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Abstract

We present an object class detection approach which
fully integrates the complementary strengths offered by
shape matchers. Like an object detector, it can learn class
models directly from images, and localize novel instances
in the presence of intra-class variations, clutter, and scale
changes. Like a shape matcher, it finds the accurate bound-
aries of the objects, rather than just their bounding-boxes.
This is made possible by 1) a novel technique for learn-
ing a shape model of an object class given images of ex-
ample instances; 2) the combination of Hough-style voting
with a non-rigid point matching algorithm to localize the
model in cluttered images. As demonstrated by an extensive
evaluation, our method can localize object boundaries ac-
curately, while needing no segmented examples for training
(only bounding-boxes).

1. Introduction
Object class detection is a central challenge of computer

vision. Recent research has achieved impressive results,
such as handling cluttered images [13], training from few
examples [18], and exploiting both contour [15, 16] and
appearance information [19]. However, most existing ap-
proaches localize objects up to a rectangular bounding-box.

In this work 1 , we want to go a step further and local-
ize object boundaries. Our approach aims at bridging the
gap between shape matching and object detection. Classic
non-rigid shape matchers [2, 3] obtain accurate point cor-
respondences, but take point sets as input. In contrast, we
build a shape matcher with the input/output behavior of a
modern object detector: it learns shape models from images,
and automatically localizes them in cluttered images.

Our approach makes three contributions. First, we in-
troduce a technique for learning the prototypical shape of
an object class as well as a statistical model of intra-class
deformations, given image windows containing training in-
stances (figure 1a). The challenge is to determine which
contour points belong to the class boundaries, while dis-

1This research was supported by the EADS foundation, INRIA and
CNRS. V. Ferrari was funded by a fellowship of the EADS foundation.

carding background and details specific to individual in-
stances (e.g. mug labels). Note how these typically form
the large majority of points, yielding a poor signal-to-noise
ratio. The task is further complicated by intra-class variabil-
ity: the shape of the object boundary varies across instances.

Second, we localize the boundaries of novel class in-
stances by employing a Hough-style voting scheme [13, 15,
16] to automatically initialize a non-rigid shape matcher [3].
This combination makes accurate, pointwise shape match-
ing possible even in severely cluttered images, where the
object boundaries cover only a small fraction of the contour
points (figure 3a).

Third, we constrain the shape matcher [3] to only search
over transformations compatible with the learned, class-
specific deformation model. This ensures output shapes
similar to class members, improves accuracy, and helps
avoiding local minima.

These contributions result in a powerful system, capa-
ble of detecting novel class instances and localizing their
boundaries in cluttered images, while training from objects
annotated only with bounding-boxes.

2. Related works
Object localization. A few previous approaches go be-
yond bounding-box precision [1, 12, 13, 17, 18, 20], but
most of them require segmented training objects. Todor-
ovic and Ahuja [18] can learn when given only image labels,
but the number of training images is strongly limited by the
computational complexity of the learning stage. As [18],
LOCUS [20] also learns from image labels, but it is based
on entirely different techniques than our work. Besides, we
demonstrate detections on more challenging images (small
objects in large cluttered images; wide range of scales), and
test our method as a full object detector, by evaluating de-
tection rates and false-positives rates (also on images not
containing the object). In contrast, LOCUS [20] focuses on
segmentation accuracy and does not report these statistics.
The work of Berg et al. [1] is related to ours in that they
also cast object detection as a point-matching problem. As
an important difference, it treats training images individu-
ally, without learning a shape or deformation model. More-
over, it requires hand-segmented training images. Although
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Figure 1. a) 4 out of 24 training examples. b) Model parts. c) Se-
lected occurrences. d) Shape refinement iterations. e) First mode
of variation (mean shape in the middle).

ideas for training without segmentations are mentioned, the
reported shape-matching results do use them.

