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Ageing of a gas/liquid interface elongated by standing waves
L. Davoust, C. Picard

Laboratoire des Ecoulements Géophysiques et Indutriels, BP 53, Grenoble Cedex 9, France

This paperaimsat modellingtheinterfacialageinginducedby the sudderarisingof standingcapillary wavesat a contaminatedir/water
interface.Hereis thusconsidereda brimful cylindrical reactorfilled with a waterbathin which surfactantsaresolubilized.The cylindrical
capillary wavesat the air/waterfree surfaceareresponsibldor further productionof interfacialarea.The surfacediffusion beingsupposed
instantaneoudylarangonieffect doesnot play any dampingrole. The thermodynamicaéquilibrium achievedwvhenthe interfaceis at rest,
is consideredasinitial condition. The time-dependencef the surfaceconcentrationin surfactants]"(¢), and of the bulk concentratiorin
surfactantat thevicinity of theinterface,Cs(¢), is analyticallymodelledtakinginto accounthe serialcouplingbetweerbulk diffusion and
sorptionphenomenals recommendedyy Yariv andFrankel[E. Yariv, I. Frankel,Phys.Rev.Lett. 89 (2002)26], noneassumptioron
the source ofhe ageing is formulateih the transientegimeunder consideration.

Keywords: Gaslliquid interface; Surfactants; Capillary waves

1. Introduction factants (which could be target biomolecules) are introduced
inside the water bulk. Here, the paper focuses on the transient
This paper is a contribution to a research devoted to surface ageing observed as soon as standing cylindrical
the development of a new bio-chip based on an gas/liquid capillary waves (SCCW) arise at the air/water interface.
interface covered by a functionalized monolaj& After
the adsorption of target biological molecules (proteins, DNA
strains, etc.), initially solubilised within the underlying liquid ~ 2. Mathematical model
subphase, it is relevant to see how the ageing of the func-
tionnalized gas/liquid interface and its subsequent change?-I- Conservation equations and closure laws
in the interfacial elasticity should permit a rheology-based
diagnostic of the adsorption: a point which is addressed in
a companion paper of the conference (Optical investigation
of a wavy ageing interface by Picard and Davoust). Taking
into account the requirements of the biology (small amounts ?Y
of biological reactants, attempts to avoid external contam-
ination, etc.), it is found that a diagnostic based on the
dilatational elasticity could be relevant. The system under v, |._o = &wJ1(kr) coS(w), 1)
consideration is a brimful cylindrical reactor filled with water
and submitted to an electrodynamic shaking (sed&)xand whereJp andJ; are the Bessel functions of the zeroth and the
which supplies capillary waves at the air/water interface. Sur- first order, respectively. The symbaig, k, ¢o, &0, w denote,
respectively, the radial coordinate, the time, the wave number,
the surface elevation along the reactor axis, the amplitude of
* Corresponding author. Tel.: +33 4 76 82 50 38; fax: +33 4 76 82 52 71. the radial displacement of a surface particle and finally, the
E-mail address: laurent.davoust@hmg.inpg.fr (L. Davoust). wave frequency (see alag. 1). the notatiorX | ,—g is refered

When the interface is populated by SCCW, the elevation
¢ of the wavy surface, the vertical velocity and the radial
velocityv, atthe vicinity of the interface can be approximated

¢(r, t) = oJo(kr) sin(wi), vz |;=0 = CowJo(kr) cos(w),



of the interface was diffusion-limited, Eq&)—(4) could be
sufficient to derive the evolution of the surface and bulk con-
gas centrations. As a matter of fact, Yarivand Franié¢have re-
cently demonstrated that sorption phenomena must be taken
into account when evolution af at small times (k1) is
of interest. This finding results from the fact that sorption
z and diffusion phenomena are two serial chemical fluxes. The
former set of equations has to be completed by the Langmuir
law which is assumed to describe conveniently the chemical
flux due to sorption energy barrier:

N r r
JS'EZ kaCs <1— ) —kg—— (5)

o liquid I I

4 The symbolsk,, kg, Cs and I's, denote the adsorption and
% 1"‘@ @FP@ % f desorption coefficients, the bulk concentration at the vicin-
[ ity of the interface and the maximum packing surface con-
centration. As a consequence, the mathematical model here-

s j 4 g considered writes as
c. QJE .ﬁw aC

1+93-VC = DAC,

ot
dr - =
Fig. 1. System under consideration. E + Vo v+ I (Vs ) E)(Us ’ S) — Dodol”
) L r r
to as the value of the bulk quanti at the vicinity of the = kaCs (1 — ) — kq—,
interface (z= 0). I Iea
Making use of the Gibbs hypothesiand considering the r r > >
gas phase as neutral (no ad/desorption from/to air and nokaCs (1_ roo> N kdE =—DVsC-§, ®)
diffusion within air), the transport equations for the bulk and _
surface concentrations in surfactan®t, r, z) and I°(z, r), where the symbali denotes the Laplacian operator.
simplify, respectively, to
9C R R 2.2. Conservation equation in the wavy interface
— +v-VC=-V-J, @)
o The mathematical model has been written with intrinsic
dr

notations. Tensorial analysis has to be performed in order to
(3) write explicitly the surface concentration equation within the
wavy interface. After calculation of the metric tensors and
the Christoffel symbol$4], it is possible to write explicitly
the transport equation for the surfactant in a cylindrical co-
ordinates system (Fig. 2).

The 3D metric tensor quite well-known when connecting
Cartesian to cylindrical coordinates systems is not recalled
here. The surface metric tensor which allows to connect cylin-
drical to polar surface coordinates systems is derived as

E—FFVG-TJS-F I'(Vs-&)(¥s- &) + Vo - jo = Js-&.
Here, use is made of the gradient opera‘ﬁ:rlhe diver-
gence operator defined (in the liquid bulk) at the vicinity of
the interface (¥), the intrinsically 2D surface divergence

operator (¥-). The symbols), D, Ts, J, Js, j» and& are re-
ferred to as the velocity and the chemical diffusivity in the
bulk, the surface velocity, the chemical flux in the bulk and
the chemical flux in the bulk at the vicinity of the interface,
the intrinsically 2D surface chemical flux and, finally, the unit
vector normal to the interface, directed from the liquid to the 1
gas phases. Assumingthe liquid phase is dilute enough, Fick'syes _ ! 0
law is the closure law which allows us to write explicitly the 0 r%
chemical fluxes/s and j,:

v, . }.a — D,V and the only non-vanishing Christoffel symbols write as
V-?:—D5C=>35~§=—D§SC-§. (4) { 1 } _ ag(r, 1) 32§'(l’,l‘)f_1 { 1 } = rf_l

R - 2 ) - )
The symbolsV,, and D, denote, respectively, the surface 1 b or or 22 b

gradient operator and the surface diffusivity. If the ageing { 2 } { 2 } 1
b b

12 21

1 The interface is handled as a two-dimensional medium.
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Fig. 2. Coordinates systems.
where the symbdfis defined as dimensionnal the coordinatesandz, the length scales are
) found to bek—! andzp. The scales for the bulk and surface
f=1+ a¢(r, 1) concentrations are found when the interface remains at rest,
or ' in thermodynamical equilibrium with the bulk€, and I'e

are calculated from the Langmuir law according to
From these calculations, the covariant derivatives of the con-

travariant quantities involved if6) can be easily derivel®]; Cxo
the subsequent mathematical formulation writes explicitely: Coo + kd/ka

dar 0vrlz=0 d§ 8vz|z Urlz . . .
ar + I K o dr ) 4 ] A natural scale for the yelqmty componantis the quantity '
Zow. Subsequently, taking into account the mass conservation
,d% c equation, the scale far. is found to bek~1w.
+ 172 dr2 (UZ|Z 07 ar o Urle= ) There remains now the question of finding a relevant time
scale. The relevanttime scales for (i) the diffusion in the bulk,

