good ratio of pure boundary features versus mixed/clutter features

(as discussed in subsection III-B). In the remainder of the paper,2AS is the referencekAS for

comparison to other methods, and will be referred to asPAS (pairs of adjacent segments).

Table III shows that by rankingkAS according to average detection-rate at0.3, or 0.4 FPPI,

the following order appears:2AS > 1AS > 3AS > 4AS. This ranking is well confirmed by the
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Fig. 9. Performance ofkAS, for varying degrees of complexityk. Top row: the two horses datasets: INRIA horses

and Shotton horses. Second row: the three classes from Caltech 101. Third row: the five ETHZ shape classes. All

performance comparison figures in the paper follow this layout.

overall relative heights of the DR/FPPI plots (clearest on mugs, applelogos). Surprisingly, the

second bestkAS are individual segments. Much of the reason is in the greatimpact of tiling on

1AS, where very fine-grained localization compensates for the feature’s lack of distinctiveness

(figure 7). Nevertheless,PAS do better, confirming it’s advantageous to consider groups of
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connected segments as features for object detection. Moreover, PAS, as well askAS of higher

degrees, are more reusable in other systems, where the discriminative power of individual features

is more important, or where a feature correspondence must generate a higher order transformation

than just translation (e.g. recognition systems using feature transformations [12], [18], or for

matching features between two images [23], [31]).

In absolute performance terms,PAS work consistently well on all classes (detection-rates

between 79% and 88% at 0.4 FPPI), with the exception of swans.This is especially remarkable

when considering the low number of positive training imagesused in many datasets (e.g. 24 for

bottles, see table I).PAS achieve particularly high performance on Shotton-horses,with 91.7%

precision-recall equal error-rate , in line with the state-of-the-art approach [30] (92.1%) 7. 1AS

does even better, with93.5%. Moreover, in contrast to their work, our method does not need

any segmented training image (only bounding-boxes), and can detect objects at multiple scales.

The striking performance of1AS on this dataset (the only one where they beatPAS) might be

explained by the very low resolution of the images (horses are about 100 pixel wide), which

favors simpler features.

We can also draw a loose comparison to [15], on the INRIA horsedataset. Numerically, the

performance of PAS is close to their work (e.g. PAS do 70.0% at0.066 FPPI, which corresponds

to 86.1% precision, while [15] reports 70.4% recall at 87.7%precision). However, an accurate

comparison is not possible, because the authors of [15] havelost details of the particular test

set on which results were reported. We adopt here the officialrelease of the dataset, which

should come quite close. As a reference, we also mention that[10] obtains a similar level of

performance as PAS on the ETHZ shape classes, although the two methods are not directly

comparable since [10] inputs hand-drawings as models.

In order to further strengthen our understanding of PAS performance, and properly set it in the

context of alternative methods, in the following we performan in-depth comparison to interest

points, used within our object detection framework, and to the system of Dalal and Triggs [4].

7As shown in section VI-G, this result holds also under stricter criteria for considering a detection as correct.
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Fig. 10. All detections at 0.4 FPPI on some example images. Top 3 rows:ETHZ shape classes. Bottom row: Caltech

101.

C. Comparison to interest points

Interest point (IP) detectors respond to local pixel patterns with certain special properties (e.g.

cornerness) and produce local features widely used for object class detection [6], [12], [18]. IP

descriptors capture the appearance of the image patches surrounding them. In order to support

the claim thatkAS are better suited to represent shape-based classes, we replace them by IPs

in our object detection framework, and reprocess all 10 datasets. We experiment with three of
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Fig. 11. OptimizingT with the number of clusters fixed at140 (which is the optimum in the tested range100−300).

the most widespread scale-invariant IPs: Harris-Laplace [23], LoG [21], and DoG [21]. All IPs

are described by the extremely popular 128-dimensional SIFT [21].

Codebooks, tiling, and number of clusters:The number of IP per image is about1000 to

2000, larger than that ofkAS (for k ≤ 4). In addition, we want to experiment with IP codebooks

built from more than the 10 images used forkAS (details below). As a result, the total number of

IPs to be clustered can grow beyond what CP can handle. Since CP builds a pairwise dissimilarity

matrix, memory consumption limits the number of features toabout 15000, while in several cases

there are more than 50000 IPs. Hence, we build IP codebooks using k-means. Notice how the

CP parameterd is now replaced by explicitly providing the number of clusters.