Learning and matching shapes. Numerous methods ap-
peared for learning and matching deformable shape mod-
els [4, 6, 9, 10]. Several approaches learn global modes of
variation using PCA, following the seminal work of Cootes
on Active Shape Models [4, 10]. Models of different nature
have also been proposed, such as pairwise geometric rela-
tions between landmarks [6], or representing shapes as con-
figurations of independently deforming triangles [9]. The
main point is that all these techniques need shapes as input
(i.e. sets of points on object outlines) [4, 9, 10], or, equiv-
alently, clutter-free cartoon drawings [6]. Besides, only
some methods automatically extract the necessary land-
mark points and their correspondences from the training
shapes [6, 10], while others require them as additional in-
put [4, 9]. In contrast, in this paper we automatically learn
shapes, correspondences, and deformations from images.

Most existing shape matching techniques work in clut-
tered images only if initialized near the object to be
found [3, 4, 5]. In our approach instead, this initialization is
automatic (section 4.1). Two exceptions are [9], which has
high computational complexity, and [7], against which we
compare experimentally in section 5.

3. Learning a class-specific shape model

Given image windows with example instances (fig-
ure 1a), we learn the shape of the class and the principal
intra-class deformation modes. To achieve this, we present
a technique for discovering which contour points belong to
the common class boundaries (e.g. the outline of the mug,
as opposed to the varying labels), and for putting them in
full point-to-point correspondence across the training exam-
ples. The technique is composed of four steps (figure 1b-d).
First, we determine model parts as local contour features
(subsection 3.1) frequently reoccurring with similar loca-
tions, scales, and shapes (subsection 3.2). Next, an initial
shape is assembled by sampling a specific feature for each
model part from the training examples (section 3.3). The
shape is then matched back on the training images (subsec-
tion 3.4), thus producing different shape variations, all in
point-to-point correspondence. These are used to refine the
model shape and to learn intra-class deformations (subsec-
tion 3.5).

3.1. Local contour features

We employ the scale-invariant local contour features re-
cently proposed by [8]. Edgels are found by the Berke-
ley edge detector [14], and then grouped into pairs of ad-
jacent, approximately straight segments (figure 2a). Each
such PAS feature P has a location (mean over the two seg-
ment centers), a scale (distance between the segment cen-
ters), a strength (mean edge detector confidence), and a de-
scriptor invariant to translation and scale. The descriptor
encodes the shape of the PAS, by the segments’ orientations
and lengths normalized by scale, and their relative location.

PAS features are particularly suited to our framework.
First, they are robustly detected because they connect seg-
ments even across gaps between edgel-chains. Second,
the descriptor records only properties of the two segments,
without including other nearby edgels (as opposed to patch
descriptors). This is valuable as non-boundary edgels just
outside/inside the object would otherwise corrupt the de-
scriptor of a PAS lying on the object boundary. Finally,
since a correspondence between two PAS induces a trans-
lation and scale change, they can be easily used within a
Hough-style voting scheme for object detection [13, 15, 16].

We construct a codebook by clustering all PAS inside
the training bounding-boxes according to their descriptors
(see [8] for details of the similarity measure between de-
scriptors). For each cluster, we retain the centermost PAS,
minimizing the sum of dissimilarities to all the others. The
codebook is the collection of these centermost PAS, the PAS
types (figure 2b). A codebook is useful for efficient match-
ing, since all features similar (up to some threshold) to a
type are considered in correspondence.
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Figure 2. a) three example PAS. b) some frequent PAS types. c) two
model parts with high connectedness. d) two model parts with even
higher connectedness (equivalent parts).

3.2. Finding model parts
The key insight is that PAS belonging to the desired class

boundaries will reoccur consistently across several training
instances at similar locations and scales, and with similar
shapes. In contrast, PAS not belonging to the common
boundaries are not correlated across different examples.

The first step of our algorithm is to align the training
bounding-boxes by transforming them into a zero-centered
rectangle with unit height and width equal to the geometric
mean of the training aspect-ratios (i.e. width over height).
In addition to removing translation and scale differences,
this effectively cancels out shape variations due to different
aspect-ratios (e.g. tall mugs versus coffee cups).

The core of the algorithm maintains a separate voting
space for each PAS type, where it accumulates votes from
all training PAS. Each PAS votes for the existence of a part
of the class boundary with shape, location, and size like its
own. More precisely, a PAS is soft-assigned to all codebook
types within a dissimilarity threshold, and casts a vote in
each corresponding accumulator space. Votes are weighted
proportionally to the PAS’ edge strength, and inversely pro-
portionally to the shape dissimilarity to the codebook type.

