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Özetçe 
Bu bildiride RBF sinir ağlarındaki saklı katman öğelerinin 
sayısını ve başlangıç yerlerini bulmak için tektürel 
topaklandırma algoritması adını verdiğimiz yeni bir yöntem 
önerdik. Bu amaçla kullanılan diğer yöntemlerin aksine, 
önerdiğimiz yöntem sınıfların etiket bilgisini kullanan bir 
yaklaşım olup, aranan parametreler sınıflar arasındaki 
örtüşmelere göre belirlenir. Önerilen yöntemin ardındaki 
temel fikir, içinde sadece tek bir sınıfa ait elemanlar bulunan 
tektürel topaklar oluşturmaktır. Önerilen yöntemi RBF sinir 
ağları sınıflandırıcısıyla birlikte Graz02 nesne veri tabanı ve 
ORL yüz veri tabanı üzerinde test ettik. Deneysel sonuçlar 
önerdiğimiz yöntemle başlatılan RBF sınıflandırıcının k-en-
yakın-merkez topaklandırma yöntemiyle başlatılan RBF 
sınıflandırıcıdan çok daha iyi sonuçlar verdiğini 
göstermektedir. Aynı zamanda elde edilen tanıma oranları 
Graz02 nesne veri tabanı için literatürde yayınlanan en iyi 
tanıma oranlarını geçmekte ve ORL yüz veri tabanı için de 
benzer sonuçlar üretmektedir. Bu da bu çalışmada sunulan 
topaklandırma yönteminin saklı katman öğelerinin sayısını ve 
başlangıç yerlerini bulmada oldukça başarılı olduğunu 
göstermektedir. 
 

Abstract 
In this paper, we propose a new supervised clustering 
algorithm, coined as the Homogeneous Clustering (HC), to 
find the number and initial locations of the hidden units in 
Radial Basis Function (RBF) neural network classifiers. In 
contrast to the traditional clustering algorithms introduced for 
this goal, the proposed algorithm is a supervised procedure 
where the number and initial locations of the hidden units are 
determined based on split of the clusters having overlaps 
among the classes. The basic idea of the proposed approach is 
to create class specific homogenous clusters where the 
corresponding samples are closer to their mean than the means 
of rival clusters belonging to other class categories. We tested 
the proposed clustering algorithm along with the RBF network 
classifier on the Graz02 object database and the ORL face 
database. The experimental results show that the RBF network 
classifier performs better when it is initialized with the 
proposed HC algorithm than an unsupervised k-means 
algorithm. Moreover, our recognition results exceed the best 
published results on the Graz02 database and they are 
comparable to the best results on the ORL face database 
indicating that the proposed clustering algorithm initializes the 
hidden unit parameters successfully.  
 

1. Introduction 
Artificial neural networks are largely used in applications 
involving classification or function approximation. Among 
these networks, the Radial Basis Function (RBF) network is a 
special type with several distinctive features. A typical RBF 
neural network classifier has three layers as shown in Fig. 1. 
The input layer of the network is made of source nodes that 
connect the coordinates of the input vector to the nodes in the 
second layer. The second layer, the only hidden layer in the 
network, includes processing units called the hidden basis 
function units which are located on the centers of well chosen 
clusters. Each hidden unit implements a special basis function 
and this process incorporates the nonlinearity into the RBF 
network. The output layer is linear, and it produces the 
predicted class labels based on the response of the hidden 
units.  

 

 
Fig. 1: A Typical RBF Neural Network Classifier System. 

 

Theoretical and empirical studies showed that the 
performance of the RBF network highly depends on the 
number and initial locations of the hidden units [1], [2]. 
However, no well defined procedure exists how to tackle this 
cumbersome step. Generally, the positions of the hidden units 
are obtained using unsupervised clustering algorithms such as 
k-means or Expectation Maximization. In [2], the authors use 
the extracted support vectors for the initialization. Er et al. [3] 
use a supervised clustering algorithm for the same goal. The 
authors split the rival clusters to remove overlaps among them. 
In this paper, we introduce a variant of this clustering 
algorithm with a couple of modifications. These modifications 
yield more compact representations of classes with a smaller 
number of hidden units. Also, the proposed algorithm easily 
handles data outliers, which is not addressed in [3]. 