As done before forkAS, we optimize the number of tiles and of codebook clusters on INRIA

horses (figure 11). The selected optimalT is 10, which confirms the trend observed onkAS:

the richer the feature, the lower the value. Figure 11 shows the evaluation on Harris-Laplace,

but similar optimal values are obtained for DoG or LoG.

The rationale behind using a singlekAS codebook from a small set of 10 images is that the

features are simple and generic enough. However, this mightnot hold for IPs. Since they are based

on texture, and the SIFT descriptor captures an entire imagepatch, quite different codebooks

might result from different image sets (e.g. giraffes versus horses). Therefore, we experimented

with three kinds of codebooks, on the five ETHZ shape classes.The first is computed from the

same 10 images used forkAS, the second is specific to a single class (computed from thesame

images used to train the SVM), and the last is based on images from all five classes (computed

from all images used to train all 5 SVMs). From the results we obtained, it indeed appears that

class-specific IP codebooks perform moderately better on average. Hence, all experiments below
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Fig. 12. Performance of interest points compared to PAS.

are performed with class-specific codebooks.

Performance: The plots in figure 12 and the average detection-rates in table III clearly

show that PAS substantially outperform all tested IPs. Onlyon two datasets IPs achieve a

moderately better performance than PAS (Harris-Laplace onswans, and DoG on cups). Besides,

we notice IP’s uneven performance across different classes(compare DoG on cups and bottles).

The performance of PAS instead, is quite stable. Finally, it’s worth noting that on giraffes, for
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which both shapeand texture are characteristic, the results of PAS and the best IP are very close

(especially in the range 0.3-0.4 FPPI).

Beyond PAS, one can comparekAS in general to IPs. In terms of average detection-rate at

0.3 − 0.4 FPPI, all exploredkAS do considerably better than any of the tested IPs (table III).

Only the performance levels of4AS and Harris-Laplace are similar.

Inspecting the data, it is also possible to rank features among IPs. Although no single one

works best on all datasets, on average Harris-Laplace stands out, followed by DoG and LoG,

which are at about the same level (table III).

In conclusion, these experiments confirm thatkAS are more appropriate features than IPs for

shape-based classes.

D. Combining multiplekAS degrees

Even though PAS are better thankAS of other degrees on most datasets,1AS and3AS win

on Shotton horses and anchors respectively. This suggests that using all three1AS/2AS/3AS

simultaneously might give an even better detector.

As explained in section V, we integratekAS of multiple degrees by concatenating window

descriptors computed separately for eachk, and then training a single SVM on them. Each

degree uses its own codebook and optimal tiling resolution.In this fashion, the SVM can choose

from a very large pool of different local shape structures and tiling combinations.

The results can be seen in table II. For most datasets, performance is very similar to PAS. On

Shotton horses instead,{123}AS achieves an excellent94.2% precision-recall equal-error rate,

which is better than any of1AS, 2AS, or 3AS. On swans however, we register a considerable

performance drop wrt to PAS (from 64.7% down to 47.1% at 0.3 FPPI). Moreover, the high

performance of3AS on anchors (90.5% at 0.3 FPPI) is not reproduced by{123}AS (76.2% at

0.3 FPPI).

Although it seems surprising that adding features can lowerperformance, this could be due to

overfit. Indeed, the dimensionality of the combined window descriptor is much higher than that

of a singlekAS degree, while the number of training examples remains thesame. To corroborate

this, notice how the performance drops occur on the datasetswith the fewest training examples

(swans, 2x16 training examples, and anchors, 2x21 examples), while the largest improvement

happens on the dataset with most examples (Shotton horses, 2x50 examples, see table I). Hence,
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although in our experiment{123}AS performs on average slightly below PAS (table III), they

remain a promising option for datasets with many training images.