The output of the algorithm are the local maxima in lo-
cation and scale of the accumulator spaces. Each maximum
yields a model part, which has a specific location and size
relative to the canonical bounding-box, and a specific shape
(the codebook type corresponding to the accumulator space
where the maximum was found). Moreover, the value of
the local maximum provides a measure of the confidence
that the part really belongs to the class boundaries (part
strength).

This procedure benefits from adopting PAS as basic
shape elements (as opposed to individual edgels): it is
highly unlikely that a significant number of unrelated PAS
will accidentally have similar locations, scales, and shapes.
Hence, recurring PAS stemming from the desired class
boundaries will tend to form peaks in the accumulator
spaces, whereas background clutter and details of individual
training instances won’t.

The proposed algorithm has two important properties.
First, it sees all training data at once, and therefore
reliably selects parts and robustly estimates their loca-
tions/scales/shapes. This is more stable than matching pairs
of training instances and then recombines their output a pos-
teriori. Second, its complexity is linear in the number of
training instances, so it can learn from large training sets
efficiently.

3.3. Assembling the initial model shape
The learned model parts already capture the shape of the

object class quite well (figure 1b). The outer boundary of
the mug and the handle hole are included, whereas the label
is largely excluded. However, this doesn’t look like the out-
lines of an average class member yet. There are often mul-
tiple stokes along what should be a single line. Adjacent
parts don’t fit well together in terms of their relative loca-
tions and sizes, resulting in short, discontinuous lines. This
is because individual parts are learnt independently, without
trying to assemble them into a proper whole shape. In the
following we describe how to build such a shape, made of
single-stroked, long continuous lines.

Let us notice that each model part occurs several times
on the training examples. These occurrences present
roughly similar, yet different alternatives for the part’s lo-
cation, size, and shape. Hence, we can assemble several
variants of the overall shape by selecting different occur-
rences for each part. The main idea is to select occurrences
so as to form larger aggregates of connected occurrences
stemming from only a few training images. The intuition
being that occurrences from the same training image fit to-
gether naturally.

A training PAS o is an occurrence of model part P if
they are sufficiently similar according to a confidence mea-
sure based on their shapes, locations, and scales. We de-
note an occurrence with P → o, and its confidence with
conf(P → o) ∈ [0, 1].

Recall that a model part P has two segments P1, P2. Let
the equivalence between two model segments be

eq(Pi, Qj) =
X

{s|Pi→s,Qj→s}
conf(Pi → s) + conf(Qj → s)

(1)
with i, j ∈ 1, 2 and s any training segment on which both
Pi, Qj occur. Two model segments have high equivalence if
they frequently occur on the same training segments. Lastly,
we define the connectedness between two model parts P, Q
as

conn(P, Q) = max(eq(P1, Q1) + eq(P2, Q2), (2)

eq(P1, Q2) + eq(P2, Q1))

i.e. the combined equivalence of their segments (for the
best of the two possible segment matchings). Two parts
have high connectedness if their occurrences frequently



share a segment (figure 2c+d). Moreover, two parts can
even share both their segments. In this case, their connect-
edness is even higher, indicating they explain the same por-
tion of the class boundaries. Equivalent model segments are
the origin of the multiple strokes in figure 1b. Equation (2)
measures connectedness/equivalence by smoothly integrat-
ing evidence over the whole training set.

The occurrence selection task can now be formulated
precisely as follows. Find the assignment A(P ) = o of
occurrences to parts that maximizes the objective function
(exactly one occurrence is assigned to each part):

X

P

conf (P → A(P )) − λimgNimg (3)

+λconn

X

P,Q

conn(P, Q) · 1img (A(P ),A(Q))

where the indicator function 1img takes value 1 if two
occurrences stem from the same image, and 0 otherwise.
Nimg is the number of images contributing an occurrence
to A, and λimg, λconn are predefined weights. The first
term of (3) prefers high confidence occurrences. The second
term discourages scattering occurrences across many train-
ing images, while the third term favors assigning connected
parts to occurrences from the same training image. Overall,
the function encourage the formation of aggregates of good
confidence and properly connected occurrences, which typ-
ically fit well together. Moreover, the last two terms push
equivalent model segments to be assigned to the same train-
ing segments, hence suppressing multiple strokes.