The rest of the paper is organized as follows: Section 2 
explains the issues related to the design of the RBF networks. 



In Section 3, we introduce our proposed clustering algorithm. 
Section 4 describes the data sets and experimental results. 
Finally, our conclusions are given in Section 5. 

2. Design Issues 
To use the RBF networks, one has to specify the hidden unit 
function. Among all possible basis functions, typically 
Gaussian functions are preferred for classification applications 
defined as 
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where x is the input vector and jµ  and jΣ  denote the mean 
vector and covariance matrix associated to the chosen clusters 
respectively. In the case of general covariance matrices, the 
input space is partitioned into a number of hyper-ellipsoids by 
the corresponding hidden units. On the other hand, in most 
applications, the covariance matrices are taken as diagonal 
matrices with the same diagonal entries, which are called the 
widths of the Gaussian basis functions. In that case, the hidden 
functions define local hyper-spheres. 

The second step towards building an RBF network is to 
determine the number of hidden units and their initial 
parameters. This step is extremely important since it has a 
great impact on the classification performance of the overall 
network. Although the hidden unit parameters are revised in 
the subsequent learning phase, poorly chosen parameters may 
easily lead the network to converge to a local minimum. 
Furthermore, it will take more iterations to reach a solution in 
such cases making the learning phase less effective in terms of 
computational efficiency. Generally, the positions of the 
hidden units are obtained using unsupervised clustering 
algorithms and the widths of the Gaussian functions are 
chosen based on the distances between initial cluster centers. 
Once the cluster centers and associated parameters are 
determined, one may proceed to the training phase. In the first 
stage of the training phase, the hidden unit parameters are 
modified based on the training data. Following that, the basis 
function parameters are kept fixed and the weights of the 
networks are computed. The weights are optimized by 
minimization of the following criterion 
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where N is the total number of samples in the training set, C is 
the number of classes, )( nc xy  is the network output for the 

input sample nx , and c
nt  is the desired output. The cost 

function can be written as a quadratic function of the weights, 
thus the weight vector can be found by fast linear matrix 
inversion techniques. 

3. Homogeneous Clustering Algorithm 
As mentioned earlier, the initial positions of the hidden units 
are usually obtained using unsupervised clustering algorithms 
such as k-means or Expectation Maximization since these 
clustering algorithms more or less model the local 
distributions of the data. There are two main limitations of 
these conventional clustering algorithms: First, one needs to 
determine the number of clusters in advance. Second, these 
clustering algorithms do not use the available class 
information since they are unsupervised. This is particularly 
restrictive for classification problems where the class labels 

are available. Learning without class information may lead to 
the situation illustrated in Fig. 2-(a). There are two classes 
represented with blue and red colors in the figure. Notice that 
one RBF unit is sufficient to model homogenous clusters, 
however unsupervised clustering algorithm may yield two 
RBF units for those clusters. Furthermore, the heterogeneous 
cluster (i.e., the cluster in which there are samples from both 
classes) is represented with only one RBF unit, which may 
degrade the generalization performance. All these deficiencies 
can be overcome by a supervised clustering algorithm as 
illustrated in Fig. 2-(b). 

 
Fig. 2: Clustering algorithms: a) Unsupervised clustering algorithm b) 
Supervised clustering algorithm. 

 

Here we introduce a variant of the clustering algorithm 
proposed in [3] to determine the number and initial locations 
of the hidden units. We use the spherical Gaussian functions 
since there are not sufficient samples to estimate full 
covariance matrices in our work. The proposed approach is a 
supervised procedure where the number and locations of the 
clusters are determined based on the split of the rival clusters 
having overlaps among classes. The basic idea of the proposed 
approach is to create homogenous clusters, thus we will call 
this approach the homogenous clustering (HC) algorithm. The 
HC algorithm can be summarized as follows: 
i) Initially choose the number of clusters as the number of 
total classes in our database, i.e., h=C, and set each cluster 
center to the center of the corresponding class.  
ii) For any cluster i

imH  belonging to the i-th class, compute 
the Euclidean distance between the furthest point and the 
mean of that class and assign it to i

imd . We treat this 
computed distance as the width of the corresponding hyper-
sphere. 
iii) Compute the distances between the cluster centers 
belonging to different classes, that is 
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where i
imµ  is the mean of i