E. Combining PAS and Harris-Laplace

Following the approach as in the previous subsection, we have combined PAS and Harris-

Laplace, as they are the best members of their respective feature families. This seems an

exciting possibility, because PAS and Harris-Laplace exploit complementaryimage properties

(contour and texture). Hence, the hope is to obtain a more generic object detector, which might

autonomously determine which kind of feature is more appropriate for (part of) a given object.

The PAS+Harris detector does better than either component alone on giraffes and Shotton

horses (table II). This is particularly meaningful since giraffes are defined by both shape and

texture, so we expect their combination to reinforce the detector. Moreover, giraffes and Shotton

horses are the only two classes on which PAS and Harris-Laplace work about equally well.

PAS+Harris now achieves an impressive 95.7% precision-recall equal-error-rate on Shotton

horses. Furthermore, on INRIA horses, chairs, and swans, PAS+Harris exhibit the desired be-

havior: its performance aligns with the better of either PASor Harris-Laplace. However, on the

remaining 5 classes PAS+Harris only performs somewhere in between PAS and Harris-Laplace.

Again, a probable reason is overfit, and we observe a clear correlation between the performance

improvement/loss of PAS+Harris and the number of training images in a class (table I). To

confirm this further, we run tests with several randomized splits of the images in training and

test subsets, and observed that the performance variationsof PAS+Harris are far greater than

those of either feature alone.

F. Comparison to Dalal and Triggs [4]

We conclude our series of evaluations by comparing against the object detection technique by

Dalal and Triggs [4], which is currently the state-of-the-art in human detection, and has proven

very competitive on other classes as well [34]. Like ours, their object detector is based on sliding

a window subdivided into tiles, but uses histograms of gradient orientations as descriptors.

In an effort to perform a fair comparison, we discussed with the authors of [4], who rec-

ommended the following operations. First of all, we used theofficial software released by the

authors. Moreover, we rescaled all training windows to makethe longest side 100 pixels, which
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Fig. 13. Comparison between our PAS-based detector and Dalal and Triggs [4] HoG-based one.

is about the resolution their system is tuned to. Finally, following the protocol applied for PAS,

we optimized the two most important parameters on INRIA horses. They are the preprocessing

applied before computing gradients, and the block normalization scheme applied after collecting

HoG descriptors. The difference between the best and the worst combination of preprocessing

and normalization turned out to be moderate: 4.5% detection-rate at 0.3 FPPI. Nevertheless, we

processed all datasets with the best combination: converting to Lab color space as preprocessing,
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and normalizing descriptors by the square root of the L1 norm(see [4] for details).

The results are displayed in figure 13 (the system of [4] is marked as HoG). Our detector

achieves a substantially higher performance on 6 of the 10 datasets, while on mugs and cups the

two methods are about equally good, and HoG obtains better results on applelogos and swans.

In terms of average detection-rate at 0.3 FPPI, PAS leads with a considerable margin of 20%

(table III).

The HoG curves abruptly stop growing after a rather low FPPI rate, due to the system returning

no detection on several images. We tried to counter this by altering a parameter controlling the

minimal score for windows to enter the non-maxima suppression stage, but it only resulted in

lower curves (as Dr. Dalal also expected, when we asked aboutthis issue). Besides, we observe

that explicitly comparing performance at the point where HoG stops growing only makes a

difference for cups. PAS still leads on 6 datasets, and give equivalent results on mugs.

In conclusion, our detection system compares favorably to [4] in our experiments, which

further consolidates PAS as excellent features for object detection.

G. Accuracy of detections

So far we adopted the criterion for counting a detection as correct that was used in our previous

work [10] (section VI-A). This is a sensible choice, as most datasets we experiment on were

first released in [10]. However, this criterion is rather loose and it might consider as correct

also rather inaccurate detections. In this section, we investigate the performance of our system

under the stricter PASCAL criterion: a detection is countedas correct if the area of intersection

between its bounding-box and the ground-truth bounding-box exceeds50% of their union [34].

This allows to understand in how many cases detections are truly accurate, and in how many

others they cover the object more loosely.