Although function (3) cannot be optimized exactly, as
the space of all possible assignments is huge, in practice
the following approximation algorithm brings satisfactory
results. We start by assigning the part which has the single
most confident occurrence. Next, we iteratively consider
the part most connected to those assigned so far, and assign
it to the occurrence which maximizes (3).

Figure 1c shows an example of the selected occurrences.
The shape is composed of three blocks, each from a differ-
ent training image. Within each block, segments fit well to-
gether and form continuous lines. Nevertheless, there are
still discontinuities between blocks, and some redundant
strokes still remain (lower half of handle).

3.4. Model shape refinement
We can improve the model shape by treating it as a de-

formable point set and matching it back onto the training
images. For this, the image edgels are now treated individ-
ually, no longer grouped into PAS features. We iterate over
three steps:

1. Backmatching. The model shape is matched back to each
training image, using an extension of the non-rigid robust
point matcher by Chui and Rangarajan [3]. This powerful
algorithm estimates a Thin-Plate Spline (TPS) transforma-

tion and at the same time rejects image points not corre-
sponding to any model point (see subsection 4.2 for details).
We initialize the algorithm by transforming the model shape
so that its bounding-box perfectly aligns with the training
bounding-box. This strong initialization makes the matcher
very likely to succeed.

2. Mean shape. The shapes generated by backmatching are
in full point-to-point correspondence, because they are all
smooth deformations of the same initial shape. Hence, we
apply Procustes analysis [4] to align them w.r.t. to trans-
lation, scale, and orientation. The model shape is now up-
dated by setting it to the mean of the aligned shapes. The
combined effects of backmatching and computing the mean
shape are very beneficial (figure 1d-middle). Model seg-
ments move, bend, and stretch in order to form smooth,
connected lines, and to recover the shape of the class well
on a global scale (e.g. topmost and leftmost segments in fig-
ure 1d-middle). The reason for these improvements is that
backmatching manages to deform the initial shape onto the
class boundaries of the training images, thus providing a set
of natural, well formed shapes. The averaging step then in-
tegrates them all into a generic-looking shape, and smoothes
out occasional inaccuracies of the individual backmatches.

3. Remove redundant points. As another effect, the previous
steps tend to crush multiple strokes (and other clutter points)
onto the correct class boundaries. This results in redundant
points, roughly coincident with other segments. We remove
them by deleting any point lying very close to points from a
stronger part. If a significant proportion of points (> 10%)
are removed, the procedure iterates to point 1. Otherwise, it
is completed.

As shown in figure 1d-right, the running example im-
proves further during the second (and final) iteration (e.g.
handle). It now has a clean overall shape, and includes no
background clutter and very little interior clutter. Notice
how the fine scale structure of the double handle arc is cor-
rectly recovered.

3.5. Learning shape deformations
The previous subsection matches the model shape to

each training image, and thus provides examples of the vari-
ations within the object class we want to learn. Since these
examples are in full point-to-point correspondence, we can
learn a compact model of the intra-class variations using the
statistical shape analysis technique by Cootes [4].

The idea is to consider each example shape as a point in a
2p-D space (with p the number of points on each shape), and
model their distribution with Principal Component Analysis
(PCA). The eigenvectors returned by PCA represent modes
of variation, and the associated eigenvalues λi their impor-
tance (how much the example shapes deform along them,
figure 1e). By keeping only the n largest eigenvectors E1:n
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Figure 3. a) A challenging test image and its edgemap b). The
object covers only about 6% of the image surface, and only about 1
edgel in 17 belongs to its boundaries. c) Initialization with a local
maximum in Hough space. d) Output shape with unconstrained
TPS-RPM. e) Output shape with shape-constrained TPS-RPM.

representing 95% of the total variance, we can approximate
the region in which the training examples live by x̄+E1:nb,
where x̄ is the mean shape, b is a vector representing shapes
in the subspace spanned by E1:n, and b’s ith component
is bound by ±3

√
λi. This defines the valid region of the

shape space, containing shapes similar to the example ones.
Typically, n < 15 eigenvectors are sufficient (compared to
2p � 200).