imH . 
iv) Check the relation between the widths and computed 
distances among clusters. There are 3 basic scenarios: 
 1) imi

jmjd ,
, ≥ i

imd + j
jmd : There is no intersection between the 

hyper-spheres as shown in Fig. 3-(a). Thus no split is 
necessary. 
 2) { imi
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is intersection between the hyper-spheres and there are 3 
possible situations in this case: 
  a) There are no samples in the intersection of the hyper-
spheres as shown in Fig. 3-(b). More formally, 
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where i
im

i
im Hx ∈ . Thus, no split is necessary since all samples 

can be classified correctly. 
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to i
imH  and they are closer to the center of rival cluster j

jmH . 

This case is illustrated in Fig. 3-(c). In this case, the samples 
closer to rival cluster centers in the intersection will be 
misclassified, thus the cluster i

imH  must be split into two 
clusters if the number of the samples in the intersection is 
bigger than a selected threshold. There may be data outliers in 
the training data and the threshold is introduced to prevent 
over-fitting in such cases. 
  c) { |||||||| j
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|||| i
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j
mjx µ− }: In this case, both clusters have samples in the 

intersection where the distances from those samples to rival 
cluster centers are closer than the distances to their own 
cluster centers. This case is illustrated in Fig. 3-(d). Therefore, 
both clusters must be split if the number of samples in the 
intersections is bigger than the selected threshold. 
 3) { imi
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imd + j
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, }: In this 

case one of the hyper-sphere is completely enclosed in the 
other as shown in Fig. 3-(e). Thus the bigger hyper-sphere 
must be split. 
After each split, cluster centers in the vicinity of the split 
cluster (including the center of the split cluster), associated to 
the class category of the split cluster, must be modified. In the 
case of data outliers, those outliers must be removed from the 
training set and corresponding cluster centers must be 
updated. 
v) Repeat (i)-(iv) until no more splits are necessary.  

 
Fig. 3: Possible intersection scenarios between clusters. 

 

In [3], the authors attempt to remove intersections without 
taking the data outliers into consideration, and they do not 
revise the cluster centers in the vicinity of the split cluster. 
Thus, their proposed algorithm tends to yield additional 
unnecessary clusters. 

To determine the initial widths of the basis functions, we 
considered that they are equal for all Gaussian functions. 
Then, the widths are fixed to min5.1 dj =σ , ,,...,1 hj =  where 

mind  is the minimum distance among all clusters belonging to 
different classes. 

4. Experiments 
We tested our proposed clustering approach on the 
classification of two real data sets, namely the Graz02 object 

database [4] and the ORL face database [5]. For all 
experiments we initialized the RBF network classifier with the 
HC algorithm and the unsupervised k-means clustering 
algorithm. The number of hidden units is firstly determined by 
the HC algorithm and then it is used for the initialization of k-
means clustering algorithm. Then, recognition rates were 
obtained for each initialization. Data are standardized before 
the experiments since we utilized hyper-sphere Gaussian basis 
functions )/||||exp()( 22

jjj xxR σµ−−=  in this work.  

4.1. Experiments on the Graz02 Database 

The Graz02 database contains three object categories (bikes, 
cars, and persons) and counter examples. The goal is to label 
the test images with either one of the object categories or as 
being a counter example. Each object class includes samples 
from various viewpoints under different lighting conditions 
and scales. In addition, the objects are not always fully visible 
and there is a large intra-class variation, which makes the 
classification task even more challenging. Some chosen 
images from the Graz02 database are shown in Fig. 4.  
 

 
Fig 4: Some image samples from the Graz02 database: The images in 
the first, second, third, and fourth rows are respectively chosen from 
the bikes, cars, persons, and counter example categories. 
 

