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Motivation

This is a car
you have
never seen before...

...can you find it

in these images?
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Motivation

 Humans: specific knowledge (cars, faces, etc.)
—Recognize a car seen only once

« Algorithm:
also has to integrate spec:lflc knowledge

This is a car
you have L 25
never seen before... E

. can you find |t

in these images?
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Our Goal

« Computing the visual similarity of two never seen
objects

e Based on training pairs labeled “Same” or “Different”
(equivalence constraints)

* Despite occlusions, changes in pose, light, background

Same or
\ y \Different?}

Same Different

TRAIN TEST
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Equivalence Constraints ?

4= Same
<« Different

Class B 3
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Equivalence Constraints

@® Less informative than Class Labels
— “car model X and car model Y”
— “same/different car model”

© Cheaper to obtain
— e.g. space of class labels too large

© Deal with new objects.
— Which model? CANNOT answer
— Same or Different? CAN answer
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How to compare images ?

x * D=XX
Euclidean

X Distance

*

ol Image Representation Space

(Histograms, pixels, etc.)
Occlusions, view point changes, ...
Global descriptors not adapted
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How to be robust to occlusions,
view point changes ?

Consider local
representations

Get corresponding
patch pairs
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Vocabulary for Local Representations

e Text —> vocabulary of words
“car”, “wheel”, “glass”, “motor”, ...

 Image -> vocabulary of visual words
S >
awR~
- -

e Image pair > vocabulary of visual differences

HOW do the patches differ?
=> Characterize local differences
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Characterizing local differences
(Ferencz et al, ICCV 05)

D(11,12) = f(d1,d2,d3)

® dl1, d2, d3: weak characterization of the differences

Nowak — Jurie — CVPRO7 — Learning Visual Similarity Measures for Comparing Never Seen Objects



Characterizing local differences:
our approach

Characteristic

Difference
11

Patch Pair Space (ND)

© Much more information than a simple distance

HOW TO COMPUTE THIS QUANTIZATION?
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Patch pair guantization algorithm

% ;L Thr=0.19

E{i 4? Both larger than 0.19 ?

False - left child
2 SIFT descrip. True - right child
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Patch pair guantization algorithm

l Thr=0.03

e
1

2 SIFT descrip.
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Patch pair guantization algorithm

Thr=0.08

KKK

2 SIFT descrip.
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Patch pair guantization algorithm

+ __
i b

KKK

2 SIFT descrip.
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Patch pair quantization algorithm

Patch Pair Space (ND)
 Quantizer / Clusterer
— Defined by the trees

» Cluster centers (characteristic differences)
— defined by the leaves
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How to learn the trees?

 Classical decision trees

— For each node select the best feature [which SIFT
dimension] and the best threshold

« Extremely Randomized Decision Trees (Geurts 06)
— Ensemble of decision trees + combination rule
— Each node is suboptimal
©Variance is small
©Fast to learn

© Good for clustering (Moosman, Triggs and Jurie 06)
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How to learn a tree?

) 1100 000
“Different”

Hre003 DB BB n} 620,06

100 000
“Same”

40k S10k D 60k S90k D

THR=0.11 ¥e) ¥e) >
40k S 1k D 60k S99k D

N THR=0.18 (Te) BB | -0

of— 50k S50k D 50k S50k D

J
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How to learn a tree?

THR=0.11

100k S 100k D
Pbh BB Pb B3

40k S 1kD Ok899kD

Until leaves contain only positive or negative elements
== discriminative clustering
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How to learn a tree?

THR=0.18

e Two kinds of Split Condition

 Type 1: SIFT based

— Consider a SIFT dimension and a threshold

— Feature value above (or below) threshold
for the two patches?

* Type 2: Geometry based

— Patch PO from the first image
sampled from a given region (position & scale) ?
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An Image pair descriptor

a) sample
corresponding patch
pairs

b) cluster them with the
forest

E c) Update a global

x=[0101010000100001]  IMage pardescriptor
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Similarity Measure Computation

S(14,12) = S(®) = w'x

Nowak — Jurie — CVPRO7 — Learning Visual Similarity Measures for Comparing Never Seen Objects



_ Datasets

Differen

Ditterent

ferent Same

Ferencz et al:

cars
distortions, tiny details, crop

Our dataset:

toycars
view point, light,
background

Jain et al;

“faces in the news”
light, expression, pose,
guality, annotation errors

Fleuret et al;
COIL 100

full rotation, heterogeneous
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Generic vs. Specific Knowledge

» The algorithm learns trees and weights:
Two kinds of KNOWLEDGE ...

 Knowledge:
— generic information for similarity computation?
— or information specific to a dataset?

Test EER-PR
' 91.0%

86.5%
> -4.5

63.0%
2 -28.0

CCL: we ARE embedding specific knowledge
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Comparison with State of the Art:
Equal Error Rate of Precision

=

\ ? ' ’
Different

| -‘.'
n 4
'8 " .‘ 7'.'-1.' o~ ]

Same

Dliierent

Method || Toy cars | Ferencz | Faces Coil 100
Others - 84.914] | 70.0 [12] | 88.6+4[7]
Ours 85.9+04 01.0+06 | 84.243.1 03.0+19
Gain - 6.1 14.2 4.4
R O s —e )
. ————— o Ferencz
Fe P e Toycars
 Al: L e
- Different
) . .

Right: COIL 100
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Visualizations
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Visualizations

Similarity
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Visualizations

e Multi dimensional scaling (2D):
L2 distance in 2D as close as possible to the pairwise similarity
matrix

* Below: simple bag of words representation
« Next page: our similarity measure
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Method Summary

e Consider corresp. local
regions

* Quantize patch pair b)
differences
Extremely Randomized
Clustering Forest

« Get global image pair
descriptor
o Similarity measure is a [(0101010000100001]
weighted sum & q ([ i

1272

=

)=w' x

lin
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Future Works

« Deal with object categories instead of object
Instances
e Use and combine more features
— e.g. color
* Applications
— Photo collection browsing
— Face identification
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Binaries, Dataset, ...

http://lear.inrialpes.fr/people/nowak

Thank you for
your attention!
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