In subsection 4.3, we exploit this deformation model to
constrain the matching of the model to novel test images.
Notice that previous works on these deformation models re-
quire at least the example shapes as input [10], and many
also need the point-to-point correspondences [4]. In con-
trast, we automatically learn shapes, correspondences, and
deformations given just images.

4. Object detection
In this section we describe how to accurately localize

novel object instances in a test image. We first obtain rough
estimates for their location and scale based on a Hough-
style voting scheme (subsection 4.1). These estimates are
then used to initialize the non-rigid shape matcher [3] (sub-
section 4.2). This combination enables shape matching in
cluttered images, and hence to localize object boundaries.
In subsection 4.3, we constrain the matcher to explore only
the region of shape space spanned by the training exam-
ples, thereby ensuring that output shapes are similar to class
members.

4.1. Hough voting
In subsection 3.2 we represented the shape of the class

as a set of PAS parts, each with a specific shape, location,
size, and strength. Here we match these parts to PAS from
the test image, based on their shape descriptors. Since a pair

of matched PAS induces a translation and scale transforma-
tion, we let each match vote for the presence of an object
instance at a particular image location (object center) and
scale (in the same spirit as [13, 15, 16]). Votes are weighed
by the shape similarity between the model part and test PAS,
the edge strength of the PAS, and the strength of the part.
Local maxima in the voting space define rough estimates of
the location and scale of candidate object instances.

4.2. Shape Matching by TPS-RPM
For each candidate location l and scale s we obtain a

point set V by centering the model shape on l and rescaling
it to s, and a set X which contains all image edge points
within a larger rectangle of scale 1.8s (figure 3c). Given
this initialization, we want to put V in correspondence with
the subset of points of X lying on the object boundary. We
estimate the associated non-rigid transformation, and reject
image points not corresponding to any model point, with the
Thin-Plate Spline Robust Point Matching algorithm (TPS-
RPM [3]).

TPS-RPM matches the two point sets V = {va}a=1..K

and X = {xi}i=1..N by applying a non-rigid TPS mapping
{d, w} to V (d is the affine component, and w the non-rigid
warp). It estimates both the correspondence M = {mai}
between V and X , and the mapping {d, w} that mini-
mize an objective function of 1) the distance between TPS-
mapped points and their corresponding points of X , 2) the
regularization terms for the affine and warp components of
the TPS. In addition to its inner K ×N part, M has an ex-
tra row and an extra column which allow to reject points as
unmatched.

Since neither the correspondence nor the mapping are
known beforehand, TPS-RPM iteratively alternates be-
tween updating M , while keeping {d, w} fixed, and updat-
ing the mapping with M fixed. M is a continuous-valued
soft-assign matrix, allowing the algorithm to evolve through
a continuous correspondence space, instead of jumping
around in the space of binary matrices (hard correspon-
dence). It is updated by setting mai as a function of the
distance between xi and va mapped by the TPS. The update
of the mapping fits a TPS {d, w} between V and the current
estimate of the corresponding points

Y = {ya =
NX

i=1

maixi} (4)

This minimizes the proximity of TPS-mapped points to ya

under the influence of the regularization terms, which penal-
ize local warpings w and deviations of d from the identity.

The optimization procedure is embedded in a determin-
istic annealing framework by introducting a temperature pa-
rameter T , which decreases at each iteration. This gradually
makes M less fuzzy, progressively approaching a hard cor-
respondence matrix. At the same time, the regularization
terms get less weight. Hence, the TPS is rigid in the begin-
ning, and gets more and more deformable as the iterations



continue. These two phenomena enable TPS-RPM to find
a good solution even when given a rather poor initializa-
tion. At first, when the correspondence uncertainty is high,
each ya essentially averages over a wide area of X around
the TPS-mapped point (equation (4)), and the TPS is con-
strained to near-rigid transformations. As the temperature
decreases, M looks less and less far, and pays increasing
attention to the differences between matching options from
X . Since the uncertainty diminishes, it’s safe to let the TPS
looser, freer to fit the details of X more accurately.