 In order to represent the image samples, we used “the bag 
of features” representation. Introduced by Csurka et al. [6], it 
has been applied widely for both object classification and 
localization tasks. In this approach, firstly small image patches 
are chosen at different positions and different scales. Interest 
point detectors can be employed to choose the patches. In our 
case, we randomly selected a large number (in the order of 
thousands) of image patches at different positions and scales. 
Then, the chosen patches are described by the scale invariant 
feature transform (SIFT) descriptor, which was reported to 
yield the best results in the bag of features scheme [6]. 
Following this process, all descriptors extracted from images 
are quantized in a discrete set of so called visual words 
forming a vocabulary. We set the size of the visual vocabulary 
to 2000. To build image representation, each extracted 
descriptor is compared to the visual words and associated to 
the closest word. Based on these assignments, we build 
histograms, which were used as image feature vectors.  
 Recently significant improvements were achieved by using 
the Chi-Square ( 2χ ) distance (CSD) during classification of 
image histograms. Therefore, in this study, we also used the 
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incorporating 2χ  distance between histograms. 
We performed three binary classification tests for each 

object category where the goal is to decide whether an image 
includes the object of interest or not. For all tests, we used 150 
image histograms of the object category as positive samples 
and 150 of the counter examples as negative samples 
following the same experimental setup described in [7]. The 
Receiver Operating Characteristic (ROC) curves belonging to 
each classification problem are shown in Fig. 5. We obtained 
Equal Error Rates (EERs) from these curves and they are 
given in Table I. In terms of recognition accuracy, the basis 
functions utilizing the 2χ  distance yielded better results than 
the classical Gaussian function in the RBF classifier network. 
For all cases, the RBF classifier initialized with the proposed 
HC algorithm achieved the best recognition rates, and these 
rates exceed the best published recognition rates for this 
experimental setup.  
 

Fig 5: ROC curves belonging to each classification problem. 
 

Table I 
Recognition Results (%) in terms of EERs for the Graz02 database: 

KM - k-means 
RBF RBF-CSD  

HC KM HC KM 
Moosman 
et al. [7] 

Opelt et 
al. [4] 

Bike 78 77.3 82.6 81.3 79.9 76.5 
Cars 74 72.6 76.6 75.3 71.7 67 
Persons 87.3 85.3 89.3 89.3 - 81 

4.2. Experiments on the ORL Face Database 

The ORL face database contains C=40 individuals with 10 
images per person. The images are taken at different time 
instances with different facial expressions, and facial details. 
All individuals are in upright, frontal position (with tolerance 
for some side movement). The size of the each image is 
92x112 and we used gray scale values as feature vectors 
representing face images. 
 We first randomized the samples in the database and then 
selected 5 samples from each class for training and the 
remaining 5 samples were used for testing. We did not apply 
any preprocessing to the images. The dimensionality of the 
sample space is too high compared to the training set size thus 
the RBF network classifiers are not suitable for such cases. 
Therefore we decreased the dimensionality of the sample 
space to 70 by employing the Orthonormal Discriminant 
Vector [8] dimensionality reduction technique. This technique 

is an iterative method where each projection direction is 
chosen such that it optimizes the well known Fisher’s Linear 
Discriminant analysis criterion in each step. Following the 
dimensionality reduction, we applied the RBF networks 
initialized with the HC and k-means clustering methods. This 
process was repeated 10 times and the final recognition rates 
were obtained averaging the error rate of each run. The 
computed recognition rates are given in Table II. To assess the 
performance, we compared the computed recognition rates to 
the DCV method which can be considered as the state-of-the-
art. 

Table II 
Recognition Rates and Standard Deviations on the ORL Faces 

RBF 
HC k-means DCV 

95.45%, 44.1±  91.90%, 19.2±  95.20%, 49.1±  
 

 As can be seen in the table, for the same number of hidden 
units, the RBF network classifier initialized with our proposed 
HC algorithm yields significantly better recognition rates than 
the RBF classifier initialized with the k-means clustering 
algorithm. Note that the recognition rate obtained by the 
proposed clustering algorithm is slightly better than the 
recognition of the DCV method. 

5. Conclusion 
In this paper, we proposed a new supervised clustering 
algorithm for finding the number and initial locations of the 
hidden layer units in the RBF network classifier. We tested the 
proposed scheme along with the RBF network classifier on 
two databases. Experimental results show that the RBF 
network classifier performs better when it is initialized with 
the proposed HC algorithm rather than an unsupervised k-
means algorithm. Moreover, our recognition rates significantly 
outperform the best published results on the Graz02 object 
database and produces similar results to the DCV method on 
the ORL face database indicating that that the proposed 
clustering algorithm yields a superior initialization for the 
RBF network classifier. 
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