Since PAS perform better than other kAS and than IPs also under the PASCAL criterion, we

focus only on them here. Following the protocol applied before, we re-optimizedT and d on

INRIA horses for the PASCAL criterion. Interestingly, we found the optimalT = 48 to be higher

than that for the criterion [10] (T = 30). This can be explained as a finer tiling enables better

localization accuracy, at the cost of some generalization ability. As in the previous evaluations,

all 10 datasets are re-processed, keeping all parameters fixed.
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TABLE II

Detection rates at 0.3 and 0.4 FPPI for all features we tested, as well as for the object detection system of [4]

(marked as HoG). The ‘Shotton’ column reports recall at equal error-rate for the Shotton horses dataset. It is

included here for homogeneity of presentation.

Detection rate INRIA Anchor Chair Cup Applelogo Bottle Giraffe Mug Swan Shotton

PAS (0.3 FPPI) 85.4 76.2 78.1 78.6 65.0 89.3 72.3 80.6 64.7 91.7

1AS (0.3 FPPI) 86.2 85.7 81.2 75.0 55.0 78.6 59.6 67.7 35.3 93.5

3AS (0.3 FPPI) 79.2 90.5 75.0 71.4 35.0 67.9 61.7 54.8 41.2 90.3

4AS (0.3 FPPI) 76.9 57.1 71 71.4 30.0 60.7 63.8 41.9 35.3 90.3

Harris (0.3 FPPI) 63.1 47.6 50.0 42.9 60.0 39.3 70.2 45.2 76.5 91.0

Dog (0.3 FPPI) 42.3 23.8 53.1 78.6 45.0 17.9 55.3 22.6 47.1 89.2

Log (0.3 FPPI) 50.8 23.8 31.2 57.1 30.0 25.0 72.3 38.7 58.8 90.3

{1,2,3}AS (0.3 FPPI) 86.2 76.2 77.4 82.1 70.0 85.7 68.1 80.6 47.1 94.2

PAS + Harris (0.3 FPPI) 84.6 61.9 83.9 67.9 60.0 57.1 80.9 51.6 82.4 95.7

HoG (0.3 FPPI) 74.6 9.5 32.3 78.6 85.0 17.9 48.9 80.6 82.4 70.1

PAS (0.4 FPPI) 87.7 81.0 87.5 82.1 85.0 89.3 78.7 80.6 64.7 91.7

1AS (0.4 FPPI) 86.9 90.5 84.4 82.1 65.0 85.7 61.7 71.0 58.8 93.5

3AS (0.4 FPPI) 85.4 90.5 84.4 75.0 40.0 78.6 72.3 64.5 41.2 90.3

4AS (0.4 FPPI) 80.8 71.4 90.3 78.6 30.0 64.3 68.1 51.6 41.2 90.3

Harris (0.4 FPPI) 73.8 47.6 62.5 53.6 70.0 39.3 72.3 45.2 82.4 91.0

DoG (0.4 FPPI) 49.2 28.6 71.9 92.9 45.0 17.9 59.6 29.0 58.8 89.2

LoG (0.4 FPPI) 56.2 38.1 34.4 60.7 35.0 25.0 74.5 48.4 58.8 90.3

{1,2,3}AS (0.4 FPPI) 87.7 85.7 87.1 82.1 80.0 85.7 74.5 83.9 58.8 94.2

PAS + Harris (0.4 FPPI) 87.7 71.4 90.3 75.0 75.0 64.3 80.9 64.5 82.4 95.7

HoG (0.4 FPPI) 74.6 9.5 32.3 78.6 85.0 17.9 53.2 83.9 82.4 70.1

The results are reported in table IV. The difference in detection-rate at 0.4 FPPI compared

to the previous setting varies largely from class to class: it goes from an improvement of

4% on bottles to a decrease of28% on giraffes. On average, the detection-rate at 0.4 FPPI

moderately decreases by11% to 70.1%. Besides, on Shotton horses the precision/recall EER

remains unchanged at the rate of91.7%. Hence, over all datasets, the majority of detections

does meet the strict standards defined by the PASCAL criterion.

For comparison, table IV also reports the performance of HoGunder the PASCAL criterion.
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TABLE III

All features and combinations tested, ranked according to their detection rates at 0.3 and 0.4 FPPI, averaged

over all datasets but Shotton (for which we evaluate in termsof precision/recall).