We have extended TPS-RPM by adding two terms to
the objective function: the orientation difference between
corresponding points (minimize), and the edge strength of
matched image points (maximize). In our experiments,
these extra terms made TPS-RPM more accurate and sta-
ble, i.e. it succeeds even when initialized farther away from
the best location and scale.

4.3. Constrained shape matching
TPS-RPM treats all shapes according to the same generic

TPS deformation model, simply preferring smoother trans-
formations. This might result in shapes unlike any of the
training examples. Here, we extend TPS-RPM with the
class-specific deformation model learned in subsection 3.5.
We constrain the optimization to explore only the valid re-
gion of the shape space, containing shapes plausible for the
class (defined by x̄, E1:n, λi from subsection 3.5).

At each iteration of TPS-RPM we project the current
shape estimate Y (equation (4)) inside the valid region, just
before fitting the TPS. This amounts to:
1) align Y on x̄ w.r.t. to translation/rotation/scale
2) project Y on the subspace spanned by E1:n :

b = E−1(Y − x̄) , b(n+1):2p = 0
3) bound the first n components of b by ±3

√
λi

4) transform b back into the original space: Y c = x̄ + Eb
5) apply to Y c the inverse of the transformation used in 1)

The assignment Y ← Y c imposes hard constraints on
the shape space. While this guarantees output shapes simi-
lar to class members, it might sometimes be too restrictive.
To match a novel instance accurately, it could be necessary
to move a little along some dimensions of the shape space
not recorded in the deformation model. The training data
cannot be assumed to present all possible intra-class vari-
ations. Hence, we also propose a soft constrained variant,
where Y is attracted by the valid region, with a force that
diminishes with the temperature: Y ← Y + T

Tinit
(Y c−Y ).

This causes TPS-RPM to start fully constrained, and then,
as temperature decreases and M looks for correspondences
closer to the current estimates, later iterations are allowed to
apply small deformations beyond the valid region (typically
along dimensions not in E1:n). As a result, output shapes fit
the image data more accurately, while still resembling class
members. Notice how this behavior is fully in the spirit of

TPS-RPM, which also lets the TPS more and more free as
T decreases.

The proposed extension to TPS-RPM reaches deep into
its heart as it alters the search through the transformation
and correspondence spaces. Beside improving accuracy, it
can take TPS-RPM out of a local minima far from the cor-
rect solution, thus avoiding a gross failure.

4.4. Detections
Every local maximum in Hough space leads to a shape

matched to the test image, a detection. Each detection is
scored based on four terms: 1) average proximity of the
TPS-mapped points to their corresponding image points; 2)
deviation of the affine component of the TPS from the iden-
tity; 3) amount of non-rigid warp of the TPS; 4) number of
model points matched with good confidence (max mai val-
ues). If two detections overlap substantially, we remove the
lower scored one. Notice that the method can detect multi-
ple instances of the same class in an image.

5. Results and conclusions
We present an extensive evaluation over six diverse ob-

ject classes from two existing datasets. The first one is
the ETHZ Shape Classes [7], which contains a total of 255
images divided among apple logos (40), bottles (48), gi-
raffes (87), mugs (48), and swans (32). It’s highly chal-
lenging as objects appear in a wide range of scales, they
exhibit considerable intra-class variation, and many images
are extensively cluttered. The second dataset is the INRIA
Horses [11], consisting of 170 images containing horses,
and 170 without horses. Horses appear at different scales,
and against cluttered backgrounds.
Models from real images. Experiments are conducted in
5-fold cross-validation. For each class of the ETHZ dataset
we learn 5 different models by sampling 5 subsets of half
of the class images at random. The test set for a model then
consists of all other images in the dataset. This includes
about 200 negative images, hence supporting accurate esti-
mation of the false-positive rate. For the INRIA dataset, we
sample 5 subsets of 50 horse images for training, and use all
other images for testing (i.e. 120 positive and 170 negative).

We report object detection performance as the detection-
rate at the moderate rate of 0.4 false-positives per image
(FPPI), averaged over the 5 trials (table 1, second row). In
order to compare to [7], we adopt their criterion: a detec-
tion is counted as correct if its bounding-box overlaps more
than 20% with the ground-truth one, and vice-versa. As the
table shows, our method performs well 2 on all classes but

2Using the somewhat stricter PASCAL Challenge criterion (bounding-
box intersection over union > 50%) lowers detection rates by only
0%/1.6%/3.6%/4.9% for apple logos/bottles/mugs/swans. This indi-
cates that bounding-boxes are accurate. For horses and giraffes the de-
crease is more significant (18.1%, 14.1%), because the legs of the animal
are harder to detect.