S lor (1 ded?c 4\ | ¢ (ii) the diffusion-limited surface ageing, (iii) the sorption-
- Do'f ai - 772](‘ 2 . . . . . . .
r \r drdr or limited surface ageing, (iv) the surface diffusion and finally,
(v) the dynamical deformation of the interface, can be de-
r r duced from th tive bal :
= kaCs (1= =— ) — kg—, uced from the respective balances:
o I'o )
aC a°C
3C+ 3C+ aC b 19 [ oC 92C §~D@=>td’\'§Do 7)
— +V—+v,—=—-D|-— | r— —
ot " or ‘oz ror or 0z2
dar aC I'o50
r r aC d —~—D— = ftyg~ —————, 8
kaCs (1— =) —kg—— = —pp229C) (1%} oz 197 (Coo ¥ ka/ka)D ®
I I 3 |,—o dr

dar r r I'o
— ~kaCs[1— — ) —kg— = tas~ —————, (9
dr as( I ) d as ()

2.3. Non-dimensional mathematical formulation 00 I'o kaCoo +kd’
. . . 2 -2
Non-dimensional numbers can be made evident from a 97 _ 68 r = foq ~ k* (10)
careful analysis of the characteristic scales. To make non- dt ar? Dy



il 1
— ~ V=0 = Iy YW
o z|z 0 1)

2.4. Instantaneous surface diffusion

(11)
To simplify more the problem, we consider the asymp-
The evolution of the concentrations within the bulk and the totic situation for which intrinsic surface diffusion is instanta-
interface are linked through the sorption phenomegais neous (A5 <« N2 and the waves-driven radiél-gradients
retained as the scale for the interfacial ageing. The mathe-yanish. This approach is consistent with the fact that wave
matical formulation for the initial value problem we wantto  damping due to Marangoni effect is supposed to be negligi-

model writes, in a non-dimensional way: ble. Then, an average process allows us to make the prob-
lem mono-dimensional: the concentratiafis= C(¢, z) and
ar + NP {f—lav’ l==0 + vrl:=0 +e 2d¢ 3')1'1 041 I' = I'(t, z) are considered as uniform over horizontal cross-
dr or r dr sections and an excitation terf(z) can be defined as the
L9 d¢ radial mean value of the dilational term, proportionaNgy®
+ &f = < Iz g Urlz ﬂ in (12). Because of the Dirichlet boundary conditions for
the surface velocity (#—0)(r = 0) = v,|=0)(r = R) =
ar (1 d;d e 2r whereR is the dimensionless radius of the outer pinedge),
s (, ardr ) o2 the radial average of th@(e)-order term is null and the ex-
citation E appears as @(s2)-order term:
= C|z=0(1+ (l - No)r) — No I (12)

2 (R Ta

E = NS 2 / X vleco| rdr + OE®).  (16)
R2 Jo or |or

Na9C L p [, 3C L, 0 210 (aC ¥C

9\ _ 220 (90 oC

asy T\ Uy Ty ror \or ) 822

3. Perturbation method
(13)

To put forward an analytic solution despite the strong cou-
pling between the differential EqEl2) and (14), it is conve-
) nient to focus on small amplitude SCCW. From a practical
z=0 ; . ; i ; ; -
viewpoint, this restriction is consistent with the requirement
= Cl:=0(1+ (1 = No)I') = No I’ (14)  toavoid any damage to the structure of the adsorption layer at
the air/water interface. In particular, Faraday waves are not
considered here. As a consequence, one seeks the solution
Ct=0rz)=1, rt=0rz)=1, (15) of sysztem(12)—(15)as a (regular) perturbation series with
n(= &%) as the small parameter:

where the non-dimensional numbevgs, N, Pe, N3, N25 I'=Io+nl+ 002 C = Co+nC1 + O3
are defined as ratios of times scales:

_ dé‘ aC| 8C
NBS 1/2 T1z=0
ad dr 8r s

with the initial conditions:

, E =nE1+ O(n*?), (17)
as _ tis _ (I)Fe as __ tas _ Feng .
m Tl od = e kacoo , whereE4 can be expressed fro(h6):
E1(t) = THJNZsin(2N2 1
tw D’ as = T rsD whereJ is defined using(l), by
fas_ D R 11(r) Jo(r)
NE= 22— J= / Aol 19
ad ™ fad kaé‘o 0 RZ r ( )
and where the numbers: 3.1. Model at O(1)
N, = 4 _q_ Te By making use of17)to transform the mathematical for-
Cxota I'o mulation(12)—(14), it is possible to derive the mathematical
model atO(1)-order:
and
alp
W = C0|z=0(1 - (1 - NU)FO) — No T,
e =k¢o
49Co  3%Co
. . as o T 472
stand, respectively, as, the gap to cross before saturating the o dz

interface and the Poindaparameter which is nothing but the

dCo
_ __ajas
typical slope of the standing cylindrical ripples. Col:=0(1+ (No — 1)Ib) — NoJb = —N

ad aZ =0 .



Taking account of the initial conditiond5), the solution at

which compares the sorption flux limited by thdevel to the

zeroth-order is directly deduced from the thermodynamical diffusion-limited fluxes, the unknowns of interest are derived

equilibrium;

Co=1, Ip=1. (20)

This result is consistent with the fact that whee= 0, the
interface remains at rest.

3.2. Model at O(n)

as

~ m Eq

Cil.—0 = — , 29
llZ—O No-\/ES‘i‘mﬁ‘i‘l ( )
~ m El

n=—-(—+1 ——. 30
! (ﬁ+ >s+mﬁ+1 (30)

Definingn = v/m? — 4, it can be demonstratedrif + 0:

To get the time-dependence of the concentrations, thee that the time-dependant bulk concentration at the vicinity

mathematical model &P(n)-order has to be drawn up

ol
= T E1 = NyCil|;—0 — I, (21)
aC,  9%C
d 1 1
— iy 22
oC
NoCilemo — I = —NZ 2|, (23)
9z z=0
with the following initial conditions:
C1(t=0,r,2) =0, InE=0,rz)=0. (24)

When the non-dimensional numbaf, tends to zero, Eq.
(23) indicates that sorption kinetics is mainly controlled by
the level of the surface concentratidh After a brief in-

spection to the former mathematical formulation, it is worth
emphasizing that the feedback coupling due to the convective
motion inside the bulk, originated from the ripples at the in-

terface, is not taken into account@fn)-order. Nevertheless,
the dilatational ternEy in (21), proportional tav2s number,

shows how the dynamical surface deformation is able to in- 1(t) =

duce variations on the surface concentration.

4. The O(n)-solution

of the interface writes:

o [ e
-7
nNgﬁ 0 !

o
. / e iy Dsh(nu /Ty dudr,  (31)
0

Cl|z:0(t) =

e that the time-dependant surface concentration writes:

Fl(t):’;;;__[/o El(t—r)/o <m+j?)

x e—(uz-',-mu\/?)sh(nuﬁ) dudz. (32)

If n2 = 0, the expressions faf1|.—g and I'; simplify to

m t
C —ol?r) = /\/?E -7
o) = = [ VTE =)
x / ue~WHmD) g dr (33)
0
—4 [t
x / e~ muv gy gz (34)
0

ReplacingE; by (18), whent — oo, expressiong31)—
(34) can be also considered as the imaginary part of Laplace

As for the Ward and Tordai equation, it is relevant to seek .on<forms already found {29) and (30). Consequently, the

the solution of our initial-value problem making use of the
Laplace transform. (s, r, z) = L{X(t, r, )}, denotes the
Laplace transform of the unknowki(z, r, z), from (20) and
(24), one shows that thé(n)-model in the Laplace space
writes:

s+ 't = NyCil,—0 — En, (25)
.. 0°C
d 1_
. aC1 .
NyCil:—0+ N§§ — =1I1. (27)
dz z=0
Introducing the non-dimensional number
N,
2 (28)

m = as d’
Nad Nas

asymptotic expression of the concentrati@h$,—o and I';
write:

. m JN3 N
Noy+/2IN3Y2iN3S + m  /2IN3S + 1)
(35)
/2IN3) JNa2IN;°
ri=(0) = —im— 2t V2NN, (36)

Ny+/2INZ{2IN2S+ m | /2INZ5+ 1)

5. Time evolutions and discussion

It is now relevant to assess the influence of each non-
dimensional number onto the time evolution of the concen-
trationsI; andCi|,—o.
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Fig. 3. Influence ofn on I'i(¢) (N35=2 andN, = 1): (¢)m =1 and (§
m = 10.

The numberm controls the small frequency—kinetics
evolution of I'7 during the transient regime i.e. the transient
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(32) and (33have been demonstrated in a general manner.
It is now worth regarding how they can be simplified when

delay the heterogeneous system needs to reach the newliffusion/sorption-limited ageings prevail.

thermodynamical equilibrium associated to the steady
(wavy) regime. Typically, whem increases, the kinetics of
the transient regime becomes slower (B&gs. 3 and 4).

The non-dimensional numbai2® characterises the (high
frequency) oscillating behaviour d@f;. A look at the evolu-
tion of C1|,—¢ tells us that the amplitude of the oscillations
decreases for high values &8£S, This is consistent with the
fact that, all things being equal, the quickest the oscillating

5.1. Sorption-limited ageing

If diffusion kinetics within the bulk is supposed instanta-
neous, one can considaiZs > 1. As a consequence, bulk
concentration remains unifornt1|,—o = C1(t,z) = 0. The
corresponding mathematical model simplifies drastically
to a linear first-order differential equation whose solution

surface deformation is, the slowest the response of the bulkWrites as

concentratiorCs |,—o to any change of interfacial area s (Fig.
5). The time evolution of the surface concentration is close
to the one of a non-soluble surfactant.

It can be relevant two distinguish the diffusion-limited
ageing from the sorption-limited ageing in order to classify
surfactants. The Ward and Tordai equation is the well-known
expression which models the diffusion-limited ageing of a
freshly formed bubble interface at the tip of a tube. Here
things are different because first, our interface is periodi-
cally perturbed around a pre-existing situation of thermo-
dynamical equilibrium and second, the geometry of the sur-

face deformation originates from standing waves. Relations

0.4

20

Fig. 4. Influence ofn on C1|,—o(¢) (N3 = 2 andN,, = 1): (¢) m = 1 and
(x) m = 10.

@) =-¢e' /Ot E1(7)€" dr. (37)

5.2. Diffusion-limited ageing

The time scalegs is no longer relevant angyg is how
retained to derive a relevant non-dimensional mathematical
model. For the classical hypothesis of diffusion-limited age-
ing, sorption phenomena are supposed to be instantaneous:
NZ3— 0. The final mathematical model for the diffusion-
limited regime writes as

ol aC
—t=-—" -E, (38)
Bt 8Z 7=0
aC1  d3C
g 9C1 1
_ , 39
NyC1l;=0 = I, (40)

where the non-dimensional numbe¥d,, is defined as the
ratio between the two diffusion kinetics:

d _ l;d _ Coolo
ad fad I'
Here again, by making use of the Laplace transform, it is pos-
sible to derive the two concentrations of interest as follows:

. (41)

1 t 2
Cilemol) =~ /O E(t — De’erfc(qyndr,  (42)



t 2 limited model arises when the frequency of the oscillating
) = _/0 E(t — r)e' Terfc(gy/7)d, (43) surface deformation becomes large enough compared to the
sorption kinetics (4 ~ tas0rt,,, < ta9): typically, whent,, is
with the new non-dimensional numberqq, defined as the  too small, the adsorption—desorption equilibrium is found no
ratio: longer valid.
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