Method Average DR at 0.3 FPPI Average DR at 0.4 FPPI

PAS 76.7 81.8

{1,2,3}AS 74.8 80.6

PAS + Harris 70.0 76.8

1AS 69.4 76.2

3AS 64.1 70.2

4AS 56.5 64.0

HoG 56.6 57.5

Harris 55.0 60.7

DoG 42.9 50.3

LoG 43.1 47.9

HoG’s performance decreases as well in this setting: the average detection-rate at 0.4 FPPI

decreases by8% (from 57.5% to 49.6%). On average over 9 classes, PAS still achieves about

20% higher detection-rate at 0.4 FPPI, and performs substantially better on Shotton horses (91.7%

vs 61.2%).

In addition to the above results based on the PASCAL criterion, for the sake of an exact

comparison to [30] we also report results on Shotton horses using their own criterion [30]: a

detection is considered correct if its center lies within 25pixels of the ground-truth center. Under

this criterion, our PAS-based detector achieves89.9% precision/recall EER, which is similar to

its performance under PASCAL. Moreover, PAS+Harris, our best detector for Shotton horses,

achieves93.2% EER, which is better than the92.1% of [30].

VII. CONCLUSIONS AND FUTURE WORK

We have introduced thekAS family of local contour features and their application toobject

detection.kAS are able to cover pure portions of an object boundary, without including nearby

spurious edgels. Moreover, they can form a wide variety of local shape structures, combine

informativeness and repeatability, and constitute complete, scale-invariant local features ready to
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TABLE IV

Performance under PASCAL criterion. Detection rates at 0.4FPPI for PAS and for the object detection system

of [4] (marked as HoG). The ‘Shotton’ column reports recall at equal error-rate for the Shotton horses dataset.

Detection rate INRIA Anchor Chair Cup Applelogo Bottle Giraffe Mug Swan Shotton

PAS (0.4 FPPI) 76.9 66.7 74.2 78.6 60.0 92.9 51.1 77.4 52.9 91.7

HoG (0.4 FPPI) 70.0 9.5 16.1 75.0 85.0 14.3 34.0 77.4 67.7 61.2

be used in many recognition or image matching frameworks.

We have demonstratedkAS within a sliding-window object detector, where windows are

subdivided into tiles, each described by a bag ofkAS. Extensive evaluations brought several

interesting conclusions. First, the optimal number of tiles decreases with increasing complexity

k, due to a trade-off between accurate localization information and rigidity of the representation.

Second, PAS perform better than otherkAS, as they bring the best compromise between dis-

tinctiveness and repeatability, while also yielding a goodproportion of pure boundary features.

Third, kAS work substantially better than interest points for shape-based classes, and, finally,

our PAS-based object detection system compares favorably to the state-of-the-art method [4].

The simple object detection framework developed in this paper is meant as a tool for analyzing

the properties and performance ofkAS. We believe that considerable gains in object detection

performance can be achieved by making the framework more sophisticated. EachkAS could be

soft-assigned to several neighboring tiles, rather than just to the tile containing its centerpoint.

This would result in smoother window descriptors, more stable wrt the exact localization of

kAS on the object. However, it’s unclear how to properly implement spatial soft-assigning using

Integral Histograms. Moreover, the scale ofkAS relative to the window could be encoded in the

window descriptor, thus improving discriminative power. Other enhancements include re-training

on hard examples [4], better non-maxima suppression of the SVM responses [4], and automatic

selection of the optimal number of tiles for each class (e.g.using a validation set).

The use ofkAS in this paper is limited to a rather simple detection framework. However,

we expectkAS to be useful in other systems and tasks [11], with possiblyother behaviors. For

example, although in our analysis2AS worked best,kAS of higher complexity are attractive
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when the localization constraints are weaker or absent and hence the discriminative power of

individual features might become more important [1], [6], [18], or when higher degrees of

geometric invariance are required (e.g. image matching [23], [31]). Besides, since our object

detector is restricted to a single viewpoint, it is unclear how well kAS would work in a multi-

view setting. Finally, effective ways to combine appearance features withkAS remain to be

investigated. One option would be to integrate both tightly, by augmentingkAS with appearance

information (e.g. by describing color or texture properties on either side of aL-shaped PAS).
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