Applelogos Bottles Giraffes Mugs Swans Horses
Hough alone: 35.9 (7.5) 71.1 (4.6) 56.8 (9.7) 51.4 (4.8) 63.3 (8.1) 85.8 (1.6)
full system: 83.2 (1.7) 83.2 (7.5) 58.6 (14.6) 83.6 (8.6) 75.4 (13.4) 84.8 (2.6)
accuracy: 1.5 (0.2) 2.4 (0.3) 3.5 (0.6) 3.1 (0.7) 3.0 (0.2) 5.4 (0.6)

Ferrari et al. [7]: 72.7 / 56.8 90.9 / 89.1 68.1 / 62.6 81.8 / 68.2 93.9 / 75.8 -
our system: 86.4 / 84.1 92.7 / 90.9 70.3 / 65.9 83.4 / 80.3 93.9 / 90.9 -
accuracy: 2.2 2.9 3.9 4.0 3.2 -

Table 1. Experimental results. The top 3 rows cover the experiments based on models learnt from real images. Entries of the first two rows
report the average detection-rate at 0.4 FPPI, and its standard-deviation (in brackets). The ‘accuracy’ row refers to the accuracy of the
produced shapes averaged over all detections at 0.4 FPPI (lower values are better, see main text). The bottom 3 rows cover experiments
based on hand-drawings. Rows 4 and 5 show detection-rates at 0.4 and 0.3 FPPI (before and after ‘/’ respectively). The accuracy of the
shapes matched by our system is given in the last row.

giraffes, mainly due to the difficulty of building shape mod-
els from their extremely noisy edge maps. For comparison,
the first row of table 1 reports the detection performance
obtained by the Hough voting stage alone (subsection 4.1),
without the shape matcher on top. The full system performs
considerably better, showing the benefit of treating object
detection fully as a shape matching task, rather than sim-
ply matching local features. Moreover, the shape match-
ing stage also makes it possible to localize complete object
boundaries (figure 4). Notice that the standard-deviations
in table 1 reflect variations in the randomized training and
test sets for different models. When the test set is fixed
for all models to include all images in the dataset, the stan-
dard deviations diminish by about half, reaching low values.
This suggests the proposed shape learning technique is sta-
ble with respect to the choice of training images.

In addition to the above evaluation we also measure
how accurately the output shapes delineate the true object
boundaries (ground-truth annotations). For this we use the
symmetric Chamfer distance, normalized by the ground-
truth diagonal, and averaged over correct detections and tri-
als. The system brings a convincing performance also in
this respect, with low errors around 3% (see third and sixth
rows of the table and the examples in figure 4).

Models from hand-drawings. Our system can directly
input one hand-drawing as model of the class shape, in-
stead of learning it from images. In this case, the model-
ing stage simply decomposes the model into PAS. Object
detection then uses these PAS for the Hough voting step,
and the hand-drawing itself for the shape matching step.
This allows a comparison to [7] using their exact setup,
with a single hand-drawing per class and all 255 images
of the ETHZ Shape Classes as test set. Our method per-
forms better than [7] on all 5 classes (fifth row of the table).
Moreover, our approach offers three additional advantages
over [7]: it can train from real images, it supports branching
and self-intersecting models, and it is more robust as it does
not need the test image to contain long chains of contour
segments around the object.

Interestingly, hand-drawings lead to better results than
when learning models from images. This can be explained

by the fact that hand-drawings are essentially the prototype
shapes the system tries to learn.
Conclusions. The experiments confirm that the presented
approach can learn class-specific shape models from im-
ages annotated with bounding-boxes, and then localize the
boundaries of novel class instances in the presence of exten-
sive clutter, scale changes, and intra-class variability. In ad-
dition, it is also very effective when given hand-drawings as
models. By supporting both images and hand-drawings as
training data, our approach bridges the gap between shape
matching and object detection.
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